Titelaufnahme

Titel
Quasi-best approximation in optimization with PDE constraints / F. Gaspoz, C. Kreuzer, A. Veeser, W. Wollner
VerfasserGaspoz, Fernando In der Gemeinsamen Normdatei der DNB nachschlagen ; Kreuzer, Christian In der Gemeinsamen Normdatei der DNB nachschlagen ; Veeser, Andreas In der Gemeinsamen Normdatei der DNB nachschlagen ; Wollner, Winnifried In der Gemeinsamen Normdatei der DNB nachschlagen
ErschienenDortmund : Technische Universität Dortmund, Fakultät für Mathematik, April 2019
Ausgabe
Elektronische Ressource
Umfang1 Online-Ressource (25 Seiten) : Illustrationen
SerieErgebnisberichte angewandte Mathematik ; no. 602
SchlagwörterFinite-Integrations-Methode In Wikipedia suchen nach Finite-Integrations-Methode / Tichonov-Regularisierung In Wikipedia suchen nach Tichonov-Regularisierung
URNurn:nbn:de:hbz:6:2-110047 Persistent Identifier (URN)
DOI10.17877/DE290R-20001 
Zugriffsbeschränkung
 Das Dokument ist frei verfügbar.
Dateien
Quasi-best approximation in optimization with PDE constraints [0.5 mb]
Zusammenfassung

We consider finite element solutions to quadratic optimization problems, where the state depends on the control via a well-posed linear partial differential equation. Exploiting the structure of a suitably reduced optimality system, we prove that the combined error in the state and adjoint state of the variational discretization is bounded by the best approximation error in the underlying discrete spaces. The constant in this bound depends on the inverse square-root of the Tikhonov regularization parameter. Furthermore, if the operators of control-action and observation are compact, this quasibest-approximation constant becomes independent of the Tikhonov parameter as the meshsize tends to 0 and we give quantitative relationships between meshsize and Tikhonov parameter ensuring this independence. We also derive generalizations of these results when the control variable is discretized or when it is taken from a convex set.

Klassifikation
Links
Nachweis