Equivalence of regression curves sharing common parameters / Kathrin Möllenhoff, Frank Bretz, Holger Dette
VerfasserMöllenhoff, Kathrin ; Bretz, Frank ; Dette, Holger
ErschienenDortmund : SFB 823, February 2019
Elektronische Ressource
Umfang1 Online-Ressource (24 Seiten) : Diagramme
SerieDiscussion paper ; Nr. 3/2019
SchlagwörterNichtlineare Regression / Bootstrap-Statistik / Klinisches Experiment
 Das Dokument ist öffentlich im Netz zugänglich.
Equivalence of regression curves sharing common parameters [0.37 mb]

In clinical trials the comparison of two di erent populations is a frequently addressed problem. Non-linear (parametric) regression models are commonly used to describe the relationship between covariates as the dose and a response variable in the two groups. In some situations it is reasonable to assume some model parameters to be the same, for instance the placebo e ect or the maximum treatment e ect. In this paper we develop a (parametric) bootstrap test to establish the similarity of two regression curves sharing some common parameters. We show by theoretical arguments and by means of a simulation study that the new test controls its level and achieves a reasonable power. Moreover, it is demonstrated that under the assumption of common parameters a considerable more powerful test can be constructed compared to the test which does not use this assumption. Finally, we illustrate potential applications of the new methodology by a clinical trial example.

 Das Medienwerk ist im Rahmen des deutschen Urheberrechts nutzbar.