Locally bound-preserving enriched Galerkin methods for the linear advection equation / D. Kuzmin, H. Hajduk, A. Rupp
VerfasserKuzmin, D. ; Hajduk, Hennes ; Rupp, Andreas
ErschienenDortmund : Technische Universität Dortmund, Fakultät für Mathematik, January 2020
Elektronische Ressource
Umfang1 Online-Ressource (39 Setien) : Illustrationen
SerieErgebnisberichte angewandte Mathematik ; no. 624
SchlagwörterGalerkin-Methode / FCT-Verfahren
 Das Dokument ist öffentlich im Netz zugänglich.
Locally bound-preserving enriched Galerkin methods for the linear advection equation [3.52 mb]

In this work, we introduce algebraic ux correction schemes for enriched (P1 P0 and Q1 P0) Galerkin discretizations of the linear advection equation. The piecewise-constant component stabilizes the continuous Galerkin approximation without introducing free parameters. However, violations of discrete maximum principles are possible in the neighborhood of discontinuities and steep fronts. To keep the cell averages and the degrees of freedom of the continuous P1=Q1 component in the admissible range, we limit the uxes and element contributions, the complete removal of which would correspond to rst-order upwinding. The rst limiting procedure that we consider in this paper is based on the ux-corrected transport (FCT) paradigm. It belongs to the family of predictor-corrector algorithms and requires the use of small time steps. The second limiting strategy is monolithic and produces nonlinear problems with well-de ned residuals. This kind of limiting is well suited for stationary and time-dependent problems alike. The need for inverting consistent mass matrices in explicit strong stability preserving Runge-Kutta time integrators is avoided by reconstructing nodal time derivatives from cell averages. Numerical studies are performed for standard 2D test problems.

Das Medienwerk ist im Rahmen des deutschen Urheberrechts nutzbar.