Titelaufnahme

Titel
Quasi-optimal and pressure robust discretizations of the stokes equations by moment- and divergence-preserving operators / C. Kreuzer, R. Verfürth, P. Zanotti
VerfasserKreuzer, Christian ; Verfürth, Rüdiger ; Zanotti, Pietro
ErschienenDortmund : Technische Universität Dortmund, Fakultät für Mathematik, February 2020
Ausgabe
Elektronische Ressource
Umfang1 Online-Ressource (26 Seiten) : Illustrationen
SerieErgebnisberichte angewandte Mathematik ; no. 625
SchlagwörterStokes-Gleichung / Galerkin-Methode
URNurn:nbn:de:hbz:6:2-128651 
Zugänglichkeit
 Das Dokument ist öffentlich im Netz zugänglich.
Dateien
Quasi-optimal and pressure robust discretizations of the stokes equations by moment- and divergence-preserving operators [0.57 mb]
Zusammenfassung

We approximate the solution of the Stokes equations by a new quasi-optimal and pressure robust discontinuous Galerkin discretization of arbitrary order. This means quasi-optimality of the velocity error independent of the pressure. Moreover, the discretization is well-de ned for any load which is admissible for the continuous problem and it also provides classical quasioptimal estimates for the sum of velocity and pressure errors. The key design principle is a careful discretization of the load involving a linear operator, which maps discontinuous Galerkin test functions onto conforming ones thereby preserving the discrete divergence and certain moment conditions on faces and elements.

Klassifikation
Links
Nachweis
Nutzungshinweis
 Das Medienwerk ist im Rahmen des deutschen Urheberrechts nutzbar.