Titelaufnahme

Titel
T-optimal designs for discrimination between two polynomial models / Holger Dette, Viatcheslav B. Melas, Petr Shpilev
VerfasserDette, Holger ; Melas, Vjačeslav Borisovič ; Shpilev, Petr
KörperschaftSonderforschungsbereich Statistical Modelling of Nonlinear Dynamic Processes
Erschienen[Dortmund] : SFB 823, 2011
Umfang1 Online-Ressource (14 Seiten) Diagramme
Serie
Schlagwörter (GND)Polynom / Regressionsmodell
URNurn:nbn:de:hbz:6:2-1311669 
DOI10.17877/DE290R-1899 
Zugänglichkeit
 Das Dokument ist öffentlich im Netz zugänglich.
Dateien
Zusammenfassung

The paper is devoted to the explicit construction of optimal designs for discrimination between two polynomial regression models of degree n−2 and n. In a fundamental paper Atkinson and Fedorov (1975a) proposed the T-optimality criterion for this purpose. Recently Atkinson (2010) determined T-optimal designs for polynomials up to degree 6 numerically and based on these results he conjectured that the support points of the optimal design are cosines of the angles that divide a half of the circle into equal parts if the coefficient of x^(n−1) in the polynomial of larger degree vanishes. In the present paper we give a strong justification of the conjecture and determine all T-optimal designs explicitly for any degree n∈N. In particular, we show that there exists a one-dimensional class of T-optimal designs. Moreover, we also present a generalization to the case when the ratio between the coefficients of x^(n−1) and x^n is smaller than a certain critical value. Because of the complexity of the optimization problem T-optimal designs have only been determined numerically so far and this paper provides the first explicit solution of the T-optimal design problem since its introduction by Atkinson and Fedorov (1975a). Finally, for the remaining cases (where the ratio of coefficients is larger than the critical value) we propose a numerical procedure to calculate the T-optimal designs. The results are also illustrated in an example.

Klassifikation
Links
Nachweis
Statistik
Das PDF-Dokument wurde 59 mal heruntergeladen.
Nutzungshinweis
Das Medienwerk ist im Rahmen des deutschen Urheberrechts nutzbar.