Titelaufnahme

Titel
Analysis and numerical treatment of bulk-surface reaction-diffusion models of Gierer-Meinhardt type / J.-P. Bäcker, M. Röger, D. Kuzmin
VerfasserBäcker, Jan-Phillip ; Röger, Matthias ; Kuzmin, D.
ErschienenDortmund : Technische Universität Dortmund, Fakultät für Mathematik, October 2020
Ausgabe
Elektronische Ressource
Umfang1 Online-Ressource (33 Seiten) : Illustrationen
SerieErgebnisberichte angewandte Mathematik ; no. 633
SchlagwörterFinite-Elemente-Methode
URNurn:nbn:de:hbz:6:2-1411353 
Zugänglichkeit
 Das Dokument ist öffentlich im Netz zugänglich.
Dateien
Analysis and numerical treatment of bulk-surface reaction-diffusion models of Gierer-Meinhardt type [3.13 mb]
Zusammenfassung

We consider a Gierer-Meinhardt system on a surface coupled with a parabolic PDE in the bulk, the domain con ned by this surface. Such a model was recently proposed and analyzed for two-dimensional bulk domains by Gomez, Ward and Wei (SIAM J. Appl. Dyn. Syst. 18, 2019). We prove the well-posedness of the bulk-surface system in arbitrary space dimensions and show that solutions remain uniformly bounded in parabolic H older spaces for all times. The proof uses Schauders xed point theorem and a splitting in a surface and a bulk part. We also solve a reduced system, corresponding to the assumption of a well mixed bulk solution, numerically. We use operator-splitting methods which combine a nite element discretization of the Laplace-Beltrami operator with a positivity-preserving treatment of the source and sink terms. The proposed methodology is based on the ux-corrected transport (FCT) paradigm. It constrains the space and time discretization of the reduced problem in a manner which provides positivity preservation, conservation of mass, and second-order accuracy in smooth regions. The results of numerical studies for the system on a two-dimensional sphere demonstrate the occurrence of localized steady-state multispike pattern that have also been observed in one-dimensional models.

Klassifikation
Links
Nachweis
Statistik
Das PDF-Dokument wurde 5 mal heruntergeladen.
Nutzungshinweis
Das Medienwerk ist im Rahmen des deutschen Urheberrechts nutzbar.