Titelaufnahme

Titel
Fourier analysis of a time-simultaneous two-grid algorithm for the one-dimensional heat equation : C. Lohmann, J. Dünnebacke, S. Turek
VerfasserLohmann, Christoph ; Dünnebacke, Jonas ; Turek, Stefan
Erschienen[Dortmund] : [Technische Universität Dortmund, Fakultät für Mathematik], April 2021
Ausgabe
Elektronische Ressource
Umfang1 Online-Ressource (36 Seiten) : Diagramme
Anmerkung
Literaturverzeichnis: Seite 23-24
SerieErgebnisberichte angewandte Mathematik ; no. 641
SchlagwörterHarmonische Analyse / Gitter / Waveform-Relaxation
URNurn:nbn:de:hbz:6:2-1498964 
DOI10.17877/DE290R-22061 
Zugänglichkeit
 Das Dokument ist öffentlich im Netz zugänglich.
Dateien
Fourier analysis of a time-simultaneous two-grid algorithm for the one-dimensional heat equation [0.73 mb]
Zusammenfassung

In this work, the convergence behavior of a time-simultaneous two-grid algorithm for the one-dimensional heat equation is studied using Fourier arguments in space. The underlying linear system of equations is obtained by a finite element or finite dierence approximation in space while the semi-discrete problem is discretized in time using the -scheme. The simultaneous treatment of all time instances leads to a global system of linear equations which provides the potential for a higher degree of parallelization of multigrid solvers due to the increased number of degrees of freedom per spatial unknown. It is shown that the all-at-once system based on an equidistant discretization in space and time stays well conditioned even if the number of blocked time-steps grows arbitrarily. Furthermore, mesh-independent convergence rates of the considered two-grid algorithm are proved by adopting classical Fourier arguments in space without assuming periodic boundary conditions. The rate of convergence with respect to the Euclidean norm does not deteriorate arbitrarily if the number of blocked time steps increases and, hence, underlines the potential of the solution algorithm under investigation. Numerical studies demonstrate why minimizing the spectral norm of the iteration matrix may be practically more relevant than improving the asymptotic rate of convergence.

Klassifikation
Links
Nachweis
Statistik
Das PDF-Dokument wurde 2 mal heruntergeladen.
Nutzungshinweis
 Das Medienwerk ist im Rahmen des deutschen Urheberrechts nutzbar.