Wasserstein perturbations of Markovian transition semigroups / Sven Fuhrmann, Michael Kupper, and Max Nendel
VerfasserFuhrmann, Sven ; Kupper, Michael ; Nendel, Max
ErschienenBielefeld, Germany : Center for Mathematical Economics (IMW), Bielefeld University, May 2021
Elektronische Ressource
Umfang1 Online-Ressource (32 Seiten) : Diagramme
SerieCenter for Mathematical Economics Working papers ; 649
SchlagwörterMarkov-Prozess / Wahrscheinlichkeitsmetrik
 Das Dokument ist öffentlich im Netz zugänglich.
Wasserstein perturbations of Markovian transition semigroups [0.58 mb]

In this paper, we deal with a class of time-homogeneous continuous-time Markov processes with transition probabilities bearing a nonparametric uncertainty. The uncertainty is modelled by considering perturbations of the transition probabilities within a proximity in Wasserstein distance. As a limit over progressively ner time periods, on which the level of uncertainty scales proportionally, we obtain a convex semigroup satisfying a nonlinear PDE in a viscosity sense. A remarkable observation is that, in standard situations, the nonlinear transition operators arising from nonparametric uncertainty coincide with the ones related to parametric drift uncertainty. On the level of the generator, the uncertainty is re ected as an additive perturbation in terms of a convex functional of rst order derivatives. We additionally provide sensitivity bounds for the convex semigroup relative to the reference model. The results are illustrated with Wasserstein perturbations of L evy processes, in nite-dimensional Ornstein-Uhlenbeck processes, geometric Brownian motions, and Koopman semigroups.

 Das Medienwerk ist im Rahmen des deutschen Urheberrechts nutzbar.