Titelaufnahme

Titel
DoD stabilization for non-linear hyperbolic conservation laws on cut cell meshes in one dimension / S. May, F. Streitbürger
VerfasserMay, Sandra ; Streitbürger, Florian
Erschienen[Dortmund] : [Technische Universität Dortmund, Fakultät für Mathematik], July 2021
Ausgabe
Elektronische Ressource
Umfang1 Online-Ressource (23 Seiten) : Diagramme
SerieErgebnisberichte angewandte Mathematik ; no. 646
SchlagwörterNumerische Mathematik / Hyperbolische Differentialgleichung
URNurn:nbn:de:hbz:6:2-1526775 
DOI10.17877/DE290R-22228 
Zugänglichkeit
 Das Dokument ist öffentlich im Netz zugänglich.
Dateien
DoD stabilization for non-linear hyperbolic conservation laws on cut cell meshes in one dimension [0.52 mb]
Zusammenfassung

In this work, we present the Domain of Dependence (DoD) stabilization for systems of hyperbolic conservation laws in one space dimension. The base scheme uses a method of lines approach consisting of a discontinuous Galerkin scheme in space and an explicit strong stability preserving Runge-Kutta scheme in time. When applied on a cut cell mesh with a time step length that is appropriate for the size of the larger background cells, one encounters stability issues. The DoD stabilization con sists of penalty terms that are designed to address these problems by redistributing mass between the inflow and outflow neighbors of small cut cells in a physical way. For piecewise constant polynomials in space and explicit Euler in time, the stabi lized scheme is monotone for scalar problems. For higher polynomial degrees p, our numerical experiments show convergence orders of p + 1 for smooth flow and robust behavior in the presence of shocks.

Klassifikation
Links
Nachweis
Statistik
Das PDF-Dokument wurde 1 mal heruntergeladen.
Nutzungshinweis
Das Medienwerk ist im Rahmen des deutschen Urheberrechts nutzbar.