Titelaufnahme

Titel
An adaptive time stepping scheme for rate-independent systems with non-convex energy / M. Andreia, C. Meyer
VerfasserAndreia, Merlin ; Meyer, Christian
KörperschaftTechnische Universität Dortmund, Institut für Angewandte Mathematik
Erschienen[Dortmund] : [Technische Universität Dortmund, Fakultät für Mathematik], April 2022
Umfang1 Online-Ressource (33 Seiten) Diagramme
Serie
Schlagwörter (GND)Numerische Mathematik / Numerisches Verfahren / Viskositätslösung
URNurn:nbn:de:hbz:6:2-1636046 
DOI10.17877/DE290R-22712 
Zugänglichkeit
 Das Dokument ist öffentlich im Netz zugänglich.
Dateien
Zusammenfassung

We investigate a local incremental stationary scheme for the numerical solution of rate-independent systems. Such systems are characterized by a (possibly) non-convex energy and a dissipation potential, which is positively homogeneous of degree one. Due to the nonconvexity of the energy, the system does in general not admit a time-continuous solution. In order to resolve these potential discontinuities, the algorithm produces a sequence of state variables and physical time points as functions of a curve parameter. The main novelty of our approach in comparison to existing methods is an adaptive choice of the step size for the update of the curve parameter depending on a prescribed tolerance for the residua in the energydissipation balance and in a complementarity relation concerning the so-called local stability condition. It is proven that, for tolerance tending to zero, the piecewise a ne approximations generated by the algorithm converge (weakly) to a so-called V-parametrized balanced viscosity solution. Numerical experiments illustrate the theoretical ndings and show that an adaptive choice of the step size indeed pays o as they lead to a signi cant increase of the step size during sticking and in viscous jumps.

Klassifikation
Links
Nachweis
Statistik
Das PDF-Dokument wurde 52 mal heruntergeladen.
Nutzungshinweis
Das Medienwerk ist im Rahmen des deutschen Urheberrechts nutzbar.