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Abstract

We analyze the effect of external financing and associated bankruptcy threat on the

speed of product innovation in a market characterized by technological and demand uncer-

tainty. In a dynamic market setting we characterize the optimal R&D investment strategy

of a monopolistic incumbent firm that can invest to develop a new product with uncertain

demand. The size of the R&D investment flow determines the distribution of the stochastic

innovation time and at the same time influences the dynamic evolution of firm’s liquidity.

If liquidity is negative the firm faces bankruptcy risk. We show that the optimal investment

is a U-shaped function of liquidity and characterize under which circumstances it is optimal

for the firm to go into debt in order to speed up innovation. Furthermore, we show that,

due to the existence of financial frictions, the relationship between the incumbent’s profit on

the existing market and the expected innovation time for the new product is non-monotone

and follows a titled-z shape. We empirically verify the theoretically derived prediction of

a U-shaped relationship between liquidity and investment using a dataset consisting of a

sample of 400.000 Italian manufacturing companies.
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1 Introduction

Product Innovation is a crucial strategic activity for many firms. When firms are able to of-

fer distinctive and innovative products, they not only extend their existing product lines, but

also exert advantage against competitors. According to a widely circulated McKinsey survey,

84% of executives believe that innovation is critical for their business.1 An innovation process

takes time (Gee, 1978) and requires continuous financial investment from the firm. Furthermore,

product innovation is associated with different types of uncertainties, in particular technological

uncertainty and market uncertainty. Technological uncertainty implies it is difficult to predict

the time and effort required for the successful innovation, and consequently, the firm has incom-

plete information about investment costs. Market uncertainty refers to the uncertain demand

for the new product in case of a successful innovation, and leads to uncertain profitability. These

two uncertainties affect the return to firms’ product innovation investments.

Due to their risky nature, access to external financing for innovation projects is for many

firms problematic (Brown et al., 2009) and therefore a large fraction of such projects have to

be financed internally. This implies that innovation investment decisions of firms are often

influenced by financial frictions. According to the data from CIS survey in Germany 2012-2014

(Behrens et al. (2017)), 18.5% of innovative firms have sacrificed innovation projects due to lack

of finance. Moreover, 23% of all firms and 48% of firms in R&D-intensive industries would like

to increase their innovation expenditures in case of an exogenous positive shock to their cash

flow. The combination of uncertainties, with respective to the success of product innovation

and to the future profitability, might jeopardize firms’ financial standing. Consider Kodak in

1996. Then CEO George Fisher knew that the company’s core business might be invaded, or

even replaced by digital photography. Kodak was so worried about the threat posed by the

new technology that they invested more than $2 billion in R&D for digital imaging. However,

in spite of these investments Kodak failed to develop a new product that was successful on

the market. As a result of this, they could not save their position in the traditional market

but also failed to find a profitable new niche in the market. Due to this, Kodak had to file

for bankruptcy in 2012. This example illustrates that product innovation investments, which

might be necessary for a firm to ensure future market success, also exposes a firm to the risk

of facing large expenses before a positive return is generated. In case a firm relies heavily on

external financing for its R&D investments, cost overruns of the innovation project can affect

a firm’s ability to roll over future debt, and R&D investment hence increases the risk of going

bankrupt before a new successful product can be developed (Buddelmeyer et al. (2010)).
1See https://hbr.org/2019/12/real-innovation-requires-more-than-an-rd-budget
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The main agenda of this paper is to study how the need for external financing and the

induced risk of bankruptcy influence optimal investment strategies for product innovation by

incumbent firms in a market. In particular, we analyze, both theoretically and empirically,

how optimal investment depends on the firms’ financial standing, formally expressed as the

firm’s liquidity, as well as on its strength in the established market, formally expressed as the

size of firm’s profits on that market. Furthermore, we explore the role of frictions in access

to external financing, expressed as the firm’s bankruptcy risk when being unable to roll-over

existing debt. Our focus on incumbent firms is motivated by empirical evidence that a large

fraction of product innovations is developed by incumbents rather than by new market entrants

(Chandy and Tellis (2000)). The main insights from our analysis are, first, that the relationship

between the firm’s liquidity and its product innovation investment is characterized by a U-shape,

and, second, that the relationship between a firm’s profitability on the established market and

its product innovation time is non-monotone and (under certain conditions) resembles a tilted-z.

The existence of a bankruptcy threat is crucial for both of these relationships.

Intuitively, when considering the effect of a firm’s financial standing and strength on the

established market on product innovation incentives, several countervailing effects come into

play. First, with respect to the firm’s available liquidity, a larger stock induces a lower demand

for external financing, which reduces the risk to go bankrupt before the returns to investment

have been gained. This reasoning implies that larger firm liquidity has a positive impact on

product innovation investments. Conversely, for a firm with substantial debt (i.e. negative

liquidity), the high risk of bankruptcy implies a reduction in expected costs of investment

due to limited liability in case bankruptcy actually occurs. Second, with respect to the firm’s

strength on the established market, at least in case the new product is a partial substitute for the

firm’s existing product, cannibalization arguments induce a negative relationship between the

incumbent’s strength on the established market and product innovation incentives. However,

higher profits of the incumbent on the established market, also increases the firm’s liquidity and

reduces the need for external financing. As discussed above, this tends to increase incentives

for product innovation investment.

In this paper we disentangle these effects and shed light on their interplay in the framework

of a dynamic market model, which incorporates technological and market uncertainty as well

as bankruptcy risk. This risk is induced by the accumulation of debt due to the inability to

internally finance innovation investments. By this approach, we bring together an industrial

organization perspective that focuses on firms’ innovation incentives, and a corporate finance

perspective that emphasizes the impact of financial frictions. Building on our characterization of
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firms’ optimal investment strategies we can also address how the interplay of between profitabil-

ity of established markets and access to external financing influences the speed of innovation

and bankruptcy risk in an industry.

We consider a monopolistic firm offering an established product on a mature market with a

constant demand function. The firm receives a continuous profit stream from its sales on this

market and at the same time can invest to develop a new product, which is a partial substitute

to the established product. The completion time of the new product development is stochastic

and the innovation rate depends on the firm’s R&D investment. Once the product development

is completed the firm puts the new product on the market. The demand for the new product

evolves stochastically, starting from a low level and approaching a long-term market size, which

is higher than that of the established product. The dynamics of the firm’s liquidity is driven

by the difference between market profits and the sum of dividends and innovation investment.

It is assumed that the firm has access to external financing, such that liquidity can become

negative. A firm with negative liquidity runs the risk of going bankrupt, and the risk increases

with the size of negative liquidity. This formulation captures in reduced form that firms in

debt might loose access to credit when trying to roll-over debt and that the probability for this

to happen increases with the firm’s leverage (see e.g. Sapienza (2002) for empirical evidence

in this respect). The firm determines its R&D investment in order to maximize the expected

discounted future dividend stream.

Our analysis shows that the optimal R&D strategy, as a function of the firm’s liquidity, has a

U-shape. Investments are highest when liquidity is either very high, which implies that the firm

essentially faces no bankruptcy threat, or when the firm is already heavily indebted, in which

case a fast product innovation is the only chance to avoid future bankruptcy. For firms with

positive initial liquidity two different scenarios might arise, depending on the firm’s profitability

on the established market and the frictions in the firm’s access to credit: a debt scenario or a

no-debt scenario. In the former case it is optimal for a firm with positive initial liquidity to

invest so heavily in R&D that it might eventually accumulate debt (if the innovation does not

arrive sufficiently quickly) and faces a positive bankruptcy probability, whereas in the latter

case the firm never goes into debt if the initial liquidity is non-negative. In the no-debt scenario

the firm also over time eliminates potential initial debt, if it is not too large. Our analysis also

characterizes under which circumstances the firm’s optimal investment strategy induces a no-

debt scenario in which the liquidity level of zero is a stable fixed point of the liquidity dynamics.

In such a case it is optimal for the firm to eliminate any initial positive liquidity or debt and

then to invest all incoming profits in R&D till the innovation is successful without relying on
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any external financing. From a theory perspective we show that the optimal R&D investment

strategy might exhibit jumps and in particular is discontinuous at the liquidity level of zero

in such a no-debt scenario. Combining analytical results with an extensive numerical analysis

we fully characterize how the occurrence of the different scenarios depends on the interplay

of the key model parameters. Furthermore, we highlight that for small initial firm liquidity

a highly non-monotone relationship between the firm’s profitability on the established market

and the speed of innovation arises. A higher profitability on the established market induces

lower R&D investment and slower innovation if the firm is in a debt scenario (arising for low

levels of profitability). In a no-debt scenario whether an increase of profitability leads to faster

or slower innovation depends on whether the steady state liquidity under optimal investment is

zero (arising for intermediate levels of profitability) or strictly positive (arising for high levels

of profitability). We explain this non-monotone relationship as the result of the interplay of

three different effects of an increases in the firm profitability: the cannibalization effect, the

bankruptcy loss effect and the financing effect, with the first two inducing a negative relationship

between profitability and speed of innovation and the last one a positive relationship.

In the final part of the paper we empirically test the main qualitative results of our theoretical

analysis using firm level data from Italian manufacturing companies from 2015-2018. We classify

the firms with respect to their bankruptcy risk using a standard assessment system and estimate

two types of multivariate regressions models relating firm investments to their risk classifications.

Both formulations confirm the U-shaped relationship predicted by our model. Furthermore,

we find a positive relationship between firms’ market share and their investment, which we

interpret as an indication that on average the financing effect is dominant for the considered

firm population.

The remainder of the paper is organized as follows. In Section 2 we discuss how our paper

contributes to different streams of related literature and in Section 3 we introduce our model.

Analytical results characterizing the optimal investment strategy and the resultant liquidity

dynamics are presented in Section 4. In Section 5 we extend these findings with an extensive

numerical analysis illustrating the optimal investment strategies and the corresponding expected

innovation times and bankruptcy probabilities for different parameter constellations. In Section

6 we empirically verify the predictions of our model using Italian firm level data. Concluding

remarks are given in Section 7. All proofs can be found in Appendix B, Appendix C contains

additional numerical results and Appendix D a detailed description of our numerical method.
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2 Related Literature

Our research contributes to the following streams of related literature. First, we extend theoret-

ical analysis of incumbent firms’ product introduction and innovation incentives in the absence

of financial frictions. A new product not only generates new demand for an incumbent firm but

could also come at the expense of (cannibalizes) the demand of its old product (Van Heerde

et al., 2010; Druehl and Schmidt, 2008). In case the new product is already initially available

to be introduced onto the market, Moorthy and Png (1992) were among the first to discuss the

product cannibalization effect. They considered under market segmentation the sequential and

simultaneous introduction of two differentiated products, high-end and low-end, and suggested

that the sequential introduction (first high-end and then low-end) is better, because the can-

nibalizing low-end product is made unavailable. Gezer (2019) investigated and compared new

production introduction strategies such as immediate, delayed and abstained introduction. In

case of delayed introduction, the incumbent can reduce the capacity of the old product to re-

duce the cannibalization effect. When a new product is not immediately available, Dawid et al.

(2013) considered in a duopoly setting where firms’ interactions takes place in three stages, e.g.,

innovation stage, capacity investment stage and pricing stage. They showed that a firm with

a larger capacity on the old market has lower incentives to introduce the new product, and

the firm with a larger capacity for the old product can prevent its competitor from innovating.

Compared to the previous literature, this paper considers also an R&D investment to develop

a new product, but in a continuous time setting. In particular, we obtain also the cannibal-

ization effect, i.e., a stronger incumbent on the established market has less incentive to invest

and develop a new product. Furthermore, we identify two additional effects, the bankruptcy

loss effect and the financing effect, and both are related positively to firm’s strength on the

established market. The bankruptcy loss effect decreases firm’s innovation incentive, similar

as the cannibalization effect. The financing effect, on the other hand, increases the innovation

incentive.

Our second contribution is to the stream of literature that features product innovation

in a dynamic setting. Part of the literature treats production innovation as to increase the

products differentiation, see e.g., Lin and Saggi (2002). The other strand of literature takes

product innovation as to develop a new product and analyzes the relation between product

innovation and the process innovation that decreases the marginal cost of production. For

instance, Lambertini and Mantovani (2009) showed there exists substitutability between process

and product innovations. Li and Ni (2016) took into account the effect of learning-by-doing and

showed that a larger rate intensifies firm’s knowledge accumulation and reduces the optimal
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investment in both the process and the product innovations. In this stream of literature, Dawid

et al. (2015) were among the first to analyze how a firm’s product innovation depends on the its

initial product capacity and knowledge stock. In particular, they showed it could be optimal for

a relatively small firm on the established market to innovate and eventually give up once it has

built up a sufficiently large capacity for the old product. Later Dawid et al. (2023) extended

the monopolistic incumbent’s product innovation to a competitive setting and revealed that

when sufficiently large, the knowledge leader’s investment in R&D could be so small that its

innovation rate is lower than the knowledge laggard’s. It should be duly noted that all the

above mentioned literature is under the assumption that the R&D investment, either in process

innovation or in product innovation, can be financed internally by firms’ equities. The present

paper incorporates the possibility that such investments need to be financed through external

sources. The main new contribution of this research lies in analyzing the influence of financial

frictions, i.e., the inability to roll over debts and thus being confronted with real bankruptcy

threat, on an incumbent firm’s innovation investments. More specifically, our results support

that it is possible for an initially indebted incumbent to eliminate its debt and break even on

its liquidity under the optimal R&D investment in equilibrium.

This research further contributes to the literature regarding dynamic investment under fi-

nancial frictions. Milne and Robertson (1996) analyzed firm’s optimal investment in capital

stock under uncertain cash flows and financial constraints, which is taken as a consequence of

information asymmetries between providers of finance and the firm management. The purpose

is to characterize a threshold of internal cash so as to balance the desire to pay dividends and

the need to retain cash against liquidation threat. A following research by Holt (2003) studied

how a firm’s investment and dividend payout decisions interact over time under investment irre-

versibility and financial constraints. The obtained result shows there is a capital stock threshold

such that investment is optimal below this threshold and dividend payout is optimal above this

threshold. Note that most of the research in this stream of literature focuses on solving an

optimal stopping problem and applies real options analysis. For instance, Boyle and Guthrie

(2003); Lyandres and Zhdanov (2010) showed that the financial constraint and the default

possibility accelerate investment, because they reduce the value of the firm’s timing options.

Shibata and Nishihara (2012) examined timings for the investment and the default of a firm with

debt financing capacity constraint, i.e., part of the investment is financed through debts. They

showed that the financing constraints may encourage over-investment. Similarly, Lin (2022)

considered the firm’s optimal investment rate and found that over-investment is more likely for

a financial-constrained firm, which has to terminate its R&D due to limited access to financing.
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Furthermore, Lin showed that a financially constrained firm could win the R&D race against

an unconstrained opponent when the innovation rate is positively related to R&D investment.

Compared with this stream of literature, we investigate an optimal control problem for a firm’s

R&D innovation investment under bankruptcy threat. This allows us to characterize the firm’s

optimal control path in the Markov Perfect Equilibrium, i.e., how its R&D investment changes

with liquidity dynamics. In particular, we show that the optimal investment has a U-shaped

fashion with respect the firm’s initial liquidity. Thus, for a very negative liquidity the firm

invests a lot because the successful innovation is the only way to be safe from bankruptcy. For

a liquidity level around 0, the firm invests less because of the potential bankruptcy risk and an

incentive to avoid getting (deeper) into debt.

Our findings are also related to the long-lasting debate on the relationship between cash-

flow and investment under financial frictions. For example, Tanrısever et al. (2012) explored

the tradeoff between investing in process innovation to reduce unit cost and conserving cash to

reduce the bankruptcy likelihood for an indebted firm. A conservative (aggressive) investment

is accompanied by less (more) production than the monopoly level to increase survival chances

against bankruptcy. Empirical results in that respect are mixed. Many paper starting with

Fazzari et al. (1988, 2000) find that financially constrained firms have a stronger positive rela-

tionship between cash flow and investment compared to where financial constraints do not play

a role. This view has been challenged on both theoretical and empirical grounds by Kaplan and

Zingales (1997, 2000). Gomes (2001) and Alti (2003) have put forward models showing a pos-

itive relationship between cash-flow and investment in settings with perfect financial markets.

In this realm of literature dealing with generic investments, typically in physical capital, several

papers have also studied the relationship between R&D investment and cash flow, and in how

far it is related to financial frictions. The general conclusion from this body of literature is that

there is evidence that firms face constraints for financing R&D investments and this gives rise

to high sensitivity of innovative firm’s investment to cash flows (see Hall and Lerner (2010) for

a survey of this literature). Our paper complements this mainly empirical literature from a the-

oretical perspective and provides several innovative aspects. First, while these papers consider

general R&D investment, we specifically focus on product innovation investments of incumbents

by taking into account that, the firm’s strength on the established market influences both the

firm’s revenues and its incentive to extend its product range. Second, our analysis characterizes

the optimal investment strategy of the firm as a function of its current financial state, thereby

capturing how the innovation investments of the firm evolves over time as its liquidity changes.

This perspective allows us to show that, even within the same market environment the sign of
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the relationship between cash flow (i.e. change in firm liquidity) and R&D investment might

change according to the firm’s financial standing. Third, we characterize under which circum-

stances a rational and far-sighted incumbent should risk bankruptcy and jeopardize its position

on the established market in order to pursue product innovation.

3 The Model

We consider a monopoly firm which produces an established product o and at the same time

invests in the development of a new product n, which is a partial substitute to the established

product. At the stochastic innovation time τ the firm introduces the new product and afterwards

offers both products. The inverse demand is assumed to be linear and of the form

po(t) = αo − qo(t)− ηqn(t),

pn(t) = ᾱn + αn − qn(t)− ηqo(t).

Here pi(t), i ∈ {o, n}, denotes the price for product i and qi(t) the output of product i ∈ {o, n}

at time t. The parameter η ∈ [0, 1) indicates the degree of horizontal differentiation between

the two products. The consumers’ maximal willingness to pay for the established product, αo,

is assumed to be constant. The maximal willingness to pay for the new product is denoted by

ᾱn+αn, where αn evolves stochastically from the moment of successful innovation τ and follows

a mean-reverting stochastic process:

dαn = δ (α̃n − αn) dt+ σαndW (t), δ, σ > 0, (1)

with αn(τ) = 0 and W (t) a Wiener process. We assume α̃n + ᾱn > αo. Our formulation

captures that the evolution of the demand for the new product can not be perfectly predicted

and that the long-run market potential of the new product is larger than that of the established

product. We assume that ᾱn > 0 is sufficiently large to guarantee that the equilibrium output

for the new product stays non-negative even for αn = 0.

The number of products, that the firm offers, is captured by m(t) ∈ {m0,m1,m2}, which we

denote as the mode of the problem. In mode m0 the firm has exited the market (see below) and

therefore qo = qn = 0, in mode m1 the firm is active only on the established market, such that

qo > 0, qn = 0 and in mode m2 the firm has both products on the market, i.e. qo, qn ≥ 0. At

time t = 0, we have m(0) = {m1} indicating that initially the firm is active on the established

market, and has not innovated yet.
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At each time t the monopoly firm chooses the optimal output quantities taking into accout

the current mode. For reasons of simplicity we normalize the unit costs of production to zero.

For m(t) = m1 standard calculations (see Appendix A) show that

qo(m1) = αo
2 .

Similarly, in mode m2 the optimal output quantities are given by

qo(αn,m2) = αo − η(ᾱn + αn)
2(1− η2) ,

qn(αn,m2) = (ᾱn + αn)− ηαo
2(1− η2) ,

whenever both expressions are non-negative. This is ensured by assuming that ᾱn > ηαo and

that αo − η(ᾱn + α̃n) is sufficiently large such that the probability that αo < η(ᾱn + αn) is

negligible. This generates the following market profits π(αn,m) = qopo + qnpn in the different

modes:

π(αn,m0) = 0,

π(αn,m1) = α2
o

4 ,

π(αn,m2) = (ᾱn + αn)2 + α2
o − 2η(ᾱn + αn)αo

4− 4η2 .

It is easy to verify that π(αn,m2) ≥ π(αn,m1) with strict inequality whenever qn(αn,m2) > 0.

The transition from mode m1 to m2 corresponds to a successful innovation. The arrival

process of the innovation is assumed to be memoryless and the innovation rate, is given by

λ12 = γII(t), where I(t) denotes the R&D investment by the monopoly firm and the innovation

parameter γI > 0 captures the efficiency of the firm’s R&D activities.2 R&D investment is

associated with quadratic costs of the form ξ
2I

2, ξ > 0.

The financial situation of the firm is expressed in terms of its liquidity e(t), which evolves

according to

ė = π(αn,m)− ξ

2I
2 −D + re, (2)

where r > 0 is the interest rate, and D(t) denotes the dividends paid out at time t to the

shareholders. We assume that while the firm is active, i.e. m ∈ {m1,m2}, the dividend policy

reads D(e,m) = νm max{0, e} with νm ∈ (0, 1). According to this policy the firm pays dividends
2Formally, the innovation rate is defined as λ12 = limε→∞

1
ε
IP[m(t+ ε) = 2|m(t) = 1].
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as a fixed proportion of the positive liquidity reserve and does not pay any dividends if it has

negative liquidity. Since our focus in this paper is on innovation investment under bankruptcy

threat rather than on the optimal dividend policy, we keep the treatment of the dividend policy

very simple and assume that νm is constant, rather than a dynamic control variable of the firm.

This assumption is made for reasons of tractability, since the derivation of the optimal dividend

policy in this framework with demand uncertainty and endogenous investment is highly complex

and hardly feasible.3

We assume that the firm finances all investments internally as long as liquidity is positive,

but if liquidity becomes negative, the firm takes on debt. To capture the risk for a firm associated

with external financing of its investment, it is assumed that there is a positive probability that

an indebted firm is not able to extend its debt contracts, and has to exit the market. This

probability is assumed to be increasing with the amount of debt.4 More precisely, the transition

rate (bankruptcy rate) from mode m = {m1,m2} to m = m0 is given by

λk0 := γB max[0,−e], k = 1, 2. (3)

This formulation can also be interpreted as a reduced form representation of a situation where

the firm repeatedly has to refinance parts of its debt and the probability to be able to find a

lender willing to provide a loan decreases with the firms’ debt volume (see e.g. Meijers et al.

(2019) for a similar formulation in discrete time).5 The bankruptcy parameter γB determines

how strong the financial frictions are. The case γB = 0 indicates unlimited access to external

financing without any bankruptcy risk, and γB → ∞ implies that the firm has no access to

credit. Note that in our formulation the (expected) costs of external financing are completely

captured by the dependence of the bankruptcy risk from liquidity, whereas the interest rate in

the liquidity dynamics (2) does not depend on the level of firm liquidity. Assuming that the

interest the firm pays for loans also depends positively on its level of debt would certainly be

a reasonable assumption, but we abstain from such a formulation here in order to keep the

model as simple as possible. Our aim here is to study the optimal investment behavior of a
3Characterizations of intertemporally optimal dividend policies in settings with stochastic cash flows and

bankruptcy risk can be found e.g. in Moreno-Bromberg and Rochet (2014); Reppen et al. (2020). However, the
settings considered in these models do not incorporate firm investment decisions and (stochastic) effects of R&D.

4Empirical evidence that higher leverage and higher R&D investment increase the risk of loosing a banking
relationship and having to exit the market are provided e.g. in Sapienza (2002) and Buddelmeyer et al. (2010).

5Formally, one could consider a situation where the firm holds a portfolio of debt contracts with varying
maturity and the probability that the maturity of one of the contracts ends in the interval [t, t+ ε] for sufficiently
small ε is given by ζε. Assuming that the probability that the firm is not able to find a lender for refinancing is
proportional to its level of debt, i.e. is given by ω|e| for e < 0, yields a bankruptcy rate λk0 as given in (3) with
γB = ζω. It should be noted that even if in debt the firm has positive market profits and the perspective on even
larger profits after innovation, such that providing credit to the firm is potentially profitable for the lender, but
the incentives to provide credit decrease as the firm’s level of debt increases.
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firm which is aware that its expenditures for innovation activities might jeopardize its existence

if these activities remain unsuccessful for too long. This effect is captured in the form of the

bankruptcy rate. Once the firm declares bankruptcy, it stops operating and also stops paying

dividends, i.e. D(e,m0) = 0 for all e ∈ IR.

The firm’s investment does not generate any expected revenue after a successful innovation

in mode m2, which trivially implies that I(t) = 0 for all t with m(t) = m2. Therefore the overall

dynamics of the liquidity is given by the state dynamics

ė =


0 m = m0,

π(0,m1)− ξ
2I

2 − ν1 max{0, e}+ re m = m1,

π(αn,m2)− ν2 max{0, e}+ re m = m2,

(4)

and the Markov process m in {m0,m1,m2} with transition states

λij =


γII (i, j) = (1, 2),

γB max[0,−e] (i, j) ∈ {(2, 0), (1, 0)},

0 else.

(5)

Before the successful innovation in mode m1, the firm is constantly balancing the two effects

from the innovation investment. One effect is that the investment decreases the firm’s liquidity

reserves and brings about a possible bankruptcy once the liquidity becomes negative. The

other effect is the likelihood of transition into the more profitable mode m2 that is boosted

by investment. Note however, that a negative liquidity also implies a positive bankruptcy

probability in mode m2. Since the firm’s profit flow in mode m2 is always non-negative, such

negative liquidity has to be due to negative liquidity at the moment of transition from mode

m1, i.e. at the innovation time. In other words, there is a certain risk of bankruptcy even after

successful innovation if the debt accumulated during the innovation phase is too high, but the

level of debt decreases over time once the firm has innovated.

The firm’s objective is to maximize the expected dividend stream received by the firm’s

shareholders. Formally, this problem is given by

max
I(·)

J = E
[∫ ∞

0
e−rtD(e,m)dt

]
. (6)

subject to the state equation (4), the Markov process m(t) characterized by the transition rates

(5) and the initial conditions e(0) = eini, m(0) = m1. Since I(t) = 0 in mode m2, in what
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follows we focus entirely on the characterization of optimal firm investment in mode m1. Due to

the time autonomous structure of the problem and the infinite time horizon, optimal investment

depends only on the current state, but is independent of time. Hence, we express the optimal

investment in mode m1 as a function of the state e and denote the optimal investment function

by φ(e).

4 Optimal R&D Investment

In order to solve the firm’s investment problem we use a Dynamic Programming approach and

as a first step specify the Hamilton-Jacobi-Bellman (HJB) equations which characterize the

value functions Vk in modes mk, k = 1, 2. Mode m0 is absorbing and no more dividends are

paid once the firm is bankrupt, which means that the value function is given by V0(e, αn) = 0

for all values of the state (e, αn). In mode m2, no more investments are made and hence there is

no control for the decision maker to choose. Standard arguments (see e.g. Chapter 8 in Dockner

et al. (2000)) show that under appropriate smoothness assumptions a function V2(e, αn), solving

the HJB equation

rV2(e, αn) = ν2 max{0, e}+ δ(α̃n − αn)∂V2(e, αn)
∂αn

+ σ2α2
n

2
∂2V2(e, αn)

∂α2
n

+∂V2(e, αn)
∂e

ė+ γB max{0,−e}
(
V0(e, αo)− V2(e, αn)

)
(7)

is the value function for the monopoly firm. The first term on the right hand side (RHS) is

the dividend received by the share holders. The next three terms indicate the expected change

in the value function due to the dynamics of market demand and the liquidity. The last term

states the expected change in the value resulting from the possibility of bankruptcy in case of

negative liquidity.

Considering the investment problem in mode m1, we drop the second argument of V1(e, αn)

in light of the fact that αn(τ) = 0 at the innovation time τ , and write the value function only

as a function of the firm’s liquidity e. The corresponding HJB equation for a given dividend

rate ν1 in this mode can be written as

rV1(e) = max
I

[
ν1 max{e, 0}+ dV1(e)

de ė+ γII (V2(e, 0)− V1(e)) + γB max{0,−e} (V0(e)− V1(e))
]
. (8)

On the RHS, the expected change of the value results from the changes of firm’s liquidity and

the possibility of transition into modes m2 and m0. Using the Bellman equation for m1, i.e.,

equation (8), we obtain the following characterization of optimal investment.
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Lemma 1. For all levels of liquidity e at which V1(e) is differentiable the optimal investment

before innovation, i.e., in mode m1, is given by

φ(e) = γI
ξ

(V2(e, 0)− V1(e))
dV1(e)/de > 0. (9)

Lemma 1 can be easily derived by taking the first order derivative of the RHS of equation (8)

with respect to I. It shows there are several factors that influence the firm’s optimal innovation

investment. R&D investment increases with respect to the jump in the value (V2(e, 0)− V1(e))

at the moment of successful innovation, but decreases with respect to ξ dV1(e)
de . To interpret this

expression it should be noted that in light of (2) marginally increasing investment reduces the

firm’s liquidity by ξI and this decrease in liquidity is associated with a decrease in the firm

owner’s value of ξI dV1(e)
de . Thus, optimal investment can be interpreted as the ratio of marginal

(expected) returns to investment and the associated marginal cost coefficient. The firm owner

always profits from additional liquidity, which implies that we have dV1(e)/de > 0. Note that no

general statement about effect of the innovation parameter γI , which determines the marginal

effect of an increase of R&D investment on the innovation rate, on the optimal investment level

can be made, because this parameter has a direct positive effect, but also an indirect negative

effect by positively influencing V1(e).

4.1 Optimal Investment Unaffected by Bankruptcy Threat

In order to better understand the effect of the bankruptcy threat for the optimal investment,

we first study, as a benchmark, the special scenario without bankruptcy risk. In particular, we

consider a situation where the initial liquidity is sufficiently large such that the firm never faces

a positive bankruptcy probability even if it chooses its unconstrained optimal investment level.

For such a scenario we can explicitly derive the value functions in both modes. Moreover, the

firm’s optimal innovation investment can also be calculated. These results are summarized in

the following proposition.

Proposition 1. Assume that eini > ẽ = max
[
ξ(Inc)2−α2

o/2
2(r−ν1) , 0

]
with

Inc =
√
r2

γ2
I

+ 2rc
ξ
− α2

o

2ξ −
r

γI
> 0 (10)

and either r > ν1 or ẽ > 0. Then the optimal investment in mode m1 is constant over time
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with I(t) = Inc for all t ∈ [0, τ ]. The value function in mode m1 for all e ≥ ẽ is given by

V1(e) = e+ c+ 1
γ2
I

rξ −
√
r2ξ2 + 2crξγ2

I −
ξγ2
Iα

2
o

2

 (11)

with

c = δ2α̃2
n + δα̃n(ᾱn − αoη)(r + 2δ − σ2)

2r(r + δ)(1− η2)(r + 2δ − σ2) + ᾱ2
n + α2

o − 2ηαoᾱn
4r(1− η2) . (12)

In mode m2 the value function for all e ≥ 0 is given by

V2(e, αn) = δα̃n + (ᾱn − αoη)(r + 2δ − σ2)
2(r + δ)(1− η2)(r + 2δ − σ2) αn + α2

n

4(1− η2)(r + 2δ − σ2) + e+ c. (13)

Proposition 1 covers two scenarios. First, if r > ν1 and eini ≥ ẽ then liquidity grows

throughout mode m1 even if the firm chooses the unconstrained optimal investment level and

therefore liquidity never becomes negative. If r < ν1 then ẽ > 0 only holds if α2
o/4 > ξ(Inc)2/2,

which means that the market profit in mode m1 is sufficiently large to cover the investment

costs under the unconstrained investment Inc. In this case the sum of the market profit, net of

investments, and earned interest is exactly equal to the firm’s dividend payout at the liquidity

level ẽ. For any initial level of liquidity eini > ẽ, the liquidity of a firm investing Inc converges

from above to ẽ in mode m1 and therefore never becomes negative. Since the firm no longer

invests in mode m2 liquidity stays non-negative throughout mode m2 if it is non-negative at the

time of the innovation. As a corollary of Proposition 1 we can clarify under which conditions for

a non-negative initial liquidity the firm’s optimal investment coincides with the unconstrained

optimum it would choose in the absence of any financial frictions.

Corollary 1. If either 2rc ≤ α2
o or the conditions 2rc > α2

o as well as γI ≤ γI with

γ
I

= rαo
√

2ξ
2rc− α2

o

(14)

and c given by (12) hold, then the optimal investment reads φ(e) = Inc for all e ≥ 0. For

all eini ≥ 0 liquidity e(t) stays non-negative for all t ≥ 0 and either converges monotonously

towards the steady state ẽ ≥ 0 (for r < ν1) or diverges towards infinity while the firm is in mode

m1 (for r ≥ ν1).

The conditions given in Corollary 1 are very intuitive. The firm is not concerned about

bankruptcy risk if either the expected size of the new market is not sufficiently large compared to

the size of the established market (this is captured by the condition c ≤ α2
o/2r), or alternatively,

the efficiency of the firm’s R&D activities is relatively low (γI ≤ γI). In both cases, even without
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considering financial frictions, the firm would choose an R&D investment level, which is so small

that it can be fully covered by the profits made on the established market.

Given that the firm’s investment for the scenarios covered in Proposition 1 in mode m1 is

constant the expected innovation time can be easily calculated as

E[τ ] =
∫ ∞

0
tγII

nc exp (−γIInct)dt = 1
γIInc

. (15)

The value functions in both modes can be interpreted as a summation of the instantaneous

liquidity reserve e and the discounted future profits. Since the interest rate is equal to the

discount rate and the firm lives eternally, moving the payout of liquidity across time does

not influence the value of the discounted dividend stream of the firm owner as long as it is

guaranteed that liquidity never becomes negative. Furthermore, as long as the firm does not

face any (future) bankruptcy risk, the innovation investment is determined by the relationship

between marginal costs and marginal future returns, but is independent of the liquidity and

also of the dividend rate, see (10). From this equation also the following very intuitive effects

of the key parameters on the unconstrained optimal investment level can be directly derived.

Corollary 2. The unconstrained optimal R&D investment level, Inc, increases with the ef-

ficiency of R&D (γI) but decreases with respect to investment costs (ξ) and the size of the

established market (αo). If r + 2δ > σ2, then optimal investment increases with the market

potential of the new product (α̃n).

For the following analysis in particular the negative dependence of optimal R&D investment

on the size of the established market is important. Intuitively, this dependence is due to a

standard cannibalization effect. The introduction of the new product leads to a reduction in

the price of the old product. Hence, the monopolist’s incentive to introduce the new product

is smaller the more profitable it is on the established market. If the monopolist has sufficiently

large liquidity such that it can always internally finance its optimal R&D investments, canni-

balization is the only effect induced by an increase of αo. However, if the firm is financially

constrained an increase of αo also reduces the demand for external financing and hence the

relationship between the optimal investment and the size of the established market is less clear

cut. We now turn to analyzing this scenario in which the firm also has to take into account a

potential bankruptcy risk.
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4.2 Optimal Investment Affected by Bankruptcy Threat

If the unconstrained level of investment cannot be internally financed through profits on the

established market, the monopolist, even if it initially does not have any debt, might face

bankruptcy risk if it does not adjust the investment size. Building on Proposition 1, the following

proposition shows that the efficiency of R&D activities, as well as the size of the established

market, play a key role in determining whether the bankruptcy threat is relevant for the firm.

Proposition 2. If 2rc > α2
o and γI > γ

I
, with γ

I
given in (14), then either φ(e) < Inc for

some liquidity e ≥ 0 or for some eini ≥ 0 there is a positive probability for bankruptcy under the

investment strategy φ(.), or both.

In light of our agenda to study the effects of financial frictions on product innovation invest-

ment, from here onward we will focus on the case where financial frictions might influence such

investment. Taking into account Corollary 1 and Proposition 2 we make the following formal

assumption.

Assumption 1. Throughout the following analysis it is assumed that 2rc > α2
o.

The existence of bankruptcy risk makes the characterization of the optimal investment

strategy much more challenging compared to the case without such risk. Formally, this is due

to the fact that the last terms on the right hand side of the HJB equations (7) and (8), which

disappear if only positive values of e are considered, prevent us from obtaining closed form

solutions for the value functions in modes m1 and m2.

Before analyzing the firm’s optimal R&D investment in mode m1 we first need to consider

the firm’s continuation value after a successful innovation, i.e. the firm’s value function in the

post innovation mode m2. Since market profit in mode m2 is non-negative and the firm makes

no investments, the value function V2(e, αn) can be explicitly calculated for a non-negative

initial liquidity e ≥ 0. If ν2 > r liquidity in the long run oscillates around the positive steady

state e∗2 = π(α̃,m2)/(ν2 − r) > 0. For r ≤ ν2, liquidity would diverge to positive infinity, but it

is clear that such a dividend policy would be sub-optimal. Because liquidity never decreases in

mode m2, the bankruptcy rate is zero for all t ≥ τ if e(τ) ≥ 0, and the value function V2(e, αn)

has the same expression as equation (13) for e ≥ 0. Since for negative liquidity no dividends

are paid, these considerations and the fact that (13) does not depend on ν2 show that also in

the presence of bankruptcy risk, the value functions V1 and V2 as well as the optimal R&D

investment strategy in mode m1 do not depend on the value of ν2 > r. The non-linear form of

the HJB equation for e < 0 does not allow us to obtain a closed form solution for V2(e, αn) on
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this part of the state space. Therefore, in Section 5 we will resort to numerical calculations to

determine the value function on the half-plane with e < 0.

We now turn to the characterization of optimal R&D investment strategies in the case where

the firm would face a threat of bankruptcy if choosing the unconstrained optimal investment

size. Taking into account Proposition 2, in general it is not clear whether for γI > γ
I

the

liquidity stays non-negative under the optimal investment strategy even if it starts evolving

from a non-negative initial level. Since the problem in mode m1 is an optimal control problem

with one-dimensional state-space the liquidity trajectory under the optimal control has to be

monotonous (see Hartl (1987)). Therefore, the analysis of the locations of the steady states of

the problem provide clear insights on whether liquidity might become negative, if the monopolist

invests optimally. The following lemma provides a characterization of steady state candidates

e∗ under the assumption of differentiability of the value function at e∗.

Lemma 2. Assume that e∗ is a steady state of the liquidity dynamics under the optimal invest-

ment strategy φ(e) in mode m1 and that the associated value function V1(e) is differentiable at

e∗. Then the following conditions have to be satisfied:

αo
2 −

ξΦ2(e∗)
2 + re∗ − ν1 max{0, e∗} = 0, (16)

ξφ(e∗)dV1(e∗)
de − γI

(
V2(e∗, 0)− V1(e∗)

)
= 0, (17)

rV1(e∗) = max{0, ν1e
∗}+ γIφ(e∗)

(
V2(e∗, 0)− V1(e∗)

)
− γB max{0,−e∗}V1(e∗), (18)

γIφ(e∗)
(
∂V2(e∗, 0)

∂e
− dV1(e∗)

de

)
+ ν11I [e∗≥0] − r

dV1(e∗)
de

+ γB

(
1I [e∗≤0]V1(e∗)−max{0,−e∗}dV1(e∗)

de

)
= 0.

(19)

This system of necessary conditions is derived by taking into account the steady state con-

dition ė = 0 (16), the first order condition for investment (17), the HJB equation at the steady

state (18) and the state derivative of the HJB equation at the steady state (19). Assuming

that the problem in mode m2 is solved and V2(e, αn) is known, then there are four unknowns

in the above equations, e∗, Φ(e∗), V1(e∗), and dV1(e∗)/de. Though closed form solutions to this

system of equations in general cannot be obtained, Lemma 2 provides the basis for identifying

via numerical analysis all candidates for steady states with local differentiability of the value

function.

Before applying this lemma in the numerical analysis we first derive conditions under which

zero liquidity is a steady state. From Corollary 2 (and its proof) we already know that forγI < γ
I

we have ė > 0 at e = 0, such that a steady state with zero liquidity of the firm can only exist
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if γI ≥ γ
I
. Due to the kink in the dividend policy and the bankruptcy rate at e = 0 we must

expect that in general the value function V1 is not differentiable at e = 0. Hence, Lemma 2

cannot be directly applied and we must resort to a viscosity solution of the HJB equation when

determining the value function of the problem (see e.g. Bardi and Capuzzo-Dolcetta (2008)).

Based on this we can characterize the conditions under which e∗ = 0 is a steady state under

optimal investment.

Proposition 3. The liquidity e∗ = 0 is a stable steady state under the optimal investment

strategy φ(e) in mode m1 if

γI ∈
[
γ
I
, γ̄I
]

(20)

with γ
I

given by (14) and

γ̄I = (r + γBc)αo
√

2ξ
2rc− α2

o

, (21)

where c is given by (12). Optimal R&D investment in the steady state is then given by

φ(0) = αo√
2ξ

(22)

and for γI ∈
(
γ
I
, γ̄I
)

optimal investment is discontinuous at e = 0 such that

lim
ε→0+

φ(−ε) < φ(0) < lim
ε→0+

φ(ε).

Proposition 3 gives the upper and lower bounds for the efficiency of R&D activities, γI ,

such that at e = 0 investing an amount that equals exactly the market profits is optimal. The

proposition also implies that if e = 0 is a steady state then the optimal investment strategy

φ(e) exhibits a jump at this value of the liquidity. Clearly, this jump is due to fact that, as

soon as liquidity becomes negative, an increase of investment increases the bankruptcy risk

and therefore the incentive to invest is lower compared to a situation where no such effect on

bankruptcy risk exists. For γI in the interval (20) the optimal investment without considering

the effect on bankruptcy risk is larger than the profit on the established market, whereas the

optimal investment taking into account the effect on bankruptcy risk is below market profit. In

such a scenario, for positive initial liquidity the firm invests above the profit on the established

market until liquidity has been depleted to zero and then reduces investment such that it

equals the current profit. If γI is sufficiently large, then for small negative liquidity the optimal

investment, even under the consideration of its effect on bankruptcy risk, is larger than what

can be internally financed by the profits on the established market. In this scenario the optimal
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investment strategy induces that the firm goes into debt even if it starts with a non-negative

liquidity. This intuition is formalized in the following corollary, which follows directly from

Proposition 3 together with Corollary 2.

Corollary 3. For γI < γ
I

the optimal R&D investment of the firm induces ė > 0 for e = 0,

whereas for γI > γ̄I , at e = 0 we have ė < 0.

Note that the lower bound γ
I

does not depend on the bankruptcy parameter γB, the upper

bound, given by (20), is an increasing function of γB. The reason for this is that, whereas γ
I

is

determined by the condition that liquidity decreases under I = Inc for small positive values of

e, the upper bound γ̄I is determined by the condition that ė is positive for negative values of

liquidity close to zero. The bankruptcy parameter only becomes relevant if the firm’s liquidity is

negative, and therefore only γ̄I depends on this parameter. Taking into account the expression

for γ̄I given in (21), it follows that for any given value of the R&D efficiency parameter γI we

have γI < γ̄I if the bankruptcy parameter γB is sufficiently large. Furthermore, if there is no

bankruptcy risk, in the sense that γB = 0, then γ
I

= γ̄I and e = 0 is a steady state under

optimal R&D investment only if γI = γ
I
. Based on these arguments we can formulate the

following corollary of Proposition 3, which we will use in the following section to distinguish

between scenarios where a firm with positive initial liquidity either eventually accumulates debt

or keeps a non-negative liquidity.

Corollary 4. For γI > γ
I

there exists a unique threshold γ̄B > 0 such that e∗ = 0 is a stable

steady state if and only if γB ≥ γ̄B.

Before numerically exploring in the next section in more detail the properties of the optimal

investment policy and the resultant innovation rate and liquidity dynamics, we conclude this

analytical section by briefly discussing the implications of a variation of the dividend rate ν1

in mode m1. In particular, we show in the following proposition that if for non-negative initial

liquidity the firm never enters the negative liquidity domain in mode m1, then it is optimal to

delay all dividend payments till after the successful innovation.

Proposition 4. Denote by φ̃(e) the optimal solution to the problem (6) under the dividend rate

ν1 = 0 in mode m1. If ė ≥ 0 at e = 0, i.e. α2
o ≥ 2ξφ̃(0)2, value function of the firm owner

under ν1 = 0 (weakly) dominates the value function under any ν1 > 0.

The intuition for this result is that while investing in R&D the firm should keep as high

a liquidity as possible in order to avoid the bankruptcy risk associated with debt. Paying

out dividends during mode m1 could either make the firm go into debt or restrict its future
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innovation investments. Both of these effects are associated with costs for the firm and hence

reduce the expected total dividend stream. Since the firm does not pay dividends if it has

negative liquidity, the value of ν1 matters only in the domain where e ≥ 0. If the firm for ν1 = 0

optimally avoids to go into debt once it has reached a liquidity e(t) ≥ 0, there is no bankruptcy

risk and therefore no costs associated with delaying the payout of dividends to mode m2. As

discussed above, this is due to the fact that interest and discount rate coincide and that the firm

has a positive income stream in mode m2. The condition that liquidity stays non-negative under

the optimal investment is crucial for the claim of Proposition 4. If initial liquidity is positive

but at some point becomes negative under the optimal investment strategy, it can no longer

be claimed that in general ν1 = 0 is optimal. In such a scenario it might be profitable for the

owner to receive dividends before a potential bankruptcy, which would stop all dividend flows.

As mentioned above, studying the optimal (liquidity dependent) dividend policy for this more

complex case is not the focus of our analysis. Proposition 4 however provides some foundation

for assuming in the following numerical analysis that ν1 = 0.

5 Economic Analysis

The main aim of this section is to study the influence of the bankruptcy parameter γB and the

firm’s strength on the established market αo on the firm’s investment, the expected innovation

time and the bankruptcy probabilities. The form of the HJB equations does not correspond

to that for a linear-quadratic problem and does not have a polynomial (exact) solution in the

domain e < 0. This makes it challenging to get closed form solutions for the value function and

the investment strategy when γB > 0. In order to analyze the effect of the bankruptcy threat

on optimal investment, we need to numerically determine the value function of V1(e), which

requires to approximate V2(e, αn) first. To achieve this goal, we resort to numerical methods.

More specifically, we rely on a collocation method to calculate the approximate solution for

V2(e, αn) for e < 0 and for V1(e) on the entire state space. Details of our numerical approach,

built on Vedenov and Miranda (2001) and Dawid et al. (2015), are provided in Appendix C.

A more extensive and detailed discussion of the numerical treatment of the problem at hand

is provided in Banas et al. (2022). In particular, it is demonstrated there that the collocation

method used in this paper yields qualitatively equivalent results in comparison with alternative

methods that rely on finite difference or finite element approaches.
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5.1 Parameter Calibration

Our numerical analysis is based on a standard parameter setting shown in the following table.

Based on this standard parameter setting we will analyze the effects of variations of several of

these parameters, in particular γB, and αo.

ν1 = 0 pre-innovation dividend rate δ = 1.55 adjustment speed for αn to reach α̃n
ν2 = 0.2 post-innovation dividend rate σ = 0.1 uncertainty in new market dynamics
ᾱn = 0.6 base size of the new market r = 0.02 interest rate
α̃n = 0.8 expansion of new market γI = 0.1 efficiency of innovation
η = 0.5 horizontal differentiation ξ = 0.025 invesment costs
λ = 0.5 parameter for state-space

transformation
Default values of parameter to be varied

γB = 0.05 bankruptcy parameter αo = 0.8 size of the old market

Table 1: Parameter values

Although this parameter setting is not based on a systematic empirical calibration for a

specific industry, they have been chosen with clear theoretical and empirical foundations in

mind. As mentioned above, our choice of ν1 = 0 is based on Proposition 4, and we will further

discuss in Section 5.2 the choice of ν2 does not affect any of our results.

The choice of the parameter values for αo, ᾱn, α̃n and η is guided by the aim to generate

meaningful values for the resulting demand elasticity. Empirical evidence indicates that the

unitary elasticity is reasonable for many established consumption goods (Anderson et al., 1997).

For the established market without the influence of the new product, the chosen parameter

values would yield a price elasticity before innovation as

−
(dpo

dqo

)−1 (po
qo

)∣∣∣∣∣
qo(m1)

= 1,

and the price elasticity for the new product, in the long-run when αn = α̃n, is equal to

−
(
∂pn
∂qn

)−1 (pn
qn

)∣∣∣∣∣
qo(α̃n,m2); qn(qo(α̃n,m2))

= 1.05.

The parameter values for σ and δ are chosen in a way that the expected duration in mode

m2 until the new product price reaches its peak ᾱn + α̃n is approximately 2.5 years, which is

consistent with empirical observations about the time till full development of the demand for a

new product in industries like the car industry (Volpato and Stocchetti, 2008).

Parameters γB, γI and ξ are calibrated such that for the default set of parameter values,

the average innovation time is 2 to 2.5 years, which is consistent with empirical data about the

22



average length of innovation projects (Behrens et al., 2017).

In the following analysis, we first calculate the value function V2(e, αn) for mode m2. Using

the estimated values V2(e, 0), we then numerically determine the (approximate) value function

V1(e) in mode m1. This allows us then to analyze the influence of γB and αo on the optimal

investment, the liquidity dynamics, expected innovation time and bankruptcy probability.

5.2 Post-innovation

After the firm has successfully innovated, additional investment in R&D has no value for the

firm and therefore it is assumed to be zero. Hence, in mode m2 no control has to be chosen

by the firm. The value function V2(e, αn) in mode m2 is shown in Figure 1. V2(e, αn) increases

with both the market demand for new product αn, and the liquidity e. On the half-space with

e ≥ 0, V2(e, αn) grows in a linear way with liquidity e regardless of the value of the bankruptcy

risk parameter γB (see (13)). For e < 0 the bankruptcy risk has a crucial influence on the

value in mode m2 as can be seen in Figure 1. Note that without bankruptcy risk (i.e. γB = 0)

the value function V2(e, αn) is linear in e with a slope of 1, and has the same functional form

for both positive and negative liquidity reserves. However, for γB = 0.05, which is the case

depicted in Figure 1, V2(e, αn) in the negative domain is convex-convace with respect to e and

clearly below the value that would emerge for γB = 0. This highlights that the bankruptcy risk

decreases the value, when the liquidity reserves are negative, and that the size of the negative

effect of the bankruptcy risk depends in a non-linear way on the liquidity.

Figure 1: Value function V2(e, αn).
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5.3 Pre-innovation

We now turn to the analysis of optimal investment during the innovation phase in mode m1.

First, we note our default scenario has the property that ẽ > 0 and γI > γ
I
.6 It’s worth

mentioning that Assumption 1 is satisfied for our parameter setting. Corollary 4 then implies

that it depends on the value of γB whether e = 0 is a fixed point under the optimal investment

strategy. If e = 0 is a fixed point a firm with non-negative initial liquidity never goes into debt

under the optimal investment and we therefore refer to these cases as no debt scenarios. On

the contrary we label situations where optimal investment implies that the firm shall enter the

negative domain of the liquidity as debt scenarios.

5.3.1 Debt vs. No Debt Scenarios

Corollary 4 implies that if all other parameters are given according to their default values we have

a debt scenario for γB < γ̄B = 0.0069, whereas a no debt scenario arises for γB ≥ 0.0069. With

respect to our second key parameter, αo, the effect of a parameter variation on the occurrence of

the no debt scenario is less clear cut, since both boundaries γ
I

and γ̄I in Proposition 3 depend in

a highly non-linear way on αo. In order to gain insights regarding how increasing the size of the

established market affects the occurrence of the no debt scenario and how this effect depends

on the value of the bankruptcy parameter, we show in Figure 2 the influence of γB and αo on

the occurrence of the no debt scenario. Specifically, the shaded area shows the combination of

γB and αo such that e∗ = 0 is a steady state for the default parameter setting. In our analysis,

we assume that 0.7 ≤ αo ≤ 2.8 to make sure that the output quantities for both the old and

the new products are non-negative after innovation. The shaded area is bounded from above

by αo = 0.992 and below by αo = 0.7.7 It can be clearly seen that for sufficiently large values

of γB it is never optimal for the firm to go into debt, however for values of the bankruptcy

parameter below approximately γB = 0.012 the firm avoids to go into debt only if the size of

the established market is sufficiently large. Two effects, both pointing in the same direction,

drive this result. First, due to the cannibalization effect the additional profit from a successful

innovation, and accordingly also investment incentives, become lower as αo grows, and, second,

the profit on the established market increases with αo and therefore the firm is able to internally

finance larger investments. We summarize this discussion as our first numerical result.

Result 1. The no debt scenario arises if the bankruptcy parameter γB is above a threshold γ̄B,

which decreases as the profitability of the established market (αo) increases.
6Under the default parameter setting we have Inc = 4.93, ẽ = 7.2 and γ

I
= 0.01 < 0.1 = γI .

7For αo ≥ 0.992 liquidity dynamics is positive at e = 0 even under the unconstrained investment level Inc,
such that e = 0 is no steady state regardless of the value of γB .
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Figure 2: Combinations of the bankruptcy risk parameter γB and the firm’s strength in the old
market αo for which a liquidity of zero is a steady state, i.e., e∗ = 0, and therefore a no-debt
scenario arises.
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Figure 3: Effect of the bankruptcy risk parameter γB on the optimal investment strategy φ(e)
for debt scenarios (a) and no debt scenarios (b).

5.3.2 The Effect of the Bankruptcy Risk

We are now in a position to characterize the shape of the optimal investment strategy φ(e)

and to explore how this optimal strategy changes if the bankruptcy risk parameter grows. The

optimal strategies depicted in this and the following sections have all been calculated based on

the numerically determined value functions, as described in Appendix C.

In Figure 3 we show the optimal investment strategies for our default parameter setting

and different values of γB. As noted above, for our standard parameter setting e∗ = 0 is a

steady state whenever γB ≥ γ̄B = 0.0069. In panel (a) we show the optimal investment strategy

for values of γB below this threshold, i.e. debt scenarios, whereas in panel (b) the optimal

investment strategy in no debt scenarios are depicted. The value functions V1(e) corresponding

to these optimal investment strategies can be found in Appendix C.

Figure 3 illustrates our theoretical result that the optimal investment strategy exhibits a

downward jump at zero liquidity in the no debt scenario. Furthermore, it shows that investment
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is continuous at e = 0 in the debt scenario. Intuitively, one might expect that even in the debt

scenario investment changes discontinuously when the bankruptcy risk kicks in at e = 0, but

under the optimal strategy the firm at a time t, when e(t) is still positive, already foresees that

liquidity will turn negative in the future and therefore already takes into account that current

investment will influence future bankruptcy risk. Since ẽ > 0 we have that liquidity decreases

under optimal investment for all e ∈ (0, ẽ), see also Figure 4.

A main insight from Figure 3 is that the optimal investment strategy φ(e) is U-shaped when

γB > 0 for both the debt and the no debt scenarios. When liquidity is positive and large, the

optimal investment is not influenced by the bankruptcy threat and the optimal investment is

equal to that with no bankruptcy risks, i.e., Inc, as given in equation (10). If liquidity is positive

but close to 0, optimal investment is an increasing function of liquidity. For the debt scenario

the firm has an incentive to delay the point in time when liquidity becomes negative and thus

the bankruptcy threat arises, and the firm does this by reducing its investment as liquidity gets

closer to zero. Moreover, Figure 3a shows that the larger γB is, the steeper is the decrease

of φ(e) as liquidity approaches zero. For the no debt scenario φ(e) decreases as e approaches

zero because the firm anticipates the downward jump of investment once e = 0 is reached, and

in light of the convex investment costs smoothes this investment path by reducing investment

already before the zero liquidity steady state is reached. Since in the no debt scenario liquidity

never becomes negative for eini ≥ 0, it is evident that the branch of φ(e) for e ≥ 0 is identical

across different values of γB. Furthermore, considering the significantly negative liquidity levels,

the firm invests more the larger the negative liquidity is. The intuition for this behavior is that

if the firm is deeply in debt, then there is a large probability that the firm will go bankrupt

if it does not innovate quickly and thereby can generate higher profits. The amount of debt

the firm holds at the time of bankruptcy does not influence owners’ value (which is zero due to

limited liability of owners) and therefore it is optimal to invest heavily in order to try to speed

up innovation. Summarizing this discussion we get our next main result.

Result 2. There is a U-shaped relationship between a firm’s liquidity and its optimal investment.

We now consider the liquidity dynamics under the optimal investment. Figure 4, which

depicts ė for the debt and no debt scenarios, shows that there is always a positive steady state,

e = ẽ, which is unstable. In the debt scenario this is the only steady state and the liquidity

decreases for any e < ẽ (see Figure 4a). Hence, the liquidity diverges to −∞ in the long run as

long as the firm is in mode m1, i.e. has neither innovated nor gone bankrupt. For larger values

of the bankruptcy parameter γB, i.e. for the no debt scenario, two additional steady states

emerge (see 4b). The locally stable steady state at e∗ = 0 and an unstable negative steady
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Figure 4: Effect of bankruptcy risk parameter γB on the liquidity dynamics ė for debt scenarios
(a) and no debt scenarios (b).
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Figure 5: Effect of the bankruptcy risk parameter γB on the dynamics of liquidity and optimal
investment for an initial liquidity of e(0) = 1.

state constituting the lower boundary of the basin of attraction of e∗ = 0. Hence, if the initial

liquidity of the firm is negative, but the amount of debt is small, then it is optimal for the firm

to choose a sufficiently small R&D investment such that its debt is reduced to zero over time.

Figure 5 illustrates these findings by showing the dynamics of liquidity and the optimal

investment for an initial liquidity of e(0) = 1. The figure highlights that even in the debt

scenario (i.e., for γB = 0.001, 0.005) the firm accumulates debt rather slowly, and once entering

the negative liquidity domain the firm chooses an invesmtent level that is almost constant over

time and substantially below the unconstrained optimal level Inc = 4.93. For the case where the

bankruptcy risk parameter is sufficiently large to induce the no debt scenario (i.e., γB = 0.01),

the downward jump in investment, once liquidity hits zero, can be clearly seen in Figure 5b. As

is illustrated in panel (a) of the figure, this downward jump indeed implies that liquidity stays

constant at the steady state level of e∗ = 0. Overall, figure 5b also illustrates that an increase

of γB has a negative impact on the firm’s level of investment throughout time, where this effect

becomes more pronounced as liquidity gets close to zero.
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Figure 6: Effect of the bankruptcy risk parameter γB on the expected innovation time E(τ)
and the bankruptcy probability for a given the initial liquidity e(0) = 0.1.

To conclude our analysis for the effect of an increase in the bankruptcy risk parameter we

now consider the impact of γB on the expected innovation time and the actual ex-ante expected

probability for the firm to go bankrupt. Restricting attention to scenarios with a non-negative

initial firm liquidity, it follows directly from our previous analysis that, if γB ≥ γ̄B, then we are

in a no debt scenario, where the bankruptcy probability is zero and the exepcted innovation

time does not depend on the actual value of γB. The latter observation is due to the fact that

in the no debt scenario the level of investment for non-negative liquidity is not influenced by

γB. This in confirmed in Figure 6a, which also shows that as long as we remain in the debt

scenario the firm’s expected innovation time increases with γB, due to the negative effect of this

parameter on investment.

With respect to the bankruptcy probability an inverse U-shaped relationship with γB emerges

(see Figure 6b). As long as γB is small, the direct effect of an increase of this parameter dom-

inates, thereby leading to a higher bankruptcy probability. However, as discussed above, such

an increase induces a reduction of firm investment and therefore a slower build-up of debt,

which reduces the bankruptcy probability. As γB grows this latter effect starts to dominate and

the bankruptcy probability decreases with γB. As γB crosses the threshold γ̄B, and we enter

the no debt scenario, the negative effect of γB on investment is so strong that the firm never

accumulates any debt and hence the bankruptcy probability is zero.

Result 3. For a given initial liquidity a firm’s expected innovation time increases with the

bankruptcy parameter γB. Furthermore, there is an inverse U-shaped relationship between γB

and the firm’s bankruptcy probability.
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Figure 7: Effect of the established market size αo on the optimal investment I(e) for the
bankruptcy risk parameter γB = 0.005. Panel (a) shows the entire relevant part of the state
space whereas panel (b) zooms into the neighborhood of e = 0.

5.4 The Effect of the Profitability of the Established Market

The profitability of the established market in our model is proxied by the market size parameter

αo, which determines the quantity sold by the firm on the established market. In particular, this

parameter therefore influences the firm’s ability to finance innovation expenditures internally.

Understanding how optimal innovation investments depend on αo allows us to gain insight on

the question under which circumstances larger sales and higher profits on the established market

lead to higher R&D investments and faster innovation.

Figure 7, shows the optimal investment strategy as a function of liquidity for γB = 0.005 and

different values of αo. Different from panel (a) where the entire relevant part of the state space

is shown, in panel (b) we zoom in to liquidity values close to zero. First, it should be noted that

for the default value αo = 0.8 we are in a debt scenario because γB = 0.005 < 0.0069 = γ̄B.

However, increasing the market size of the established market to αo = 0.85 lowers the threshold

to γ̄B = 0.0048 such that a no debt scenario arises for γB = 0.005. Hence, the investment

strategy is continuous at zero liquidity for αo = 0.7, 0.8, but exhibits a jump for αo = 0.85, 0.9.

Concerning the effect of αo on the level of investment, it becomes clear that if liquidity is

strongly positive or strongly negative the optimal R&D investment is smaller the larger the

established market is. For large liquidity, where the bankruptcy threat hardly influences invest-

ment, this is due to a standard cannibalization effect. The larger quantity of the established

product that the firm sells, the stronger negative implication the drop in the price of the es-

tablished product has, which is triggered by product innovation. Hence, large sales on the

established market reduce the incentive to invest in the development of the new product. This

result is consistent with Dawid et al. (2015), which shows that, if investment is fully financed

internally, a larger production capacity on the established market induces lower investment in
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Figure 8: Effect of the profitability of the established market αo on the expected innovation
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new product development. The cannibalization effect is also present in the case of negative

liquidity, however here it is complemented by a second effect. If the firm has negative liquid-

ity then an increase in investment instantaneously increases the firm’s bankruptcy rate. The

larger the established market is the larger is the loss in expected future dividends induced by

bankruptcy. Hence, an increase in αo has a negative effect on R&D expenditures. We refer to

this effect as the bankruptcy loss effect.

A third effect of an increase of αo is that it pushes up the limit of the firm’s expenditure

that can be financed internally and therefore reduces the amount of debt needed for a certain

investment size. This effect, which we label as the financing effect, increases the optimal size

of R&D investment. A close look at the optimal investment I(e) around e = 0 reveals that,

this effect may dominate canibalization in this part of the state space. In particular, in the

no debt scenario, where e∗ = 0 is a stable steady state (αo = 0.85, 0.9 in Figure 7b), a larger

value of αo induces higher R&D investments. This is quite obvious in the steady state e∗ =

0, where investment is given by α2
o/4, and it also holds in an interval around zero liquidity.

However, in a debt scenario (αo = 0.7, 0.8 in Figure 7b), the cannibalization and bankruptcy loss

effects dominate, and a larger size of the established market induces lower product innovation

investments also around e = 0. Intuitively, the main difference to the no debt scenario is that

the bankruptcy loss effect is present here, whereas in the no debt scenario this effect is absent

for any non-negative liquidity and negligible for slightly negative liquidity, because under the

optimal investment the negative liquidity quickly disappears.

The interplay of these three effects determines how an increase in the size of the established

market αo influences the firm’s expected innovation time. Figure 8 depicts the expected inno-
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vation time as a function of αo under four cases with different values of the bankruptcy risk

parameter γB and different initial liquidity e(0). Focusing first on the case where the firm’s

initial liquidity is zero, it follows directly from our analysis above that for γB = 0.05 the state

e∗ = 0 is a stable steady state for all values of αo ∈ [0.7, 0.992], where for αo > 0.992 we have

γ̄I > γI = 0.1. Hence, for αo ∈ [0.7, 0.992] R&D investment is constant over time and equal

to φ(e(t)) = φ(0) = αo/
√

2ξ ∀t ≥ 0, see (22). The financing effect dominates here and optimal

investment increases with αo. Therefore, the expected innovation time decreases as αo becomes

larger, which can be seen in the dashed grey line in Figure 8. For αo > 0.992 the state e = 0

is no longer a steady state, but starting from e = 0 liquidity grows over time in mode m1,

where investment is constant at φ(e(t)) = Inc ∀t ≥ 0. Due to the cannibalization effect Inc

decreases with αo, so on this interval the expected innovation time grows when the size of the

established market becomes larger. If we assume a lower value of the bankruptcy risk parameter

(γB = 0.005), then we get qualitatively the same picture as above as long as αo ≥ 0.845, which

is the threshold where γ̄I = γI for this value of γB. For αo ∈ [0.845, 0.992] zero liquidity is a

stable steady state, whereas for αo ≥ 0.992 liquidity grows and investment is the unconstrained

optimum. However, for αo < 0.845 we are in the debt scenario and the firm accumulates debt

over time. Consistent with the intuition developed above, in this interval the expected innova-

tion time increases with αo since the combination of the cannibalization and bankruptcy loss

effects reduces overall R&D investment. Hence, for low values of the bankruptcy risk parameter

the relationship between the size of the established market and expected innovation time is

characterized by a highly non-monotone tilted z-shaped pattern (the solid grey line in Figure

8). If firm’s initial liquidity is sufficiently large (e(0) = 1), then the probability that the firm

innovates before liquidity gets close to zero is so large that for most parts of the considered

range of αo values it does not matter how large the bankruptcy risk parameter is (compare the

dashed and solid red lines in Figure 8). Therefore, the cannibalization effect dominates and the

expected innovation time grows with αo. Only for very low values of αo around 0.7 the financing

effect starts to have a sizeable impact. In this region the expected innovation time is clearly

larger under a higher bankruptcy risk parameter and also slightly decreasing with respect to αo.

The intuition for this observation is that in light of such a small size of the established market,

a large fraction of the firm’s investment has to be financed from the existing stock of liquidity

rather than from instantaneous profit and therefore liquidity decreases fast. Hence, the effects

driving incentives around e = 0 become relevant with a higher probability and also with a lower

associated discount factor. We summarize this discussion in our final numerical result.

Result 4. The interplay of the cannibalization, the financing and the bankruptcy loss effect de-
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termine the impact by the profitability of the established market on the expected innovation time.

For small initial liquidity and a small value of the bankruptcy parameter the relationship between

the profitability of the established market on the expected innovation time is non-monotone and

of tilted-z fashion.

6 Empirical Verification

In this section we empirically test the predictions of our theoretical model. We mainly focus

on the suggested U-shaped relation between investments and bankruptcy risk (see Result 2),

since this result is the crucial driver of our other results. We also consider the effect of the

firm’s profits on the established market (proxied by market share), thereby relating to our

analysis and discussion connected to Result 4. Unfortunately, the available data does not

allow to include proxies for the size of the bankruptcy parameter γB in our empirical analysis,

such that we cannot test Results 1 and 3. Our empirical analysis investigates investment in

the Italian manufacturing industry in 2019, without potential influence of the pandemic. We

extract financial information from Bureau Van Dijk’s AIDA database (accessed in October

2022), and collect a sample of more than 80,000 manufacturing companies. The decision to

analyze the Italian manufacturing industry relies on the available information and the specific

market structure. We have the opportunity to collect both companies’ financial information

and their bankruptcy risks, and to deal with a pool of small and medium sized enterprises,

for which trade credits have a potentially important role in funding their business and their

investments, see Cosci et al. (2020). Although our analytical model assumes monopoly power

for the considered firm, which is hardly realistic for the considered manufacturing companies,

the actual amount of market power on the established market is not crucial for the qualitative

findings of our theoretical analysis.

6.1 The Econometric Model

We look at firm i at time t and verify the proposed relation between investment and the

bankruptcy risk by studying two OLS multivariate regression models of the following form:

INVi,t = β0 + β1MSi,t−1 + β2NTAi,t−1 + β3AGEi,t +∑25
r=1 αrINDUr,i,t

+∑5
q=1 hqAREAq,i,t +∑8

z=1 γzBRi,z,t−1 + µi,t
, (23)

INVi,t = β0 + β1MSi,t−1 + β2NTAi,t−1 + β3AGEi,t +∑25
r=1 αrINDUr,i,t

+∑5
q=1 hqAREAq,i,t + β4BRi,z,t−1 + β5BR

2
i,z,t−1 + µi,t

. (24)
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In (23) and (24) we consider the firm’s investment (INV ), market share (MS), bankruptcy risk

(BR), size (NTA), seniority (AGE), industrial sector (INDU), and geographical macro area in

which it is located (AREA). The difference between (23) and (24) concerns the representation

of the bankruptcy risk. In the first model represented in (23) we use a vector of dummy

variables indicating the firm’s bankruptcy risk class (i.e., 8 classes), whereas in the second model

represented in (24) we introduce a linear and quadratic term of a count variable representing

bankruptcy risk with values between 1 and 8. The formulation (24) represents a robustness test

to confirm the collected evidence on the U-shaped relation between investments and bankruptcy

risk. The selection of independent variables is based on the available financial information, as

well as the current literature on investment-cash flow relationship (Carreira and Silva, 2010).

Note that, the information about bankruptcy risk is at short run, i.e., this information represents

companies’ expected bankruptcy risk in 1 year. Moreover, we adopt one period lag variables

to minimize the bias due to simultaneity in the dynamics under investigation (Bottazzi et al.,

2014).

The dependent variable in these two models is a representative index of companies’ invest-

ment relative to their corresponding industrial sector (i.e., INV ). In particular, considering the

jth industrial sector, denoted by a three-digit NACE,8 this proxy is equal to the difference in

net tangible assets (NTA) of firm i between time t and t− 1, divided by the total difference in

net tangible assets of that jth industrial sector between time t and t− 1.9 Hence, for firm i in

an industrial sector with n companies classified in that sector, the investment degree is equal

to:

INVi,t = NTAi,t −NTAi,t−1∑n
k=1 (NTAk,t −NTAk,t−1) .

The higher the index, the higher is the investment of firm i on the market. Note that, considering

the Italian manufacturing industry, investments in net tangible assets (e.g., machinery and

equipment) can be seen as a good proxy for the expected degree of innovation of companies,

since they represent crucial drivers of innovative outputs (Pellegrino et al., 2012).10

8NACE represents the French term “nomenclature statistique des activités économiques dans la Communauté
européenne”, which is the industry standard classification system used in the European Union.

9In our sample there are 116 industrial sectors with NACE codes according to the 3 digits classification.
10Note that Pellegrino et al. identify four innovative inputs as proxies of investments in innovation: in-house

expenditures in R&D (i), outsourced expenditures in R&D (ii), expenditures in equipment and machinery (iii),
and expenditures in intangible assets (iv). However, Pellegrino et al. work with a selected sample of observations
(< 3,000 firms) with key information extracted from a survey with firms’ disclosure of their innovation strategies;
while in this work we focus on the whole manufacturing industry, selecting the unique reliable information that
can be extracted from their balance sheet (i.e., investments in tangible assets). Indeed, according to current
accountability rules, expenditures in R&D can be identified if, and only if, they are capitalized and reported
among intangible assets, and there is no regulation on this specific decision (i.e., firms do not have to justify their
decision to capitalize R&D costs). Failing firms capitalize intangible assets more aggressively than the non-failed
firms (Jones, 2011), making this proxy inconsistent to represent the investments in innovation.
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Among the explanatory variables, we use firms’ market share, in terms of sales, with respect

to their industrial sector (i.e., MS) as a proxy for the profitability of the firm on the established

market.

The expected bankruptcy risk of firm i at time t − 1 (i.e., BR), is represented both as

a vector of dummy variables (formulation (23)) and as a count variable (formulation (24))

according to the classes of risk. For every observation, this bankruptcy risk was computed

using an artificial neural network, following the assessment system of Standard & Poor’s and

classifying companies into 8 classes according to their expected solvency at short term (i.e.,

credit rating score): AAA (i.e., very high capacity to repay debts), AA (i.e., high capacity

to repay debts), A (i.e., sound capacity to repay debts, which might be affected by adverse

circumstances), BBB (i.e., adequate capacity of repayment, which might worsen), BB (i.e.,

predominantly speculative debt), B (i.e., high default risk), CCC (i.e., very high default risk)

and D (i.e., failed enterprise).11 Correspondingly, the value for variable BR ranges between 1

(expected worst creditworthiness, i.e., class D) and 8 (expected excellent creditworthiness, i.e.,

class AAA).

According to the current literature (e.g.,Czarnitzki (2006); Czarnitzki and Hottenrott (2011a);

Peters et al. (2017); Falavigna and Ippoliti (2022b)), this stratification of company’s financial

health is indicative of both its expected bankruptcy risk and the difficulties that it might en-

counter in accessing external financial resources.12 Moreover, our methodological approaches,

based on a vector of dummy variables and a count variable, are coherent with the literature

that investigates the relation between credit ratings and investments in R&D and innovation

(Czarnitzki and Hottenrott, 2011b; Falavigna and Ippoliti, 2022a).

Finally, some control variables are introduced in the model. These include a representative

proxy for firm size (i.e., NTA), which is equal to the total net assets at time t − 1, and a

representative proxy for firm seniority (i.e., AGE), which is equal to the number of years elapsed

between the establishment of the firm and the year under investigation. Lastly, AREA is a

vector of dummy variables that are equal to 1 if the company is located in the qth geographical

macro area (i.e., North West, North East, Center, South or Islands), and 0 otherwise; while

INDU is also a vector of dummy variables equal to 1 if the productivity sector belongs to the
11Following Falavigna (2012), the present study estimates these indexes by means of a neural networks algorithm

on the basis of key balance sheet information: total receivables due from shareholders, total tangible assets, total
current assets, total shareholders’ funds, total provisions for risks and charges, total payables, total value of
production, total production costs, and total financial charges.

12Note that this proxy is highly correlated with the available liquidity (an index equal to financial and operating
activities divided by debts), and also to the dividend payout (see Table 5 in the Appendix). According to data,
on average, a company classified as “AAA” has an expected liquidity equal to 5.87, while a company classified
as “CCC” equals 1.03.
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Table 2: Descriptive statistics: dependent and independent variables Italian manufacturing
industry (2019)

Variable Obs. Mean Std. Dev. Min Max
Dependent variable

(Investment) log INVt 80,669 -9.492 2.302 -16.441 0

Explanatory variables
(Bankruptcy risk)

AAAt−1 80,669 0.103 0.304 0 1
AAt−1 80,669 0.299 0.458 0 1
At−1 80,669 0.176 0.381 0 1

BBBt−1 80,669 0.198 0.399 0 1
BBt−1 80,669 0.115 0.319 0 1
Bt−1 80,669 0.081 0.272 0 1

CCCt−1 80,669 0.013 0.114 0 1
Dt−1 80,669 0.015 0.123 0 1

Alternative explanatory variable
(Bankruptcy risk) BRt−1 80,669 5.694 1.673 1 8

Control variables
(Firm characteristics)

logMSt−1 80,669 -8.960 1.883 -17.682 0
logNTAt−1 80,669 5.704 2.135 0 16.289
logAGEt−1 80,669 2.675 1 0 5.030

Control variables
(Fixed effects)

North-West 80,669 0.375 0.484 0 1
North-East 80,669 0.311 0.463 0 1

Center 80,669 0.179 0.384 0 1
South 80,669 0.107 0.309 0 1
Islands 80,669 0.028 0.165 0 1

rth industrial sector, corresponding to a two-digit NACE code, and 0 otherwise.13 Note that,

in order to satisfy the assumptions on normality distribution, a logarithmic transformation was

applied for variables INV , MS and NTA.

Table 2 shows some descriptive statistics of the dependent variable (i.e., INV ) and the two

key explanatory variables (i.e., MS and BR), as well as the main control ones (i.e., AGE, NTA,

and AREA).

Table 3 presents further information on the relation under investigation, showing levels of

investments according to different market shares and bankruptcy risks. The table indicates that

for a larger market share, we can observe higher average levels of investments in net tangible

assets. Interpreting a larger market share as an indication that the established market is more

profitable for the firm, this empirical evidence is consistent with our theoretical analysis for the

cases where the financing effect is dominant (see Figure 8 and its discussion). Moreover, Table
13Note that we adopt the 3 digit classification to estimate INV and MS, collecting more precise indexes, while

we adopt the 2 digit classification as control variable. This choice is due to the necessity of controlling the number
of covariates and potential collinearity among them.
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Table 3: Market share and investments in net tangible assets according to different bankruptcy
risks for Italian manufacturing industry (2019)

Market Share (MS)
Bankruptcy Risk (BR)

D CCC B BB BBB A AA AAA Total

> 0.05%
1.99% 0.30% 0.31% 0.35% 0.41% 0.48% 0.50% 0.63% 4.49%

53 78 664 1,231 3,322 3,659 6,482 1,991 17,480

> 0.025%
1.11% 0.19% 0.18% 0.20% 0.27% 0.34% 0.35% 0.45% 0.32%

96 132 1,294 2,300 5,441 5,466 9,504 2,918 27,151

> 0.0125%
0.82% 0.12% 0.11% 0.13% 0.18% 0.25% 0.26% 0.34% 0.23%

177 221 2,342 3,805 8,086 7,669 13,125 3,966 39,391

Within each category of market share, the first row represents the average (unconditional)
investments level, while the second row denotes the number of observations characterized ac-
cording to the MS and the relative BR class (i.e., credit rating scores).

3 gives an indication of the theoretically predicted U-shaped relation between bankruptcy risk

and investment level for the different pooled sub-samples of firms generated by different lower

bounds on market share. Observing the number of firms in the different sub-samples, we can

also detect the market structure of Italian manufacturing industry, which is mainly composed

by small and medium enterprises.

6.2 Results

Table 4 shows the results of our OLS multivariate regression models with robust standard errors,

and with lagged variables (1 year). All the models are statistically significant according to the

F-test, i.e., the coefficients are not jointly equal to zero. Moreover, the R-squared is extremely

high (i.e., 0.86), and the coefficients are all statistically significant (p-values < 0.01). Finally,

the pairwise correlations, the distribution of residuals and the Variance Inflation Factors (VIFs)

for the independent variables specified in the linear regression model are tested, with good

results in all cases. Based on the estimated coefficients shown in Table 4 and keeping the firm

with a class D as reference, Figure 9 plots the (conditional) average levels of investments in net

tangible assets according to the credit rating scores for an otherwise identical firm.

In accordance with the preliminary evidence of Table 3, the figure confirms the U-shaped

relation between bankruptcy risk and investments as predicted in Result 2 of our theoretical

analysis. Indeed, also after controlling for other factors, firms’ investments are highest when

financial health is either very high (i.e., credit rating class AAA, where the firm essentially faces

no bankruptcy risk) or very low (i.e., credit rating class D, where a fast product innovation is

the only chance to avoid future default).
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Table 4: OLS regression models with robust standard error
Italian manufacturing industry (2019)

Model (23) Model (24)
VARIABLES log INVt log INVt

CCCt−1 -0.216***
(0.0423)

Bt−1 -0.336***
(0.0323)

BBt−1 -0.284***
(0.0317)

BBBt−1 -0.273***
(0.0312)

At−1 -0.243***
(0.0314)

AAt−1 -0.216***
(0.0311)

AAAt−1 -0.180***
(0.0321)

logMSt−1 0.196*** 0.195***
(0.00370) (0.00369)

logNTAt−1 0.856*** 0.856***
(0.00278) (0.00278)

logAGEt−1 0.0894*** 0.0914***
(0.00359) (0.00359)

BRt−1 -0.0936***
(0.0120)

BR2
t−1 0.0104***

(0.00112)
Constant -12.76*** -12.84***

(0.0605) (0.0610)

NACE code 2 digits (FE)t Yes Yes
Macro area (FE) Yes Yes

VIF 2.84 3.39

Observations 80,669 80,669
R-squared 0.864 0.864

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Turning to the other coefficients, ceteris paribus, our results point to the fact that a 10%

increase in total net tangible assets can drive up investments by 8.50%, while considering senior-

ity a 10% increase can raise investments by 0.86%. These results are coherent with the current

literature and previous empirical findings, which highlight that the investments of young and

small firms are more sensitive to cash flow and the access to external financial resources (e.g.,

Hyytinen and Väänänen (2006); Ughetto (2008); Hadlock and Pierce (2010)). Lastly, concerning

sales, ceteris paribus, a 10% market share increase is associated with an increase in investments

by 1.88%. As discussed above, this is an indication that on average for the considered firms the

financing effect is dominant.
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Figure 9: U-shaped relation between (conditional) average investments (at time t) and
bankruptcy risk (at time t− 1) of Italian manufacturing companies in 2019: model formulation
(23) in red and (24) in blue.

7 Conclusions

This paper is one of the first to explicitly incorporate the bankruptcy risk associated with contin-

uous investments in uncertain innovation projects in a dynamic market model. We analyze the

optimal product innovation investment strategy of a monopolistic firm facing technological and

demand uncertainty as well as financial frictions. The firm can finance investments externally,

however faces a bankruptcy risk that grows with the size of the firm’s debt. We analytically

characterize scenarios in which it is optimal for the monopolist to refrain from the accumulation

of any debt, thereby avoiding any bankruptcy risk, and scenarios where accumulating a positive

amount of debt is optimal. Combining these insights with an extensive numerical analysis we

show that the optimal investment strategy is U-shaped as a function of the firm’s liquidity, such

that investments are lowest around zero liquidity. We argue that this shape is driven by the in-

terplay of three effects, the well-known cannibalization effect, the bankruptcy loss effect and the

financing effect. Due to the induced adjustment of firm’s investment strategy, an increase of the

bankruptcy risk parameter has a non-monotone inverse U-shape effect on the actual bankruptcy
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probability of the firm. Finally, we show that there is a highly non-monotone relationship be-

tween the profitability of the established market for the firm and the expected innovation time

under optimal investment. We empirically test our findings using Italian firm-level data and

confirm the U-shaped relationship between the financial standing of a firm and its investment.

Furthermore, we find a positive relationship between a firm’s market share in the established

market and its investment, which suggest that among the three effects we have theoretically

identified the financing effect on average dominates in the considered firm population.

Our analysis has important implications for the design of the optimal product innovation

strategy of firms, since it provides guidance on how to optimally account for firm’s financial

standing in light of financial frictions and technological uncertainty associated with product

innovation. Apart from characterizing the non-monotone effect of the financial standing on

optimal product innovation investment, our theoretical analysis also highlights the different

qualitative effects whose interplay determines optimal investment. From the perspective of the

speed of innovation, our results demonstrate that tightening firms’ access to credit, e.g. due

to stricter banking regulations, reduces the speed of innovation up to some level and is neutral

beyond that. More importantly, our finding that the size of financial frictions might determine

whether an increase in the firms’ profit on the established market speeds up or slows down

the introduction of new products provides a new perspective on the role of financial frictions

on innovation incentives. Although we do not explicitly model competition, this insight also

points out a role of the level of financial frictions with respect to the long lasting debate on the

relationship between intensity of competition (which might determine the firm’s profit on the

established market) and innovation investment, see e.g. Aghion et al. (2005).

The framework developed in this paper can be extended in several directions, thereby al-

lowing to address a number of important issues that were put aside in our analysis. First and

foremost, we have considered a monopolistic firm and therefore have abstracted from the effect

of strategic competition. On the one hand, competition should generate incentives to preempt

the competitor and therefore increases the willingness of firms to take on debt. On the other

hand, particularly in markets without strong patent protection, there exists risk that even after

winning the innovation race the competitor might catch-up, and thereby eliminate pioneering

profits. Such risk could make the accumulation of a large debt prior to innovation substan-

tially more risky compared to the monopoly case. Addressing these issues in an oligopolistic

framework of a multi-mode differential game is a natural extension to our work here. A second

restriction of our analysis is that we have not fully characterized the combination of optimal

investment and optimal dividend policy. Although we are confident that our qualitative insights
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about optimal R&D investment fully carry over to a setting where the dividend strategy is fully

state-dependent, potentially singular and intertemporally optimal, determining such an optimal

policy gives rise to a highly challenging control problem and it is unclear in how far clear cut

results can be obtained. Finally, in this paper we have assumed that the firm has access to credit

at a given interest rate even if it already has accumulated substantial debt. Alternatively, one

could assume that the interest rate grows with the level of debt, that there is a maximal level of

debt under which the firm still can get additional credit, or both. Whereas the addition of an

upper bound for debt should hardly influence our results, endogenizing the interest rate, either

assuming a competitive credit market or a potential debtor with some market power, would

enrich the analysis and allow additional insights on the robustness of the U-shaped investment

pattern identified here.
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A Calculation of optimal prices, quantities and profits

When the firm is in mode m2 at time t and produces both the old product o and the new

product n, the firm’s profit equals14

poqo + pnqn = (αo − qo − ηqn) qo + (ᾱn + αn − qn − ηqo) qn.

The first order conditions of the profit with respect to qo and qn are given by

αo − 2qo − 2ηqn = 0 and αn + ᾱn − 2qn − 2ηqo = 0.

So the firm’s optimal quantities can be written as

qo(αn,m2) = αo − η(ᾱn + αn)
2(1− η2) and qn(αn,m2) = (ᾱn + αn)− ηαo

2(1− η2) .

The corresponding prices for the old and the new products under the optimal outputs are αo/2

and (ᾱn +αn)/2, respectively. Thus, it can be derived that the market profits in mode 2 equals

π(αn,m2) = (ᾱn + αn)2 + α2
o − 2η(ᾱn + αn)αo

4− 4η2 .

Conducting similar calculations for the firm in mode m1 with qn = 0 yields the firm’s optimal

quantities as qo(m1) = αo/2. The corresponding market price is αo/2, and the market profits

in m1 are such that π(αn,m1) = α2
o/4.

B Proofs

Proof of Lemma 1. Taking the derivative of both sides of HJB (8) with respect to I yields the

following equation

γI(V2(e, 0)− V1(e))− ξI dV1(e)
de = 0,

which leads to

I = γI
ξ

V2(e, 0)− V1(e)
dV1(e)/de .

Taking into account that dV1(e)
de > 0 for all e shows that also the second order optimality

condition is satisfied. Furthermore, it follows from π(αn,m2) ≥ π(0,m1) ∀αn ≥ 0 with strict

ineqaulity for some αn > 0 that V2(e, 0) > V1(e) for all e and therefore φ(e) > 0. �

14We dismiss the argument of time t when there can be no misunderstanding.
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Proof of Proposition 1. Assuming that eini ≥ 0 is sufficiently large such that e(t) ≥ 0 for all t

and the firm never faces a positive bankruptcy probability. In such a case the HJB (7) in mode

2 can be rewritten as

rV2(e, αn) = ν2e+ δ(α̃n − αn)∂V2(e, αn)
∂αn

+ σ2α2
n

2
∂2V2(e, αn)

∂α2
n

(25)

+∂V2(e, αn)
∂e

(
(ᾱn + αn)2 + α2

o − 2η(ᾱn + αn)αo
4(1− η2) − ν2e+ re

)
.

Assume V2(e, αn) takes the form of

V2(e, αn) = a2α
2
n + a1αn + be+ c, (26)

with the unknown coefficients a1, a2, b and c that need to be determined. Substituting (26)

into (25) and comparing the coefficients of 1, αn, α2
n and e on both sides of the equation yields

the values of a1, a2, b and c and thus leads to the expression (13). Among the two solutions of

this system of equations only the one with V1(0) < V2(0, 0) is relevant. A similar method can

also be applied in mode m1 to solve the HJB equation of (8), i.e.,

rV1(e) = ν1e+ dV1(e)
de

(
α2
o

4 + γ2
I

2ξ

(
V2(e, 0)− V1(e)

dV1(e)/de

)2
− ν1e+ re

)
.

Assuming a value function of the form V1(e) = e+ c̃ yields, after the comparison of coefficients,

the expression (11). Substituting equations (11) and (13) into (9) yields that the optimal

investment without bankruptcy risk is equal to (10). Note that the constant term c̃ in the value

function V1(e) is the smaller root of a quadratic equation. It follows from V1(e) < V2(e, 0) that

the smaller root has to be considered.

As a last step we verify that for any e > ẽ indeed e(t) > 0 holds under the optimal investment

strategy. Taking into account that liquidity is positive we have in mode m2 that

ė = (r − ν2)e+ π(αn,m2).

Since π(αn,m2) > 0 it follows that ė > 0 for sufficiently small positive values of e and therefore

liquidity stays positive if it is positive at the time t = τ of the innovation. Considering m1 we

have under the optimal investment

ė = (r − ν1)e+ α2
o

4 −
ξ

2(Inc)2, (27)
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which is non-negative due to our assumptions that e ≥ ẽ. Hence, e(t) > 0 holds also in mode

m1. �

Proof of Corollary 1. For 2rc = αo we obtain

ξ(Inc)2 = α2
o

2 + 2ξr
γI

(
r

γI
−
√
r2

γ2
I

+ α2
o

2ξ

)
<
α2
o

2

and therefore α2
o

2 > ξ(Inc)2 holds for all γI > 0. The unconstrained investment Inc is an

increasing function of c and therefore α2
o

2 > ξ(Inc)2 holds for all γI ≥ 0 whenever 2rc ≤ αo. If

2rc > αo the value of of γ
I

follows directly from inserting (10) into the inequality α2
o

2 ≥ ξ (Inc)2

and solving for γI . This implies that under the conditions given in the corollary we have ẽ = 0

if r − ν1 > 0. Proposition 1 then implies that φ(e) = Inc is optimal for all e ≥ 0. Furthermore,

according to (27) liquidity increases under this optimal investment for all e ≥ 0.

For r < ν1 the equation ė = 0 has a unique positive solution e∗ = α2
o−2ξ(Inc)2

4(ν1−r) . Considering

again (27) we have ė = α2
o

4 −
ξ(Inc)2

2 > 0 for e = 0. Hence, ė > 0 for e ∈ [0, e∗] and ė < 0 for

e > e∗. �

Proof of Corollary 2. First it should be noted that 4rc − α2
o > 0, which can be verified by

inserting (12) for c. Taking this into account, we have

∂Inc

∂γI
= − r

γ2
I

 2r/γI

2
√(

r
γI

)2
+ 4rc−α2

o
2ξ

− 1


︸ ︷︷ ︸

<0

> 0.

The monotonicity of Inc with respect to ξ follows directly from 4rc− α2
o > 0. Considering the

effect of an increase of α̃n it follows directly from (12) that, under the assumption r + 2δ > σ2

we have ∂c
∂α̃n

> 0, which implies that Inc increases with α̃n. Finally, considering the effect of a

change of αo we obtain

∂Inc

∂αo
= 1

2
√(

r
γI

)2
+ 4rc−α2

o
2ξ

1
2ξ

(
4r ∂c
∂αo
− 2αo

)
< 0.

The sign of the term in the bracket is negative because

4r ∂c
∂αo
− 2αo = − 4ηδα̃n

2(r + δ)(1− η2) + 2αo
1− η2 −

2ηᾱn
1− η2 − 2αo
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= − 4ηδα̃n
2(r + δ)(1− η2) + 2η

1− η2 (ηαo − ᾱn) < 0,

due to our assumption that ᾱn > ηαo. �

Proof of Proposition 2. Using the same arguments as applied in the proof of Corollary 1, it

follows that for 2rc > αo and γI > γ
I

we have α2
o

2 < ξ(Inc)2. Hence, in case the firm invests

Inc, we have ė(0) = α2
o

4 −
ξ(Inc)2

2 < 0 and the sign of ė is negative for e = 0. Here and in what

follows we use the notation ė(e) to denote the value of ė at liquidity level e. By continuity,

if φ(e) = Inc on some (small) interval e ∈ (−ε, ε), then ė(e) < 0 holds on this entire interval.

Therefore, either the firm chooses φ(e) < Inc on some parts of this interval or we have ė < 0 on

the entire interval e ∈ (−ε, ε). In the latter case, for any eini ∈ [0, ε) there is a time s > 0 such

that for any t ≥ s if m(t) = m1 we have e(t) < 0. Put differently, if the firm has not innovated

by time s, it has negative liquidity starting at t = s till it either innovates or goes bankrupt.

Since there is a positive probability that the realization of the innovation time satisfies τ > s,

and since λ10 > 0 whenever e < 0, this implies that there is a positive probability that the firm

goes bankrupt before it moves to mode m2. �

Proof of Proposition 3. Note that e∗ = 0 being a stable steady state is equivalent to that,

for any γI ∈ [γ
I
, γ̄I ], it holds that ė < 0 for a slightly positive liquidity and ė > 0 for a

slightly negative liquidity, under the optimal investment. Since the proof is rather lengthy and

technical we first provide a sketch of the main steps in our argument. In the first part of the

proof we show that ė(0)− = limε→0+ ė(−ε) > (=, <) 0 if and only if γI < (=, >) γ̄I . To this

end, we first show that ė(0)− > 0 for all γI < γ
I
, that ė(0)− < 0 for all γI > γ̄I and that

ė(0)− = 0 can only hold if γI = γ̄I . We then use these insights to show that φ(0)− > 0 also

has to hold on the interval [γ
I
, γ̄I). It should be noted that in general we cannot be sure that

φ(e) is a continuous function of γI , and hence this last step in not an obvious conclusion from

the insights that ė(0)− is positive for γI < γ
I

and that ė(0)− = 0 can only hold if γI = γ̄I .

After completion of the first part of the proof we argue that analogous arguments establish

that ė(0)+ = limε→0+ ė(ε) > (=, <) 0 if and only if γI < (=, >) γ
I
. Finally, we show that for

γI ∈ [γ
I
, γ̄I ] the investment level φ(0) = αo/

√
2ξ is a solution to the HJB equation at e = 0 in

the viscosity sense. Together these steps establish the claim of the Proposition.

Turning now to the first part of the proof, i.e. showing that ė(0)− = limε→0+ ė(−ε) > (=, <) 0

if and only if γI < (=, >) γ̄I , we first note that it follows from Corollaries 1 and 2 that for γI < γ
I

we have Inc < αo√
2ξ

and since φ(e) ≤ Inc for all e, this implies ė(0)− > 0.
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Next we show that there is only a single value of γI for which under the optimal investment

strategy we can have φ(0)− = φ(0) = αo√
2ξ

and that this value is given by γI = γ̄I . Using

(22), calculated from ė(0) = 0, and the fact the the value functions in both modes have to be

continuous, we conclude from (9) that in such a scenario we must have

γI(V2(0, 0)− V1(0))
ξdV1(0)/de− = αo√

2ξ
. (28)

In order to determine dV1(0)/de− we consider the HJB equation for e < 0 in mode m1, which

is given by

rV1(e) = dV1(e)
de

(
re+ α2

o

4 −
ξ

2φ(e)2
)

+ γIφ(e) (V2(e, 0)− V1(e))− γBe (V0(e)− V1(e)) . (29)

Taking the derivative on both sides with respect to e and considering the limit e→ 0, we obtain

0 = γI
αo√
2ξ

(
∂V2(0, 0)
∂e−

− dV1(0)
de−

)
+ γBV1(0) +

(
α2
o

4 −
ξ(φ(0)−)2

2

)
︸ ︷︷ ︸

=0

d2V1(0)
de2

+dφ(0)
de−

(
−ξdV1(0)

de− φ(0)− + γI (V2(0, 0)− V1(0))
)

︸ ︷︷ ︸
=0

,

where the observation that the bracket in the second line is equal to zero follows from (28).

Since V2(e, 0) is smooth at e = 015, it holds that ∂V2(0, 0)/∂e = 1 and we get

dV1(0)
de− =

γI
αo√

2ξ
+ γBV1(0)

γIαo
/√

2ξ
. (30)

Furthermore, (29) yields that the value function in mode m1 at the steady state e∗ = 0 equals

to

V1(0) =
γIV2(0, 0)αo

/√
2ξ

r + γIαo
/√

2ξ
. (31)

Inserting this into (28) yields

rγIV2(0, 0)
ξ
(
r + γIαo

/√
2ξ
) dV1(0)

de−
= αo√

2ξ

15The continuity of ∂V2(e,0)
∂e

for e→ 0− can be seen by considering the HJB equation (7) in mode m2, taking
into account the continuity of V2(e, 0) and the fact that in mode m2 the term ė(e, 0) is continuous at e = 0, see
(4).
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and using (30) we obtain

rγIV2(0, 0)
ξ
(
r + γIαo

/√
2ξ + γBV2(0, 0)

) = αo√
2ξ
.

Solving for γI yields a unique solution, which, taking into account that V2(0, 0) = c, is given

by (21). Hence, φ(0)− = φ(0) = αo√
2ξ

can hold only if γI = γ̄I . This also implies that the only

possible value of γI where φ(0)− = αo√
2ξ

can hold is γI = γ̄I .16

As a next step we now show that φ(0)− > αo√
2ξ

holds if γI > γ̄I . Consider an arbitrary

fixed value of γB = γ̃B and arbitrary γI > γ̄I(γ̃B), where for expositional reasons in what

follows we write γ̄I explicitly as a function of γB. We show by contradiction that φ(0)− > αo√
2ξ

must hold. Since γI > γ̄I(γ̃B) > γ
I

and Inc > αo√
2ξ

for all γI > γ
I
, the inequality Inc > αo√

2ξ

holds for the considered parameter constellation. Note that both sides in this inequality are

independent from γB. Assume now that φ(0)− ≤ αo√
2ξ

. Since γI 6= γ̄I(γ̃B) we know that this

weak inequality cannot hold as equality and therefore we must have that φ(0)− < αo√
2ξ

. Keeping

γI fixed, it is straightforward to see that for any e < 0 we have limγB→0 φ(e) = Inc > αo√
2ξ

, since

the firm chooses unconstrained investment Inc when there is no bankruptcy threat. Therefore,

for sufficiently small γB > 0 we must have φ(0)− > αo√
2ξ

, whereas by assumption we have

φ(0)− < αo√
2ξ

for γB = γ̃B. For a given level of liquidity e < 0 the optimal investment φ(e)

changes continuously with γB. This follows from standard results about continuity of optimal

investment with respect to the discount rate, since a change in γB is equivalent to a change in

the discount rate, see (8). This implies that there must exist a value γ̂B ∈ (0, γ̃B) such that

φ(0)− = αo√
2ξ

for γB = γ̂B. According to our arguments above, this can only hold if γI = γ̄(γ̂B).

The threshold γ̄I(γB) is an increasing function of γB (see (21)), and therefore we have

γI > γ̄I(γ̃B) > γ̄I(γ̂B),

which contradicts γI = γ̄(γ̂B). Hence, we have shown that φ(0)− > αo√
2ξ

has to hold for all

γI > γ̄I .

To complete the first part of the proof it remains to be shown that φ(0)− < αo√
2ξ

has to

hold for all γI ∈ [γ
I
, γ̄I). To this end, assume that φ(0; γ̃I)− > αo√

2ξ
for some γ̃I ∈ [γ

I
, γ̄I),

where for more clarity in this paragraph we write φ(e; γI) explicitly in dependence of parameter

γI . Furthermore, we define ˜̃φ(e; γI) and ˜̃V1(e; γI) as the family of strategy and value functions
16This follows from the observation that φ(0)− = αo√

2ξ
implies φ(0) = αo√

2ξ
, which is an implication of the

continuity of the value function.
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which satisfy the optimality condition (9) with V1 replaced by ˜̃V1 and the equation

r ˜̃V1(e; γI) = ν1 max{e, 0}+d ˜̃V1
de ė+γI

˜̃φ(e; γI)
(
V2(e, 0)− ˜̃V1(e; γI)

)
+γB max{0,−e}

(
V0(e)− ˜̃V1(e; γI)

)
(32)

for e ≤ 0 as well as the condition ˜̃φ(e; γ̃I) = φ(0; γ̃I) and ˜̃V1(e; ˜̃γI) = V1(e; γ̃I). Note that (32)

corresponds to the HJB equation (8) as long as ˜̃φ(e; γI) is the global maximizer of the right hand

side of the HJB equation. Even if for γI < ˜̃γI the strategy ˜̃φ(e, γI) is not (globally) optimal,

the same arguments we have used in the first part of this proof to show that φ(0)− 6= αo√
2ξ

for γI < γ̄I establish that ˜̃φ(0; γI)− 6= αo√
2ξ

for all γI < γ̃I . Since by construction ˜̃φ(e; γI) is

continuous with respect to γI , this implies ˜̃φ(0; γI)− > αo√
2ξ

for all γI < γ̃I . However, any

investment satisfying the optimality condition (9) cannot exceed the unconstrained investment

level, i.e. ˜̃φ(e; γI) ≤ Inc has to hold. This implies, we must have ˜̃φ(0; γI)− < αo√
2ξ

for γI < γ
I
,

which contradicts ˜̃φ(0; γI)− > αo√
2ξ

for all γI < γ̃I . This means that our assumption that there

exists a γ̃I ∈ [γ
I
, γ̄I) with φ(0; γ̃I)− > αo√

2ξ
is falsified and we have shown that also for all

γI ∈ [γ
I
, γ̄I) we must have φ(0; γI)− < αo√

2ξ
.

Summarizing, we have shown that φ(0)− has the following form:

φ(0)−

< αo√
2ξ

γI < γ̄I

= αo√
2ξ

γI = γ̄I

> αo√
2ξ

γI > γ̄I .

(33)

Using the notation φ(0)+ = limε→0+ φ(ε) analogous arguments would show that

φ(0)+

< αo√
2ξ

γI < γ
I

= αo√
2ξ

γI = γ
I

> αo√
2ξ

γI > γ
I
.

(34)

We are now in a position to show that for γI ∈ [γ
I
, γ̄I ] the optimal investment at e = 0 is

given by φ(0) = αo√
2ξ

. Since the value function V1(e) in general can have a kink at e = 0, we are

searching for a viscosity solution to the HJB equation, see Bardi and Capuzzo-Dolcetta (2008).

Therefore, we have to show that for a continuous value function satisfying the HJB equation

(8) on e 6= 0 and (31) for e = 0 the first order condition (17)

φ(0) = αo√
2ξ

= γI(V2(0, 0)− V1(0))
ξκ

(35)
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holds for some κ ∈
[
min[dV1(0)/de+,dV1(0)/de−],max[dV1(0)/de+,dV1(0)/de−]

]
where dV1(0)/de−

and dV1(0)/de+ are again the one-sided derivatives. Taking into account

φ(0)− = γI(V2(0, 0)− V1(0))
ξdV1(0)/de− , φ(0)+ = γI(V2(0, 0)− V1(0))

ξdV1(0)/de+ ,

such a value of κ exists if and only if αo√
2ξ
∈ [min[φ(0)−, φ(0)+],max[φ(0)−, φ(0)+]]. Taking into

account (33) and (34) this is true if and only if γI ∈ [γ
I
, γ̄I ]. Stability of the steady state e = 0

and the claim about the jump of optimal investment for γI ∈ (γ
I
, γ̄I) follows directly from (33)

and (34). �

Proof of Proposition 4. We split the proof into two parts. First, we show our claim for the case

γI ≤ γI , where under ν1 = 0 the firm can choose the unconstrained investment level Inc without

facing any bankruptcy risk as long as initial liquidity is non-negative. Second, we deal with the

more complicated case of γI > γ
I
. Here, under our assumption that the optimal investment

strategy φ̃ for ν1 = 0 induces ė(0) ≥ 0, we must have that φ̃(e) < Inc at least for e = 0. Also,

for this case, contrary to γI ≤ γ
I
, we cannot give the value function in closed form. Hence, it

is less obvious that it is never optimal to pay out some dividend already in mode m1, thereby

potentially risking to enter the zone of negative liquidity with the associated bankruptcy risk.

We show our claim for this case by first establishing that under the assumptions made in the

proposition for any value of ν1 it is not optimal to enter the part of the state space with negative

liquidity if initial liquidity is non-negative and then constructing for each possible investment

path under ν1 > 0, an associated path under ν1 = 0, which generates at least the same value.

We first consider the case where γI ≤ γ
I
. According to Corollary 1, for such small value

of γI liquidity stays non-negative for any eini ≥ 0 under the unconstrained optimal investment

level Inc and ν1 = 0. Hence, in this case φ̃(e) = Inc and the firm does not have any bankruptcy

risk. Accordingly the value function is equal to that of the problem without financial constraints

(11). It follows from (11) that in the absence of bankruptcy risk the value function is constant

with respect to the dividend rate ν1. Since choosing a positive dividend rate ν1 might lead to

a positive bankruptcy probability this could only reduce the value and we conclude that for

γI ≤ γ
I

we have V1,0(e) ≥ V1,ν1(e) for all e ≥ 0. Here V1,ν1(e) denotes the value function of

problem (6) under the dividend rate ν1.

Considering now the case γI > γ
I
. In the remainder of the proof we denote by φν1(e) the

optimal investment strategy under dividend rate ν1 and by V1,ν1(e) the corresponding value

function. The condition stated in the proposition that ė ≥ 0 under the optimal policy for

ν1 = 0 then translates into φ0(0) ≤ αo/
√

2ξ. We know from Proposition 3 and Corollary 3 that
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φ0(0) ≥ αo/
√

2ξ must hold for γI > γ
I

and therefore we must have φ0(0) = αo/
√

2ξ. Hence,

we have ė(0) = 0 under this strategy. Now consider an arbitrary strictly positive dividend rate

ν̃1 > 0. We first show that it must hold that φν̃1(0) ≤ αo/
√

2ξ. Assume, on the contrary, that

φν1(0) > αo/
√

2ξ. Then under strategy φν̃1 we have ė < 0 at e = 0. Therefore, under φν̃1

and eini = 0 liquidity would be negative for all t > 0 as long as we are in mode m1. Since, no

dividends are paid for e < 0, the expected value generated by this path would be independent

from the choice of ν1. Furthermore, since this is the optimal path under dividend rate ν̃1 from

eini = 0, the value generated by this path must be larger than that generated by choosing a

constant investment of I = αo/
√

2ξ and staying at e = 0. However, also the value generated by

this constant path is independent from ν1 and therefore we get a contradiction to the optimality

of φ0(0) = αo/
√

2ξ for ν1 = 0. Hence, we must have φν1(0) ≤ αo/
√

2ξ for all ν1 ≥ 0. We use this

insight to show now that for any initial value eini the value under an optimal path for ν1 > 0 is

(weakly) dominated by the value under an optimal path for ν1 = 0.

Consider first an arbitrary initial value eini ≥ 0 and denote by ẽ(t) the liquidity trajectory

under the optimal strategy, by D̃(t) = ν1ẽ(t) ≥ 0 the dividend stream, and by Φ̃(t) = φν1(e(t))

the investment stream. Because of φν1(0) ≤ αo/
√

2ξ, we have ẽ(t) ≥ 0 for all t. Now consider

an alternative dividend and investment trajectory of the form D̂(t) = 0 and Φ̂(t) = Φ̃(t) for all

t. The corresponding expected values of the total dividend (in both modes) are denoted by J̃

and Ĵ . Then showing that Ĵ ≥ J̃ proves the claim of Proposition 4.

To show that Ĵ(eini) ≥ J̃(eini) holds we first observe that both investment trajectories give

rise to exactly the same trajectory of innovation rates, which implies that under both trajectories

the distribution of the innovation time τ is identical. Hence, to establish Ĵ(eini) ≥ J̃(eini) it is

sufficient to show that Ĵτ̃ (eini) ≥ J̃τ̃ (eini) holds for any realisation τ̃ of the stochastic innovation

time. Here Ĵτ̃ (eini) and J̃τ̃ (eini) denote the values conditional on the innovation time, given by

J̃τ̃ (eini) =
∫ τ̃

0
e−rtD̃(t)dt+ e−rτ̃V2(ẽ(τ̃), 0),

Ĵτ̃ (eini) = e−rτ̃V2(ê(τ̃), 0).

Furthermore, liquidity dynamics under the two trajectories read

˙̃e = α2
o

4 −
ξ

2Φ̃2(t)− D̃(t) + rẽ, and ẽ(0) = eini,

and
˙̂e = α2

o

4 −
ξ

2Φ̃2(t) + rê, and ê(0) = eini.
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The difference between the two liquidity streams can be written as ∆et = êt− ẽt and ∆e(0) = 0.

Then,

∆̇e = D̃ + r∆e.

and it follows that

∆e(t) =
∫ t

0
exp (rt− rρ)D̃(ρ)dρ.

Using this and noting that V2(e, 0) is linear with slope 1 in e for all e ≥ 0 (see (13)), we

obtain

Ĵτ̃ (eini)− J̃τ̃ (eini) = e−rτ̃ (V2(ê(τ̃), 0)− V2(ẽ(τ̃), 0))−
∫ τ̃

0
e−rtD̃(t)dt

= e−rτ̃∆e(τ̃)−
∫ τ̃

0
e−rtD̃(t)dt

= 0

Hence, Ĵ(eini) ≥ J̃(eini) and this completes the proof for eini ≥ 0. Since by definition no div-

idends are paid as long as e < 0 and the value of ν1 does not influence the liquidity dynamics

for e < 0, this implies directly that Ĵ(eini) ≥ J̃(eini) also holds for any eini < 0. �

C Value Function in Mode m1

Figure 10 shows the value function V1(e), calculated through our numerical procedure, for our

default parameter setting and different values of γB.
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Figure 10: Effect of the bankruptcy risk parameter γB on the mode 1 value function V1(e)

The figure shows that V1(e) increases with liquidity e, which is quite easy to understand

because more liquidity induces higher dividends and a higher fraction of internally financed
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investments. Note that when γB = 0, the value function is linear with respect to e and has the

functional form of (11). For a positive initial liquidity, the value function is not influenced by

γB because there is no bankruptcy threat. Whereas for the negative liquidity, there is a positive

possibility for the firm to go bankrupt, and a higher γB decreases the value. For e → −∞ the

value function V1(e) goes to zero for any γB > 0 since expected time till bankruptcy goes to

zero.

D Details of the Numerical Procedure

In order to numerically determine a Markov Perfect Equilibrium strategy profile for the entire

game, we first need to calculate a solution for value function V2(αn, e) in mode m = 2 that solves

the HJB equation (7). Based on the derived solution V̂2(αn, e), we then numerically calculate

the (approximate) value function V1(e) as the solution to the HJB equation (8) in mode m1.

When applying the numerical method, we encounter two technical challenges. The first is

that the collocation method operates on a finite state space, but in our model the state space

for liquidity is infinite. The second challenge is that, the denominator term dV1(e)/de in the

optimal control (9) could be close to 0, especially when the initial liquidity is very negative

and the bankruptcy probability is very large. This would make the optimal control I explode

and the numerical calculations difficult. In order to solve these two technical problems, we

propose a transformation from the state space of liquidity e to a state space of z according to

z(e) = (1 + exp (−λe))−1 ∈ (0, 1) with 0 < λ < 1. The new state space of the problem is the

interval (0, 1), and therefore a bounded interval, which makes the application of the collocation

method easier. Then e(z) = −1
λ ln

(
1
z − 1

)
and the calculations are carried out in the state

space (αn, z) ∈ [0, αu]× [zl, zu] after innovation in mode m2, and in the state space z ∈ [zl, zu]

before innovation in mode m1, where αu > α̃ is chosen sufficiently large, zl is close to zero and

zu close to one. Note that after this transition, the dynamics read

ż(e) = λz(e)
(
1− z(e)

)
ė,

while ė is given by (2). The denominator of the optimal investment is

dV1 (e(z))
dz = dV1 (e(z)) /de

λz(1− z) .

For strongly negative liquidity e, which corresponds to z(e) close to zero, both the nominator

dV1 (e) /de and denominator λz(1−z) after the transition are close to 0. The technical problem
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associated with a small value of the derivative of the value function can thereby be alleviated.

In the remainder of this section we provide a detailed description of the numerical procedure in

both nodes.

D.1 Post-innovation Mode m2

Note that for the state space of e ≥ 0, the analytical solution of V +
2 (αn, e) is (13), hence we only

need to calculate V −2 (αn, e) for e ≤ 0. Note that V2(αn, e) in our model is a continuous function

in e, implying that V +
2 (αn, 0) = V −2 (αn, 0). Similar to the procedure sketched above for mode

m = 1, we also use in m2 a transformation from the state space of liquidity e to a state space of z

according to the transformation rule z(e) = (1 + exp (−λe))−1 with λ ∈ (0, 1). The state space

of e ∈ (−∞,+∞) corresponds to z ∈ (0, 1), and the negative liquidity corresponds to z ∈ (0, 0.5].

Thus, our numerical calculation is carried out in the state space (αn, z) ∈ [0, ᾱn]×(0, 0.5]. From

e(z) = (ln z − ln (1− z)) /λ, after the transition, it holds that

∂V −2 (αn, z)
∂z

= ∂V2(αn, e)
∂e

de(z)
dz = 1

λz(1− z)
∂V2(αn, e)

∂e
,

and the value function V −2 (αn, z) satisfies the revised HJB as

rV −2 (αn, z) = δ (α̃n − αn) ∂V
−

2 (αn, z)
∂αn

+ σ2α2
n

2
∂2V −2 (αn, z)

∂α2
n

+ γB
λ
V −2 (αn, z) ln

(
z

1− z

)
(36)

+λz(1− z)∂V
−

2 (αn, z)
∂z

(
(ᾱn + αn)2 + α2

o − 2ηαo(ᾱn + αn)
4(1− η2) + r

λ
ln
(

z

1− z

))
.

In order to solve this nonlinear partial different equation, we resort to the numerical collocation

method to calculate an approximate solution V̂ −2 (αn, z).

In a given state space [αln, αun] × [zl, zu] with l and u denoting the lower and the upper

boundary for the corresponding interval, we first construct a sparse grid of collocation nodes

N = Nα ×Nz, where Nα = {αin}i=1,...,nα and Nz = {zj}j=1,...,nz , and αin and zj are defined as

αin = αun + αln
2 + αun − αln

2 cos
((nα − i+ 0.5)π

nα

)
, (37)

zj = zu + zl

2 + zu − zl

2 cos
((nz − j + 0.5)π

nz

)
. (38)

Then we construct a set of basis functions {bkα,kz(αn, z)}{kα=1,...,nα}×{kz=1,...,nz} corresponding

to our Chebyshev sparse grid such that

bkα,kz(αn, z) = Tkα−1

−1 +
2
(
αn − αln

)
αun − αln

× Tkz−1

−1 +
2
(
z − zl

)
zu − zl

 ,
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and function Tk(x) is the Chebyshev polynomial of of degree k defined on the interval [0, 1].

For the given state space of [0, ᾱn] × (0, 0.5], our calculation is carried out in the space of

[0, αun] × [zl, 0.5]: αln = 0 represents that αn = 0 at the moment the mode jumps from m = 1

to m = 2, and zu = 0.5 corresponds to an upper boundary of e = 0. In order to make sure the

calculated value function is continuous at e = 0, we specify further that

zj =


0.5+zl

2 + 0.5−zl
2 cos

(
(nz−j+0.5)π

nz

)
1 ≤ j ≤ nz − 1,

0.5 j = nz.

(39)

The value function is assumed to take the form of

V̂ −2 (αn, z) =
nα∑
kα=1

nz∑
kz=1

ckα,kz × bkα,kz(αn, z) = ~c> ·~b(αn, z),

where ~c and ~b are column vectors with a length of nαnz such that ~ck = ckα,kz and ~bk(αn, z) =

bkα,kz(αn, z) with k = (kz − 1)nz + kα for kα ∈ {1, ..., nα} and kz ∈ {1, ..., nz}. ~c and ~b(α, z)

together can capture all the polynomial elements in the value function given a pair of {α, z}. We

aim to determine the weight vector of ~c such that the (approximate) value function V̂ −2 (αn, z)

satisfies the HJB equation (36) on the collocation nodes {αin, zj} with i ∈ {1, ..., nα} and

j ∈ {1, ..., nz − 1} in N . For the other nα nodes with i ∈ {1, ..., nα} and j = nz in N , we

have V̂ −2 (αin, zj = 0.5) = V +
2 (αin, e = 0) to make V2(αn, e) continuous. In total there are nαnz

number of nodes, implying nαnz number of equations.

Furthermore, for i ∈ {1, ..., nα} and j ∈ {1, ..., nz − 1} we introduce four nα(nz − 1)× nαnz
matrices B, Bα, Bα, and Bz with entries

Bs,k = bk(αin, zj), Bα
s,k = ∂bk(αin, zj)

∂αn
, Bαs,k = ∂2bk(αin, zj)

∂α2
n

, Bz
s,k = ∂bk(αin, zj)

∂z
,

where s = (j − 1)nz + i denotes node s. These four matrices capture the values of all base

functions and their partial derivatives at the nodes in N that are not on the boundary of

znz = 0.5. For each node {αin, zj} with i ∈ {1, ..., nα} and j ∈ {1, ..., nz − 1}, we define the

following four column vectors in such a way that ~gż captures the dynamics of the liquidity, ~gα2

captures the quadratic of αn, ~gα captures αn, and ~gz captures z. Specifically these four vectors

read

~gα2
s =

(
αin

)2
, ~gαs = αin, ~ges = 1

λ
ln
(

zj

1− zj

)
,
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~gżs = λzj
(
1− zj

)((ᾱn + αin
)2 + α2

o − 2η(ᾱn + αin)αo
4(1− η2) + r

λ
ln
(

zj

1− zj

))
,

and s ∈ {1, ..., nα(nz − 1)}. Thus ~c has to be chosen to solve

rB · ~c = δα̃nBα · ~c− δ~gα ·Bα · ~c+ σ2

2 ~g
α2 · Bα · ~c+ ~gż ·Bz · ~c+ γB~ge ·B · ~c . (40)

and in addition

~c>~b(αi, 0.5) = V +
2 (αi, 0), i ∈ {1, ..., nα}. (41)

There are in total nαnz linear equations when combining (40) and (41), which can be solved

using standard solvers. Note that there is no control in mode m2, implying that solving these

nαnz equations yields the solution ~c. Thus, we can write the calculated value function in mode

2 as

V̂2(αn, e) =


V̂ −2 (αn, z(e)) e < 0 ,

V +
2 (αn, e) e ≥ 0 .

D.2 Pre-innovation Mode m1

There are several differences in mode m1 compared with that in m2: V1(e) is only defined on

the domain of e, and the control is captured by

φ(e) = γI
ξ

V2(0, e)− V1(e)
dV1(e)/de .

In order to numerically calculate for V1(e), we carry out the same transformation as for mode m2

from the state space of e to the state space of z ∈ (0, 1) according to e(z). After the transition,

the optimal control can be rewritten as

φ(e(z)) = γI
ξ

V̂2(0, e(z))− V1(e(z))
λz(1− z)dV1(e(z))/dz .

We proceed with the same collocation method as in mode m2, but on just one dimensional

state space of z. Because the HJB in mode m1 has different expressions for the positive and

negative e, we need to calculate the value function separately for V +
1 (z) with z ∈ [0.5, 1),

corresponding to e ≥ 0, and for V −1 (z) with z ∈ (0, 0.5], corresponding to e ≤ 0. The value

function V1(e(z)) has to be continuous on the entire state space, however, there might exist a

kink for V1(e(z)) at z = 0.5 and a jump in the control function φ(e(z)) because of different HJB

expressions and the difference in dV1(e(z))/de for positive and negative e. As has been shown
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in our analysis in Section4 such discontinuity can arises only if e∗ = 0 is a stable steady state,

which according to Proposition 3, happens if and only if γI ∈ [γ
I
, γ̄I ]. If γI ≥ γ

I
] we are in

the no debt scenario and the interval z ∈ [0.5, 1] is invariant under the state dynamics under

optimal investment. For γI ≥ γ̄I the value function V +
1 of the problem is given in closed form

by (11). For γI ∈ [γ
I
, γ̄I) . Finally, for γI > γ̄I only the interval z ∈ [0, 0.5] is invariant.

In any case the HJB equations on the positive domain, given by

rV +
1 (z) =ν1e(z) + λz(1− z)dV +

1 (z)
dz

(
α2
o

4 −
ξ

2φ
2(e(z)) + (r − ν1)e(z)

)

+ γIφ(e(z))
(
V2(0, e(z))− V +

1 (z)
)
, z ∈ [0.5, 1].

(42)

and on the negative domain, given by

rV −1 (z) =λz(1− z)dV −1 (z)
dz

(
α2
o

4 −
ξ

2φ
2(e(z)) + re(z)

)

+ γIφ(e(z))
(
V2(0, e(z))− V −1 (z)

)
+ γBe(z)V −1 (z), z ∈ [0, 0.5]

(43)

are solved separately in our numerical procedure.

With respect to the boundary conditions and the sequence of the numerical calculation of

V −1 and V +
1 three cases have to be distinguished:

1. For γI ∈ [γ
I
, γ̄I ] both intervals z ∈ [0, 0.5] and z ∈ [0.5, 1] are invariant under the state

dynamics under optimal investment and e∗ = 0 is a stable steady state. Hence,

V −1 (0.5) = V +
1 (0.5) =

∫ ∞
0

e−(r+γIφ(e(0.5)))tγIφ(e(0.5))V +
2 (0, 0)dt = γIαoV

+
2 (0, 0)

r
√

2ξ + γIαo
. (44)

with φ(e(0.5)) = φ(0) = αo/
√

2ξ has to hold both for V −1 and V +
1 .

2. For γI > γ̄I we have ė < 0 under optimal investment at e = 0. Hence, the interval

z ∈ [0, 0.5] is invariant under the state dynamics under optimal investment. Therefore,

we first numerically find a function V̂ −1 (approximately) solving (43), where no explicit

boundary conditions are imposed.17 Then, as a second step, we numerically determine a

solution of (42) with the boundary condition V +
1 (0.5) = V̂ −1 (0.5).

3. For γI < γ
I

we have ė > 0 under optimal investment at e = 0. Hence, the interval

z ∈ [0.5, 1] is invariant under the state dynamics under optimal investment and the value

function V +
1 of the problem is given in closed form by (11). The value function on the

17Formally, we have the boundary condition limz→0 V
−

1 (z) = 0 and we check in our numerical solution that
V −1 (zl) becomes small for a sufficiently small lower bound of the state interval considered in the numerical
approximation of V̂ −1 (see below).
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negative domain is determined as the solution of (43) with boundary condition V −1 (0.5) =

V +
1 (0.5).

As has been explained in the main text, in this paper we only consider the first two of these

three cases, since in case 3. financial constraints are irrelevant for e(0) ≥ 0. In what follows we

just describe our algorithm for the first case, the procedure in the second case is analogous.

In order to calculate an (approximate) value function V̂ +
1 (z) that makes (42) hold on the

interval z ∈ [0.5, zu), we first construct a set of collocation nodes Nz = {zj}j=1,...,nz . The idea

is similar as to construct the grid in mode m = 2 except in mode m = 1 that nα = 1 and

αu = αl = 0. Thus, the corresponding set of base functions is denoted by {b1,kz(0, z)}kz=1,...,nz .

In order to be able to incorporate the boundary condition (44) at z = 0.5, we further specify

that

zj =


0.5 j = 1,

zu+0.5
2 + zu−0.5

2 cos
(

(nz−j+0.5)π
nz

)
1 < j ≤ nz.

Similarly to mode m2 we consider an (approximate) value function of the form

V̂ +
1 (z) =

nz∑
kz=1

cposkz
× b1,kz(0, z) = ~cpos

> · ~bpos(z) ,

where ~cpos = (cposk )nzk=1 and ~bpos(z) = (bposk (z))nzk=1 are column vectors with a length of nz and

bposk (z) = b1,k(0, z). Finding the solution is equivalent to determine the vector ~cpos such that

V̂ +
1 (z) satisfies the HJB (42) on the collocation nodes zj ∈ Nz and j ∈ {2, ..., nz}. Furthermore,

V̂ +
1 has to satsify (44) at node z1. Thus, there are in total nz equations and to be solved with

nz unknowns in vector ~cpos. It should be noted that, contrary to mode m2, the right hand

side of the HJB equations in this mode contain terms with the optimal control φ(zj) at the

considered node, where the optimal control function φ depends on the value function V1 and its

state derivative.

We use an iterative algorithm to solve this system of equations. In particular, we consider

a sequence of vectors ~cpos(it), with it ∈ {0, 1, ...} is the indicator for the iterations. In iteration

it ≥ 1, we calculate for all nodes zj in Nz, i.e., j ∈ {1, ..., nz}, the optimal control as

~φ(it) = γI
ξ

Diag
((
V2(0,~gz)−B · ~cpos(it− 1)

)
·
(
~gz · I ·Bz · ~cpos(it− 1)

)−1
)
, (45)

where Diag(X) generates a column vector with elements on the diagonal line of X, I is a nz×nz
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identity matrix, ~gz is of length nz with ~gzj = λzj(1− zj) and B and Bz are such that

Bj,k = bposk (zj), Bz
j,k = dbposk (zj)

dz , j, k ∈ {1, .., nz}.

Substitution of ~φ(it)j∈{2,...nz} at node zj into HJB (42) together with the boundary condition at

node z1 generates a system of nz linear equations in ~cpos(it), which can be solved by standard

methods. This gives the value of ~cpos(it) and updated optimal controls at each node under this

new coefficient vector. The iteration is stoped once after inserting these updated controls into

HJB equations the maximal absolute difference between the right and left hand side of (42)

across nodes is sufficiently small. Overall, the numerical details can be summarized as follows:

(1) Choose nz and calculate the nodes in Nz. Choose the stopping criterion ε.
(2) Calculate B, Bz and ~gz.
(3) Choose ~cpos(0).
(4) Calculate the optimal control ~φ(0).
(5) While the stopping criteria is not satisfied, iterate the following steps for it = 1, 2, ....

(a) Calculate ~cpos(it) by solving the combined nz equations: (44) for node z1 = 0.5 and
(42) for node zj using ~φj(it− 1), j ∈ {2, ..., nz}.

(b) Calculate the optimal control ~φ(it).
(c) Calculate the difference ∆j(it) between left and right hand side of (44) for node z1

and (42) for node zj using ~φ(it) and ~cpos(it).
(d) Checking the stopping criteria of maxj∈{1,...,nz}

[
|∆j(it)| /(B · ~cpos(it))j

]
< ε.

(6) Set the value function V̂ +
1 (z) = ~cpos

>(it) · ~bpos(z) and calculate the optimal control φ(e(z))
by V̂ +

1 (z).

The numerical calculation of V̂ −1 (z) with z ∈ (zl, 0.5] is analogous to the numerical calcula-

tion for V̂ +
1 (z) and we do not repeat the details here. The numerical approximation for value

function V1(e) then reads

V̂1(e) =


V̂ +

1 (z(e)) e ≥ 0,

V̂ −1 (z(e)) e < 0.

E Empirical Analysis Tables
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Table 5: Average level of dividend payout according to bankruptcy risk: Italian manufacturing
industry (2015-2018)

Credit rating Dt−1 CCCt−1 Bt−1 BBt−1 BBBt−1 At−1 AAt−1 AAAt−1 Total
Dividendst = 0 92% 97% 52% 28% 20% 17% 14% 9% 173085
Dividendst > 0 8% 3% 48% 72% 80% 83% 86% 91% 366174

Total Firms 62833 13117 58498 69689 93634 76628 120687 44123 539259
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