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1 Introduction

With the beginning of the industrialization in the late 19th century, the concentration of

greenhouse gases (GHGs), such as carbon dioxide, CO2, methane, CH4, and nitrous oxide,

N2O in the atmosphere has been continuously rising. For example, global CO2 increased

from about 336 parts per million (ppm) in January 1979, the start of the atmospheric

measurement, to about 418 ppm in July 2023, CH4 rose from 1625 parts per billion (ppb)

in July 1984 to 1917 ppb in June 2023 and N2O went up from in 316 ppb in January 2001

to 337 ppb in June 2023. A higher GHG concentration in the atmosphere raises radiative

forcing, where the relationship is characterized by a strictly concave function. For CO2 it

is given by the natural logarithm of that GHG relative to the pre-industrial level, for CH4

and N2O by the square root and those GHGs can be converted into CO2 equivalents, see

Greiner and Semmler (2008) p. 61, and for more details the natural science literature cited

there.1 The increase in radiative forcing leads to a higher average global temperature on

earth and may generate more extreme weather events.

However, it must be pointed out that the climate of the earth is an extremely complex

system and there exist great uncertainties regarding the effects of GHGs, see e.g. the

discussion in Greiner et al. (2023) so that one should be careful when using the outcome

of climate models for policy recommendations. Despite high model uncertainties with

respect to the climate on the Earth, changes in the climatic conditions are likely to

influence the economic system of societies. For example, more extreme weather events

can cause economic damages and require resources that cannot be used for consumption

and/or for investment, although it must be noted that the empirical evidence for more

extreme events is small, with the exception of heatwaves (see Ranasinghe et al. (2021), p.

1856, table 12.12, column 3, Alimonti and Mariani (2023), and similar Lomborg (2020)).

Nevertheless, with an ongoing increase of the GHG concentration, abrupt changes in the

climate system of the Earth cannot be excluded once a certain threshold is exceeded,

sometimes referred to as tipping points. In the last IPCC report such tipping points are

considered as low-likelihood high-impact outcomes, see Chen et al. (2021) chapter 1.4.4.

1Etminan et al. (2016) show that for very high values of GHGs, the relation changes. But, the basic

form remains the same, i.e. for CO2 it is given by the ln and for N2O and CH4 by the square root.
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Components that are susceptible to tipping points are for example the Arctic Winter

Sea Ice, the Antarctic Sea Ice or the Atlantic meridional overturning circulation (AMOC),

of which the Gulf Stream is one component (for the complete list, see Lee et al. (2021),

table 4.10, p. 634). A weakening of the Gulf Stream (cf. Piecuch and Beal (2023)) could

have strong effects on the climate in Europe. Technically, such tipping points can arise

when non-linearities or piecewise smooth functions are present in the differential equations

describing the evolution of the system. In a simple climate system a piecewise smooth

function may occur when the albedo of the earth, determining how much of the incoming

energy is reflected to space, is not a constant, but, a function of time, as suggested

by Henderson-Sellers and McGuffie (1987) and Schmitz (1991) for example. There, it

is posited that the albedo declines as a result of a higher average surface temperature

because of feedback effects, such as the melting of glaciers. Those authors suggest that

the albedo is a constant up to a certain value and, then, jumps to a lower value once

a certain threshold of the temperature is passed or that the albedo is constant, declines

linearly when a threshold is reached and becomes constant again, when a second threshold

is passed, with the function being non-smooth at the thresholds.

In Greiner and Semmler (2005) a simple model of economic growth was presented that

allowed for a zero-dimensional climate module with a state dependent albedo. However,

the albedo was modelled as a smooth function of the temperature, thus, avoiding prob-

lems resulting from discontinuous and piecewise-smooth functions. It turned out that the

competitive market economy is characterized by multiple equlibria and, once a certain

thershold is passed, the economy converges to the equilibrium with the higher tempera-

ture. The social optimum is characterized by a unique equilibrium unless the damages

associated with global warming are extremely small. In this paper we take the model by

Greiner and Semmler (2005) as a starting point (referred to as the benchmark model later

on in the text), but, posit that the albedo of the Earth is a non-smooth but a piecewise-

smooth function of the temperature, respectively, as suggested by Henderson-Sellers and

McGuffie (1987) and Schmitz (1991). To analyze the model we proceed as in Bondarev

and Upmann (2022) and apply methods known recently from hybrid control systems and

from the theory of piecewise-smooth systems (PWS) to the problem of climate change.
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In the rest of the paper we proceed as follows. In section 2 we present the structure of

the benchmark model by Greiner and Semmler (2005) and in section 3 we give some basic

definitions that are necessary for our analysis. Sections 4 and 5 analyze the model with a

discontinuous and piecewise linear albedo, respectively, and section 6, finally, concludes.

2 The model

We start with the competitive economy of the benchmark model. The model is a basic

endogenous growth model with positive externalities of capital giving rise to ongoing

growth. Further, the use of capital in production goes along with GHG emissions that can

be reduced by abatement activities. The latter are performed by the representative agent

who has to pay taxes on GHG emissions that give an incentive to invest in abatement.

The model is fully described by the triple of differential equations (eqs. (21)-(23) in the

benchmark paper):

Ṫ (t) =

(
1367.5

4
(1− α1(T ))− 0.95(5.67× 10−8)

21

109
T 4

)
c−1
h +

(
(1− ξ)6.3 ln

M

M0

)
c−1
h

(1a)

In this, Ṫ (t) is the zero dimensional climate module describing the temperature increase.

The first term in that equation gives the shortwave radiative flux coming from the sun,

the second term is the net longwave radiation emitted to space and the third term,

finally, represents the radiative forcing due to the GHG concentration M exceeding its

pre-industrial level M0. The GHG concentration evolves according to,

Ṁ = β1

( τE
LK

)−γ/(1+γ)
aγ/(1+γ)γ−γ/(1+γ) − µM, (1b)

where the first term gives net emissions after abatement which is a function of the tax on

GHG emissions, τE, the private sector has to pay. The economic dimension of the model

is obtained from a standard inter-temporal optimization problem as

ċ = c

(
(n− ρ)− (1− α)(1− τ)BD(·) +

( τE
LK

)1/(1+γ)

aγ/(1+γ)γ−γ/(1+γ) + c

)
(1c)

with c = C/K per capita consumption. Initial conditions on the environment, T (0) =

T0,M(0) = M0, are fixed and the consumption path can be chosen freely (c(0) is free).
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Function D(·) is the damage function and is assumed again the same as in the benchmark

model:

D(·) := (a1(T − T0)
2 + 1)−ψ (1d)

We stick to the same calibrated parameter values as in the benchmark model as well as

to naming conventions of variables and parameters (see Table 1):

Parameter Name Value

ρ discount rate 0.03

n population growth rate 0.02

δ capital depreciation 0.075

M0 pre-industrial GHG 1

ch heat capacity 0.1497

ξ ocean temperature absorption 0.23

β1 emissions absorbed by ocean 0.49

µ inverse of atmospheric lifetime of GHG 0.1

τ income tax rate 0.15

α capital share 0.45

B social return to capital 0.35
τE
LK

emission tax rate per capital 0.001

γ pollution elasticity 1

a pollution parameter linear sensitivity 1.65 · 10−4

a1 damage function linear sensitivity 0.04

ψ non-linear damage parameter 0.05

Further details on the choice of these values can be found in the benchmark paper.

The core contribution is in a different approach to modelling the albedo function α1(T ).

In the benchmark model the S-shaped smooth function was used as an approximation of

the non-smooth albedo changes. Using recent advances in non-smooth control we replace

that with two different non-smooth versions. Namely, we first posit that the albedo

function has a single jump at some crucial temperature level Ts (Section 4) and next

advance to a more realistic scenario of the albedo having a period of linear increase as

proposed by e.g. Henderson-Sellers and McGuffie (1987) in Section 5.
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To make the paper more self-contained and readable, we first introduce several ideas

from the PWS theory and hybrid control theory (a more detailed version can be found in

Bondarev and Upmann (2022)).

3 Some definitions

To start with we give some necessary definitions.

3.1 Piecewise-smooth systems

First, we define a piecewise-smooth dynamic system. The differential equation we consider

is given by

ẋ =

f−(x), if α(x) < 0,

f+(x), if α(x) > 0,
(2)

with f−(x) ̸= f+(x) and α(x) being the switching condition. As α only depends on x, and

not on t, we limit ourselves to a state-driven switch. In this case, the switching manifold

is given by Σ := {x ∈ Rn : α(x) = 0}, and we henceforth denote the generic element of Σ

by xs. We refer to the vector fields f−(x) and f+(x) as the lower and the upper flow, and

denote the (generic) steady-states of f− and f+ by x̄− and x̄+, respectively. Either of f−

and f+ may have a unique or multiple steady-states; these steady-states can be classified

as follows (see Di Bernardo et al., 2008):

Definition 1. A steady-state x̄+ of an upper flow is called regular if α(x̄+) > 0, virtual

if α(x̄+) < 0, and boundary if α(x̄+) = 0. Similarly, a steady-state x̄− of a lower flow is

called regular if α(x̄−) < 0, virtual if α(x̄−) > 0, and boundary if α(x̄−) = 0.

We henceforth denote by Lf α ≡ ⟨f,∇α⟩ the Lie derivative of α along the vector

field f . The topology of the switching manifold Σ consists of three types of regions see,

e. g.(Jacquemard et al., 2013):

Definition 2. The disjoint subsets of the switching manifold ΣCR,ΣES,ΣSL ⊂ Σ, with

ΣCR ∪ ΣES ∪ ΣSL = Σ, are called:
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� crossing region: ΣCR := {x ∈ Σ : (Lf+ α)(x)(Lf− α)(x) > 0}, where the trajectory

may cross the switching manifold from one vector field to the other;

� escaping region: ΣES := {x ∈ Σ : (Lf+ α)(x) > 0, (Lf− α)(x) < 0}, where both

vector fields are bounced off the switching manifold;

� sliding region: ΣSL := {x ∈ Σ : (Lf+ α)(x) < 0, (Lf− α)(x) > 0}, where both vector

fields point into the switching manifold.

When f− and f+ have opposite directions at Σ (escaping region and sliding region),

there exists a solution that lies on the switching manifold and satisfies ẋ = fs(x) where

fs is a sliding flow (sliding vector field):

Definition 3. Let ΣSL,ΣES ̸= ∅. The PWS system (2) possesses extended Filippov’s

form:

ẋ =


f−(x) if α(x, t) < 0,

fs(x) if α(x, t) = 0,

f+(x) if α(x, t) > 0,

(3)

with

fs := f− +
Lf− α

Lf− α− Lf+ α
(f+ − f−). (4)

being Filippov’s sliding flow (or simply Filippov’s flow, see Colombo and Jeffrey, 2011).

The Filippov flow possesses its own steady-states:

x̄s : fs(x̄s) = 0, (5)

which is referred to as a pseudo-equilibrium of the PWS system (2). If (Lf± α)(x) = 0,

the vector field f± is tangent to the switching manifold Σ. Typically these tangency lines

(or points) represent boundaries between the crossing, escaping and sliding regions.2

2Some authors include these boundaries into definition of the sliding or the escaping region, see Tang

et al. (2012).
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3.2 Hybrid control

Once the dynamics of the state variable in a control problem has the form of (2), the

optimal control can no longer be obtained via conventional Maximum Principle. Instead

we have several (at least) distinct cases (see Boltyanski (2004), Shaikh and Caines (2007),

Reddy et al. (2020), Bondarev and Upmann (2022) for a rigorous treatment):

1. All regimes of the associated (2) have only regular steady-states. Resulting optimal

trajectory never touches the Σ manifold and is obtained via conventional Maximum

Principle

2. Some steady-states are virtual and some are regular. Depending on initial condi-

tions, optimal trajectory may either cross or not the Σ. It is obtained via hybrid

maximum principle as in Boltyanski (2004) or Shaikh and Caines (2007)

3. All steady-states are virtual, but the sliding region SL is non-empty. Both conven-

tional and hybrid maximum principle are not applicable. We then use a modified

version from Bondarev and Upmann (2022) to obtain the solution converging to the

sliding equilibrium (pseudo-equilibrium). This is the main focus of our paper.

4. All steady-states are virtual and sliding region is empty. Possibility of crossing limit

cycles as in Islas et al. (2021). This option is intended for future research.

4 Scenario I: Jump in albedo

In this scenario we assume that the albedo, function α1(T ), is piecewise constant:

α1(T ) =

αU1 , T < Ts,

αL1 , T > Ts

(6)

In our experiment we assume the following benchmarks, αU1 = 0.79 and αL1 = 0.78, leaving

Ts free for now. The specification (6) implies that the model (1) has two smooth regimes

associated with αU1 , α
L
1 , respectively. In both regimes the triple of ODEs (1) has some

special structure allowing us to deal with Ṫ equation only.
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The equation of interest after substitution of all parameters is:

d

dt
T (t) = 1612.200651− 2283.734135α1(T )− 6.932304977× 10−8T (t)4+

+32.40480962 ln(1.99039− 0.9904e−
t
10 ) (7)

Lemma 1. The model (1) with jump in albedo as (6) has two steady-state values for (7):

T̄−, T̄+ of T (t) given by the time-invariant part of equation (7) for αU1 , α
L
1 , respectively.

In particular, we have T̄− < T̄+ as long as αU1 > αL1 .

Proof. The steady-state for non-autonomous ODE is found in two steps. First the time-

dependent part has to be a contraction in time. In case of (7) it is trivially so, since

function e−
t
10 decreases with time to zero. Second, the steady-state value of the time-

invariant part is found. In our case this amounts to solving equation type c±1 − c2T̄
4
± = 0

for both regimes.

T̄±

c±1
c2
>0

=

(
c±1
c2

) 1
4

(8)

which proves first claim.

Second claim follows from the fact that by construction αU1 > αL1 implies c−1 < c+1

following from (8) T̄− < T̄+.

In particular, for our parameter setting as in Table 1, we have T̄− = 291.697 < T̄+ =

294.96, close to the values obtained in the benchmark model. Both equilibria are stable

for the 1-dimensional ODE (7). The overall 3-d system (1) is saddle-point stable as can

be seen from the analysis of respective Jacobian matrices and, thus, can be reached by

optimal trajectories (if they are regular ones) since c(0) is free.

Now take into account that Ts is not fixed. We have three different configurations:

1. Ts < T̄− < T̄+. Only the steady-state of the upper regime with T̄ = T̄+ is regular. It

is thus the unique steady-state of the overall system. The solution is obtained either

via conventional maximum principle if T0 > Ts
3 or through hybrid one if T0 < Ts;

3by T0 we understand initial condition for (7) above and other varieties below, technically meaning

initial condition for a given initial value problem

8



2. T̄− < Ts < T̄+. Both steady-states are regular and can be reached: once T0 < Ts,

steady-state with T̄− realises, once T0 > Ts, steady-state with T̄+ realises;

3. T̄− < T̄+ < Ts. Only steady-state with T̄ = T̄− is regular and is reached by the

optimal trajectory, found as in point 1 above.

The most interesting and natural case is case 2, on which we focus further on. Apart

from two long-run values T̄± there is an opportunity for special dynamics around the

switching manifold Σ which is defined by T = Ts. This manifold4 partition into crossing,

escaping and sliding regions follows Def. 2. In particular, because of the special structure

of Σ (it depends on T only) we have:

Lf+(x)α = 502.421510− 6.932304977× 10−8T 4
s + 32.40480962 ln(M),

Lf−(x)α = 479.584168− 6.932304977× 10−8T 4
s + 32.40480962 ln(M) (9)

which are tangent lines separating Σ in three regions5, two of which are crossing regions

and one is sliding/escaping, depending on signs of derivatives as given in Def. 2.

Denote with M∗
± : Lf±(x)α = 0 tangent lines of upper and lower vector fields. These,

according to (9) are vertical lines in the (M − c) plane at some particular values of M∗
±

being roots of above equations (for any Ts).

We can observe that for the parameter values chosen above the sliding region is always

empty and the escaping is not, providing lemma 2.

Lemma 2. For the jump regime (6) of the albedo in the model (1) the switching manifold

Σ : T = Ts has the following partition:

1. Crossing region CR1 with crossing from upper regime to the lower for M ∈ [0,M∗
+]

2. Escaping region ES where trajectories cannot switch from one regime to another for

M ∈ (M∗
+,M

∗
−)

3. Crossing region CR2 with crossing from lower regime to the upper for M ∈ [M∗
−,∞)

4Which is the hyperplane in the (M − c) space for fixed T in our case.
5They do not intersect, so the general two-fold position is not possible in this case.
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Sliding region is empty and no pseudo-equilibrium exists.

Proof. We start with observing that M∗
+ < M∗

− for any Ts ≥ 0. Indeed, for any Ts fixed,

we have Lf+(M)α > Lf−(M)α as they are monotonic functions ofM . It then follows that

Lf+(M)α intersects zero at a lower M than Lf−(M)α, see Figure 1.

Figure 1: Functions Lf+(M)α (blue), Lf−(M)α (brown) showing M∗
+ < M∗

− for Ts = 293.

It next follows via Def. 2 that the region where both Lf+(M)α, Lf−(M)α are negative

is constrained by M∗
+ from above. This is the region where dynamics in both regimes is

going ”down” in terms of T , making crossing region CR1.

Further, for M ∈ (M∗
+,M

∗
−) we have Lf+(M)α > 0 but Lf−(M)α < 0 which defines

the escaping region.

At last, for M > M∗
− both Lf±(M)α > 0 defining crossing region CR2 where both

regimes have dynamics pointing into higher values of T .

Since this last region is not constrained from above, it also follows that SL = ∅ which

concludes the proof.

The topology of Σ is given by Figure 2.

We conclude with a summary of possible long-run outcomes in the system (1) with

the albedo modelled as in (6).

Proposition 1. The model (1) with a non-smooth jump in the albedo as in (6) has the

following properties:
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Figure 2: Partition of Σ : T = Ts for jump in albedo. Grey areas are crossing regions,

white is escaping region. Ts set to 293K.

1. There exist two long-run steady-states x̄+ := {T̄+, c̄+, M̄+}, x̄− := {T̄−, c̄−, M̄−}
such that T̄− < T̄+, M̄− = M̄+, c̄+ < c̄−

2. Once Ts < T̄−, only x̄+ is regular and feasible, it is the only unique optimal long-run

steady-state

3. Once Ts > T̄+, only x̄− is regular and feasible, it is the only unique optimal long-run

steady-state

4. Once T̄+ > Ts > T̄− both steady-states may realise depending on T0 ⋛ Ts. Addition-

ally, crossing limit cycles may be present and optimal.

Proof. Claims 1-3 follows from Lemma 1. Claim 4 follows from Lemma 2

Overall, except for the potential of crossing limit cycles (yet to be studied), the model

with a jump in the albedo provides predictions very close to the benchmark smoothed

model. We now make the next step and assume that the albedo is described by a non-

smooth linearly decreasing function.
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5 Scenario II: Linear trend in albedo

In this case we follow the original formulation of the albedo function as in the benchmark

paper with:

α2(T ) =


αU2 , T < Tl,

αU2 − kT (T − Tl), Tu > T > T1,

αL2 , T > Tu

(10)

where we assume αU2 = αU1 and αL2 = αL1 from above.

Applying this to the model (1) we find that around the first switching point with T = Tl

only the escaping region is non-empty while the sliding one is.

Next, we proceed in the same way as above identifying steady-state values for T ,

analyzing the structure of switching manifolds and, finally, characterizing the global dy-

namical picture.

First, note that under scenario (10) the system (1) has three regimes. Two of them

are the same as in the previous section, and the transitory regime with a linear decrease

in albedo is the novel one. We observe that this transitory regime (denoted by fL :=

{ṪL, ṀL, ċL} to distinguish from f±) has its own steady-state with temperature steady

state value denoted by T̄L : ṪL = 0.

We thus have to study two switchings in turn6, which we do in the following.

5.1 First switching at Tl

At the first switching threshold (denoted by Σ− : T = Tl) the lower vector field f−(x) is

the same as in the scenario with albedo jump, but the upper vector field is different as it

has the linearly decreasing trend in the albedo.

Repeating the arguments from the previous section we can characterize the switching

manifold T = Tl via two tangent lines:

LfL(x)α = −2808.992986 + 11.41867068Tl − 6.932304977× 10−8T 4
l + 32.40480962 ln(M),

Lf−(x)α = 479.584168− 6.932304977× 10−8T 4
l + 32.40480962 ln(M) (11)

6assuming time is only positive, t ∈ R>0
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We can define

T ∗
l : LfL(x)α = Lf−(x)α (12)

as the temperature threshold such that both tangent lines coincide for that temperature.7

Further, denote as above M∗
− : Lf−(x)α = 0, M∗

L : LfL(x)α = 0, being M values where

both tangent lines (being vertical lines in Σ− plane) are located.

It then follows from (11), that

∀0 ≥ Tl < T ∗
l : LfL(x)α < Lf−(x)α, (13)

∀Tl > T ∗
l : LfL(x)α > Lf−(x)α (14)

Then, given the parameters chosen, the switching manifold Σ− has three regions only,

two crossing ones and the sliding/escaping one depending on the location of Tl:

Lemma 3. For the linear trend regime (10) of albedo in the model (1) the first switching

manifold Σ− : T = Tl has the following partition:

1. For Tl > T ∗
l :

(a) Crossing region CR1 with crossing from upper regime fL into the lower one f−

for M ∈ [0,M∗
L],

(b) Escaping region ES for M ∈ [M∗
L,M

∗
−]

(c) Crossing region CR2 with crossing from lower regime f− into upper fL for

M ∈ [M∗
−,∞)

(d) Sliding region is empty and no pseudo-equilibrium may realise.

2. For Tl < T ∗
l :

(a) Crossing region CR1 with crossing from lower regime f− into the upper one fL

for M ∈ [0,M∗
−],

(b) Sliding region SL for M ∈ [M∗
−,M

∗
L]

7For our parameter setting this equals T ∗
l = 288K.
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(c) Crossing region CR2 with crossing from upper regime fL into lower f− for

M ∈ [M∗
L,∞)

(d) Escaping region is empty and no crossing limit cycles may realise.

Proof. Proof is fully equivalent to the proof of lemma 2 with additional observation that

LfL(x)α has a linear term in T and, thus, can be both lower or higher than Lf−(x)α.
Figure 3 illustrates the situation.

(a) M∗
L < M∗

− for T ∗
l < Tl = 292K. (b) M∗

− < M∗
L for T ∗

l > Tl = 287K.

Figure 3: Functions Lf−(M)α (blue) and LfL(M)α (brown) for cases Tl > T ∗
l (left) and

Tl < T ∗
l (right)

For realistic temperature settings Figure 4 shows that the sliding region cannot realise,

since T ∗
l < T0 = 288K.

Hence, the lower regime is identical to the one from the previous section and has the

same steady-state characterization (see lemma 1), but, the transitory regime TL has two

different steady-states, T̄ iL, i = 1, 2. We postpone the global steady-states analysis to

later, first studying the switching manifold structure around the second switching point,

Σ+ : T = Tu > Tl.
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(a) Non-empty sliding region for

Tl = 287 < T ∗
l

(b) Non-empty escaping region

for Tl = 292 > T ∗
l

Figure 4: Partition of Σ− : T = Tl for albedo model (10). Grey areas are crossing regions,

blue area is the sliding region.

5.2 Second switch at T = Tu

Around the second switching point T = Tu, on the contrary, the escaping region is empty

but the sliding region is not. According to Bondarev and Upmann (2022) we could expect

the sliding pseudo-equilibrium to be the long-run optimal outcome once conventional

steady-states are virtual.

The structure of Σ+ is defined by two tangent lines:

LfL(x)α = −2808.992986 + 11.41867068Tl − 6.932304977× 10−8T 4
l + 32.40480962 ln(M),

Lf+(x)α = 502.421510− 6.932304977× 10−8T 4
s + 32.40480962 ln(M), (15)

where again Lf+(x)α is the same as for the upper regime in the albedo jump scenario

and LfL(x)α is the tangent line of the vector field characterizing the intermittent regime

with the linear albedo increase. We define T ∗
u : LfL(x)α = Lf+(x)α and observe that as

above, M∗
+ : Lf+(x)α = 0, M∗

L : LfL(x)α = 0, being M values where both tangent lines

(being vertical lines in Σ+ plane) are located.
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We first observe that for our parameter values we have T ∗
u = 290K. Thus, we obtain

M∗
+ < M∗

L for Tu > T ∗
u and vice versa.

∀0 ≥ Tu < T ∗
u : 0 < LfL(x)α < Lf−(x)α, M∗

+ < M∗
L (16)

∀Tu > T ∗
u : LfL(x)α > Lf−(x)α, M∗

+ > M∗
L (17)

We recover the counterpart of lemma 3:

Lemma 4. For the linear trend regime (10) of albedo in the model (1) the second switching

manifold Σ+ : T = Tu has the following partition:

1. For Tu > T ∗
u :

(a) Crossing region CR1 with crossing from upper regime f+ into the lower one fL

for M ∈ [0,M∗
L],

(b) Sliding region SL for M ∈ [M∗
L,M

∗
+]

(c) Crossing region CR2 with crossing from lower regime fL into upper f+ for

M ∈ [M∗
+,∞)

(d) Escaping region is empty and no crossing limit cycles may realise.

2. For Tu < T ∗
u :

(a) Crossing region CR1 with crossing from lower regime fL into the upper one f+

for M ∈ [0,M∗
+],

(b) Escaping region ES for M ∈ [M∗
+,M

∗
L]

(c) Crossing region CR2 with crossing from upper regime f+ into lower fL for

M ∈ [M∗
L,∞)

(d) Sliding region is empty and no pseudo-equilibrium may realise.

Proof. Fully equivalent to lemmata 2, 3
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(a) M∗
L < M∗

+ for T ∗
u < Tu = 296K. (b) M∗

+ < M∗
L for T ∗

u > Tu = 289K.

Figure 5: Functions Lf+(M)α (blue) and LfL(M)α (brown) for cases Tu > T ∗
u (left) and

Tu < T ∗
u (right)

Figure 6 shows two potential cases for the partition of Σ+. We note that for our

parameter values T ∗
u = 290, so it is more likely that Tu > T ∗

u than otherwise.8

Thus, we focus the global steady-state analysis for the albedo model (10) on the case

where Tl > T ∗
l , Tu > T ∗

u holds, i.e. the sliding region is non-empty only for the upper

switching threshold, but not for the lower one.

5.3 Global steady-states analysis

For the chosen parameter values it turns out that the following holds true.

Lemma 5. The model (1) with trend in albedo (10) has two steady-states T̄− < T̄+ for

αU2 > αL2 coinciding with those from lemma 1 and two additional steady-states T̄ 1
L < T̄ 2

L.

For the chosen parameter settings it holds that T̄ 1
L < T̄− < T̄+ < T̄ 2

L.

We cannot give a general proof of this lemma. The result in the lemma was obtained

by numerical computations and follows from comparing the roots of quartic equations.

8With the convention T (0) = 288K and the current value of about 289K, it seems logical to set

Tu > 290K since there is no trend in the outgoing longwave radiation emitted to space over the last 50

years despite the increasing temperature, see https://www.ncei.noaa.gov/access/monitoring/enso/olr
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(a) Non-empty sliding region for

Tu = 296 > T ∗
u

(b) Non-empty escaping region

for Tu = 289 < T ∗
u

Figure 6: Partition of Σ+ : T = Tu for albedo model (10). Grey areas are crossing

regions, blue area is the sliding region.

Thus, we need to investigate under which conditions all steady-states are regular/virtual.

This, in turn, depends on the values of Tl, Tu. In Sec. 4 we argued that T̄− < Ts < T̄+ is

the most likely case. Positing that Tl < Ts < Tu we can have the following configurations:

1. T̄ 1
L < Tl < T̄− < T̄+ < Tu < T̄ 2

L: All normal steady-states are virtual. Only sliding

equilibrium at T = Tu can be the optimal outcome.

2. Tl < T̄ 1
L < T̄− < T̄+ < Tu < T̄ 2

L: Only T̄ 1
L is regular.

3. Tl < T̄ 1
L < T̄− < T̄+ < T̄ 2

L < Tu: both T̄
1,2
L are regular.

4. T̄ 1
L < T̄− < Tl < Tu < T̄+ < T̄ 2

L: both T̄± are regular.

5. T̄ 1
L < Tl < T̄− < Tu < T̄+ < T̄ 2

L: only T̄+ is regular.

6. T̄ 1
L < T̄− < Tl < T̄+ < Tu < T̄ 2

L: only T̄− is regular.

We now will try to sort out some of outcomes as not fitting our parameters. First, observe

that for our values, T̄ 1
L = 287.44K, T̄ 2

L = 397.36K, so surely we have T̄ 1
L < Tl < Tu < T̄ 2

L.

This sorts out cases 2,3 above.

Second, following the observations above we set Tl > T ∗
l = 288K, Tu > T ∗

u = 290K.

For our parameters we have T̄− = 288.4K, T̄+ = 291.77K so cases 4-6 may realise only for
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the relatively narrow range of Tu ∈ [290K, 291.4K], Tl ∈ [288.5K, 290K], otherwise case

1 realises. We do not stop to discuss which range is more likely to realise, but notice that

cases 4-6 are qualitatively equivalent to those studied in the benchmark model (albeit with

slightly different steady-state values). Instead, we focus on the case 1 as the qualitatively

novel one. We summarise our discussion in the following corollary.

Corollary 1. For the chosen parameter values the configuration T̄ 1
L < Tl < T̄− < T̄+ <

Tu < T̄ 2
L is generic and implies the sliding equilibrium as the only optimal outcome.

5.4 Sliding flow for model (10).

According to the general theory (Sec. 3) the sliding flow via Filippov’s method at the

switching manifold Σ+ : T = Tu is given as follows:

Ṁ = 0.19904− 0.1M(t),

ċ = −0.0096− 0.1636

(0.04(Tu − T0)2 + 1)0.05 + c(t)
(18)

It has two equilibria: x̄1l := {Tu, M̄l, 0}, x̄2l := {Tu, M̄l, c̄l} that differ only in consump-

tion per capita with one of them implying zero consumption. The analysis of the Jacobian

matrix demonstrates that the equilibrium with zero consumption is the only stable one

and the other is unstable. Thus, it becomes evident that under the configuration of Corr.

1, it inevitably will undergo the collapse in consumption going to zero once the overall

economy enters the sliding mode. Figure 7 illustrate the outcome with the help of the

phase diagram.

The steady-state associated with a long-run consumption level of zero yields a smaller

utility functional than the steady-state with a strictly positive level of consumption. Thus,

the steady-state with a zero long-run consumption level cannot be optimal because the

goal of the representative individual is to maximize the discounted stream of utilities

resulting from consumption. Hence, x̄2l is the optimal solution which can be proven if we

use the result of the modified maximum principle from Bondarev and Upmann (2022).

We can state the following proposition.

Proposition 2. For the competitive economy (1) under linear albedo change (10) with

T̄ 1
L < Tl < T̄− < T̄+ < Tu < T̄ 2

L the only optimal outcome is the trajectory x(t) :=
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Figure 7: Phase diagram of sliding flow vector field (red arrows) with regions CR1,2 greyed

out. Points mark two pseudo-equilibria: the trivial and the non-trivial one.

{T (t),M(t), c(t)} converging to the non-degenerate pseudo-equilibrium x̄2l implying long-

run stabilization of the temperature at T = Tu and a non-zero consumption level.

Proof. Using the result of the aforementioned paper we note that the pseudo-equilibrium

may be optimal if two conditions hold:

� All normal steady-states are virtual: this is provided by assumption T̄ 1
L < Tl <

T̄− < T̄+ < Tu < T̄ 2
L.

� The pseudo-equilibrium itself is weakly feasible9 which is due to the fact that x̄2l is

unstable within the sliding flow.

It should be noted that the pseudo-equilibrium with the value T = Tu can be reached

although that equilibrium is unstable in Σ. This holds because the sliding region is non-

empty so that there exists a set with non-zero measure of trajectories leading to any point

9In Bondarev and Upmann (2022) weak feasibility is defined as the topological property of a point at

Σ such that it can be reached only from outside of Σ in a unique way for any x(0).
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of the sliding region from the outside. These trajectories are all continuous: one just has

to select the starting value c(0) such that the trajectory converges to the fixed endpoint

c̄ of the pseudo-equilibrium, i.e. such that limt→∞ c(t) = c̄ holds.

6 Conclusion

Low-dimensional climate models describe the time path of the average global surface

temperature as a function of the temperature and of the stock of GHGs, given pre-

determined parameter values. However, with an increasing temperature on earth, the

parameter values can change, too, thus giving rise to so-called feedback effects. Feedback

effects may occur suddenly, best described by a discontinuous jump of a parameter, or it

may take some time until the new parameter value is achieved with the transition period

characterized by a continuous function with kinks at the upper and lower boundary.

Hence, models where the change is described by a smooth, i.e. differentiable, function are

just an approximation of the non-smooth one that comes closer to the real world.

In this paper we made use of the model by Greiner and Semmler (2005) as a starting

point, where a changing albedo was approximated by a smooth function, to show how

non-smooth changes in the parameters of the underlying system may alter the results of

modelling and related policy implications. For the model with a discontinuous jump in

the albedo, we found that multiple regular steady-states may occur when the switching

point is located between the lower and the upper steady-state temperature. This result

is qualitatively the same as the one in the benchmark model. A new additional result we

could derive is that the steady-state is unique if the switching point is either below or

above the two regular steady-state temperatures.

When the albedo is described by a piecewise smooth function more complex dynamics

may result. On the one hand, we again observe that there are parameter constellations

such that the results of the benchmark model are replicated from a qualitative point of

view. But, on the other hand we could show that all steady-states are virtual and that

a non-degenerate pseudo-equilibrium exists, where the temperature stabilizes exactly at

the upper switching level of the albedo with a strictly positive level of consumption.
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Overall, we can conclude that allowing for a non-smooth variation of the albedo of the

earth leads to richer dynamics compared to the model where the albedo is approximated

by a differentiable function. This holds because there exist additional long-run equilibria

besides those that are obtained for the model where a smooth function describes the

change in the albedo.

With respect to policy implications, things do not become easier, but, more compli-

cated. This is simply due to the fact that more constellations are possible that policy

makers must take into account. To give precise policy recommendations, a more detailed

knowledge of the climate system would be necessary that, however, is difficult to obtain.

Nevertheless, even if our model is a low-dimensional and a very stylized one, a conclusion

we can draw is that a decline in the temperature as a result of decreasing GHG emissions

is feasible. This holds because the pseudo-equilibrium can be reached only from outside of

the sliding region and, consequently, from a temperature exceeding the upper threshold.

That result counters in a way the fatalistic argument that it would be impossible to revert

global warming, once a certain threshold of the temperature is passed, although it should

be kept in mind that our approach is a highly stylized one.
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Plattner, and A.-M. Tréguier (2021). Framing, context, and methods. In V. Masson-

Delmotte, P. Zhai, A. Pirani, S. Connors, C. Pean, S. Berger, N. Caud, Y. Chen,

22



L. Goldfarb, M. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. Matthews, T. May-

cock, T. Waterfield, O. Yelekci, R. Yu, and B. Zhou (Eds.), Climate Change 2021:

The Physical Science Basis. Contribution of Working Group I to the Sixth As-

sessment Report of the Intergovernmental Panel on Climate Change, pp. 147–286,

doi:10.1017/9781009157896.003. Cambridge, New York: Cambridge University Press.

Colombo, A. and M. R. Jeffrey (2011). Nondeterministic chaos, and the two-fold singu-

larity in piecewise smooth flows. SIAM Journal on Applied Dynamical Systems 10 (2),

423–451.

Di Bernardo, M., C. Budd, A. Champneys, P. Kowalczyk, A. Nordmark, G. Olivar, and

P. Piiroinen (2008). Bifurcations in nonsmooth dynamical systems. SIAM Review 50 (4),

629–701.

Etminan, M., G. Myhre, E. Highwood, and K. Shine (2016). Radiative forc-

ing of carbon dioxide, methane, and nitrous oxide: a significant revision of

the methane radiative forcing. Geophysical Research Letters 43, 12,614–12,623,

https://doi.org/10.1002/2016GL071930.

Greiner, A., B. Bökemeier, and B. Owusu (2023). Climate change and economic growth:

Evidence for european countries. Bielefeld University, Working Papers in Economics

and Management, No. 07-2023, http://dx.doi.org/10.2139/ssrn.4626705.

Greiner, A. and W. Semmler (2005). Economic growth and global warming: A model of

multiple equilibria and thresholds. Journal of Economic Behavior and Organization 57,

430–447.

Greiner, A. and W. Semmler (2008). The Global Environment, Natural Resources, and

Economic Growth. Oxford, New York: Oxford University Press.

Henderson-Sellers, A. and K. McGuffie (1987). A Climate Modelling Primer. Chichester:

Wiley.

23



Islas, J. M., J. Castillo, B. Aguirre-Hernandez, and F. Verduzco (2021). Pseudo–Hopf

Bifurcation for a Class of 3D Filippov Linear Systems. International Journal of Bifur-

cation and Chaos 31 (2), 2150025–1840.

Jacquemard, A., M. A. Teixeira, and D. J. Tonon (2013). Stability conditions in piecewise

smooth dynamical systems at a two-fold singularity. Journal of Dynamical and Control

Systems 19 (1), 47–67.

Lee, J.-Y., J. Marotzke, G. Bala, L. Cao, S. Corti, J. Dunne, F. Engelbrecht, E. Fis-

cher, J. Fyfe, C. Jones, A. Maycock, J. Mutemi, O. Ndiaye, S. Panickal, and T. Zhou

(2021). ’future global climate: Scenario-based projections and near term information.

In V. Masson-Delmotte, P. Zhai, A. Pirani, S. Connors, C. Pean, S. Berger, N. Caud,

Y. Chen, L. Goldfarb, M. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. Matthews,

T. Maycock, T. Waterfield, O. Yelekci, R. Yu, and B. Zhou (Eds.), Climate Change

2021: The Physical Science Basis. Contribution of Working Group I to the Sixth

Assessment Report of the Intergovernmental Panel on Climate Change, pp. 553–672,

doi:10.1017/9781009157896.006. Cambridge, New York: Cambridge University Press.

Lomborg, B. (2020). Welfare in the 21st century: increasing development, reducing in-

equality, the impact of climate change, and the cost of climate policies. Technological

Forecasting & Social Change 156, 119981.

Piecuch, C. and L. Beal (2023). Robust weakening of the gulf stream during the

past four decades observed in the florida straits. Geophysical Research Letters 50,

e2023GL105170. https://doi.org/10.1029/2023GL105170.

Ranasinghe, R., A. Ruane, R. Vautard, N. Arnell, E. Coppola, F. Cruz, S. Dessai, A. Is-

lam, M. Rahimi, D. Ruiz Carrascal, J. Sillmann, M. Sylla, C. Tebaldi, W. Wang,

and R. Zaaboul (2021). Climate change information for regional impact and for

risk assessment. In V. Masson-Delmotte, P. Zhai, A. Pirani, S. Connors, C. Pean,

S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. Gomis, M. Huang, K. Leitzell, E. Lon-

noy, J. Matthews, T. Maycock, T. Waterfield, O. Yelekci, R. Yu, and B. Zhou (Eds.),

Climate Change 2021: The Physical Science Basis. Contribution of Working Group I

24



to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, pp.

1767–1926, doi:10.1017/9781009157896.014. Cambridge, New York: Cambridge Univer-

sity Press.

Reddy, P. V., J. M. Schumacher, and J. Engwerda (2020). Analysis of optimal control

problems for hybrid systems with one state variable. SIAM Journal on Control and

Optimisation 58 (6), 3262–3292.

Schmitz, G. (1991). Klimatheorie und -modellierung. In P. Hupfer (Ed.), Das Klimasystem

der Erde: Diagnose und Modellierung, Schwankungen und Wirkungen, pp. 181–217.

Berlin: Akademie Verlag.

Shaikh, M. S. and P. E. Caines (2007). On the hybrid optimal control problem: Theory

and algorithms. IEEE Transactions on Automatic Control 52 (9), 1587–1603.

Tang, S., J. Liang, Y. Xiao, and R. A. Cheke (2012). Sliding bifurcations of Filippov

two stage pest control models with economic thresholds. SIAM Journal on Applied

Mathematics 72 (4), 1061–1080.

25


	wpaper_cover_09_23
	clim_change_1_4_2

