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امینͬ ژینا مهسا محمودی فریدون مجیدی مینو امینͬ محمد مریدی آرین زاهدی محمدجواد شͺراللهͬ سیداحمد دزوار اسماعیل
مهدوی امید نادری سینا صیادی آرمین مرادی عزیز فقهͬ کمال لیتانͬ صدرالدین زحمتکش مهرگان عاشوری عارف صالحͬ نگین

درخشان میلاد رجبی مهران بهروز مهرزاد حسینͬ سیدمحمد پناهͬ اسرا جزی حسین عبداللهͬ محمد رهنما دانش قلیجͬ احمدرضا

گلزاری ململͬ آروین ربیعͬ اکبر علͬ اسد بنͬ علͬ جلیلͬ علͬ فاتحͬ رامین کرمͬ رامین مقامͬ قائم آرنیͺا بالایی دره خواجوی محمد ملایری سینا
قربانͬ ساسان ͬͺعبدالمل نگین فرحانͬ مهدی مولودی اسماعیل شریعتͬ محمد آشام افشین جوانفر مائده خضری شاهو

سقا شیخ کبری ابوبͺری زانیار درویشͬ کیوان (معروفͬ) معرفت امین لطف اللهͬ محمد شهیدی مهرشاد فرجͬ فریدون
احمدی فرشته پیرو سعید مطلب موحدی صدف ساعدی سارینا احمدزاده مسعود حق شناس هادی سیدی سیدعلͬ حقیقͬ میلان اکبرزاده حسین

جواهری آیناز کیانͬ پوریا اسماعیل زاده رضا هولاری خشنود رضا نامور لینا مهردادی محمد بائو ابوالفضل
کلیج رحیم بالایی دره خواجوی احسان قیصری محسن زیاری دشمن مرضیه جاویدپور میلاد مالمیر حمیدرضا افشاری بهناز بیرانوند صارمͬ محمد

شریف کیوان کشوری محمود درافتاده کومار میرزایی ابراهیم بهمنͬ پریسا شیدا پویا کورآوند فرید کشاورز محمد قادرپور سامان
قربانپور (عارف) امیر محمدآقا رسول صدقͬ نسیم کریمͬ زند مؤمن ͬ پور مصطف ناهید احمدی مختار

آقایی کنعان چلابی غزاله نیا رجب پویا محمدی خان احسان سلطان نیا مرتضͬ سروری محمدرضا عارفانͬ نادیا بنیادی رضا اهل بهزادپور ایمان
فرخͬ فرزین سعیدی الهه ͷتاجی ستاره عسͽری مهدی عسͽری پریسا صالح مام محمد طرقبه شریفͬ سپهر علیزاده شیرین

مهرنوایی دیاکو مقدسͬ میثم مظفری حمیدسعید حسینͬ سیدفرهاد شهبازی عزت الʓه شهبازی کامران محمدی محسن عبدالʓەپور متین
قربانͬ جعفر محمودی دیانا کاظمͬ فرزانه حدادی رسول محمدی ͷمل امیرمهدی بساکͬ علͬ زمانͬ عرفان نظری رومیانͬ امیرحسین

نیا انوش محمد نوری نیما محمودپور عبدالʓه حیدری اسماعیل مرادخانͬ پرستو قادری نسرین فاضلͬ علͬ شͺاری مهران
فرد قائمͬ محمد سالاری محمدحسین روزبهانͬ علͬ حشمتیان محمدامین حضرتͬ مهدی کیا حنانه سروی محمدرضا

فرجͬ محمدحسین ͷلاش بالͬ محمدرضا زاهدی مهدی ساعد رضا کدخدایی مژگان لویمͬ عباس فردوسͬ محمدرضا قادری مام فائق
امیرخانلو کمیل جمالزاده یاسین (سام) بیرانوند سپهر جعفری سجاد شیرمحمدی مرتضͬ استادهاشم میلاد نژاد محمودی سمیه خاوری میلاد

حسینͬ مهدیس کریمͬ علیرضا نصری متین فیروزآبادی سینا نجفͬ مهراب غواصیه ماریا پهلوان آرش احمدی فریدون میر مال محسن

مظفری علͬ فولادی امیرعلͬ فرمانͬ محمدجواد محمدی ایمان لایق پور بهنام محمدی سعید موسوی سیدمهدی خادمͬ روزبه نوروزی امیر
لیلازی مهدی اصل بهنام مهرداد آذرنوش پدرام سلیمانیان مازیار لطفͬ رضا نعیمانͬ هدیه رضایی عرفان مهدی پور ابوالفضل شمس امیرحسین

قربانͬ مهرداد ایرانمنش سعید دوست اکبری ابوالفضل خزایی عرفان ببرنژاد مهدی احمدی روشنا خیال زکریا نجفͬ حدیث
شهپرنیا رضا اسͺندری محمدرضا رضادوست پارسا فلاح محمد ترکمان محمدحسن حیدری جواد حسین خواه محمد عوض پور مهرداد

ͬ زاده مومن محمدرسول لطفͬ فرزین پازوکͬ محسن ͬ کیا عل حسین گلوانͬ عبدالسلام موسوی سیدسینا بختیاری فردین بزرگ جامه محمد

ͬ نیا برگ صمد اسماعیل زاده سارینا باقری ساسان فتحͬ علیرضا زارع میلاد میرموسͬ سیدعباس موگویی مهسا موسوی محسن

آدینەزاده ابوالفضل زمانͬ محمدجواد ͬͽنظربی عرفان حسینͬ علیرضا خوانساری جواد فولادوند حمید جعفری یاسر درویشͬ فرجاد
مهدوی امیرحسین علیبازی احسان نوروزی مرتضͬ مروتͬ حسین پسیخانͬ احمدپور (علͬ) پویا محمودی سیاوش شاکرمͬ نیͺا

کوچͺسرایی محمدی محسن ͬ پور فرخ امیرمهدی دولت پناه محراب قدیمͬ فؤاد زارعͬ محمد نادرزاده امیررضا بساطͬ امیرحسین
ͬ پور صانع حمید تکلͬ محمدامین حیدری عماد شفیق دوست نیما علیزاده داریوش رحیمͬ یحیی منبری پیمان شەبخش دانیال میرکازهͬ مبین

نقیب مونا شͺرزهͬ اویس درغاله شعیب شهلͬ رحیم داد زهͬ سهراب سعید براهویی صادق شهنوازی ͷعبدالمال
زهͬ محمود عظیم کردکلاهوری علͬ ͬͽری کامبیز سلحشوران محمد شەبخش محمد شەبخش محمد شەبخش یونس میربلوچ زهͬ یونس نارویی امید

بلوچ بادل ریاست بریچͬ عادل همنوا پارمیس نارویی یاسر رئیسͬ یوسف مولوی نارویی هستͬ براهویی علͬ بهادرزهͬ یاسر ͬ زهͬ باج حامد
نارویی محمدصدیق کشانͬ سدیس نارویی عبدالʓه آنشینͬ موسͬ گرگیج ابراهیم علیزهͬ ابوبͺر نهتانͬ ابوبͺر سارانͬ احمد سرگلزایی احمد

شەبخش احمد آبیل اسماعیل حسین زهͬ اسماعیل سارانͬ امید شهنوازی امید صفرزهͬ امید پرنیان امیرحسین شهنوازی امیرحمزه
گمشادزهͬ امیرمحمد گلەبچه امین قلجایی امین الʓه حسن زهͬ آرمان آنشینͬ بلال رخشانͬ بلال ͬͽری بهزاد شیروزهͬ جابر رخشانͬ جلیل
قنبرزهͬ جلیل محمدزهͬ جلیل محمدحسنͬ جمال عبدالناصر پوشه جواد نارویی حمزه نارویی حمزه ͬ زهͬ عیس حمید

نارویی حمید نارویی حمید نارویی رشید حیدر لجەای خدانور قنبرزهͬ خلیل حسن زهͬ ذالفغار هاشمزهͬ سامر

هاشمزهͬ سامͬ ͬͺمل سلمان عرب سلیمان گمشادزهͬ صلاح الدین رخشانͬ عبدالجلیل شهنوازی عبدالخالق ͬ خواه بلوچ عبدالرحمن براهویی عبدالصمد

ͬ زاده ثابت عبدالصمد دهمرده عبدالغفور نوربراهویی عبدالغفور شەبخش عبدالʓه ͬͽری عبدالمجید شەبخش ͷعبدالمل رخشانͬ عبدالمنان توحیدنیا عبدالوحید
ک͒بدانͬ عزیزالʓه عاقلͬ علͬ براهویی ͬ اکبر عل بͽوش حلقه ͬ اکبر عل شهنوازی عمر حسن زهͬ عمران شەبخش عمران شەبخش فرزاد

آنشینͬ لال محمد ͬ زهͬ عال لال محمد شیروزهͬ ماەالدین قنبرزهͬ متین ͬ شەبخش بلوچزه مجبد گمشادزهͬ محسن براهویی محمد

رخشانͬ محمد ͬͽری محمد قلجایی محمد نائب زهͬ محمداقبال گمشادزهͬ محمدامین ادیب توتازهͬ محمدرضا اسماعیل زهͬ محمدعلͬ

گمشادزهͬ محمدعلͬ رخشانͬ محمدفاروق براهویی محمود حسن زهͬ محمود شهنوازی محمود شەبخش ͬ الدین مح حسن زهͬ مرتضͬ بریچͬ مصطفͬ
رخشانͬ منصور ویراء موسͬ آنشینͬ مهدی ͷتاجی نجم الدین ک͒بدانͬ نعمت الʓه شاهوزهͬ یاسر شەبخش یاسر نارویی یونس

ͷپیرفل کیان پابندی دانیال روحͬ حمیدرضا حقͬ آیلار کرمͬ برهان مقصودی سپهر قادری کاروان خوش کام میلاد

محمدی شهریار رحمانͬ آرتین عمادی آرمان شجاعͬ علیرضا زارع مهدی برزگر محمد حبیبی آرام رحیمͬ اسعد
مرادی الʓه زانیار ͬͽقادربی سامان بهمنͬ شاهو بیͽلری عیسͬ گلͬ حمید مجاور سالار عراقͬ علͬ نیازی محسن

حسن زاده محمد بادپا نوید نیͺنام سمانه پیرمغانͬ سعید سعیدپیرو مطلب صدیقͬ حامد سلطانͬ شیرکو حسنͬ امید مرادی هانیه آسترکͬ عبداللهͬ مجید
احمدی کمال پناه عبد حسین فتحͬ جمشید صدری ابراهیم فتحͬ حبیب الʓه جوان سواری فؤاد شهامت افشین کمندلو حسین محمد

امان هیمن نظری امین سلحشور حامد قادرپور آوات معروفͬ فرزین سماک مهران نیͺنام شورش کاظمͬ رضا شفیعͬ عباس مجد آرام
زرینجویی حسین اسعدزاد امیرجواد فرقیزاده جبار هاشمͬ (ͷماه) مائده زهͬ باجͬ خان اله امان بهرنژاد مهدی باگو شریفͬ سیروس مسعودی زاده اویس

بیات ندا ͬ زاده قل امام آرشیا کاظمͬ رضا خدیری پور شمال ͬ فر شاهرخ سعدی حیدرزاده اکبر علͬ ͬ وند صالح ریباز قمصری امید

محمدی حسین عادلͬ شهریار زارع مؤیدی امید کمالͬ عدنان بادبروت محمدرضا پاژخ کوروش نظم ده دریا هاشمͬ شهاب الدین

فرهادی دنیا حسینͬ حسام گلعنبر اسماعیل تیموری مسعود میری تحسین (میرکͬ) فتاحͬ جوهر اعظمͬ جمال محالͬ حیدر سیدی سروش

شͺری سلیمان قربانͬ جلال رحیمͬ ستار عزیزی طاهر ویسͬ بهاالدین کاکایی عرفان کاکایی لقمان موسوی فرشید
ابرکار عمران توانا مهران شیرازی پور حسین قربانͬ منصور معروفͬ میلاد رحمانͬ مهران شاد فراستͬ امیر گاگش احمدی محمد غریب زاده ادریس

شعبانͬ مصطفͬ موسوی جواد قادری آسو توتازهͬ دوران دشتͬ مولایی حامد حسین پوری آزاد جانان هیوا عنایتͬ امجد
خسروی هژارمام بختیاری عبدالرحمان مولودی غفور آقایی اصغر کفشͽیری کابلͬ مهدی دلبری محمد امیر خسروی فرهاد

رشیدی رشید قائمͬ سجاد محمدی علͬ مولایی علͬ رضایی جواد آصفͬ میلاد هوشنگͬ مسلم عباسͬ علͬ مرادیان بهرام
نیͺبخت اشرف اشͺذری زارع مهدی شریعتͬ رضا مویدی زارع امید خانͬ وحید اسعدی سعید سعیدی میلاد مرادی سعید

محمدی فواد فراهانͬ مشهدی محمدرضا چاکسری هادی فاضلͬ علͬ زارع⁃مؤیدی رضا استادهاشم میلاد روحͬ حمیدرضا ͬͽری عبدالواحد مولوی
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Vorwort

Zeit ist eine der rätselhaftesten physikalischen Größen in unserem Universum. Sie
erscheint normalerweise als unabhängige Variable in unseren Gleichungen, das un-
aufhaltsame Phänomen der Welt, das sich nur in eine Richtung bewegt. Man kann
angemessen behaupten, dass alle unsere wissenschaftlichen Experimente direkt oder
indirekt mit der Zeit zu tun haben; ob wir nun ein schwarzes Loch beobachten —
oder vielleicht nicht beobachten! — weit entfernt von unserem Planeten, oder ob wir
die Ziehzeit unserer Tasse Tee messen wollen, wir brauchen einen Sinn von Zeit; eine
Referenzeinheit, auf die wir uns verlassen können. Eine Zeitreferenz ist die Grund-
lage für unser modernes digitales Lebens. Das Wort digital enthält das Konzept der
Zeit in sich: eine Abfolge von Werten mit einem festen Takt. Aber was ist dieser
feste Takt und inwieweit kann dieser Takt fest sein? Verschiedene Techniken nutzen
unterschiedliche physikalische Prinzipien, um dieses Ziel zu erreichen: von periodi-
schen Schwingungen in einem Kristallgitter bis hin zu Atomen, die zwischen zwei
Energiezuständen oszillieren. Diese Techniken haben ihre eigenen Vor- und Nachtei-
le und Präzision bei der Zeitmessung, und es hängt schließlich von der Anwendung
ab, welche Methode gewählt wird. Die Fehler, die diese Techniken für den gesamten
Anwendungsapparat mit sich bringen, sind ein entscheidender Faktor. Je kleiner die
physikalischen Größen sind, mit denen wir es zu tun haben, desto höhere Präzision
wird für die Zeitmessung benötigt. Der technische Fortschritt hat uns dazu gebracht,
physikalischen Prinzipien mit besserer Präzision bei der Messung von Zeiteinheiten
anzuwenden. Eines dieser Prinzipien ist die Verwendung von periodischen Laser-
pulsen, genauer gesagt von modengekoppelten Lasern, als Referenz für Zeit. Die
Anwendung dieser Technik erfordert eine neue Klasse von Geräten, sodass das emit-
tierte Licht des Lasers in elektronischen Schaltungen genutzt werden kann. Darüber
hinaus müssen wir verschiedene Raten oder Frequenzen mit unserem periodischen
optischen Impuls erzeugen, da wir eine breite Palette von Systemen haben, die Si-
gnale mit unterschiedlichen Frequenzen benötigen. Dies sind Herausforderungen
auf dem Weg zu einer präzisen optischen Referenz für die Zeit als Herzstück unserer
elektronischen Systeme. Diese Herausforderungen sind das Thema der vorliegenden
Arbeit, und wir werden sie behandeln und praktische Lösungen für sie anbieten.

— Meysam Bahmanian
April 2023
Paderborn
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Preface

Time is one of the most puzzling physical quantities in our universe. It usually
appears as an independent variable in our equations, the non-stoppable phenomenon
of the world that moves only in one direction. It is fair to say that all our scientific
experiments directly or indirectly relate to time; whether we are observing a black
hole — or maybe not observing! — far from our planet or whether we want to
measure the brewing time of our cup of tea, we need a sense of time; a reference
unit to rely on. Having a time reference is the foundation of our modern digital
life. The word digital contains the concept of time in itself: a sequence of values
at a fixed rate. But what is this fixed rate and to which degree this rate can be
fixed? Various techniques use different physical principles to achieve this goal, from
periodic vibrations in a crystal lattice to atoms oscillating between two energy states.
These techniques have their own pros and cons and precision in measurement of
time, and it is the application that determines which one to choose. The errors
these techniques impose on the whole application apparatus are a decisive factor.
The smaller the physical quantities we deal with, the more precision required to
measure time. The advancement of technology has pushed us to employ physical
principles with better precision in time unit measurement. One of these principles
is using periodic laser pulses, or more precisely mode-locked laser, as a reference for
time. Employing this technique requires to use a new class of devices, so we can use
the emitted light from the laser in our electronic circuits. In addition, we need to
generate different rates, or frequencies, using our periodic optical pulse, as we have
a wide range of systems that require signals with different frequencies. These are
the challenges in our way to have a precise optical reference for time as the beating
heart of our electronic systems. These challenges are the topic of this work, and we
will address them and provide practical solutions for them.

— Meysam Bahmanian
April 2023
Paderborn
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Zusammenfassung

Optoelektronischer Phasenregelschleife, Theorie und Implementierung

In dieser Arbeit werden die Theorie und die Implementierung der Erzeugung
von Mikrowellensignalen auf der Grundlage einer optischen Frequenzreferenz unter
Verwendung einer Phasenregelschleife vorgestellt: der optoelektronischen Phasenre-
gelschleife (OEPLL). Der Phasendetektor der OEPLL wird als balancierter optischer
Mikrowellen-Phasendetektor (BOMPD) bezeichnet und arbeitet in einer gemischt-
elektro-optischen Domäne, da er in der Lage sein muss, die Phasendifferenz zwischen
zwei Signalen zu unterscheiden, die in unterschiedlichen Domänen liegen.

Modengekoppelte Laser (MLL) haben gezeigt, dass sie in der Lage sind, optische
Pulse mit ausgezeichnetem Kurzzeit-Timing-Jitter zu erzeugen. Der Timing-Jitter
der optischen Pulsfolge von MLLs kann weitaus besser sein als der von Quarz-
und Oberflächenwellenoszillatoren. Darüber hinaus erzeugen MLLs eine oberwel-
lenreiche Intensitätswellenform, die für die Breitband-Frequenzsynthese verwendet
werden kann. Diese Eigenschaften von optischen MLL-Pulsen machen sie zu einem
perfekten Kandidaten für die Verwendung als Frequenzreferenz für die Erzeugung
rauscharmer HF-Signale.

Unter den verschiedenen Techniken zur Erzeugung von Mikrowellensignalen mit
MLL ist die OEPLL besonders interessant für die breitbandige Mikrowellenfrequenz-
synthese. Daher konzentriert sich diese Arbeit hauptsächlich auf die Analyse, den
Entwurf und die Optimierung der OEPLL. Es wird ein allgemeines Modell der PLL
auf Komponentenebene gegeben und dann wird dieses Modell an die OEPLL ange-
passt. Diese Modellierung auf Systemebene wird dann verwendet, um das Verhalten
der OEPLL zu simulieren und das Phasenrauschen zu optimieren. Darüber hinaus
wird eine gründliche Analyse des BOMPD durchgeführt, die sich mit verschiedenen
Rauschprozessen befasst, die das Phasenrauschen beeinflussen. Die nichtlinearen
Mechanismen des BOMPD werden ebenfalls diskutiert. Die nichtlineare Analyse
führt zur Entdeckung eines neuen Betriebsregimes der OEPLL, das sie in die Lage
versetzt, auf Zwischenharmonische (d.h. nicht-ganzzahlige Harmonische) der opti-
schen Referenz-Wiederholrate einzurasten.

Die in dieser Arbeit entwickelte Theorie wird genutzt, um zwei verschiedene
Breitband-OEPLLs zu entwerfen und zu implementieren. Der erste Entwurf verwen-
det einen VCO, der eine Oktave des Frequenzbereichs 5–10 GHz abdeckt. Die OEPLL
hat ein In-Band-Phasenrauschen von −135 dBc/Hz bei 100 kHz Offset-Frequenz und
10 GHz Trägerfrequenz, mit einem Effektiv-Jitter von 13,8 fs, integriert von 1 kHz bis
100 MHz. Der zweite Entwurf verwendet einen breitbandigen Yttrium-Eisen-Granat
(YIG)-Oszillator mit einem Frequenzbereich von 2–20 GHz. Die OEPLL hat ein In-
Band-Phasenrauschen von −150 dBc/Hz bei 100 kHz Offset-Frequenz und 10 GHz
Trägerfrequenz, mit einem Effektiv-Jitter von 2,8fs, integriert von 1 kHz bis 100 MHz.
Dieses Resultat des In-Band-Phasenrauschens ist 10–20 dB besser als das der klas-
senbesten kommerziellen Frequenzsynthesizern auf dem aktuellen Markt.
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Abstract

Optoelectronic Phase-Locked Loop, Theory and Implementation

This work presents the theory and implementation of microwave signal generation
based on optical frequency reference using phase-locked loop (PLL) technique, the
optoelectronic phase-locked loop (OEPLL). The phase detector of the OEPLL is called
balanced optical microwave phase detector (BOMPD). It operates in a mixed-electro-
optical domain, as it should be able to discriminate the phase difference between two
signals that are in different domains.

Mode-locked lasers (MLLs) have shown their potential to generate optical pulses
with excellent short-term timing jitter. The timing jitter of the optical pulse train of
MLLs can be better than that of the quartz and surface acoustic wave (SAW) oscilla-
tors by orders of magnitude. In addition, MLLs generate a harmonic-rich intensity
waveform which can be used for wideband frequency synthesis. These features of
MLL optical pulses make them a perfect candidate to be used as a frequency reference
for ultralow noise RF generation.

Among various microwave signal generation techniques using MLL, OEPLL is
especially interesting for wideband microwave frequency synthesis. Therefore, this
work mainly focuses on OEPLL analysis, design and optimization. A generic model
of PLL at component level is given and then this model is adapted to OEPLL. This
system-level modeling is then used to simulate the OEPLL response, stabilize the
system and optimize the phase noise. In addition a detailed and thorough analysis
of BOMPD is provided which addresses different noise processes affecting its phase
noise. The nonlinear mechanisms with respect to the optical and RF inputs of
BOMPD are also discussed. The nonlinear analysis leads to the discovery of a new
operating regime of OEPLL which makes it capable of locking on interharmonics (i.e
non-integer harmonics) of the optical reference repetition rate.

The developed theory in this work is utilized to design and implement two
different wideband OEPLLs. The first design uses a semiconductor voltage controlled
oscillator (VCO) which covers an octave of frequency range 5–10 GHz. The OEPLL has
an in-band phase noise of −135 dBc/Hz at 100 kHz offset frequency at 10 GHz carrier
frequency, with an rms-jitter of 13.8 fs integrated from 1 kHz to 100 MHz. The second
design uses a wideband Yttrium Iron Garnet (YIG) oscillator with a frequency range
of 2–20 GHz. The OEPLL has an in-band phase noise of −150 dBc/Hz at 100 kHz
offset frequency at 10 GHz carrier frequency, with an rms-jitter of 2.8 fs integrated
from 1 kHz to 100 MHz. This level of in-band phase noise is 10–20 dB better than the
best-in-class state-of-the-art commercial frequency synthesizers.
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Chapter 1

Introduction

Low-jitter frequency references have a wide range of applications from wireless and
wireline communications, high-speed analog-to-digital converter (ADC), and digital-
to-analog converter (DAC) to fundamental research facilities, such as large array
telescope systems and free electron lasers (FELs) [1]. Depending on the operating
principle of these frequency references, their output could be either in the electrical
or in the optical domain. In the electrical domain, oven-controlled quartz oscillators
and SAW oscillators can offer phase noise levels down to (-120, -140) dBc/Hz at
(1 kHz, 100 kHz) offset frequencies normalized to a 10-GHz carrier [2–4] (Please see
Appendix A for mathematical modeling of phase noise). Sapphire-loaded cavity
oscillators (SLCOs) exhibit better phase noise performance by approximately two
orders of magnitude but with higher manufacturing cost and size [5, 6]. The so-
called optoelectronic oscillators (OEOs) use a continuous wave (CW) laser and a
feedback loop in a mixed electro-optical domain and have better phase noise than
quartz and SAW oscillators, but their output signal is spurious because of their long
cavity [7]. The coupled optoelectronic oscillators (COEOs) replace the CW laser
with another optical feedback loop consisting of an optical amplifier and an optical
filter. The smaller delay of the feedback path in COEO increases the intervals of
the spurs in the frequency spectrum of the RF output and enhances the spectral
purity [7]. Using this technique, Matsko et al. [8] reported a 10-GHz COEO with a
phase noise of (-125, -145) dBc/Hz at (1 kHz, 100 kHz) offset frequencies and Ly et al.
[9] reported a COEO-based millimeter-wave signal generation at 90 GHz with a phase
noise of (-104, -129) dBc/Hz at (1 kHz, 100 kHz) offset frequencies. In the optical
domain, medium-priced and compact MLLs achieve a phase noise performance
better than quartz and SAW oscillators at offset frequencies above 1 kHz [10–12].
Further improvement of MLL phase noise (beyond or comparable with SLCOs) has
been achieved using different techniques such as optical frequency division (OFD) in
which one of the MLL optical comb lines is locked onto an ultrastable CW laser [6, 13].
Recently, Kalubovilage et al. [14] demonstrated a compact monolithic mode-locked
laser (MMLL) with an exceptional open-loop phase noise performance comparable to
OFD systems. Figure 1.1 compares the phase noise of the state of the art for different
types of reference oscillators normalized to 10-GHz carrier frequency. The phase
noise scaling is based on an ideal frequency multiplier without any additive phase
noise.

In addition to the phase noise performance of these oscillators, the temporal and
spectral properties of their output signals should be considered according to the
application. Especially, if such an oscillator is used as a reference oscillator in a
PLL, a waveform with high harmonic content is desired, as it enables the designer to
lock a tunable oscillator on any of these harmonics in order to maximize the output
frequency range of the PLL. Quartz and SAW oscillators have usually sinusoidal
output waveforms. The harmonic content of their output signals barely exceeds
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Figure 1.1: Comparison of the phase noise of the state of the art,
normalized to 10 GHz carrier frequency: (red) quartz and SAW os-
cillators, (brown) coupled optoelectronic oscillator, (violet) sapphire
loaded cavity oscillators and (blue) optical sources. [6]* and [6]** cor-
respond to the phase noise of the sapphire loaded cavity oscillator

and the mode-locked laser reported in [6], respectively.

a few gigahertz because of their narrowband resonator and limited bandwidth of
their electronic components. Therefore, higher harmonic content is usually gener-
ated using step recovery diodes (SRDs) or nonlinear transmission lines (NLTLs) [15,
16]. The harmonic content of a COEO is limited by the bandwidth of its electronic
components and the optical filter used in the feedback loop. Therefore, the spec-
tral width of COEO is in the range of a few nanometers (less than 100 GHz) [8,
9]. In contrast to these electronic and optoelectronic reference oscillators, MLLs
achieve subpicosecond pulsewidths and THz-wide optical frequency combs [10, 13,
17]. These frequency combs correspond to a harmonic rich intensity (optical cycle
averaged intensity) waveform and are therefore well suited for microwave signal
generation.1

1.1 Frequency synthesizer

The main objective in designing a frequency synthesizer is to translate the frequency
of a low noise reference signal to an RF signal with the desired frequency. This
translation is ideally without introduction of additional noise. This is illustrated in
Figure 1.2 at an abstract level with the phase noise power spectral densities. The
phase noise of the reference is scaled by the frequency multiplication factor. Any
additional noise above this level is considered as additive phase noise of the frequency
synthesizer.

The simplest approach to translate the reference frequency to the desired fre-
quency is using a nonlinear device that generates harmonics of its input signal,
known as the frequency multiplier. The additive phase noise of frequency multi-
pliers is dependent on their technology and generally with proper device selection

1Partial results of this section have been published in [18].
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Figure 1.2: (a) Abstract representation of frequency synthesizer and
(b) its phase noise plots; 𝑓𝑅, reference frequency; 𝑆𝑛,𝑅( 𝑓 ), reference
phase noise; 𝑚, frequency multiplication factor; 𝑆𝑛,out( 𝑓 ), frequency

synthesizer phase noise.

and design can be below the input signal phase noise. The main drawback of this
technique is that the available frequencies are limited only to the harmonics of the
reference signal and non-integer multiplication factors are not possible. Besides, the
output signal of frequency multipliers contains both leakage of the input signal as
well as other undesired harmonics. High quality RF generation would then require
post-multiplication filtering and suppression of undesired harmonics. This can be
more complicated for wideband frequency synthesizers, as the output signal has a
wide frequency range and a tunable filter is required.

The standard approach for wideband frequency synthesis from a low phase
noise reference signal is using a PLL. On the one hand, the frequency of the reference
signal of a PLL is usually in the megahertz range and the output frequency is in the
gigahertz range. One the other hand, the PLL requires equal frequencies at the input
of its phase detector. In order to match these frequencies, there are two fundamental
approaches:

1. Reducing the frequency of the output signal, illustrated in Figure 1.3(a).

2. Increasing the frequency of the reference signal, illustrated in Figure 1.3(b).
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Loop
Filter
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𝑁 𝑓𝑅
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𝑓𝑅
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Detector

Tunable
Oscillator

Loop
Filter

𝑁 𝑓𝑅

(b)

Figure 1.3: Block diagram of PLL with (a) loop frequency divider and
(b) reference frequency multiplier.
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The first method, reducing the frequency of output signal, is a popular technique
in low-cost commercial frequency synthesizers. By using a digitally programmable
fractional frequency divider, the output frequency can be tuned in fine frequency
steps [19]. The main drawback of this method is that the additive phase noise of
the PLL scales with the loop division factor and surpasses the phase noise of the
ultralow noise frequency references.

The second method, increasing the frequency of the reference signal, does not
have a loop divider to reduce the frequency of the RF signal. Therefore, it has
lower additive phase noise compared to the first method. The drawback is that the
frequency of the reference signal is increased using harmonic generators and only
integer multiples of the reference frequency are available. In order to improve the
frequency resolution, the output frequency of the PLL is mixed with the signal from
a fine-step secondary PLL, using direct mixing or offset phase-locked loop scheme.

The low noise optical pulse trains of MLLs have shown a great potential for
low noise RF generation. The phase noise of these optical references can be better
than their electronic counterparts by 3 orders of magnitude. This has led to efforts
to generate a low noise microwave signal from an MLL [20–24]. Among these
methods, phase locking of a microwave oscillator onto an MLL using BOMPD is a
cost-effective and relatively compact solution, as its only electro-optical components
are an intensity modulator and one pair of photodetectors [24, 25]. In addition,
the RF signal is sampled with the optical reference using an intensity modulator
which has a significantly higher bandwidth compared to double-balanced mixers
that are typically used in high-performance fully electronic phase-locked loops. The
downside of such an OEPLL is the requirement for phase adjustment of its microwave
signal paths and relatively sophisticated microwave setup. An alternative topology
for a BOMPD proposed by [26] significantly simplifies the architecture and does not
require microwave phase shifters, bandpass filters, and balanced mixers by using
an electro-optical balanced intensity modulator (BIM). Using this method, Jung et
al. [27] locked a dielectric resonator oscillator (DRO) at 8 GHz onto an MLL with a
residual rms-jitter of 838 as integrated from 1 Hz to 1 MHz.
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The results from [27, 28] demonstrate the potential of OEPLLs for ultralow-
phase-noise frequency synthesis. However, the small bandwidth of the DRO makes
the approach impractical for broadband frequency synthesis. In addition, the fiber-
based Sagnac-modulator is bulky, expensive, and sensitive to mechanical vibrations.
Currently most OEPLL systems operate only at a single frequency or a very limited
frequency range. Therefore, more research is needed toward microwave OEPLL
frequency synthesizers with a large output frequency range and compact size. Ne-
jadmalayeri et al. [29] replaced the fiber Sagnac-modulator with a lithium niobate
(LiNbO3) MZM and the DRO with a microwave instrument. This allowed to re-
duce the size and increase the output frequency range but [29] did not achieve the
performance of [27].

The OEPLLs have the potential for wideband frequency synthesis, since the MHz
wide loop bandwidth can filter the optical reference harmonics. The phase noise
of the current state-of-the-art frequency synthesizers currently is limited by their
Quartz and SAW based reference they use. Figure 1.4 compares the phase noise
of the state-of-the art wideband frequency synthesizers (from Keysight, Rohde &
Schwarz and Anritsu [30–32]) with the OEPLL reported in [28]. It can be seen that
at offset frequencies above approximately 1 kHz the OEPLL outperforms traditional
fully electronic frequency synthesizers, thanks to the clean reference signals of MLLs.
The phase noise of OEPLLs at close-in offset frequencies below approximately 10 kHz
can further be improved if a better optical reference is used. Therefore, the OEPLLs
can have better phase noise by approximately 3 orders of magnitude.

1.2 RF Generation Using Mode-Locked Lasers

In the previous sections, we demonstrated that the phase noise of MLLs can be better
than that of traditional frequency references such as Quartz and SAWs oscillators.
In addition, we discussed that the role of frequency synthesizer is to generate an
arbitrary frequency that is phase-locked to the low-noise frequency reference. In
this section, we discuss state-of-the-art RF frequency generation techniques based on
MLL optical reference.

1.2.1 Direct detection

The simplest approach for MLL-based RF generation is direct detection of MLL pulses
using a photodiode, illustrated in Figure 1.5(a). Since the generated photocurrent is
harmonic rich, a bandpass filter is required to select to desired harmonic.

The signal to noise ratio (SNR) of this type of RF generator is limited by the
thermal noise of output termination load and the maximum achievable RF power
from the photodiode. The output power of the photodiode is also limited by high
energy MLL pulses mainly due to the nonlinear space-charge effect [33–36]. The main
limitation of this technique is the bandwidth of the photodiode. High frequency
photodiodes can easily achieve tens of gigahertz bandwidth when stimulated with
low-pulse-energy optical beams. However, high peak power optical stimulation of
photodiodes, which is required for low noise RF generation, limits the photodiode
bandwidth due to the nonlinear space-charge effects, illustrated in Figure 1.5(b).
High energy pulses of MLLs generate many charge carriers (electron-hole pairs) in the
active region of photodiode. The Coulomb interaction between these charge carriers
creates an electric field, 𝐸𝑖 , that counteracts the device built-in electric filed, 𝐸𝑏 . This
counteracting field reduces the charge carrier velocities and consequently leads to an
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Figure 1.5: (a) Schematic of optical pulse direct detection and (b)
illustration of space-charge effect in PIN photodiode.

increase of the transit time of charge carriers and the response time and reduction of
the photodiode bandwidth [37]. While the thermal noise floor remains at the same
level, the decrease of the photodiode bandwidth leads to reduction of the desired
harmonic power and lower signal to noise ratio. Another undesired phenomenon
caused by the nonlinear space-charge effects is the conversion of the optical pulse
amplitude noise to photocurrent phase noise [38]. Both these mechanisms lead to
degradation of phase noise of the generated RF signal.

In order to mitigate the photodiode space-charge effect, uni-traveling carrier
(UTC) photodiode and modified uni-traveling carrier (MUTC) photodiode use an
undepleted p-layer to absorb light to inject the electrons into the drift region and
reduce the transit time and the space-charge effect [39, 40]. The illumination condi-
tion has also been optimized through beam shaping using a graded index (GRIN)
lens coupling which increases the illumination cross section and reduces the peak
magnitude of the optical field [41, 42]. It has been shown that increasing the optical
beam diameter leads to a more uniform distribution of mobile carriers in the device
and reduction of the counteracting electric field [34, 35, 43].

1.2.2 Pulse interleaving rate multiplier

One can mitigate the nonlinear space-charge effects by reducing the energy of the
optical pulses. This method can be realized in a lossless fashion by increasing the
repetition rate of the optical pulses using pulse interleaving technique illustrated in
Figure 1.6(a) for a 3-stage ×8 multiplier [6, 13, 23, 44, 45]. The optical pulses are
interleaved via 3 segments, where each segment divides the optical beam into two
paths and one of the paths adds a delay equal to half of the period of the pulses and
then both paths are recombined, increasing the repetition rate by a factor of 2 at the
output of each segment. Figure 1.6(b) shows the effect of rate multiplication on the
generated RF power at the photodiode.

State-of-the-art MLL-based RF generators use this technique to enhance the pho-
todiode output power and increase the SNR [6, 13, 44]. The main drawback of this
method is the output frequencies that can be achieved. While the intensity of the
output of MLL has harmonics of 𝑓𝑅, where 𝑓𝑅 is the repetition rate of the pulses, the
interleaved pulses has harmonics of 𝑁 𝑓𝑅, where 𝑁 is the rate multiplication factor.
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Figure 1.6: (a) Schematic of a 3-stage rate multiplier and (b) the effect
of rate multiplication on generated RF power at 10 GHz characterized
with an MLL with a repetition rate of 250 MHz [44]; RM, rate multi-

plier.

Therefore, using a rate multiplier enhances the SNR and phase noise of the RF signal,
but it comes at the cost of higher frequency steps in the RF generator.

1.2.3 Spectral filtering rate multiplier

Another technique to increase the repetition rate of the optical pulses is combline
filtering using a Fabry-Perot cavity shown in Figure 1.7 [44, 46]. Such a cavity has
a transmission frequency response with multiple pass-bands located at integer mul-
tiples of the fundamental frequency pass-band. Therefore, by adjusting the length
of the cavity with a Piezo stage, various rate multiplication factors can be achieved.
One drawback compared to pulse interleaving technique is that more optical power
budget is needed, as the optical power reflected from the cavity is dissipated. In
addition, controlling the cavity length makes the setup more complicated compared
to static pulse interleaver and the moving Piezo stage leads to acoustic vibrations and
phase noise degradation at close-in offset frequencies below 1 kHz [44].

MLL

PZT

Servo
Electronics

50Ω

Figure 1.7: MLL rate multiplier based on combline filtering using
Fabry-Perot cavity [46].

1.2.4 Heterodyne mixing and optical phase-locked loop

Rate multipliers can be seen as optical filters with a periodic transfer response that
pass comblines that have a certain frequency difference. The periodicity of the
transfer function of these filters means the photocurrent generated at the photodiode
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still has many harmonics. If the periodicity feature of these filters is removed and only
two desired comblines are allowed to pass, then the generated photocurrent would be
just a single tone. A practical implementation of this idea is shown in Figure 1.8(a),
known as heterodyne mixing. First, two comblines with optical frequencies of 𝑓1
and 𝑓2 are selected via comb selection optics tuned at these frequencies. The selected
comblines are then combined and the intensity of the resulting optical field is detected
via a photodiode. The frequency of the RF signal at the photodiode output is the
frequency difference between the selected comblines.

MLL
Comb Selection
𝑓1 = 𝑓ceo + 𝑁1 𝑓𝑅

Comb Selection
𝑓2 = 𝑓ceo + 𝑁2 𝑓𝑅

50Ω
Δ 𝑓 = (𝑁2 − 𝑁1) 𝑓𝑅

𝑓1 𝑓2

𝑓

(a)

MLL

Tunable
CW Laser

𝑓CEO + 𝑓IF + 𝑁 𝑓𝑅

50Ω

Phase
Detector

𝑓IF

LPF

(b)

Figure 1.8: (a) Schematic of RF generator based on heterodyne mixing
of two MLL comblines. (b) Combline selection using optical phase-
locked loop technique (optical connections are shown in blue and

electrical connections are shown in black).

One approach for combline selection is filtering the two desired wavelengths
from the MLL spectral lines [47, 48]. This technique requires extremely narrowband
optical filters with high quality factors to filter the undesired neighboring comblines
only a few hundreds of megahertz away from the desired combline. Fabrication and
wavelength tuning of such optical devices is a tedious task. In addition, wideband RF
frequency synthesis requires tunability of these filters which makes the realization
of a frequency synthesizer using this technique even more complicated.

An Alternative approach for optical comb selection would be an optical phase-
locked loop (OPLL), illustrated in Figure 1.8(b) [49–52]. The MLL comblines are
combined with the output beam of a tunable CW laser which has an offset frequency,
𝑓IF, relative to the target combline. This relative offset frequency is then detected via
a photodetector and is stabilized using an optical phase-locked loop. The optical PLL
uses a phase detector and a stable intermediate frequency (IF) to generate an error
signal which is then filtered and fed back to the tunable CW laser to stabilize it.
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1.2.5 Optoelectronic phase-locked loop

One problem arising in direct photodetection, whether a rate multiplier is used
or not, is the excess noise caused by conversion of amplitude noise of the optical
pulses to phase noise [23, 24, 38]. Kim et al. [24] suggested extracting the timing
information of the optical pulses in the optical domain, before photodetection, and
use this timing information to control a microwave tunable oscillator. This idea led
to the development of a new class of electro-optical systems, the balanced optical
microwave phase detector (BOMPD) and optoelectronic phase-locked loop (OEPLL),
illustrated in Figure 1.9 [18, 24, 25, 27, 53, 54].

MLL BIM

RF dc

Tunable
OscillatorLF

50Ω 𝑣dc

𝑣RF

BOMPD

RF voltage

MLL intensity
photodiodes

currents

Figure 1.9: Simplified block diagram of the OEPLL.

In this approach, the optical pulses of the MLL are modulated by the RF signal
using a balanced intensity modulator (BIM). The modulated optical pulses carry
information about the relative timing between the optical pulses and the microwave
signal. This information is then converted into an electrical current by a pair of
photodiodes and is used to adjust the microwave signal timing with that of the
optical pulse train. It is noteworthy to mention that the OEPLL is similar to its fully
electronic counterpart and the BOMPD operates similar to a balanced mixer that is
used in many PLLs as a phase detector. However, the phase detector of the OEPLL
has to operate in a mixed electro-optical domain. Since the intensity of the optical
pulse train is harmonic rich, the OEPLL can potentially lock on any harmonic of the
optical reference repetition rate.

1.2.6 Comparison and conclusions

Now that we investigated various techniques of RF generation using optical pulses of
MLLs, one might ask which method is preferred. The answer to this question mainly
lies in the application. Here we focus on wideband versatile frequency synthesizer
and, based on this application, compare these methods.

Figure 1.10 compares the phase noise performance of these methods [13, 27, 28,
44, 47, 49]. Direct detection method can be used to generate any harmonic of the
reference repetition rate. However, the RF signal power generated at the photodiode
decreases as the pulse energy increases. For a given average optical power, this
means higher repetition rates are desired. Although increasing the repetition rate is
possible, using a pulse interleaver or a Fabry-Perot cavity, the frequency resolution
of the RF generator increases, and fewer frequencies are available at the photodiode
output. In addition, for many RF applications the signal purity is important and
filtering the subharmonics2 is necessary. This can be difficult from two aspects;
firstly, a tunable bandpass filter is required to select the desired harmonic; secondly,

2Note that the undesired harmonics of the reference repetition rate are considered as the subhar-
monics of the desired RF frequency.
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sufficient suppression (usually more than 60 dBc) of undesired harmonics is difficult
to achieve, as they can be very close to the desired harmonic (for instance 250 MHz
away from a 10 GHz carrier).
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Figure 1.10: Phase noise comparison of different RF generation meth-
ods using MLL optical pulses; RM, rate multiplier.

The heterodyne mixing approach with filtering the comblines has practical dif-
ficulties due to tunability and high quality-factor requirement for the optical filters.
For instance, an optical filter at 200 THz with a bandwidth of 200 MHz requires a
quality factor of 10, 000 which is hard to achieve. The alternative heterodyne-mixing
technique, the OPLL, shows a poor phase noise performance and has a high additive
phase noise. Possible reasons could be high phase noise of the tunable laser source
and failing to sufficiently suppress it in the OPLL. Another possible reason could
be the high noise of the CEO frequency of the MLL. A simple first order analysis
suggests the CEO noise is canceled after recombination of the locked optical tones.
However, it is possible the CEO noise is not perfectly canceled due to small delay
mismatch in the OPLLs, or the noise can undergo a nonlinear transformation at the
baseband components or due to nonlinear characteristic curve of the tunable CW
laser. This transformed noise is not canceled during the photodetection process and
shows itself as additive phase noise. These mechanisms include the phase noise
of the optical carriers which is orders of magnitude higher than that of microwave
signals. Therefore, the leakage of the optical carrier phase noise to the phase of the
generated microwave signal can have a strong adverse effect on its phase noise.

The OEPLL has interesting features that make it a viable candidate for low-noise
and wideband frequency synthesis. From the phase noise perspective, the OEPLL
reported by Jung et al. [28] has a phase noise performance similar to the state-of-the-
art multi-stage repetition rate multipliers. The phase noise at offset frequencies below
approximately 30 kHz is limited by the MLL and is expected to improve if an MLL
with higher spectral purity is used. The additive phase noise of the same setup has
also been reported in [27] and proves that the OEPLL performance is limited by the
MLL at those offset frequencies. Although Jung et al. [28] uses a narrowband dielectric
resonator oscillator (DRO) as the tunable oscillator, there is wide range of microwave
oscillators with various bandwidths and phase noise performance available. The
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balanced intensity modulators (BIMs) with tens of gigahertz bandwidth are standard
devices and available. Therefore, the OEPLL does not have the practical limitations
of other techniques while having a phase noise performance comparable to state-of-
the-art RF generators. Therefore, the OEPLL is well suited for wideband microwave
signal generation using the optical pulses of MLLs.

1.3 Scope of the thesis

In this report, for the first time, we provide a mathematical foundation for OEPLL
analysis. At the system level, the classical PLL theory is adapted to OEPLL. This
provides a systematic approach for OEPLL design. At the component level, we derive
the characteristic function of the phase detector and calculate the phase detector gain
which is required for system level analysis. In order to find the additive phase noise
of OEPLL, various noise sources in OEPLL are identified and their effect on the phase
noise are shown. To explore the limitations of OEPLL, the nonlinear mechanisms that
affect the OEPLL performance are investigated and their effect on the phase detector
gain and additive noise of OEPLL are discussed. This nonlinear analysis reveals a
new operating regime in OEPLL which can be used to lock on the interharmonics
(non-integer harmonics) of the optical reference. This comprehensive analysis which
addresses the noise processes and nonlinear mechanisms in OEPLL is the first of
its kind. Finally, two wideband OEPLLs are presented. The first OEPLL uses a
semiconductor VCO and has a frequency range of 5–10 GHz. The second OEPLL uses
a YIG oscillator which has lower phase noise and higher frequency range, 2–20 GHz,
compared to semiconductor VCO. To the author’s knowledge, these works are the
only reported wideband OEPLLs. The results of our work have been published in
peer reviewed journals and been confirmed by the scientific community [18, 53–56].

This report is organized as follows. In Chapter 2, the operating principle of
mode locked laser is explained. Two fundamental types of MLLs are introduced and
their governing equations and their solutions are discussed. A popular and Nobel
prize winning scheme of optical frequency stabilization using 𝑓 − 2 𝑓 interferometry
is presented which has paved the way for extremely low-noise optical reference
generation and optical frequency metrology. In Chapter 3, RF generation using
OEPLL scheme is discussed and the relevant equations are derived. In Chapter 4,
different noise sources as well as nonlinear mechanisms that affect the performance
of OEPLL are shown and the results are discussed. Chapter 5 shows two practical
examples of OEPLL and the measurement results are compared with the theory
explained in Chapter 3 and Chapter 4. Finally, in Chapter 6, the measurement results
are compared with the current low-noise state-of-the-art phase-locked loops.
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Chapter 2

Mode-Locked Laser

Optical pulses from mode-locked lasers have attracted attention for a wide range of
applications because of their special properties such as extremely short pulse width,
high peak power and excellent jitter. Extremely wideband pulses of MLLs have made
optical frequency metrology down to Hertz resolution possible and connected the
frequency measurement link between microwave domain and optical domain [57–
59]. In addition, MLLs have found their way in a wide range of applications such as
frequency comb spectroscopy, optical sampling, photonic analog-to-digital convert-
ers (ADC), photonic radar, and ultra low noise microwave signal generation [6, 13,
22, 28, 60–69]. Since mode-locked laser is used as the reference of OEPLL, a basic
understanding of its operation and the properties of its output optical pulse train is
necessary. In this chapter, we investigate basic theory of mode-locking and properties
of MLL optical pulses. Note that the MLLs have various operating regimes depend-
ing on their structure. The materials presented in this chapter are not intended to be
a comprehensive analysis of MLLs, but rather to provide a basic understanding of
mode-locking theory and mathematical modeling of MLL optical pulses.

Mode-locked laser is basically a laser with many longitudinal (or axial) modes
which have a frequency difference equal to the inverse of the laser cavity roundtrip
time

𝑓𝑛+1 − 𝑓𝑛 =
1
𝑇𝑅

, (2.1)

where 𝑓𝑛+1 is the frequency of the 𝑛 + 1th mode, 𝑓𝑛 is the frequency of the 𝑛th mode
and 𝑇𝑅 is the roundtrip time. This is illustrated graphically in Figure 2.1(a). These
interlocked comblines correspond to an optical pulse with a period of 𝑇𝑅 in the time
domain, illustrated in Figure 2.1(b).

Δ 𝑓 = 1/𝑇𝑅
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𝑒(𝑡)
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Figure 2.1: Electric field of mode-locked laser output signal (a) in the
frequency domain and (b) in the time domain.

The generation of these locked modes is achieved by placement of an element in
the laser cavity that is not linear time-invariant (LTI), as illustrated in Figure 2.2. Such
a non-LTI element can favor generation of axial modes locked to each other. After
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each roundtrip of light in the laser cavity, the number of generated modes increases
until the light reaches the steady state and a stable pulse is generated. Depending
on the type of non-LTI element used in the laser cavity, MLLs are divided into two
main categories, active MLLs and passive MLLs. We explain these two fundamental
types of MLLs in the following sections. For the analysis of passive MLL, we only
consider mode-locking with fast saturable absorber (SA). Detailed analysis of various
mode-locking techniques can be found in [70–72].

Mirror Gain Mirrornon-LTI

𝑇𝑅

Figure 2.2: Schematic of mode-locked laser (adopted from [70]).

2.1 Active mode-locked laser

Figure 2.3 shows the schematic of active MLL. In active mode-locking, generation
of locked-modes is achieved by placing a time varying element, a modulator, in the
laser cavity which is stimulated by a periodic external source.

Mirror Gain MirrorModulator

cos(𝜔𝑚 𝑡)
𝑇𝑅

Figure 2.3: Schematic of active mode-locked laser (adopted from [70]).

We assume the stimulation waveform is sinusoidal with a angular frequency of
𝜔𝑚 and the modulator introduces the following time-varying loss to the cavity

Modulator Loss = 𝑒−Δ𝑚[1−cos(𝜔𝑚 𝑡)] , (2.2)

where Δ𝑚 is the modulation constant. Assuming Δ𝑚 ≪ 1, the modulator loss can be
approximated as

Modulator Loss ≈ 1 − Δ𝑚[1 − cos(𝜔𝑚𝑡)] = 1 − Δ𝑚 + 1
2Δ𝑚𝑒

−j𝜔𝑚 𝑡 + 1
2Δ𝑚𝑒

j𝜔𝑚 𝑡 . (2.3)

The modulator loss as function of time is illustrated in Figure 2.4(a). Equation (2.3)
shows that the modulator reduces the amplitude of the original spectral line by
�̃�Δ𝑚 and increases the amplitude of neighboring spectral lines by �̃� 1

2Δ𝑚 , where �̃�
is the field amplitude of the input of the modulator and the upper tilde ( ˜ ) denotes
the lowpass equivalent of a bandpass signal. For further details about the relation
between bandpass and lowpass transformation of signals in time and frequency
domain please see Appendix B.

The laser mode-locking mechanism can be explained via generation of modula-
tion sidelobes each time the light makes a roundtrip in the cavity. Initially, there is
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Figure 2.4: (a) Modulator loss as a function of time and (b) evolution
of active MLL spectral lines after each roundtrip.

just one spectral line of light in the cavity at the cavity center angular frequency 𝜔0.
After the first roundtrip, two sidelobes are formed at 𝜔0 ± 𝜔𝑚 around the initial
spectral line. After the second roundtrip, each of the 3 spectral lines formed af-
ter the second roundtrip are modulated again and five spectral lines are formed at
𝜔0 , 𝜔0±𝜔𝑚 , 𝜔0±2𝜔𝑚 . This process continues until the MLL reaches the steady state.
A stable locking requires the roundtrip time 𝑇𝑅 to be matched to the modulation an-
gular frequency 𝜔𝑚 . Hence it is assumed

𝜔𝑚 =
2𝜋
𝑇𝑅

. (2.4)

In order to formulate the active MLL master equation, it is assumed that the gain
medium has a saturated Lorentzian line shape around the center angular frequency 𝜔0
as

𝐺+(𝜔) = 𝑔0

1 +
(︂
𝜔−𝜔0
Ω𝑔

)︂2 . (2.5)

where the superscript + sign denotes only the positive frequencies of the spectrum.
The master equation of active mode locked laser is derived by finding the variation
of the field amplitudes of the cavity axial modes after each round trip.

Δ�̃�𝑛 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

𝑔0

1 +
(︂
𝑛𝜔𝑚
Ω𝑔

)︂2 − 𝑙
⎫⎪⎪⎪⎬
⎪⎪⎪⎭
�̃�𝑛 + 1

2Δ𝑚(�̃�𝑛−1 − 2�̃�𝑛 + �̃�𝑛+1) , (2.6)

where �̃�𝑛 is the amplitude of the 𝑛th combline, Δ�̃�𝑛 is its change after one roundtrip
and 𝑙 is the cavity loss. The first term in (2.6) is the sum of gain and cavity loss after
one round trip. The second term is the variation of the 𝑛th mode due to modulation
of the mode itself and its neighboring modes after one roundtrip according to (2.3).
The discrete difference equation (2.6) can be turned into a differential equation with
the following approximations [70]
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• The discrete angular frequencies are replaced by a continuous spectrum
𝜔 ≈ 𝑛𝜔𝑚 .

• First order polynomial approximation of gain as 𝐺+(𝜔) ≈ 𝑔0

[︂
1 −

(︂
𝜔−𝜔0
Ω𝑔

)︂2 ]︂
.

• Replacing the term �̃�𝑛−1 − 2�̃�𝑛 + �̃�𝑛+1 with its continuous equivalent 𝜔2
𝑚

d2�̃�
d𝜔2 .

With these assumptions, (2.6) can be rewritten in a continuous fashion as

Δ�̃�(𝜔) = (𝑔0 − 𝑙)�̃�(𝜔) − 𝑔0

(︃
𝜔
Ω𝑔

)︃2
�̃�(𝜔) + 1

2Δ𝑚𝜔
2
𝑚

d2�̃�
d𝜔2 . (2.7)

In steady state, the complex field spectrum does not change and Δ�̃�(𝜔) = 0. The
solution of (2.7) is therefore a Gaussian pulse [70]

�̃�(𝜔) = 𝐸0𝑒−𝜏
2𝜔2

, (2.8)

where

𝜏4 =
2𝑔0

Δ𝑚𝜔2
𝑚Ω2

𝑔
. (2.9)

The complex amplitude of the optical pulse in time domain can be found by taking
the inverse Fourier transform of (2.8) as

𝑒(𝑡) = 𝑒0𝑒−(𝑡/2𝜏)2 . (2.10)

Therefore, active MLL can produce a stable optical pulse with a Gaussian shape. It
should be noted that active MLL requires an external oscillator which controls the
time-variant cavity loss. This external stimulation of the laser cavity leads to synchro-
nization of the MLL optical pulse train with the external source. Consequently, the
phase noise performance of active MLL cannot exceed that of the stimulation source,
and active MLL has the same noise limitations as traditional electronic frequency
references.

2.2 Passive mode-locked laser

In active MLL, generation of locked axial modes is realized via a time varying element
controlled by an external sinusoidal source. Another possibility to generate short
optical pulses is using a nonlinear element in the cavity that favors high intensities,
the so-called saturable absorber. After each roundtrip of light in the cavity, the low-
intensity intervals of the optical pulse are attenuated more than the high-intensity
intervals. This leads to pulse shortening and spectral broadening of the optical signal.
The shortened pulse is then amplified in the next roundtrip, effectively with higher
peak power than that of the previous roundtrip.

The passive MLL master equation is derived similar to (2.6), but in the time
domain. Therefore, the cavity components are now modeled in the time domain.

Saturable absorber The intensity dependent loss of a fast saturable absorber, 𝑠(𝑡),
can be written as

𝑠(𝑡) = 𝑠0
1 + 𝐼(𝑡)/𝐼sat

, (2.11)
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where 𝑠0 is the unsaturated loss of the SA, 𝐼(𝑡) is the instantaneous intensity of the
optical field and 𝐼sat is the saturated intensity of the SA. Assuming an effective area
of 𝐴eff for the optical field, the intensity can be written as

𝐼(𝑡) = |𝑒(𝑡)|2
𝐴eff

, (2.12)

where 𝑒(𝑡) is the optical field amplitude. The saturable absorber equation in (2.11)
can be approximated by its first order polynomial expansion as

𝑠(𝑡) ≈ 𝑠0

(︃
1 − 𝐼(𝑡)

𝐼sat

)︃
= 𝑠0 − 𝛾 |𝑒(𝑡)|2 , (2.13)

where 𝛾 = 𝑠0/𝐴eff𝐼sat .
Gain medium The gain medium described in (2.5) has a bandpass behavior

around 𝜔0. The pulse complex amplitude is affected by the complex lowpass equiv-
alent of the gain medium transfer function

�̃�(𝜔) = 𝐺+(𝜔 + 𝜔0) = 𝑔0

1 +
(︂

𝜔
Ω𝑔

)︂2 . (2.14)

This lowpass equivalent is approximated by its first order polynomial expansion as

�̃�(𝜔) ≈ 𝑔0

(︄
1 − 𝜔2

Ω2
𝑔

)︄
. (2.15)

The inverse Fourier transform of �̃�(𝜔) which acts on the complex pulse amplitude
can consequently be found as

�̃�(𝑡) ≈ 𝑔0

(︃
1 + d2

d𝑡2

)︃
. (2.16)

Passive MLL master equation Now the master equation of passive MLL with
fast SA can be found as the change of the optical pulse complex amplitude after
one roundtrip. In addition to transfer characteristics of the gain medium and SA, it
is assumed that the cavity has a loss of 𝑙. The change of the optical field complex
amplitude after one roundtrip can therefore be written as [70]

1
𝑇𝑅

𝜕

𝜕𝑇
𝑒 = (𝑔0 − 𝑙)𝑒 + 𝑔0

Ω2
𝑔

𝜕2

𝜕𝑡2
𝑒 + 𝛾 |𝑒 |2𝑒 . (2.17)

The solution of (2.17) is a hyperbolic secant function

𝑒(𝑡) = 𝐸0 sech
(︃
𝑡
𝜏

)︃
, (2.18)

where the pulse duration and amplitude are related via

𝜏2 =
2𝑔0

𝛾𝐴2
0Ω

2
𝑔

(2.19)
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and

𝑙 − 𝑔0 =
𝑔0

Ω2
𝑔𝜏2

. (2.20)

Unlike active MLL, passive MLL does not require an external source to get synchro-
nized with, and the intensity-dependent loss is realized using a saturable absorber.
Passive MLLs have fine noise properties that go far below the noise of traditional
electronic references. By controlling various classical noise sources in passive MLLs,
they can reach the theoretical limitation imposed by laws of quantum physics [73–
75].

Figures 2.5(a) and 2.5(b) show the output of a passive MLL with a center wave-
length of 1560 nm and a repetition rate of 250 MHz [12]. The MLL has a pulse
width of 185 fs and a of 14 nm corresponding to approximately 1.7 THz. Such high
bandwidths are much more than what electronic circuits can achieve.
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Figure 2.5: Measured MLL pulse in (a) time and (b) frequency do-
main [12]; traces are normalized to maximum; time domain trace is

from autocorrelator output.

2.3 Properties of mode-locked laser signals

The extremely high bandwidth available in the optical domain, compared to the
electrical domain, has paved the way for subpicosecond and even femtosecond pulse
widths. The mathematical formalism provided in the previous sections describes
the complex amplitude of the optical pulse generated in MLLs. However, the rela-
tion between the amplitude and phase of the generated comblines still needs to be
addressed. This is an important question in the theory of MLL, since the relation
between these comblines is the key to describe the relation between their amplitude
and phase noise. The power spectral density (PSD) of various MLL noise mecha-
nisms has been well studied in the literature [73–75] and here we only try to add
these noise mechanisms to MLL optical pulse at an abstract level. In order to achieve
this goal, first the complex amplitude of the optical pulse train is modeled and its
Fourier transform is calculated. Using the complex amplitude of the pulse train, the
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MLL optical pulse field is derived. After this step, the relevant noise terms are in-
cluded and the amplitude and phase of individual comblines are derived. The result
expresses the noise of individual MLL comblines and their different noise terms.

The Fourier transform of the complex amplitude of the MLL pulse can be written
as

�̃�(𝜔) = ℱ{𝑒(𝑡)} = 1
2𝜋

∫ ∞

−∞
d𝑡𝑒(𝑡)𝑒−j𝜔𝑡 , (2.21)

where ℱ{} denotes the Fourier transform and 𝑒(𝑡) is the complex amplitude of the
pulse. Note that 𝑒(𝑡) is generally a complex-valued function and thus �̃�(𝜔) does not
necessarily have Hermitian symmetry. The complex amplitude of the output pulse
train of MLL can be written as

𝑒(𝑡 , 𝑇𝑅) =
∞∑︂

𝑚=−∞
𝑒(𝑡 − 𝑚𝑇𝑅) . (2.22)

If we assume the temporal overlap of optical pulses can be neglected, |𝑒(𝑇𝑅)| ≪ |𝑒(0)|,
the Fourier series coefficients of the complex amplitude of the optical pulse train 𝑒𝑘
can be written as

𝑒𝑘 =
1
𝑇𝑅

∫ 𝑇/2

−𝑇/2
d𝑡𝑒(𝑡 , 𝑇𝑅)𝑒−j𝑘𝜔𝑅𝑡 =

2𝜋
𝑇𝑅
�̃�(𝑘𝜔𝑅) , (2.23)

where 𝜔𝑅 = 2𝜋/𝑇𝑅. The electric field of the optical pulse train in the time domain
can be calculated using its complex amplitude as

𝐸(𝑡) = Re
{︁
𝑒(𝑡 , 𝑇𝑅)𝑒j𝜔𝑐 𝑡

}︁
, (2.24)

where Re{} denotes the real part of a complex number and 𝜔𝑐 is the optical carrier
angular frequency. Equations (2.21) to (2.24) can be used to find the electric field of
individual comblines and their relative phases. Now we add the phase noise terms
to the optical pulse train in (2.24). The phase noise of the pulse train on the one hand
originates from the cavity length fluctuations which affect the timing of the optical
pulse trains, and on the other hand is due to the line shape of the optical carrier.
Therefore, two different noise terms are added to (2.24) as

𝐸(𝑡) = Re

{︄ ∞∑︂
𝑚=−∞

𝑒
(︃
𝑡 − 𝑚𝑇𝑅 + 𝑇𝑅

2𝜋𝜙𝑛,𝑅(𝑡)
)︃
𝑒j𝜔𝑐 𝑡+j𝜙𝑛,ceo(𝑡)

}︄
, (2.25)

where 𝜙𝑛,𝑅(𝑡) is the phase noise due to cavity length fluctuations and 𝜙𝑛,ceo is the
phase noise of the optical carrier. The repetition rate phase noise𝜙𝑛,𝑅(𝑡) is normalized
by a factor of 𝑇𝑅/2𝜋 to convert phase noise to timing jitter. Using the Fourier series
expansion of the complex amplitude in (2.23), the electric field of the optical pulse
train can be written as

𝐸(𝑡) = Re

{︄ ∞∑︂
𝑘=−∞

𝑒𝑘𝑒j𝑘𝜔𝑅𝑡+j𝑘𝜙𝑛,𝑅(𝑡)𝑒j𝜔𝑐 𝑡+j𝜙𝑛,ceo(𝑡)
}︄

=
∞∑︂

𝑘=−∞
|𝑒𝑘 | cos

(︂
(𝑘𝜔𝑅 + 𝜔𝑐)𝑡 + 𝜙𝑘 + 𝑘𝜙𝑛,𝑅(𝑡) + 𝜙𝑛,ceo(𝑡)

)︂
, (2.26)
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where

𝜙𝑘 = arctan
(︃

Im{𝑒𝑘}
Re{𝑒𝑘}

)︃
, (2.27)

and Re{} & Im{} denote the real part & imaginary part of a complex number,
respectively. Equation (2.26) is known as the elastic tape theory [75]. It shows the
relation between the frequency of different comblines as well as their phase noise.
The smallest 𝑘 such that 𝑘𝜔𝑅 +𝜔𝑐 is a positive angular frequency corresponds to the
so-called carrier envelope offset (CEO) angular frequency

𝑘min =
⌈︃
𝜔𝑐

𝜔𝑅

⌉︃
, (2.28)

where ⌈ ⌉ denotes the mathematical ceiling function. The carrier envelope offset
angular frequency 𝜔ceo can then be written as

𝜔ceo = 𝜔𝑐 −
⌈︃
𝜔𝑐

𝜔𝑅

⌉︃
𝜔𝑅 . (2.29)

The electric field given in (2.26) can have as many as infinite number of comblines.
One must keep in mind that the above approach is purely mathematical and many
of these comblines lie outside the wavelength range in which the laser is capable of
generating light. The CEO frequency is in the microwave frequency range and is not
a physically generated combline. It is used conventionally to express the frequency
of the individual comblines with respect to it. Neglecting the terms with a negative
frequency, the frequency of the 𝑘′th combline can be written with respect to 𝜔ceo as

𝜔𝑘′ = 𝜔ceo + 𝑘′𝜔𝑅 𝑘′ > 0 . (2.30)

The overall phase noise of the 𝑘′th combline can also be written as

𝜙𝑛,𝑘′(𝑡) = 𝜙𝑛,ceo(𝑡) + 𝑘′𝜙𝑛,𝑅(𝑡) . (2.31)

Therefore, the phase noise of individual comblines can be expressed in terms of
repetition rate phase noise and CEO phase noise. Equation (2.31) goes beyond
modeling the phase noise of the MLL intensity waveform, and is of basic importance
for stabilization techniques that stabilize two individual comblines of the MLL.

The elastic tape theory has been shown to be valid using the perturbation theory
and is also verified by experiment [75, 76]. The correlation between the frequency
and phase noise of the individual comblines is the key to measure CEO frequency
using the Nobel prize winning 𝑓 − 2 𝑓 interferometry technique. This technique
connected the measurement of optical and microwave frequencies and paved the
way for optical frequency metrology [57–59].

2.4 𝑓 − 2 𝑓 interferometry

The optical frequencies are at least two orders of magnitude higher than the mi-
crowave frequencies. The gap between microwave and optical frequencies cannot be
easily filled due to lack of components operating in the THz frequency range. One
might try to measure an optical frequency relative to another optical frequency where
their frequency difference lies in the microwave range, however, the absolute value
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of the optical frequency still remains unknown. The advent of high-energy coherent
pulses with extremely wide spectral comblines helped to solve this problem using
the gold-standard 𝑓 − 2 𝑓 interferometry technique. The operating principle of this
technique is illustrated graphically in Figure 2.6(a).

𝑓1 = 𝑓ceo + 𝑘 𝑓𝑅 𝑓2 = 𝑓ceo + 2𝑘 𝑓𝑅

𝑓

SHG Δ 𝑓

𝑓ceo

2 𝑓ceo + 2𝑘 𝑓𝑅 𝑓ceo + 2𝑘 𝑓𝑅

(a)

MLL
DCF HNLF

EDFA PPLN
SC 50Ω

𝑓ceo

(b)

Figure 2.6: (a) Illustration of 𝑓 −2 𝑓 interferometry operating principle
and (b) block diagram of an 𝑓 − 2 𝑓 interferometry implementation
(adopted from [77]). DCF, dispersion compensation fiber; EDFA,
Erbium-doped fiber amplifier; HNLF, highly nonlinear fiber; SC, su-
percontinuum; PPLN, periodically poled lithium niobate; SHG, sec-

ond harmonic generation.

In order to explain the principle of 𝑓 − 2 𝑓 interferometry, we assume the MLL
spectral lines cover an octave of bandwidth, a so-called supercontinuum (SC). The
frequency of one of the comblines at the lower end of the frequency can be written
as

𝑓1 = 𝑓ceo + 𝑘 𝑓𝑅 , (2.32)

and the frequency of one of the comblines at the higher end of the frequency range
is

𝑓2 = 𝑓ceo + 2𝑘 𝑓𝑅 . (2.33)

The combline with the lower frequency is applied to a second harmonic generation
(SHG) crystal and its frequency difference with the combline with the higher fre-
quency is detected, which is the CEO frequency. This is an elegant technique which
can be used to determine the frequency of every single spectral line with very high
precision.

Figure 2.6(b) shows an implementation of 𝑓 − 2 𝑓 interferometric setup [77]. In
order to generate supercontinuum, the optical pulses of MLL are first amplified
using an Erbium-doped fiber amplifier (EDFA) to reach high pulse energy levels. A
dispersion compensation fiber (DCF) is placed before the amplifier to compensate
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for its dispersion. The high energy pulses then drive a highly nonlinear fiber (HNLF)
and generate a supercontinuum optical pulse. Applying this optical pulse to a
periodically poled lithium niobate (PPLN) generates the second harmonic of the
comblines, among them 𝑓1 in (2.32). The output of PPLN includes both leakage
of 𝑓2 and the second harmonic of 𝑓1. Photodetection of the PPLN output then
discriminates 𝑓ceo.

2.4.1 Optical frequency division

An important application of 𝑓 − 2 𝑓 interferometry is generation of extremely low
phase noise optical pulses synchronized to a precise CW optical reference, a so-
called optical frequency division (OFD) technique. This can be explained by rear-
ranging (2.31) as

𝜙𝑛,𝑅(𝑡) = 1
𝑘

[︁
𝜙𝑛,𝑘(𝑡) − 𝜙𝑛,ceo(𝑡)

]︁
. (2.34)

Since the optical frequencies are at least 3 orders of magnitude higher than microwave
frequencies, using (2.30) 𝑘 is approximated as

𝑘 ≈ 𝑓𝑘
𝑓𝑅
. (2.35)

If the phase noise of CEO is sufficiently below that of the 𝑘th combline, then the noise
properties of the 𝑘th combline are transferred to the repetition rate by the rule of an
ideal frequency divider

𝜙𝑛,𝑅(𝑡) ≈ 𝑓𝑅
𝑓𝑘
𝜙𝑛,𝑘(𝑡) . (2.36)

This relation is the key to generation of extremely low noise clock signals using the
optical frequency division (OFD) technique. In this technique, on the one hand the
𝑘th combline is locked to an ultralow noise optical reference and on the other hand,
𝑓ceo is stabilized to a microwave reference.

Figure 2.7 shows the effect of stabilization on the phase noise of a commercial
MLL [77]. The phase noise of non-stabilized 𝑓ceo is up to 6 orders of magnitude higher
than that of an ultralow noise optical reference (from Menlo Systems). Although the
stabilization has improved the 𝑓ceo noise at offset frequencies below 10 kHz, it has not
provided sufficient suppression of 𝑓ceo noise and it is still higher than the phase noise
of the ultrastable laser. For a perfect division, one has to sufficiently suppress the
CEO noise such that 𝜙𝑛,ceo in (2.34) can be neglected an consequently (2.36) holds.

2.5 Summary and conclusion

In this chapter, we looked at the operating principle of mode-locked lasers and the
properties of their output signals. A basic understanding of MLL is necessary for the
generation of low noise microwave signal from optical pulses of MLLs. The active
MLL uses a modulator to incorporate a time-dependent loss in the laser cavity and
shape the optical pulse. Since the modulator is excited with an external periodic
signal, the noise properties of active MLL are determined by the noise properties of
the excitation signal. Therefore, active MLLs have similar phase noise performance
to quartz and SAW oscillators. In contrast, passive MLLs use a nonlinear element in
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Figure 2.7: (red) Phase noise of non-stabilized 𝑓ceo of an MLL, (blue)
phase noise of stabilized 𝑓ceo of the same MLL [77] and (violet) phase

noise of an ultrastable cavity laser at 1542 nm [78].

the laser cavity to shape the optical pulse and the phase noise of the generated optical
pulse becomes a function of the geometry of the cavity and material properties of its
components. Consequently passive MLLs have been optimized to have better phase
noise by orders of magnitude compared to quartz and SAW oscillators.

The phase noise of MLL intensity waveform is transferred to the OEPLL (inside
loop bandwidth) and therefore improvement of MLL phase noise directly affects the
phase noise of the generated RF signal. As we will see later, for the OEPLL it is
necessary to just model the intensity of these optical pulses. However, improvement
of the phase noise of the intensity waveform depends on the stabilization technique.
The state-of-the-art stabilization technique known as optical frequency division re-
quires more information than just the intensity of the optical pulses and modeling
the optical field of individual comblines is necessary. In addition, some RF genera-
tion techniques such as heterodyne mixing also require this modeling. The theory of
MLLs and optical-domain modeling of MLL pulses open the way for more innovative
techniques for microwave signal generation based on MLLs.
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Chapter 3

Theory of Optoelectronic
Phase-Locked Loop

In previous chapters the theory of MLL and different RF generation techniques
have been discussed. It was shown that among different MLL-based RF generation
methods, the OEPLL is best suited for versatile RF frequency synthesis. In this
chapter, we provide a detailed analysis of the OEPLL. First, an abstract model of
PLL is presented which is then analyzed at system level. This abstract model is then
adapted to OEPLL concept. In order to provide the component level specifications
required for this system level analysis, the BOMPD has to be characterized. Therefore,
the governing equations of BOMPD are derived and the behavior of BOMPD in
dynamics of OEPLL is discussed. It is noteworthy that the theory presented in
this chapter has been published in high-ranked journals and conferences [author’s
publication, 18, 53, 54].

3.1 Generic theory of phase-locked loop

Figure 3.1 shows the generic diagram of a PLL at an abstract level. For our phase
noise discussions, we also include relevant noise sources to this abstract model. Now
we provide a mathematical model for signals and various blocks of Figure 3.1.

Reference signal The PLL reference input is a sinusoidal signal

𝑥R(𝑡) = 𝑥0 cos
(︁
𝜔0𝑡 + 𝜙0 + 𝜙𝑛,R(𝑡)

)︁
, (3.1)

where 𝑥0 is its amplitude, 𝜔0 is its angular frequency, 𝜙0 is its offset phase and 𝜙𝑛,R(𝑡)
is its phase noise.

Freq.
Reference

Ref. Freq.
Translator

×𝑁R
Phase

Detector

Tunable
Oscillator

Loop Freq.
Translator

÷𝑁L

ℎLF(𝑡)

𝑥out

Figure 3.1: Generic block diagram of phase-locked loop.

Frequency translators The PLL requires equal frequencies at the inputs of the
phase detector to phase-lock the tunable oscillator to the reference. In order to match
these frequencies, the frequency of the reference should match the frequency of the
tunable oscillator. This is realized by using frequency translators in the reference
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path and the feedback path. Both these frequency translators are included in our
model in Figure 3.1 and their effect on the phase noise will be compared. We assume
ideal noiseless frequency translators without additive noise and insensitive to their
input amplitude. The transfer characteristic of the frequency translator T𝑁 {.} can
therefore be written as

T𝑁
{︁
𝑥1 cos

(︁
𝜙(𝑡))︁}︁ = 𝑎𝑁 cos

(︁
𝑁𝜙(𝑡))︁ (3.2)

where 𝑁 is the frequency translation factor, 𝜙 is the instantaneous phase of the input
signal, 𝑥1 is the amplitude of the input signal and 𝑎𝑁 is the amplitude of the output
signal. Although an ideal frequency translator does not add any noise to the original
signal, the phase noise of the original signal is boosted by the frequency translation
factor, 𝑁 , and if the PSD of the phase noise is concerned, the PSD is boosted by a
factor of 𝑁2. Note that this noise is not additive and if another frequency translator
with a translation factor of 1/𝑁 is used to recover the signal, the original signal with
its phase noise is restored.

Phase detector The phase detector generates an output that is proportional to
the instantaneous phase difference between its inputs. The phase detector output is
then filtered and generates an error signal which aligns the tunable oscillator phase
with the reference phase. We assume the phase detector properties are insensitive
to its input levels, but we incorporate its noise in our model. The phase detector
characteristic function T𝑃𝐷{.} consequently can be written as

TPD
{︁
𝑥1 cos

(︁
𝜙1(𝑡)

)︁
, 𝑥2 cos

(︁
𝜙2(𝑡)

)︁}︁
= 𝐾𝜙

(︁
𝜙1(𝑡) − 𝜙2(𝑡) + 𝜙𝑛,PD(𝑡)

)︁
, (3.3)

where 𝑥1 and 𝑥2 are the amplitudes of the phase detector inputs, 𝜙1 and 𝜙2 are the
instantaneous phase of the inputs, 𝐾𝜙 is the phase detector gain and 𝜙𝑛,PD is the
noise of the phase detector.

Tunable Oscillator The tunable oscillator generates a sinusoidal waveform whose
instantaneous frequency is proportional to its input tuning voltage. Since the instan-
taneous phase of a sinusoidal signal is equal to the integral of its instantaneous
frequency, transfer characteristic of the tunable oscillator can be modeled as

TTO
{︁
𝑥1(𝑡)

}︁
= 𝑥TO cos

(︃
𝜔0𝑡 + 𝜙𝑛,TO(𝑡) + 𝐾𝑉

∫
d𝑡𝑥1(𝑡)

)︃
, (3.4)

where 𝑥1 is the input signal of the tunable oscillator, 𝜔0 is its nominal angular
frequency, 𝑥TO is its amplitude, 𝐾𝑉 is its tuning sensitivity and 𝜙𝑛,TO is its phase
noise. We also assumed that the oscillation amplitude 𝑥TO is independent of the
input tuning voltage 𝑥1(𝑡).

𝜙R +

𝜙n,R

𝑁R +−
+

𝜙n,PD

𝐾𝜙 𝐾V
∫

d𝑡 +

𝜙n,TO
ℎLF(𝑡)

𝜙out

1
𝑁L

Reference Phase Detector Tunable Oscillator

Figure 3.2: Linear model of phase-locked loop in the phase domain.
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Under these assumptions, the nonlinear blocks of PLL can be linearized in the
phase domain as illustrated in 3.2. Using linear control theory mathematical toolbox,
the open loop transfer function of the PLL is defined as the transfer function of all
loop components multiplied

𝐻OL(𝑠) := 1
𝑁L

𝐾𝜙𝐻LF(𝑠)𝐾𝑉𝑠 , (3.5)

where 𝐻LF(𝑠) is the Laplace transform of loop filter impulse response ℎLF(𝑡). It can
be seen that 𝐻OL(𝑠) is inversely proportional to the loop division factor 𝑁L which
consequently affects all loop parameters. This reduction of gain can be compensated
by a higher gain for the loop filter or higher phase detector gain. Therefore, for
comparing the effect of different frequency translators on the PLL phase noise, we
assume 𝐻OL is designed for a fixed loop bandwidth and phase margin, and the open
loop gain is compensated by a proper loop design and is independent of loop division
factor.

Now we look at the loop filter requirements. An interesting choice for the loop
filter is an integrator with a transfer function of

𝐻LF(𝑠) = 𝑠0
𝑠
. (3.6)

This type of loop filter has practical advantages. It results in an infinite steady-
state gain for the loop filter and an average-zero error signal at the phase detector
output, regardless of the level of the dc signal required by the tunable oscillator.
This is especially interesting since in practice phase detector transfer characteristic
is dependent on its output operating point and it is desired to operate the phase
detector around a certain point. Although the loop filter transfer function in (3.6) has
practical advantages, an ideal integrator as the loop filter makes the loop unstable.
This problem can be solved by placing a zero at the loop filter transfer function

𝐻LF(𝑠) = 𝜅𝑠 + 𝑠0
𝑠

. (3.7)

where 𝜅 is a constant. Placing this zero is usually realized by a simple series RC-
circuit or using an operational amplifier. We now define the closed-loop transfer
function as

𝐻CL(𝑠) := 𝐻OL(𝑠)
1 + 𝐻OL(𝑠) . (3.8)

This definition simplifies other transfer functions of the system with respect to differ-
ent inputs and is especially beneficial in understanding how different noise sources
affect the overall phase noise. In this discussion, we assume the PLL is stable and
limit the scope of our analysis to offset frequencies sufficiently above and below the
loop cut-off frequency. Further details on the stability of the loop can be found in the
reference books [19, 79]. The open loop and closed-loop transfer functions, 𝐻OL(𝑠)
and 𝐻CL(𝑠), are plotted in Figure 3.3. On the one hand, at frequencies well below the
loop cut-off frequency 𝐻OL(𝑠) diverges to infinity and it causes 𝐻CL(𝑠) to converge
to 1. On the other hand, at frequencies well above the loop cut-off frequency 𝐻OL(𝑠)
converges to 0 and it causes 𝐻CL(𝑠) to also converge to 0. These behaviors at low and
high frequencies can also directly be observed in equations (3.5) and (3.8), assuming
the loop filter has the transfer function given in (3.7).
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Figure 3.3: Open loop and closed-loop transfer functions of PLL in
logarithmic scale.

Table 3.1: Behavior of different PLL transfer functions at close-in and
far offset frequencies.

𝐻OL 𝐻CL 𝐻𝑛,R 𝐻𝑛,PD 𝐻𝑛,TO

𝜔 = 0 (inside loop) ∞ 1 𝑁R𝑁L 𝑁L 0
𝜔 → ∞ (outside loop) 0 0 0 0 1

Now we derive the phase transfer functions. The closed-loop transfer function of
the output phase to the reference input phase can be written as

Φout
ΦR

(𝑠) = 𝑁R𝑁L
𝐻OL(𝑠)

1 + 𝐻OL(𝑠) = 𝑁R𝑁L𝐻CL(𝑠), (3.9)

where ΦR is the reference phase in the Laplace domain. The closed-loop transfer
function of the noise sources can also be found as

𝐻𝑛,R(𝑠) = Φout
Φ𝑛,R

(𝑠) = 𝑁R𝑁L𝐻CL(𝑠), (3.10)

and

𝐻𝑛,PD(𝑠) = Φout
Φ𝑛,PD

(𝑠) = 𝑁L𝐻CL(𝑠). (3.11)

The transfer function of the output phase to the tunable oscillator phase noise can
also be written in terms of the open-loop transfer function

𝐻𝑛,TO(𝑠) = Φout
Φn,TO

(𝑠) = 1
1 + 𝐻OL(𝑠) = 1 − 𝐻CL(𝑠). (3.12)

In our equations, we used small letters such as ℎ and 𝜙 for time domain signals and
capital letters such and 𝐻 and Φ for Laplace domain signals.

Now we look at the shapes of these transfer functions, plotted in Figure 3.3, to
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see how they affect the output signal phase noise. On the one hand, the noise of
the reference and the phase detector are effective inside the loop bandwidth and are
suppressed outside it. The tunable oscillator noise, on the other hand, is transferred
to the output outside the loop bandwidth and is suppressed inside it. In addition,
the reference noise inside the loop bandwidth is transferred to the output by a scaling
factor equal to the overall frequency translation factor, 𝑁R𝑁L. So at offset frequencies
inside the loop bandwidth,𝐻𝑛,R(𝑠)operates like an ideal frequency translator. Finally,
the phase detector noise is scaled by the loop frequency translation factor 𝑁L. This is
one of the most important results of this analysis. It shows that in order to minimize
the phase detector noise, the loop frequency divider should be avoided. While
using a loop frequency divider is very popular in low cost PLLs, high performance
laboratory grade instruments avoid it at the cost of higher overall system complexity.
Table 3.1 summarizes the behavior of the PLL transfer functions at close-in and far
offset frequencies.

3.2 Dynamics of optoelectronic phase-locked loop

So far, a generic theory to analyze the PLL has been presented. In this section we
adapt this theory to optoelectronic phase-locked loop (OEPLL). A simplified block
diagram of the OEPLL is shown in Figure 3.4(a). The tunable oscillator signal is in the
electrical domain and the frequency reference is the MLL optical output. Therefore,
the phase detector is required to operate in a mixed electro-optical domain, a so-called
balanced optical microwave phase detector (BOMPD). The BOMPD is implemented
by means of a balanced intensity modulator (BIM) which can be a balanced Mach-
Zehnder modulator (MZM) or a Sagnac loop, as they both have similar transfer
characteristics. The optical pulses of the MLL are intensity-modulated with the RF
signal from the tunable oscillator, as illustrated in Figure 3.4(b). The modulator
has two optical outputs with complementary intensities. The optical outputs of the
modulator are converted to electrical currents with a pair of photodiodes and these
currents are subtracted via the balanced configuration of the photodiodes. This
current is then integrated at the loop filter to generate an error voltage which aligns
the phase of the tunable oscillator with the phase of the envelope of the optical
reference signal.

The intensities of the BIM outputs are equal when the RF signal is phase-aligned
with the envelope of the optical reference, as illustrated in Figure 3.4(b) with solid red
and blue colors. Therefore, when the OEPLL is phase-locked, the current difference
of the pair of photodiodes will be zero. Consequently, the applied voltage to the
tunable oscillator will not change and its phase is stabilized. Any change in the phase
difference causes an unbalance between the output intensities of the BIM as illustrated
in Figure 3.4(b) with the dashed and dotted blue and red optical pulses. These optical
pulses generate a non-zero current difference in the pair of the photodiodes. This
current difference can be considered as an error current which is integrated by the
loop filter and realigns the tunable oscillator phase.

The optical pulses of MLLs have sub-picosecond widths which correspond to
hundreds of gigahertz spectral widths. The intensity of these waveforms is therefore
harmonic rich with at least hundreds of gigahertz bandwidth. Therefore, by using
such a harmonic rich waveform, the reference repetition rate has already the har-
monics which were generated via the reference frequency translator in our model in
Figure 3.1. Since the OEPLL can potentially lock on any of the available reference



30 Chapter 3. Theory of Optoelectronic Phase-Locked Loop
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Figure 3.4: (a) Simplified block diagram of the OEPLL and (b) cor-
responding waveforms: (black) voltage waveform at the RF port of
BIM, (red) upper photodiode current and (blue) lower photodiode
current when (solid) the phase of RF signal and the optical intensity
are aligned, (dashed) the optical intensity has a phase lead and (dot-

ted) the optical intensity has a phase lag.

harmonics, pre-tuning of the tunable oscillator around the desired frequency is nec-
essary. Similar to the block diagram of the generic PLL, the block diagram of OEPLL
in the phase domain is illustrated in Figure 3.5(a). The optical paths are drawn in
blue and electrical paths in black.

The BOMPD outputs current pulses from the pair of photodiodes and the tunable
oscillator usually requires a voltage as its tuning output. So, the phase detector gain
has units of A/Rad and the loop filter transfer function has units of Ohm. The
simplest approach to implement a loop filter with a zero in its transfer function
as (3.7) is the series RC circuit illustrated in Figure 3.5(b). The filter transfer function
simply is

𝐻LF(𝑠) = 𝑅1𝐶1𝑠 + 1
𝐶1𝑠

. (3.13)

With this transfer function, the open loop transfer function can be written as

𝐻OL(𝑠) =
𝐾𝑉𝐾𝜙(𝑅1𝐶1𝑠 + 1)

𝐶1𝑠2 , (3.14)

and the closed-loop transfer function as

𝐻CL(𝑠) =
𝐾𝑉𝐾𝜙(𝑅1𝐶1𝑠 + 1)

𝐶1𝑠2 + 𝐾𝑉𝐾𝜙(𝑅1𝐶1𝑠 + 1) . (3.15)
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Figure 3.5: (a) Linear model of the optoelectronic phase-locked loop
in the phase domain. (b) OEPLL loop filter including the resistor

thermal noise.

Using this closed loop transfer function, the natural angular frequency (𝜔𝑛) and the
damping factor (𝜁) can be found as

𝜔𝑛 =

√︄
𝐾𝑉𝐾𝜙

𝐶1
, (3.16)

and

𝜁 =
1
2𝑅1

√︂
𝐾𝑉𝐾𝜙𝐶1 . (3.17)

The closed-loop transfer function can be rewritten in a more familiar form

𝐻CL(𝑠) =
2𝜁𝜔𝑛(𝑠 + 𝜔𝑛

2𝜁 )
𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔2

𝑛
. (3.18)

The closed-loop transfer function can consequently be used to set the desired loop
parameters such as the loop bandwidth and phase margin. The desired loop filter
components for a given natural frequency and damping factor can also be calculated

𝐶1 =
𝐾𝑉𝐾𝜙

𝜔2
𝑛

, (3.19)

and

𝑅1 =
2𝜁𝜔𝑛

𝐾𝑉𝐾𝜙
. (3.20)

In Chapter 2 we showed that the phase noise of MLLs can be below the phase
noise of quartz and SAW oscillators by orders of magnitude. For fully electronic
PLLs usually the reference phase noise is the theoretical limiting factor. In contrast,



32 Chapter 3. Theory of Optoelectronic Phase-Locked Loop

in OEPLLs, where optical reference noise might no longer be the limiting factor,
other noise sources can make a great contribution to overall phase noise. Here we
only adapt a system level point of view and consider the resistor thermal noise.
Although the resistor noise is not problematic for many typical PLL designs, it can
affect the overall phase noise of a ultra-low phase noise OEPLL. Other noise sources
are covered in Section 4.1.

Now the transfer function of the thermal noise of the resistor is derived. The
contribution of the resistor voltage noise, 𝑣𝑛,𝑅1 , to the output voltage is a function
of the source and load impedances of the loop filter, 𝑍in and 𝑍out, respectively. It
is a fair assumption to consider the impedances of the photodiodes and the tuning
input of the tunable oscillator to be sufficiently high at frequencies below a few
megahertz — which is the range of interest for analysis of loop dynamics. Therefore,
the thermal noise voltage of the resistor is transferred to the node 𝑣out with unity
transfer function. The overall transfer function of this noise voltage to the output
then is

𝐻𝑛,𝑅1(𝑠) =
Φout
𝑉𝑛,𝑅1

(𝑠) = 𝐾𝑉 𝑠

𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔2
𝑛
. (3.21)

This transfer function has a bandpass shape, and the resistor noise is suppressed
at frequencies well below and above loop cut-off frequency. Taking to account the
PSD of the resistor thermal noise, 4𝑘𝑇𝑅1, its contribution to the overall phase noise,
𝑆𝜙out ,𝑅1( 𝑓 ), can be written as

𝑆𝜙out ,𝑅1( 𝑓 ) =
4𝑘𝑇𝑅1𝐾2

𝑉𝜔
2|︁|︁𝜔2 + 2j𝜁𝜔𝑛𝜔 + 𝜔2

𝑛

|︁|︁2 , (3.22)

where j is the unit imaginary number
√−1, 𝑘 is the Boltzmann’s constant, 𝑇 is

absolute temperature and 𝜔 = 2𝜋 𝑓 . Substituting the resistance value in (3.20) to the
PSD of (3.22) results in

𝑆𝜙out ,𝑅1( 𝑓 ) =
8𝑘𝑇𝐾𝑉𝜁𝜔𝑛𝜔2

𝐾𝜙

|︁|︁𝜔2 + 2j𝜁𝜔𝑛𝜔 + 𝜔2
𝑛

|︁|︁2 , (3.23)

The contribution of the loop filter resistor thermal noise to the overall phase noise
is proportional to 𝐾𝑉 and inversely proportional to 𝐾𝜙. The resistor thermal noise
shows its effect as a bump around the loop cut-off frequency and in order to suppress
it, phase detector gain 𝐾𝜙 can be increased or tunable oscillator tuning sensitivity 𝐾𝑉
can be decreased.

3.3 Characteristic function of BOMPD

In the previous section, we derived the relevant characteristic functions of the OEPLL.
From a system level perspective, we assumed the OEPLL phase detector, the BOMPD,
has a linear gain of 𝐾𝜙. In this section, we determine the BOMPD gain with respect
to the specifications of its building blocks and its inputs.

One must keep in mind that the BOMPD operates in a mixed electro-optical
domain, as its reference input is in the optical domain and its RF input as well as
its output current are in the electrical domain. The BOMPD characteristic function
describes its output current, the photocurrent of the pair of photodiodes, versus the
phase difference between its inputs, the RF signal applied to BIM and the intensity of
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the optical input. The linear phase detector gain, which is required for the analysis
of the OEPLL in the phase domain, is then the slope of the characteristic function.

A simplified block diagram of OEPLL is shown in Figure 3.4(a). The intensities
of the optical outputs of a loss-less MZM, 𝐼+𝑦 and 𝐼−𝑦 , as a function of its optical input
and the optical phase shift introduced by the modulation voltages can be written as
(the derivation steps are given in the Appendix C.)

𝐼±𝑦 =
𝐼(𝑡)
2

[︁
1 ± sin(𝜓)]︁ , (3.24)

where 𝐼(𝑡) is the optical cycle averaged intensity of the optical input and 𝜓 is the total
optical phase shift in the modulator arms. The phase shift 𝜓 is proportional to the
dc and the RF modulation voltages

𝜓 = 𝜓RF + 𝜓dc =
𝑣RF𝜋
𝑉𝜋,RF

+ 𝑣dc𝜋
𝑉𝜋,dc

, (3.25)

where 𝜓dc is the optical phase shift introduced by the dc electrode, 𝜓RF is the optical
phase shift introduced by the RF electrode, 𝑉𝜋,dc is the 𝜋-voltage of the dc electrode,
𝑉𝜋,RF is the 𝜋-voltage of RF electrode, 𝑣dc is the bias voltage at the dc electrode and
𝑣RF is the RF modulation voltage.

The MLL output is periodic and its output intensity can be formulated as

𝐼(𝑡) = 𝐼0𝑇𝑅
+∞∑︂

𝑚=−∞
𝑃(𝑡 − 𝑚

𝑓𝑅
) , (3.26)

where 𝐼0 is the average optical intensity of the MLL output, 𝑇𝑅 is the period of 𝐼(𝑡),
𝑓𝑅 is the frequency of 𝐼(𝑡) and 𝑃(𝑡) is the energy-normalized pulse shape such that

∫ +𝑇𝑅/2

−𝑇𝑅/2
d𝑡𝑃(𝑡) = 1 . (3.27)

The optical pulses of the low noise MLLs have typically sub-picoseconds widths.
Such low pulse widths correspond to bandwidths of at least hundreds of gigahertz
which are much more than the bandwidth of many RF systems such as frequency
synthesizers. Therefore, it is a good approximation to consider the intensity of MLL
pulses as Dirac delta pulses, 𝑃(𝑡) ≈ 𝛿(𝑡). This assumption significantly simplifies the
Fourier series expansion of the intensity waveform as

𝐼(𝑡) = 𝐼0𝑇𝑅
+∞∑︂

𝑚=−∞
𝛿(𝑡 − 𝑚

𝑓𝑅
)

= 𝐼0

[︄
1 + 2

+∞∑︂
𝑘=1

cos(𝑘𝜔𝑅𝑡)
]︄
. (3.28)

We assume single tone excitation of the RF electrode with an angular frequency of
𝜔RF, an amplitude of 𝑉RF, and an offset phase of 𝜙,

𝑣RF = 𝑉RF sin(𝜔RF𝑡 + 𝜙) . (3.29)
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The output differential intensity Δ𝐼𝑦 which corresponds to the output current of
the photodetectors pair 𝑖BOMPD in Figure 3.4(a) is defined as

Δ𝐼𝑦 := 𝐼+𝑦 − 𝐼−𝑦 = 𝐼(𝑡) sin(𝜓) . (3.30)

We call 𝜓dc = 0 as the odd symmetry point and 𝜓dc = ±𝜋/2 as the even symmetry
points, since Δ𝐼𝑦(𝑣RF) has odd and even symmetry versus 𝑣RF around these points,
respectively.

The characteristic function of the BOMPD is defined as its average output current
as a function of the phase difference between the RF signal and the MLL desired
harmonic

𝐻(𝜙) = ⟨𝑖+PD − 𝑖−PD⟩ , (3.31)

where ⟨.⟩ denotes temporal averaging and 𝑖+PD & 𝑖−PD are the upper & lower photodiode
currents, respectively. Now we assume the photodetectors in Figure 3.4(a) are linear
with infinite bandwidth. This assumption significantly simplifies our derivations. In
practice, the loop bandwidth of the OEPLL is in megahertz range and the photodiode
bandwidth is at least a few hundreds of megahertz and the photodiode bandwidth
does not affect the OEPLL performance. For the sake of a perfect analysis, we
will consider the photodiode bandwidth in our photodiode noise calculations in
Section 4.1. The BOMPD characteristic function can now directly be related to the
BOMPD output differential intensity as

𝐻(𝜙) = ⟨𝑖+PD − 𝑖−PD⟩
= ⟨𝑅𝜆𝐼+𝑦 − 𝑅𝜆𝐼−𝑦 ⟩
= 𝑅𝜆⟨Δ𝐼𝑦⟩ , (3.32)

where 𝑅𝜆 is the photodiode responsivity.
Combining (3.30) and (3.29), one can see that in low 𝑉RF regime (𝑉RF ≪ 𝑉𝜋,RF)

and zero dc phase shift (𝜓dc = 0), the balanced MZM operates as a balanced electro-
optical mixer and multiplies the intensity of the optical signal by the RF modulation
amplitude. In this regime, the differential output intensity will be

Δ𝐼𝑦 = 𝐼(𝑡) sin(𝜓) ≈ 𝐼(𝑡)𝜓

= 𝛼𝐼0 sin(𝜔RF𝑡 + 𝜙)
[︄
1 + 2

+∞∑︂
𝑘=1

cos(𝑘𝜔𝑅𝑡)
]︄
, (3.33)

where

𝛼 = 𝑉RF𝜋/𝑉𝜋,RF . (3.34)

The necessary condition for harmonic locking can be found from (3.33), as the
BOMPD is required to generate a dc error signal which is used to lock the tunable
oscillator onto the reference. Therefore, in (3.33) there should be a 𝑘 such that

𝜔RF = 𝑘𝜔𝑅 . (3.35)
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This condition is called harmonic locking condition. The BOMPD characteristic func-
tion, 𝐻(𝜙), consequently can be found using Equation (3.32) as

𝐻(𝜙) ≈ 𝛼𝐼0𝑅𝜆 sin(𝜙) , (3.36)

By increasing the RF modulation amplitude, the modulator enters the non-linear
regime in which case the linear approximation of (3.33) has a high error. Finding the
exact form of the BOMPD characteristic function using the Fourier series expansion of
𝐼(𝑡) and sin(𝜓) is a tedious task. It is much easier to find the characteristic function of
the BOMPD with direct integration and avoid the Fourier series expansion. Applying
the condition of harmonic locking, 𝜔RF = 𝑘𝜔𝑅, to (3.30) results in a periodic function
with a period of 𝑇𝑅. Therefore, it is sufficient to average over one period of this
function to find the phase detector characteristic function.

𝐻(𝜙) = 𝑅𝜆

𝑇𝑅

∫
<𝑇𝑅>

d𝑡Δ𝐼𝑦(𝑡)

=
𝑅𝜆

𝑇𝑅

∫ 𝑇−
𝑅

0−
d𝑡𝐼0𝑇𝑅𝛿(𝑡) sin

[︁
𝛼 sin(𝜔RF𝑡 + 𝜙) + 𝜓dc

]︁
= 𝐼0𝑅𝜆 sin

[︁
𝛼 sin(𝜙) + 𝜓dc

]︁
. (3.37)

This result is identical to what is derived in [80] but our derivation is much more
compact and also the dependency of the BOMPD characteristic function on the bias
point variation is considered. Depending on the value of 𝜓dc, this characteristic
function will have different properties which are discussed in following sections.
The argument of outer sine function in (3.37) is also defined as

𝜓0 = 𝜓dc + 𝛼 sin(𝜙) . (3.38)

This definition will be very useful especially in our noise derivations and will be
referred to repeatedly.

3.3.1 BOMPD behavior in dynamics of OEPLL

In this section the necessary conditions of phase-locking of OEPLL shown in Fig-
ure 3.4(a) using BOMPD are discussed. The characteristic functions of the BOMPD
are drawn in Figure 3.6(a) and Figure 3.6(b) for different conditions. The slope of
these curves at their operating point is the phase detector gain. Using an RC loop
filter shown in 3.5(b) to integrate the output current of the BOMPD (similar to type-II
charge pump PLLs) forces the steady state current to be zero [19]. This makes the
BOMPD operating point (𝜙) and gain independent of the required tuning voltage for
the tunable oscillator. Therefore, the BOMPD should have at least one zero crossing
in its characteristic function curve. From this point, when we refer to phase detector
gain, we mean the phase detector gain at the zero crossing.

The characteristic function in (3.37) scales linearly with 𝐼0𝑅𝜆 and its shape varies
with respect to two variables, 𝛼 and 𝜓dc. An important scenario is when the modu-
lator is biased at the odd symmetry point and 𝐻(𝜙) becomes

𝐻(𝜙) = 𝐼0𝑅 sin
[︁
𝛼 sin(𝜙)]︁ . (3.39)

Equation (3.39) shows that 𝐻(𝜙) has odd symmetry when the modulator is biased at
𝜓dc = 0 and the characteristic function has a zero at 𝜙 = 0. Another feature of 𝐻(𝜙)



36 Chapter 3. Theory of Optoelectronic Phase-Locked Loop

can be derived from (3.37)

𝐻
(︂
±𝜋

2 + 𝜙
)︂
= 𝐻

(︂
±𝜋

2 − 𝜙
)︂
. (3.40)

In other words, the characteristic function has even symmetry around 𝜙 = ±𝜋/2.
Therefore the zeros of the characteristic function come in pairs which are symmetric
around 𝜙 = ±𝜋/2. These pairs correspond to phase detection gains with equal
amplitudes and opposite signs which can be seen in Figures 3.6(a) and 3.6(b) as the
slope of the characteristic function at the zero crossings. Depending on the slope of
the tuning characteristic curve of the tunable oscillator, the OEPLL locks either with
the positive or the negative gain of BOMPD.
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Figure 3.6: Phase detector characteristic curves for (a) different RF
excitation amplitudes and (b) different bias points.

Another effect that can be seen in Figure 3.6(a) is that as the RF modulation
amplitude increases, more zeros may appear in the characteristic function. However,
these zeros correspond to relatively high modulation amplitudes. Increasing the RF
amplitude to 𝑉𝜋,RF (which corresponds to 𝛼 = 1) leads to two additional zeros at
𝜙 = ±𝜋/2. The phase detector gain at these zeros is 0 or practically very low, and
therefore, the loop cannot lock on these points. In addition, considering currently
available LiNbO3 modulators with 𝑉𝜋 of approximately 4 V, an RF excitation of 𝑉𝜋

corresponds to medium range RF power levels in the 50 Ω system which are suitable
for low noise and wideband applications. We therefore avoid further discussion
of additional zeros in the transfer characteristics and limit our discussion to RF
excitation voltages below 𝑉𝜋.

Figure 3.6(b) shows the effect of the modulator’s bias point variation on the
BOMPD characteristic function. It can be seen that as the bias point moves toward
the 𝜓 = 𝜋/2 even symmetry point, the zero-crossing point moves toward negative
values of 𝜙, the function is shifted upward and its shape changes. One of the zero
crossings of 𝐻(𝜙) can be found using (3.37) as

𝜙0 = − arcsin
(︃
𝜓dc

𝛼

)︃
where |𝜓dc | ≤ 𝛼 . (3.41)

The other zero of 𝐻(𝜙) can be found using (3.40). If the absolute value of the
offset phase exceeds 𝛼, then the transfer characteristic will not have any zeros and
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therefore the OEPLL does not lock. One can see in Figure 3.6(b) that as the phase
offset 𝜓dc increases, the slope of 𝐻(𝜙) at its zero crossing decreases. Also, since the
phase detector follows the relation in (3.40), its gain has the same absolute value
for both zero crossings with opposite signs. It is usually desired to maximize the
phase detector gain, as it minimizes the in-band (inside loop bandwidth) noise of the
phase detector and other components. Changing the bias point can also be used as
a degree of freedom to fine-tune the phase detector gain and consequently the loop
bandwidth. The phase detector gain can be found as the derivative of 𝐻(𝜙) with
respect to 𝜙 using (3.41) and (3.37)

𝐾𝜙 = 𝛼𝐼0𝑅𝜆 cos(𝜙0) cos
[︁
𝛼 sin(𝜙0) + 𝜓dc

]︁
= 𝐼0𝑅𝜆

√︂
𝛼2 − 𝜓2

dc . (3.42)

Equation (3.42) shows that 𝐾𝜙 is affected by quite a few parameters, such as the
MLL average power, photodetector responsivity, RF excitation amplitude, MZM
parameters, and MZM dc bias point. Equations (3.42), (3.14) and (3.15) are used to
calculate the transfer function of the OEPLL and provide a basic mathematical model
of the OEPLL.

3.4 Summary and conclusion

The theory presented in this chapter provides a strong mathematical toolbox for
OEPLL analysis, both at the system level and at the component level. Using this
theory, the BOMPD can be designed and its phase detection gain can be calculated.
The OEPLL transfer functions can consequently be derived using the system level
theory and the BOMPD gain. This mathematical model is the foundation of OEPLL
design using BOMPD and can be used for system level simulation and estimation of
the OEPLL response in time and frequency domain.
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Chapter 4

Noise and Nonlinearity in
Optoelectronic Phase-Locked Loop

In the previous chapter, we provided a detailed analysis of the OEPLL at the system
level and at the component level. This analysis provides a systematic approach for
OEPLL design; however, it is not sufficient for OEPLL phase noise estimation and
simulation. In addition, the basic model provided in the previous chapter cannot
predict the OEPLL behavior in high optical pulse energies and large RF amplitudes.
Therefore, additional modeling is required to take into account the noise processes
and nonlinear mechanisms in BOMPD. In this chapter, different noise sources of
OEPLL are modeled and their effect on the OEPLL phase noise are shown and
the results are discussed. Also, the nonlinear effects in BOMPD are shown and
different operating regimes of OEPLL as well as its limitations due to nonlinear
effects are explained. The results presented in this chapter have been published in
peer reviewed journals [author’s publication, 55, 56].

4.1 Noise in BOMPD

In Chapter 3, the OEPLL has been modeled and the BOMPD characteristic function
and its gain have been derived. Now we focus on modeling various noise sources
in BOMPD and their effect on the BOMPD phase noise. There are three main
sources of noise that affect the performance of the BOMPD: noise of the photodiodes,
relative intensity noise (RIN) of the laser, and the noise of dc voltage applied to the
dc electrode of MZM. These noise sources have different behaviors and transfer
characteristics that are addressed in this section.

In order to formulate the effect of these noise sources on the BOMPD performance,
we first quantify the power spectral density of the noise current at the output of the
BOMPD. Taking into account this noise current, the output current of the BOMPD
can then be written as

𝑖out(𝑡) = 𝐻(𝜙) + 𝑖𝑛(𝑡) , (4.1)

where 𝑖out(𝑡) is the output current of the BOMPD, 𝐻(𝜙) is the characteristic function
of the BOMPD given in (3.37), and 𝑖𝑛(𝑡) is the output noise current. In the proximity
of operating point of the BOMPD, 𝐻(𝜙) can be approximated as

𝐻(𝜙) ≈ 𝐾𝜙 × 𝜙 . (4.2)
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Substituting this approximation into (4.1) gives

𝑖out(𝑡) = 𝐾𝜙

(︃
𝜙 + 𝑖𝑛(𝑡)

𝐾𝜙

)︃
. (4.3)

The first term in parentheses in the right-hand side of (4.3) is the phase difference
between the desired harmonic of the envelope of the optical pulse train and the
RF signal. The second term is the output noise current of the BOMPD translated
into phase domain and is called the phase noise of the BOMPD. Like many other
random processes, it is practical to talk about the PSD of phase noise, rather than its
instantaneous value. The PSD of the phase noise of the BOMPD can be written as

𝑆𝜙𝑛 ( 𝑓 ) =
𝑆𝑖𝑛 ( 𝑓 )
𝐾2
𝜙

=
𝑆𝑖𝑛 ( 𝑓 )

𝐼20𝑅
2
𝜆(𝛼2 − 𝜓2

dc)
, (4.4)

where 𝑆𝑖𝑛 ( 𝑓 ) is the PSD of the output noise current 𝑖𝑛(𝑡), and 𝑆𝜙𝑛 ( 𝑓 ) is the PSD
of the equivalent phase noise caused by this current noise. We also substituted 𝐾𝜙

from (3.42) to (4.4). With this approach, all we have to do is to find the output noise
current caused by different mechanisms in the BOMPD. The phase noise caused by
these mechanisms is then found using the relation in (4.4).

4.1.1 Shot noise of photodiodes

Shot noise of photodiodes is considered to be the main source of noise in BOMPD
which can not be avoided — adapting a classical point of view and assuming the
light is in coherent state [81]. Although shot noise is well studied and modeled as a
Poisson process, treatment of non-stationary noise due to pulsed mode stimulation of
the photodiodes used in BOMPD requires further attention. This Poisson process can
be estimated as a Gaussian process since in BOMPD we are dealing with a very high
number of photons. In order to model the non-stationary shot noise, first the time
dependent output intensities of the BOMPD are determined. From these intensities,
the instantaneous variance of the non-stationary shot noise of the photodiode cur-
rents is calculated. This instantaneous variance is then decomposed into two terms:
a deterministic time-variant window function multiplied by a stationary Gaussian
noise. This decomposition is the key in deriving the autocorrelation function and
the power spectral density of the non-stationary photodiode noise current.

The pulse widths of MLLs are typically below 1 ps which is at least 25 times shorter
than the RF signal period in the microwave band up to 40 GHz frequency range.
Therefore, the modulation term in (3.24), 1 ± sin(𝜓), is considered approximately
constant during the time interval it is sampled by the MLL pulses. The harmonic
locking condition, 𝜔RF = 𝑀𝜔𝑅 for a positive integer 𝑀, leads to sampling of the
modulation term at the same phase. Therefore, the modulation term in (3.24) can
be considered as constant. Substituting (3.26) in (3.24) under this assumption, the
output intensities of the modulator can be written as

𝐼±𝑦 =
1
2 𝐼0𝑇𝑅

+∞∑︂
𝑚=−∞

𝑃(𝑡 − 𝑚
𝑓𝑅
) , (4.5)

where 𝐼±𝑦 denotes the intensity of the modulator outputs 𝑦± in Figure 3.4(a) and
𝜓0 is given in (3.38). The photodiode converts the photons into electron-hole pairs.
Generation of charge carriers with photons has Poisson statistics and generates shot
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𝑅𝜆 + ℎ(𝑡)𝐼𝑦(𝑡)
𝑖𝑦(𝑡)

𝑖𝑛,𝑦(𝑡)

𝑖PD + 𝑖𝑛,PD

Photodiode Linear Model

(a)

𝑡

𝐼𝑦

(b)

𝑡

𝑖𝑛,𝑦
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𝑡

𝑖PD

(d)

𝑡

𝑖𝑛,PD

(e)

Figure 4.1: (a) Linear model of photodiode including shot noise, (b)
intensity of the incident beam generated by a femtosecond laser, (c)
generated shot noise before getting shaped by photodiode response,
(d) output current pulses of the photodiode and (e) and shot noise of

the photodiode.

noise [81, Chapter 3]. These charge carriers travel toward the photodiode junctions
with different velocities. This leads to widening of the optical pulse at the photodiode,
the so-called transit-time spread [37, Chapter 17]. These mechanisms are included
in the linear model of the photodiode illustrated in Figure 4.1(a). The photodiode
shot noise 𝑖𝑛,𝑦 is added after linear generation of charge carriers modeled by a
constant responsivity 𝑅𝜆. The transit-time spread is modeled by a lossless linear
time-invariant block with an impulse response of ℎ(𝑡) that does not recombine or
generate charge carriers and therefore∫ ∞

0
d𝑡ℎ(𝑡) = 1 . (4.6)
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𝑡

=

𝑡

×

𝑡

Non-stationary noise Window function Gaussian noise

(a)

𝑡
𝑡

𝑖𝑦 + 𝑖𝑛,𝑦

Δ𝑡

(b)

Figure 4.2: (a) Decomposition of non-stationary shot noise into the
product of a deterministic window function and Gaussian noise, and
(b) quasi-stationary approximation of the optical pulse in a short in-

terval of Δ𝑡.

Using this linear model, the output current of the upper & lower photodiodes
can be written as

𝑖±PD =
1
2 𝐼0𝑇𝑅𝑅𝜆

[︁
1 ± sin(𝜓0)

]︁ +∞∑︂
𝑚=−∞

𝑃(𝑡 − 𝑚
𝑓𝑅
) ∗ ℎ(𝑡) , (4.7)

where ∗ denotes the convolution operation.
The optical pulses of MLL have a much lower effective temporal width than

the photodiode impulse response. Therefore, the optical pulse shape 𝑃(𝑡) can be
approximated as the Dirac delta function and the photodiode currents become

𝑖±PD =
1
2𝑅𝜆𝐼0𝑇R

[︁
1 ± sin(𝜓0)

]︁ +∞∑︂
𝑚=−∞

ℎ(𝑡 − 𝑚
𝑓R
) . (4.8)

When the OEPLL is locked, the output intensities of the BOMPD become equal or
equivalently 𝜓0 = 0. The output currents of the upper and lower photodiode, 𝑖±PD,
consequently become equal

𝑖±PD =
1
2𝑅𝜆𝐼0𝑇R

+∞∑︂
𝑚=−∞

ℎ(𝑡 − 𝑚
𝑓R
) . (4.9)

Now the photodiode currents are derived and we are ready to find the shot noise.
The shot noise of the optical pulse is not stationary and its properties vary with
respect to time. Therefore, we employ a quasi-stationary approach to find the PSD
of the current noise. The probability of detection of a photon at a certain time is
statistically independent of detection of a photon at any time earlier. Therefore, the
shot noise 𝑖𝑛,𝑦(𝑡) can be factorized as a product of a white Gaussian process, which
is memoryless and models the statistical independence of detection of the photons,
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and a time varying deterministic window function which models the non-stationary
behavior of 𝑖𝑛,𝑦(𝑡). This decomposition of non-stationary noise is illustrated graph-
ically in Figure 4.2(a). If we consider a short time slot Δ𝑡 in the neighborhood of
𝑡, the intensity of the pulse can be considered as constant. This assumption is also
illustrated graphically in Figure 4.2(b). The instantaneous variance of the noise can
then be written as

E
[︂
𝑖2𝑛,𝑦(𝑡)

]︂
= 2𝑞𝑖𝑦(𝑡)Δ 𝑓

= 𝑞𝑅𝜆𝐼0𝑇𝑅
+∞∑︂

𝑚=−∞
𝑃(𝑡 − 𝑚

𝑓𝑅
)Δ 𝑓 , (4.10)

where E[.] denotes the expectation value, 𝑞 is the electron charge and Δ 𝑓 is the noise
bandwidth (note that time and frequency are orthogonal, and reducing temporal
resolution corresponds to increasing spectral range. In other words Δ 𝑓 ≫ (Δ𝑡)−1 has
to be satisfied for the quasi-stationary approximation in (4.10) to be valid). We also
suppressed the upper ± index as the currents of the lower and upper photodiodes
are equal and have the same stochastic properties. We decompose the noise current
𝑖𝑛,𝑦 into two terms, 𝑖𝑛 and 𝑤(𝑡) such that

𝑖𝑛,𝑦(𝑡) = 𝑖𝑛(𝑡)𝑤(𝑡) , (4.11)

where 𝑤(𝑡) is a deterministic window function which models the non-stationary
behavior of the noise current and 𝑖𝑛 is a white Gaussian noise current with a single-
sided power spectral density (PSD) of 𝑞𝑅𝐼0. The auto-correlation function of this
noise current according to Wiener–Khinchin theorem is the inverse Fourier transform
of its PSD

𝑅𝑖𝑛 (𝑡 , 𝑡′) = E
[︁
𝑖𝑛(𝑡)𝑖𝑛(𝑡′)

]︁
=

1
2 𝑞𝑅𝜆𝐼0𝛿(𝑡 − 𝑡′) . (4.12)

Now we find the window function 𝑤(𝑡) such that the variance of the noise current
in (4.11) is equal to the noise current variance in (4.10). The variance of (4.11) can be
written as

E
[︂
𝑖2𝑛,𝑦(𝑡)

]︂
= 𝑤2(𝑡)E [︁

𝑖2𝑛(𝑡)
]︁
= 𝑤2(𝑡)𝑞𝑅𝜆𝐼0Δ 𝑓 . (4.13)

By comparing (4.10) and (4.13), the time varying window function 𝑤(𝑡) can be deter-
mined

𝑤(𝑡) =
⌜⎷
𝑇𝑅

+∞∑︂
𝑚=−∞

𝑃(𝑡 − 𝑚
𝑓𝑅
) . (4.14)

If we assume the optical pulses do not overlap, (4.14) can be further simplified

𝑤(𝑡) =
+∞∑︂

𝑚=−∞

√︃
𝑇𝑅𝑃(𝑡 − 𝑚

𝑓𝑅
) . (4.15)

Equation (4.14) and (4.15) show the photodiode noise current is proportional to the
square root of the pulse shape, 𝑃(𝑡). Now using (4.11) the auto-correlation function
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of the non-stationary noise current 𝑖𝑛,𝑦 can be found

𝑅𝑖𝑛,𝑦 (𝑡 , 𝑡′) = E
[︁
𝑖𝑛,𝑦(𝑡)𝑖𝑛,𝑦(𝑡′)

]︁
=

1
2 𝑞𝑅𝜆𝐼0𝛿(𝑡 − 𝑡′)𝑤(𝑡)𝑤(𝑡′) . (4.16)

The dependency of 𝑅𝑖𝑛,𝑦 (𝑡 , 𝑡′) to 𝑡 and 𝑡′ rather than their difference 𝑡 − 𝑡′ is because
of non-stationary nature of the pulsed noise current 𝑖𝑛,𝑦 . The single-sided power
spectral density of the noise current is

𝑆𝑖𝑛,𝑦 ( 𝑓 ) = E

[︄
lim
𝑇→∞

1
𝑇

|︁|︁|︁|︁
∫ +𝑇

−𝑇
d𝑡𝑖𝑛,𝑦(𝑡)𝑒j𝜔𝑡

|︁|︁|︁|︁
2]︄

= lim
𝑇→∞

1
𝑇

∫ +𝑇

−𝑇

∫ +𝑇

−𝑇
d𝑡d𝑡′E[𝑖𝑛,𝑦(𝑡)𝑖𝑛,𝑦(𝑡′)]𝑒j𝜔(𝑡−𝑡′) , (4.17)

where 𝜔 = 2𝜋 𝑓 . Substituting (4.16) in (4.17) and using the relation between the win-
dow function and the pulse shape in (4.15) and the normalizing condition in (3.27),
the single-sided power spectral density of the noise current can be found

𝑆𝑖𝑛,𝑦 ( 𝑓 ) =
1
2 𝑞𝑅𝜆𝐼0 lim

𝑇→∞
1
𝑇

∫ +𝑇

−𝑇
d𝑡𝑤2(𝑡)

= 𝑞𝑅𝜆𝐼0 . (4.18)

Therefore, the shot noise 𝑖𝑛,𝑦 has a well defined power spectral density, although it
is not a stationary process. The magnitude of this PSD is equal to the PSD generated
by a continuous wave optical field with an intensity of 1

2 𝐼0. The intensity of this
CW optical field is equal to the average intensity of the pulsed optical field 𝐼𝑦(𝑡).
Therefore, only the average intensity affects the shot noise power spectral density.
The reason that shot noise is independent of the pulse shape is that its instantaneous
variance is proportional to the photocurrent current. This consequently leads to
proportionality of the window function to the square root of the pulse shape. The
pulse shape is once again squared in derivation of its PSD, in equations (4.16)–(4.18),
and then integrated. This sequence of mathematical operations that naturally occurs
in the photodiode demonstrates the shot noise independence of the optical pulse
shape.

The noise current 𝑖𝑛,𝑦 generated in the illumination region of the photodiode
is then shaped by the linear time-invariant block in Figure 4.1(a) which models the
transit-time spread with an impulse response of ℎ(𝑡). Therefore the single-sided PSD
of the output noise current is

𝑆𝑖𝑛,PD( 𝑓 ) = 𝑆𝑖𝑛,𝑦 ( 𝑓 )|𝐻( 𝑓 )|2 = 𝑞𝑅𝜆𝐼0 |𝐻( 𝑓 )|2 , (4.19)

where 𝐻( 𝑓 ) is the Fourier transform of ℎ(𝑡). The result in (4.19) is identical to
what has been derived by Quinlan et al. [82], where the detection process is treated
semi-classically. In [82] the incident beam is made of photons that are detected at
the photodiode with a certain probability in a short time interval. The detection
probability consequently leads to randomization of detection and hence shot noise.
In contrast, we employed a fully classical approach where the incident beam is an
optical field (not photons) with a certain intensity that is detected at the photodiode.
By assuming the shot noise of a CW optical field in (4.10) for our quasi-stationary
approach, we avoided discretization of light. Also, the stationary assumption in (4.10)
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in a short interval of Δ𝑡 is equivalent to the assumption of single photon detection
in a sufficiently short interval in semi-classical approach in [82]. One advantage of
our fully classical approach is that it can be generalized to non-stationary processes
that have a defined PSD in a short time interval. As we will see in Section 4.1.2,
this approach is especially helpful to treat non-stationary generation-recombination
noise.

For phase detector application, the shot noise of the photodiode is important
inside the loop bandwidth which is usually below 10 MHz. The bandwidth of the
photodiode is usually much higher than the loop bandwidth; therefore,𝐻( 𝑓 ) in (4.19)
can be approximated as 1. The single-sided PSD of the output noise current of the
BOMPD is the superposition of the upper and lower photodiode shot noise currents
which are statistically independent

𝑆𝑖𝑛,shot( 𝑓 ) = 2𝑞𝑅𝜆𝐼0 . (4.20)

The phase noise of the BOMPD can then be found using the relation in (4.4) as

𝑆𝜙𝑛,shot( 𝑓 ) =
𝑆𝑖𝑛,shot( 𝑓 )
𝐾2
𝜙

=
2𝑞

𝑅𝜆𝐼0(𝛼2 − 𝜓2
dc)

, (4.21)

where 𝑆𝜙𝑛 ( 𝑓 ) is the phase noise of the BOMPD. The photodiode dark current has
a negligible effect on the phase noise, because the main contributor to the photo-
diode currents is the incident beam from the MLL. Taking into account the dark
current, (4.20) can be rewritten as

𝑆𝑖𝑛,shot( 𝑓 ) = 2𝑞(𝑅𝜆𝐼0 + 2𝐼dark) , (4.22)

where 𝐼dark is the dark current of a single photodiode. The dark current is in the
range of nanoamperes while the beam induced photocurrent is in the range of at least
hundreds of microamperes. So it is a fair approximation to neglect the photodiodes
dark current.

Shot noise of photodiodes puts a theoretical limit on the phase noise of the
BOMPD (assuming the light is in coherent state). However, there are undesired
effects that can lead to phase noise degradation in the BOMPD above the shot noise
limit. In the following sections, we discuss other sources of noise in the BOMPD and
their transfer characteristics.

4.1.2 Generation-Recombination noise

In addition to shot noise, photodiodes have random variation of charge carriers due
to generation-recombination (GR) of charge carriers. While the PSD of shot noise is
proportional to the photocurrent, the GR noise PSD is proportional to the square of
the photocurrent and may exceed shot noise at high optical excitation levels. The two-
sided power spectral density of GR noise of an intrinsic semiconductor stimulated
with a CW optical field, 𝑆𝑖 ,GR-CW, can be written as [83, 84]

𝑆𝑖GR-CW( 𝑓 ) =
2𝑖2PD𝜏

𝑛0(1 + 𝜔2𝜏2) , (4.23)

where 𝜔 = 2𝜋 𝑓 , 𝑖PD is the photocurrent, 𝑛0 is the number of free carriers in equilib-
rium and 𝜏 is the decay time.
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Figure 4.3: Qualitative illustration of the effect of duty cycle on
generation-recombination noise of photodiode in comparison with
the photodiode shot noise: (a) GR noise, continuous-wave, (b) GR
noise, 50% duty cycle and (c) GR noise, 25% duty cycle (d) shot noise,
continuous-wave, (e) shot noise, 50% duty cycle and (f) shot noise,

25% duty cycle.

When the active region of photodiode is illuminated with an optical pulse,
electron-hole pairs are generated. On the one hand, the built-in electric field and the
external field (caused by the external dc supply) of the photodiode separates these
charge carriers and moves them toward the photodiode external junctions. This
mechanism is linear, and the difference between the mobility of electrons and holes
contributes to the overall photodiode transit time and limiting its bandwidth. On the
other hand, the Coulomb interaction between electrons and holes creates a counter-
acting electric field that attracts electrons and holes to each other. This attraction force
is a function of the optical beam intensity which makes it a nonlinear mechanism
and leads to dependency of the transit time to the optical intensity. Generation and
recombination of charge carriers occurs at this level, where the charge carriers are
still in the active region. The nonlinearity of photodiode under high excitation levels
consequently makes the dynamics of generation-recombination noise both nonlinear
and a function of time. This level of complexity is an obstacle in providing a gen-
eral formula for generation-recombination noise under pulsed excitation, although
a formula for the PSD of GR noise under CW excitation of photodiodes is available.
Our aim here is to illustrate qualitatively, with some simplified assumptions, how
pulsed excitation causes enhancement of GR-noise. The GR-noise enhancement con-
sequently limits the phase noise improvement in BOMPD when the average intensity
is increased, which is expected if only shot noise is taken into account.

The quadratic dependence of GR-noise PSD to the photocurrent has another
undesired effect on the photodiode noise, when the excitation beam is an optical
pulse. This effect is illustrated graphically in Figure 4.3 where the photodiode GR
noise is shown for photocurrent waveforms with the same average but with different
duty cycles (𝛾). On time scales longer than 𝜏, the variance of GR noise is proportional
to the instantaneous photocurrent which scales with 1/𝛾. The PSD of GR noise, on
the one hand, is proportional to the noise variance (during the presence of the optical
pulse) which scales with 1/𝛾2 and on the other hand, is proportional to 𝛾 because
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of temporal averaging. Therefore, the PSD of GR noise is inversely proportional to
the pulse duty cycle 𝛾. It is noteworthy that under the same conditions, during the
presence of photocurrent, the instantaneous variance of the shot noise scales with
1/𝛾 which makes the shot noise PSD independent of pulse shape and duty cycle, as
discussed in Section 4.1.1.

The behavior of GR noise with respect to duty cycle of the photocurrent can
also be shown mathematically with some simplified assumptions. We assume the
photocurrent pulse train has a rectangular shape and a duty cycle of 𝛾 and has an
average of ⟨𝑖PD⟩. The rectangular pulse shape simplified assumption is because of
dependency of the GR noise variance to the square of instantaneous photocurrent
according to (4.23), in contrast to shot noise variance that is proportional to the
instantaneous photocurrent. This square dependency consequently leads to depen-
dency of GR-noise PSD to the integral of the square of the normalized pulse shape.
By assuming a rectangular pulse shape, we want to avoid such complications. For
simplicity, we also assume the pulse width is sufficiently longer than the decay time
𝜏 such that the generation-recombination stochastic properties do not vary during
the presence of photocurrent. With these assumptions, the GR noise can be treated
similar to the procedure the shot noise was treated in Section 4.1.1 and can be written
as the product of a Gaussian noise and a rectangular window function

𝑖GR(𝑡) = 𝑖GR-CW(𝑡)Π(𝑡) , (4.24)

where 𝑖GR(𝑡) is the GR-noise of the photodiode with pulsed stimulation, 𝑖GR-CW(𝑡) is
the GR noise of the photodiode stimulated with a CW optical field according to (4.23)
which generates a photocurrent of ⟨𝑖PD⟩/𝛾 andΠ(𝑡) is a periodic rectangular window
function with a duty cycle of 𝛾

Π(𝑡) =
{︃

1 for 𝑇R(𝑚 − 0.5𝛾) < 𝑡 < 𝑇R(𝑚 + 0.5𝛾)
0 elsewhere , (4.25)

where 𝑇R is the period of the rectangular pulse train and 𝑚 is any integer. If we
assume the generation-recombination noise has a white spectrum compared to the
frequency spectrum of the window function (𝜏 ≪ 𝛾𝑇R), the power spectral density
and autocorrelation function of the continuous-wave GR noise can be approximated
as

𝑆𝑖GR-CW( 𝑓 ) ≈ 2⟨𝑖PD⟩2𝜏/𝛾2𝑛0 (4.26)

and

𝑅𝑖GR-CW(𝑡 , 𝑡′) ≈ 2⟨𝑖PD⟩2𝜏𝛿(𝑡 − 𝑡′)/𝛾2𝑛0 . (4.27)

The two-sided power spectral density of the GR noise can now be found similar to
the procedure used in (4.17) and (4.18) as

𝑆𝑖GR( 𝑓 ) = lim
𝑇→∞

1
2𝑇

∫ +𝑇

−𝑇

∫ +𝑇

−𝑇
d𝑡d𝑡′E[𝑖GR(𝑡)𝑖GR(𝑡′)]𝑒j𝜔(𝑡−𝑡′)

= 2⟨𝑖PD⟩2𝜏/𝛾𝑛0 , (4.28)

Therefore, for the same average photocurrent, the PSD of GR noise is inversely
proportional to the duty cycle. We have to emphasize that the formalism above
draws a qualitative picture on the effect of duty cycle on the overall GR noise, but
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is not very accurate for stimulation of photodiodes with high energy femtosecond
pulses. For instance, the assumption of uniform electric field along the intrinsic
region of photodiode used in derivation of (4.23) is no longer valid due to Coulomb
interaction between charge carriers and space-charge effects [33, 34, 83]. Also, the
photocurrent does not have a rectangular shape and its rise/fall time considering the
space-charge effect under illumination of photodiode with high-energy femtosecond
optical pulses has to be taken into account.
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Figure 4.4: (a) Photodiode noise measurement setup; (b) photodiode
(solid) measured noise PSD and (dashed) theoretical shot noise levels
at different optical intensities; 𝑣𝑛 =

√︁
2𝑞𝑅𝜆𝐼0𝑅𝐿 (V/

√
Hz), where 𝑅𝜆

is the integrated responsivity taking into account its compression at
high illumination levels according to (4.39), 𝑅𝐿 is the effective load
resistance (500 W) and 𝐼0 is the average intensity of the optical beam.

Enhancement of GR noise under excitation of photodiode with high optical inten-
sities can also be observed by experiment. Figure 4.4(a) shows a setup for photodiode
noise measurement. An InGaAs photodiode with an active area diameter of 120𝜇m
is illuminated with femtosecond pulses of a MLL (MENHIR1550 [12]) and an optical
attenuator is used to change the intensity of the optical pulses. The optical pulses
have a width of 185 fs and a repetition rate of 250 MHz. The photodiode is terminated
to a 1 kΩ resistive load and connected to an FFT analyzer (Anapico APPH20G). The
FFT analyzer has an input resistance of 1 kΩ (ac coupled) which makes the overall
photodiode load resistance equal to 500 Ω. The 1 dB cut-off frequency of the mea-
surement setup is approximately 2 MHz. Figure 4.4(b) shows the measured noise
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voltage in V/√Hz. It can be seen that at high illumination intensities with femtosec-
ond pulses, the GR noise becomes dominant and exceeds the shot noise. The PSD
of the output noise at 0 dBm incident optical power has a good matching with the
estimated shot noise. At 10 dBm incident optical power, however, the noise voltage
has increased approximately by a factor of 10 which corresponds to an increase of
100 in V2/Hz. This increase in noise PSD is a signature of GR noise because of the
proportionality of its PSD to the square of photocurrent, in contrast to shot noise PSD
that is proportional to the photocurrent. The enhancement of photodiode noise con-
sequently leads to degradation of the BOMPD phase noise according to (4.21). The
GR noise can be mitigated by increasing the number of equilibrium charge carriers,
𝑛0 in (4.23), for instance by increasing the illumination area of the photodiode.

The GR noise of photodiode is an undesired effect that has to be suppressed
for low-phase-noise OEPLL designs. Due to nonlinear dependency of photodiode
response time to the optical intensity under pulsed excitation and also to the illu-
mination condition, providing an exact formula for GR noise is complicated. The
objective of the discussion above is to point to a strong source of noise in photodiodes
when illuminated with high energy pulses that leads to phase noise degradation in
the BOMPD, and to discuss the available means to suppress this undesired noise.

4.1.3 Relative intensity noise of the MLL

The relative intensity noise (RIN) is the intensity fluctuations of the light. RIN is
associated with the light source, in contrast to shot noise that is due to quantum
nature of light itself. While shot noise is generated during the detection process, the
noise of the laser is rooted in the generation of the light and can be modeled as an
amplitude noise term in the intensity of the MLL beam [75] as

𝐼(𝑡) = 𝐼0𝑇R
[︁
1 + 𝑎𝑛(𝑡)

]︁ +∞∑︂
𝑚=−∞

𝑃(𝑡 − 𝑚
𝑓R
) , (4.29)

where 𝑎𝑛(𝑡) is the RIN of the optical pulse train. Now we investigate the effect of
RIN of MLL on the noise performance of the BOMPD. The output currents of the
photodiodes incorporating the RIN of the laser (under the OEPLL locked condition)
can be written similar to (4.9) as

𝑖±PD =
1
2𝑅𝜆𝐼0𝑇R

[︁
1 + 𝑎𝑛(𝑡)

]︁ +∞∑︂
𝑚=−∞

ℎ(𝑡 − 𝑚
𝑓R
) . (4.30)

The RIN of the laser generates noise current in both the upper and lower photodiodes.
Unlike the shot noise of the photodiodes, these noise currents in the upper and lower
photodiodes are perfectly correlated and cancel out when the OEPLL is in steady
state, 𝑖+PD = 𝑖−PD. Therefore, the noise of the laser does not have any first-order effect
on the phase noise of the BOMPD.

4.1.4 Noise of MZM bias voltage

Another source of noise in the BOMPD is the low frequency noise of the dc voltage
used to bias the modulator. The noise of dc voltage, 𝑣𝑛(𝑡), can be incorporated
in (3.25) as

𝜓 = 𝜓RF + 𝜓dc + 𝜓𝑛(𝑡) , (4.31)
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where

𝜓𝑛(𝑡) = 𝜋𝑣𝑛(𝑡)/𝑉𝜋,dc . (4.32)

Assuming the linear photodiode model of Figure 4.1(a), the output current of the
BOMPD can be rewritten using (3.24) as

𝑖BOMPD = 𝑅𝜆
[︁
𝐼(𝑡) sin(𝜓)]︁ ∗ ℎ(𝑡)

≈ 𝑅𝜆
[︁
𝐼(𝑡) sin(𝜓RF + 𝜓dc)

+ 𝜓𝑛(𝑡)𝐼(𝑡) cos(𝜓RF + 𝜓dc)
]︁ ∗ ℎ(𝑡) , (4.33)

where we assumed 𝑣𝑛(𝑡) is small enough to have

cos
(︁
𝜓𝑛(𝑡)

)︁ ≈ 1 and sin
(︁
𝜓𝑛(𝑡)

)︁ ≈ 𝜓𝑛(𝑡) . (4.34)

The first term in the brackets on the right-hand side of (4.33) leads to the phase
detector characteristic function. The second term is the noise of the bias voltage and
shows the bias voltage noise is multiplied by the intensity waveform of the MLL 𝐼(𝑡),
and, due to its harmonious nature, is modulated around integer multiples of the
reference repetition rate. These modulated noise terms are filtered by the loop filter
and only the low frequency noise term around zero frequency affects the BOMPD
output noise current. The low frequency term of this noise current can be found
similar to the treatment of the phase detector characteristic curves in [18] and the
detailed steps are given in the Appendix D. The relation between the BOMPD noise
current due to the bias voltage of the dc electrode, 𝑖𝑛,bias, and the noise of the dc
voltage is

𝑖𝑛,bias(𝑡) = 𝑅𝜆𝐼0 cos(𝜓0)𝜓𝑛(𝑡) , (4.35)

where 𝜓0 is given in (3.38) and is zero at steady-state. Therefore the output noise
current at steady state simply will be

𝑖𝑛,bias(𝑡) = 𝑅𝜆𝐼0𝜓𝑛(𝑡) . (4.36)

The PSD of this noise current can be found by substituting (4.32) into (4.36)

𝑆𝑖𝑛,bias( 𝑓 ) =
(︃
𝜋𝑅𝜆𝐼0
𝑉𝜋,dc

)︃2
𝑆𝑣𝑛 ( 𝑓 ) , (4.37)

where 𝑆𝑣𝑛 ( 𝑓 ) is the power spectral density of 𝑣𝑛 . The contribution of the bias voltage
noise to the overall phase noise can then be found by substituting the PSD of this
noise current into (4.4)

𝑆𝜙𝑛,bias( 𝑓 ) =
𝜋2

𝑉2
𝜋,dc(𝛼2 − 𝜓2

dc)
𝑆𝑣𝑛 ( 𝑓 ) . (4.38)

This equation shows the phase noise caused by the noise of the bias voltage is
independent of the average optical excitation level and the photodiode responsivity.
This leaves the designer with a few degrees of freedom to suppress the noise caused
by the bias voltage; using a modulator with higher 𝜋-voltage for the dc-electrode,
increasing the RF power level and consequently 𝛼, and also using a dc source with
lower noise levels in the first place. Since the phase noise caused by photodiodes’ shot
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noise is inversely proportional to the average intensity of the optical beam according
to (4.21), it is necessary to reduce the noise of the bias voltage to make sure the OEPLL
phase noise is not limited by the noise of the bias voltage.

4.2 Nonlinear effects in BOMPD

Extracting the phase information of a periodic signal requires a nonlinear operation
which makes any phase detector a nonlinear device. Although such a device is
nonlinear, it behaves linearly in the phase domain. Therefore, by nonlinearity in
BOMPD, we address the mechanisms that affect the phase detector characteristic
function beyond the scope of linear phase detector model. These mechanisms are
a function of the excitation levels of the inputs of BOMPD: the intensity of the
optical field and the RF excitation amplitude. With respect to the optical input, we
assume BIM behaves linearly and limit the discussion in Section 4.2.1 to nonlinearity
in photodiodes. The nonlinear effects on the BOMPD characteristic function with
respect to the RF excitation amplitude are discussed in 4.2.2.

4.2.1 Saturation of the photodiodes

High energy pulses of MLLs affect the performance of photodiodes with space-
charge effect and absorption saturation [33–36, 85]. The space-charge effect leads
to a counteracting E-field in the illumination region of the photodiode which slows
down the charge carriers and increases the transit time. This effect is especially
important for high-speed and high-power photodetectors used for generation of RF
signals with high signal to noise ratios (SNRs). The increase of the response time
due to space-charge effect is not problematic in BOMPD, since the OEPLL loop is
usually much slower than the photocurrent pulses. Therefore the approximation of
𝐻( 𝑓 ) ≈ 1 is still valid.
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Figure 4.5: Qualitative illustration of the upper (red) and lower (blue)
photodiode currents of the BOMPD in the presence of a small phase
difference 𝜙 when the intensity of the input beam (a) is low and
the photodiodes operate in the linear region and (b) is high and the

photodiodes operate in the saturation region.

High energy pulses of MLLs also lead to saturation of charge carriers in the in-
trinsic zone and compression of the photodiode responsivity. This mechanism is
especially important in BOMPD, as the phase detection gain is directly proportional
to the photodiode responsivity. The linear BOMPD gain formula in (3.42) suggests in-
creasing the intensity of the optical field results in more phase detector gain, however,
absorption saturation of the photodiodes puts a limit on the gain enhancement. This
is illustrated graphically in Figures 4.5(a) and 4.5(b) in which the photocurrent pulses
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of the photodiode pair in the presence of a small phase difference 𝜙 for different op-
tical excitation levels are drawn. Although the photocurrent pulses in Figure 4.5(a)
have a smaller amplitude than that of the photocurrent pulses in Figure 4.5(b), they
exhibit a higher average current difference as the photodiodes are still in the linear
region. This current difference is an indication of the BOMPD phase detection gain.
In other words, at very high optical pulse energies, the upper and lower photodiodes
get saturated and generate almost equal photocurrents which leads to lower phase
detection gain.

The absorption saturation of photodiodes has been modeled in [85] by defining
integrated responsivity as a function of the pulse energy

𝑅𝜆(𝐸) = 𝑅𝜆0
1 + 𝐸/𝐸sat

, (4.39)

where 𝐸 is the pulse energy, 𝑅𝜆0 is the linear responsivity and 𝐸sat is the pulse energy
at which the integrated responsivity is reduced by a factor of 2. It is noteworthy
that this model for saturation of semconductor is similar to the model of saturable
absorber given in (2.11). However, instead of dependency on instantaneous intensity
of the optical pulse, the responsivity is a function of the pulse energy. The mea-
sured integrated responsivity of a commercial InGaAs photodiode with an active
area diameter of 120𝜇m is shown in Figure 4.6. A commercial MLL with a center
wavelength of 1560 nm and a pulse width of 185 fs is used for the characterization.
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Figure 4.6: (red) Measured normalized integrated responsivity and
(blue) fitted curve according to (4.39)

In order to formulate the effect of the absorption saturation on the BOMPD gain,
the photocurrent of upper and lower photodiodes as a function of pulse energy are
derived. The average of the difference of these photocurrent pulses is the BOMPD
gain according to (3.31). The energy of the output optical pulses of the BOMPD can
be found using (3.27) and (4.5) as

𝐸±
𝑦 =

1
2 𝐼0𝑇𝑅

[︁
1 ± sin(𝜓0)

]︁
, (4.40)
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where 𝜓0 is given in (3.38). Using the nonlinear responsivity in (4.39), the output
currents of the photodiodes can be found similar to (4.7) as

𝑖±PD =
1
2 𝐼0𝑇𝑅𝑅𝜆(𝐸±

𝑦 )
[︁
1 ± sin(𝜓0)

]︁ +∞∑︂
𝑚=−∞

ℎ(𝐸±
𝑦 , 𝑡 −

𝑚
𝑓𝑅
) , (4.41)

where we replaced the linear impulse response ℎ(𝑡) with nonlinear ℎ(𝐸, 𝑡) and the
linear responsivity 𝑅𝜆 with 𝑅𝜆(𝐸) which are functions of the optical pulse energy.
The normalization condition in (4.6) still holds for the nonlinear response since the
compression of the responsivity due to absorption saturation is already included
in (4.39). The average photodiode currents therefore are

⟨𝑖±PD⟩ =
1
2 𝐼0𝑅𝜆(𝐸±

𝑦 )
[︁
1 ± sin(𝜓0)

]︁
. (4.42)

The BOMPD characteristic function can be found using equations (3.31) and (4.42)
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Figure 4.7: (a) Characteristic function of BOMPD at different optical
pulse energy levels corresponding to (black) linear region, (red) max-
imum phase detector gain and (blue) deep saturation of photodiodes.
(b) Normalized gain of BOMPD with respect to input average optical

intensity.

and is plotted for pulse energies close to saturation of photodiodes in Figure 4.7(a). It
can be seen that the slope of the characteristic function at the zero crossing decreases
for high pulse energies, which is also shown qualitatively using Figure 4.5. The phase
detector characteristic function and gain have complicated forms when described
with respect to the phase difference 𝜙. However, the phase detector gain 𝐾𝜙 at the
zero crossing has a simple expression (the derivation steps are given in Appendix E)

𝐾𝜙 =
𝑅𝜆0𝐼0

√︂
𝛼2 − 𝜓2

dc

(1 + 𝐼0𝑇𝑅/2𝐸sat)2
, (4.43)

and is plotted in Figure 4.7(b). The numerator in (4.43) is same as the linear phase
detector gain in (3.42) and for very low pulse energies, 𝐼0 ≪ 2 𝑓𝑅𝐸sat, the denominator
converges to 1. At very high pulse energies, the phase detector gain becomes inversely
proportional to the intensity of the optical beam. The maximum of phase detector
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gain is

𝐾𝜙,max =
𝑅𝜆0𝐸sat

2𝑇𝑅

√︂
𝛼2 − 𝜓2

dc , (4.44)

which occurs at the average optical intensity of

𝐼0 = 2𝐸sat/𝑇𝑅 . (4.45)

This decrease of the BOMPD gain due to high energy pulses has an adverse
effect on the phase noise according to (4.21). In addition to gain deterioration,
high energy optical pulses of MLL increase the generation-recombination noise of
the photodiodes. The GR noise variance of the photodiode is proportional to the
square of the photocurrent and exceeds the shot noise at high illumination levels, as
discussed in Section 4.1.2. Degradation of phase detector gain and enhancement of
GR noise at high energy pulses have an adverse effect on BOMPD phase noise and for
low phase noise OEPLL, using BOMPD in this operating region should be avoided.

MLL

𝑓𝑅

sin(.)

Tunable
OscillatorLPF

𝑁 𝑓RF

𝑀 𝑓𝑅
𝑓RF

BOMPD

(a)

0 1 2 3 4 5 6 7 8 9
𝑡/𝑇RF

(b)

Figure 4.8: (a) OEPLL with nonlinear model of BOMPD, and (b)
corresponding waveforms: (black) RF voltage waveform, (red) MLL
pulses when 𝜔RF/𝜔𝑅 = 2, (blue) MLL pulses when 𝜔RF/𝜔𝑅 = 2 1

2 ,
(violet) MLL pulses when 𝜔RF/𝜔𝑅 = 2 1

4 . The time axis is normalized
to the RF signal period 𝑇RF = 1/ 𝑓RF;

4.2.2 RF nonlinearity in BOMPD and interharmonic locking

Another nonlinear effect in BOMPD is the intrinsic nonlinear behavior of the BIM
characteristic function. The RF voltage 𝑣RF goes under a nonlinear transformation
in BOMPD due to sin(𝜓) term in (3.24). This nonlinear transformation leads to
internal generation of harmonics of the RF signal which can be used for locking on
interharmonics (non-integer harmonics) of the reference repetition rate [55]. This
nonlinear behavior is illustrated in OEPLL block diagram in Figure 4.8(a) where the
BOMPD is modeled with an ideal balanced frequency mixer and a nonlinear block
sin(.). The envelope of the MLL output contains integer multiples of its repetition
rate 𝑀 𝑓𝑅 and the output of sin(.) block contains integer multiples of the RF signal
frequency 𝑁 𝑓RF. The necessary (but not sufficient) condition for phase locking is that
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these frequencies are equal

𝑓RF =
𝑀
𝑁
𝑓𝑅 , (4.46)

where 𝑀 and 𝑁 are positive integers with greatest common divisor (gcd) of 1. We
call the operating regime of an OEPLL with 𝑁 = 1 as harmonic locking and with
𝑁 > 1 as the 𝑁 ’th order interharmonic locking. Figure 4.8(b) illustrates the tunable
oscillator waveform and the MLL pulses for 𝜔RF/𝜔𝑅 = 2, 2 1

2 , and 2 1
4 corresponding

to 𝑁 = 1, 2, and 4, respectively.
Now we derive the BOMPD characteristic function for the 𝑁 ’th order interhar-

monic locking,𝐻𝑁 (𝜙). This can be achieved similar to what we did previously for the
harmonic locking case, by imposing the interharmonic condition in (4.46) to (3.32).
For the 𝑁 ’th order interharmonic phase detection, the output differential intensity
of BOMPD in (3.30) has a period of 𝑁𝑇𝑅. Therefore, the 𝑁 ’th order characteristic
function of BOMPD,𝐻𝑁 (𝜙), can be written similar to (3.37) but with integration over
a period of 𝑁𝑇𝑅 as

𝐻𝑁 (𝜙) = 1
𝑁𝑇𝑅

∫ 𝑁𝑇−
𝑅

0−
d𝑡 𝑖 = 𝑅𝜆𝐼0

𝑁

𝑁−1∑︂
𝑚=0

sin
[︃
𝛼 sin(2𝜋𝑚

𝑁
+ 𝜙) + 𝜓dc

]︃
. (4.47)

The index 𝑀 in (4.47) was suppressed since we assumed gcd(𝑀, 𝑁) = 1. The 1st,
2nd and 4th order characteristic functions of the BOMPD (corresponding to harmonic
locking, 2nd order interharmonic locking and 4th order interharmonic locking, re-
spectively) have a simple closed form and can be found using (4.47) as

𝐻1(𝜙) = 𝑅𝜆𝐼0 sin[𝛼 sin(𝜙) + 𝜓dc] , (4.48)

𝐻2(𝜙) = 𝑅𝜆𝐼0 sin(𝜓dc) cos[𝛼 sin(𝜙)] , (4.49)

and

𝐻4(𝜙) = 1
2𝑅𝜆𝐼0 sin(𝜓dc)

[︁
cos(𝛼 sin(𝜙)) + cos(𝛼 cos(𝜙))]︁ . (4.50)

The first order characteristic function is indeed for the harmonic locking case and
is the same as (3.37), but the derivation has been done again in this section for the
sake of completeness. Equations (4.49) and (4.50) show that the 2nd and 4th order
characteristic functions linearly scale with sin(𝜓dc) and become zero when 𝜓dc = 0.
This is expected since the nonlinear characteristic function of the BOMPD in (3.30)
has even symmetry with respect to 𝑣RF at 𝜓dc = ±𝜋/2 and odd symmetry at 𝜓dc = 0.
With a single tone excitation, only odd harmonics at𝜓dc = 0 and only even harmonics
at 𝜓dc = ±𝜋/2 are generated. The BOMPD characteristic curves for different values
of 𝛼 are plotted in Figures 3.6(a), (b), and (d), respectively.

The 2nd and 4th order characteristic curves do not have a zero crossing for all RF
excitation amplitudes, which is necessary for type II PLLs as discussed in Section 3.1.
A zero crossing can be guaranteed by proper selection of 𝛼 such that the BOMPD
characteristic function has a zero average. The average of 𝐻𝑁 (𝜙) can be found using
Jacobi-Anger expansion of (4.47) as

< 𝐻𝑁 (𝜙) >𝜙= 𝑅𝜆𝐼0 sin(𝜓dc)J0(𝛼) , (4.51)
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Figure 4.9: BOMPD characteristic curves for (a) harmonic locking at
𝜓dc = 0, (b) 2nd order interharmonic locking at 𝜓dc = 𝜋/2 and (c) 4th

order interharmonic locking at 𝜓dc = 𝜋/2 for different RF amplitudes:
(black) 𝛼 = 𝜋/4, (red) 𝛼 = 𝜋/2 and (blue) 𝛼 = 3𝜋/4.

where < . >𝜙 denotes averaging with respect to variable 𝜙 and J0 denotes the Bessel
function of the first kind of order 0. A zero-average𝐻𝑁 (𝜙) guarantees a zero-crossing
in the transfer characteristic which is necessary for operating the BOMPD in an
OEPLL, as discussed in Section 3.1. Proper operation of the OEPLL requires coarse
tuning of the tunable oscillator around the desired frequency which can be very
close to another interharmonic frequency of the same or different order. Therefore,
although a zero-crossing in the characteristic function can be generated by having
sufficient RF amplitude, locking the OEPLL on very high order interharmonics can
be practically difficult.

4.3 Summary and conclusion

In this chapter, we expanded the theory of OEPLL beyond system level simulation
and characteristic functions of BOMPD which were derived in the previous chapter.
Different noise sources in BOMPD were modeled and their effects of the BOMPD
phase noise were discussed. The phase noise of the OEPLL can consequently be
estimated using the system level transfer functions and the BOMPD phase noise. In
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addition, modeling the undesired noise sources shows different mechanisms that
might degrade the phase noise of OEPLL. The nonlinear analysis provided in this
chapter shows the limitations of the OEPLL with respect to the intensity of the optical
input and how much improvement or degradation can be expected if higher optical
intensities are used. This theory provides a systematic approach to design an OEPLL
and to choose various design parameters properly, such as the intensity of the optical
input, photodiode selection according to its bandwidth and rated power, proper
biasing of the intensity modulator and the required noise level of its biasing voltage
and tunable oscillator parameters such as its tuning sensitivity and phase noise.
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Chapter 5

Design, Simulation and
Characterization of OEPLL

So far, the operating principle of OEPLL and the mathematical model along with
the necessary equations have been introduced. In this chapter, first the BOMPD
is designed and characterized. Then two OEPLLs are demonstrated with different
classes of building blocks and the results are compared. Partial results presented in
this chapter are published in [author’s publication, 18, 53–56].

5.1 BOMPD design and characterization

In Chapter 3, the balanced optical microwave phase detector (BOMPD) was modeled
using a lossless balanced intensity modulator (BIM) in (3.24). In practice, BIMs have
a few dBs of insertion loss. This loss can simply be included in the BIM characteristic
function as

𝐼±𝑦 =
𝐼(𝑡)
2 𝐿BIM

[︁
1 ± sin(𝜓)]︁ , (5.1)

where 𝐿BIM is the modulator loss. Another approach is to incorporate this loss by
referring to the total average output power, rather than the input power. Therefore,
for practical reasons, in this chapter we usually refer to the average output power of
BIM or the input power of the BOMPD photodiodes.

MLL
Coupler PC MZM

RF

dc

AWG

REF

AMP LPF

𝑅𝐿

50Ω

MCU
SPI DAC

OSC

Figure 5.1: (a) Test setup for characterization of BOMPD. MCU, micro-
controller unit; DAC, digital to analog converter; MLL, mode-locked
laser; MZM, Mach-Zehnder modulator; PC, polarization controller;
AWG, arbitrary waveform generator; OSC, oscilloscope; AMP, ampli-

fier; LPF, lowpass filter.

The BOMPD is realized via a balanced MZM with complementary outputs oper-
ating at 1550 nm wavelength. The modulator has a bandwidth of 20 GHz, a 𝜋-voltage
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of 5 V for the RF electrode and a𝜋-voltage of 10 V for the DC electrode. This𝜋-voltage
corresponds to an 𝛼 of 0.2𝜋 for an RF excitation level of 10 dBm in 50 Ω system ac-
cording to (3.34). A pair a InGaAs photodiodes with an active area of 120 µm2 convert
the intensity of the optical outputs to an electrical current. The photodiodes have a
responsivity of 1 A/W.

In order to measure the characteristic function, the RF signal applied to the RF
electrode must be synchronized with the optical input. A simple approach is to con-
vert a weak coupling of the MLL optical signal to electrical domain via a photodiode
and apply it to the signal generator as its reference input. The BOMPD characteristic
function describes the output current versus the phase difference between the RF
signal and the desired harmonic or interharmonic of the optical reference repetition
rate. Therefore, introducing a sweeping phase shift to the RF signal is necessary.
This phase shift can simply be realized by an offset frequency between the RF signal
and the desired harmonic or interharmonic frequency

𝑓RF =
𝑀
𝑁
𝑓𝑅 + Δ 𝑓 , (5.2)

where 𝑓RF is the frequency of the RF excitation signal, 𝑓𝑅 is the reference repetition
rate, Δ 𝑓 is the offset frequency and M and N are positive integers with gcd[𝑀, 𝑁] = 1.

Figure 5.1 shows the test setup for BOMPD characterization. A low-pass filter is
used to filter the harmonics of the RF signal, guaranteeing the single-tone stimula-
tion of the modulator according to (3.29). Since the MZM is polarization sensitive, a
polarization controller is used to adapt the polarization of the light with the polar-
ization required by the modulator. A load resistance of 1 kΩ converts the BOMPD
output current to a voltage which is then monitored by a real-time oscilloscope. The
MZM bias point is set via a DAC which is controlled via a RISC-V microcontroller
uploaded with a MicroPython firmware. The MZM bias control is performed in an
open-loop fashion. The required bias voltages for the desired operating points are
measured separately and stored in a lookup table inside the microcontroller.
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Figure 5.2: Phase detector characteristic curves for harmonic locking
at different RF excitation amplitudes (a) without RF signal harmonic

filtering and (b) with RF signal harmonic filtering.

Figure 5.2 compares the measured phase detector characteristic function for dif-
ferent RF excitation amplitudes with the theoretical one derived in Chapter 3. Fig-
ures 5.2(a) and 5.2(b) also compare the effect of filtering the RF harmonics on the
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shape of the characteristic function. While the BOMPD curves characterized with
filtered RF signal show better matching with the theory, the curves measured with
unfiltered RF signal are still in agreement with the theory and BOMPD is still capable
to function properly with sufficient phase detection gain at the zero crossing.
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Figure 5.3: (solid) Measured and (dashed) theoretical phase detector
characteristic curves at 𝛼 = 0.8 for different bias points.

In order to verify the theory with respect to the offset phase shift introduced
by the dc electrode, the characteristic functions have been measured for different
values of 𝜓dc and are plotted in Figure 5.3. The BOMPD characteristic functions
show the behavior predicted by the theory developed in Chapter 3 with respect to
the independent variables 𝜙 and 𝜓.
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Figure 5.4: BOMPD characteristic curves according to (dashed) theory
and (solid) measurement for (a) 2nd order interharmonic locking at
𝜓dc = 𝜋/2, (b) 3rd order interharmonic locking at 𝜓dc = 0 and (c) 4th

order interharmonic locking at 𝜓dc = 𝜋/2.

The setup illustrated in Figure 5.1 has also been used for characterization of the
2nd, 3rd and 4th interharmonic phase detection corresponding to 𝑁 = 2, 3 and 4
in (5.2). The measurement results are plotted in Figure 5.4 and prove an excellent
agreement with the theory developed in Chapter 3. The interharmonic characteristic
curves show that the BOMPD gain decreases as the interharmonic order increases.
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The BOMPD gain and variation of the 3rd and 4th order characteristic functions (with
respect to 𝜙) are very low at low RF excitation levels. The variation of the 3rd and 4th

order characteristic curves is barely visible at 𝛼 = 0.8 and is not plotted.

5.2 OEPLL design and characterization

In this section two different designs of OEPLL are demonstrated. Design I uses a
semiconductor VCO as its tunable oscillator and design II uses an YIG tunable oscil-
lator. YIG oscillators generally have resonators with higher quality factors compared
to semiconductor VCOs and it is expected to get better phase noise results with de-
sign II. Both tunable oscillators are selected such that they cover at least one octave
of frequency range (from 𝑓0 to 2 𝑓0). This condition is necessary for frequency range
extension, such that any frequency can be synthesized from the tunable oscillator
output using just a chain of frequency dividers and frequency multipliers, as illus-
trated graphically in Figure 5.5. If the frequency range of the tunable oscillator is less
than one octave, there will be frequency gaps in Figure 5.5 which is undesired for
ultra wideband frequency synthesizers.

𝑓0/4 𝑓0/2 𝑓0 2 𝑓0 4 𝑓0

𝑓

÷2÷2 ×2
𝑓out

Figure 5.5: Extending the frequency range of frequency synthesizer
using frequency multiplier and frequency divider chain.

5.2.1 Design I: OEPLL with semiconductor VCO

Figure 5.6 shows the block diagram of the OEPLL using a semiconductor VCO. The
details of BOMPD implementation are given in the previous section. In Section 4.1.2
it was shown that high energy optical pulses as well as pulsed stimulation of pho-
todiodes leads to enhancement of generation-recombination noise in photodiodes
above the shot noise limit. Therefore, we limited the average output optical power
of the MZM to 1 mW. The optical reference is an Origami-series femtosecond MLL
from OneFive (now NKT Phototics) with a wavelength of 1550 nm, a pulse duration
of 200 fs and a repetition rate of 76MHz. The MLL is also equipped with piezo
actuators for repetition rate stabilization. However, if the repetition rate is not sta-
bilized, vibration of the actuators causes phase noise degradation at close-in offset
frequencies below a few kHz.

The phase noise of a similar MLL with a repetition rate of 214 MHz has been
characterized by the manufacturer by selecting the 14th harmonic of its intensity
waveform detected by a photodiode and is plotted in Figure 5.7(a). The measurement
setup is similar to Figure 1.5(a). The phase noise is expected to further decrease at
offset frequencies above 500 kHz, but it is limited to the measurement setup noise
floor.

Equation (3.23) shows the phase noise contribution of the loop filter is, on the one
hand, directly proportional to the tuning sensitivity of the tunable oscillator 𝐾𝑉 , and
on the other hand, is inversely proportional to the phase detector gain 𝐾𝜙. Having a
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Figure 5.6: Block diagram of OEPLL design I with semiconductor
VCO.

high 𝐾𝑉 can also be problematic from a practical point of view. The loop filter resistor
is inversely proportional to 𝐾𝑉 according to (3.20) and a high tuning sensitivity can
result in an Ohms range resistance. Such a low resistance can be within the range of
the equivalent series resistance (ESR) of the loop filter capacitor. As a result, one has
to model the loop filter components with higher precision which adds to the overall
design complexity. Therefore, VCOs with low tuning sensitivities are desired.
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Figure 5.7: Phase noise of OEPLL design I with semiconductor VCO,
(a) simulated and (b) measured.

Extending the frequency range of the OEPLL without any frequency gaps requires
a VCO with at least one octave of frequency range. Unfortunately, such VCOs usually
have high tuning sensitivities and this leads to the increase of the resistor noise
contribution to the overall phase noise, as discussed in Section 3.2. While wideband
VCOs have tuning sensitivities in the range of a few hundreds of megahertz per volt,
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switched-capacitor VCOs offer an order of magnitude lower tuning sensitivities, as
they break the frequency band into different sub-bands. Therefore, a multi-core
octave-band switched capacitor VCO with a frequency range of 5–10 GHz is used
to keep the tuning sensitivity below 100 MHz/V. Another advantage of this design
choice is that it limits the bandwidth of each VCO core to approximately 100MHz
and the PLL can lock at maximum two of the reference harmonics, since the reference
repetition rate is 76 MHz. Therefore, the designer has better control over the reference
harmonic the VCO locks into.

Figure 5.7(a) shows the calculated phase noise of the OEPLL at 10 GHz carrier
frequency according to the system level theory in Section 3.2. Since the MLL repeti-
tion rate is relatively low, the loop is designed for 1 MHz bandwidth to suppress the
harmonics of the reference intensity waveforms. At offset frequencies approximately
below 3 kHz the OEPLL phase noise is dominated by the optical reference, and at off-
set frequencies above 1 MHz the OEPLL phase noise is dominated by the VCO noise.
The noise of BOMPD and the loop filter resistor 𝑅1 is below that of the reference and
the VCO and has negligible effect on the overall phase noise. The noise of BOMPD
and the loop resistor is not very critical in this OEPLL, however it is expected to see
their effect in OEPLLs which have tunable oscillators with lower phase noise lev-
els. The measured phase noise for three carrier frequencies at the beginning, in the
middle and at the end of the frequency range is plotted in Figure 5.7(b). The phase
noise was measured using APPH20G phase noise analyzer from Anapico. (For an
overview of phase noise measurement techniques please see Appendix F.)
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Figure 5.8: Block diagram of OEPLL design II with YIG oscillator;
MCU, microcontroller unit; DAC, digital to analog converter; MLL,
mode-locked laser; MZM, Mach-Zehnder modulator; PC, polarization

controller; LPF, low-pass filter; YIG, Yttrium Iron Garnet.

5.2.2 Design II: improved OEPLL with YIG oscillator

Figure 5.8 shows the block diagram of the 2nd version of the OEPLL. The core of this
diagram is similar to the basic OEPLL block diagram shown in Figure 3.4(a). The op-
tical reference is a MLL from Menhir Photonics with a center wavelength of 1560 nm,
a repetition rate of 250 MHz and a pulse width below 200 fs [12]. The BOMPD was
implemented with a lithium niobate MZM with complementary outputs and a pair
of InGaAs photodiodes to convert the optical output of the MZM to an electrical
current. The output current pulses of the photodiode pair are then integrated via
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a series RC loop filter and converted to a voltage as discussed in Section 3.2. Since
the MZM performance is sensitive to the polarization of the input optical field, a
polarization controller is placed between the MLL and the MZM to align the polar-
ization of the input field with the required polarization of the MZM. The dc voltage
of dc-electrode of the MZM is set via a low-noise DAC.

An Yttrium Iron Garnet (YIG) oscillator with a bandwidth of 2–20 GHz is used
as a tunable oscillator, because of its high bandwidth and low phase noise. The main
coil of the YIG oscillator has a high tuning sensitivity and is used to coarse-tune the
frequency. The current of this coil is set via a current driver circuit and a low-noise
DAC. The FM coil is driven with a low-noise operational amplifier (OpAmp) which
gets its input voltage from the loop filter output voltage.

The low-noise DACs are programmed via SPI interface. The SPI commands are
sent from a RISC-V open-source instruction set microcontroller. The microcontroller
is loaded with MicroPython firmware and receives Python commands from a com-
puter.
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Figure 5.9: Phase noise of OEPLL design II with YIG oscillator, (a)
simulated and (b) measured.

The PLL loop filter components were designed for a target loop bandwidth using
the procedure explained in Section 3.2 similar to the charge pump PLLs [19]. The
designed values were then optimized using the AC simulation engine of the Keysight
Advanced Design System (ADS) tool to achieve the target loop bandwidth and phase
margin. On the one hand, the in-band phase noise of the output signal is dominated
by the sum of the phase noise of the frequency reference (MLL) and the phase
detector (BOMPD) according to (3.10). On the other hand, the out-of-band phase
noise is mainly determined by the phase noise of the tunable oscillator (YIG oscillator)
according to (3.12). Therefore, a good choice of loop cut-off frequency would be at
the intersection of these phase noise plots. However, the optimum loop bandwidth
for minimum integrated rms-jitter could be lower than the loop bandwidth found
using the procedure explained. This is mainly because the high-pass behavior of
the output phase to the tunable oscillator phase transfer function is not ideal and
has a transition band. The contribution of the phase noise of the BOMPD in this
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transition band can be significant, since the jitter scales linearly with the frequency.
As a result, shifting the loop bandwidth even by a few hundreds of kilohertz to
higher frequencies would result in significant increase of the integrated rms-jitter as
the phase noise of the BOMPD is higher than the phase noise of the tunable oscillator
in the transition band.

Figure 5.9(a) shows the calculated phase noise of the output signal of the OEPLL
at 10 GHz carrier frequency along with the open-loop phase noise of the reference,
the phase detector and the YIG oscillator. The phase noise data of the MLL and
the YIG oscillator have been provided by the manufacturer. The loop bandwidth
is approximately 1 MHz and the cut-off frequency of the closed-loop system can be
seen as a bump in the phase noise plot of the output of the OEPLL. At very low
offset frequencies below 10 kHz, the phase noise is dominated by the phase noise
of the reference, and the phase detector does not have a significant contribution to
the overall phase noise. In the intermediate offset frequency range inside the loop
bandwidth, from 10 kHz to 500 kHz, the output phase noise is mainly dominated
by the phase noise of the phase detector. Outside the loop bandwidth at offset
frequencies above 500 kHz, the output phase noise reaches the phase noise of the
YIG oscillator. At frequencies close to the loop cut-off frequency, the output phase
noise is mainly determined by the phase noise of the YIG oscillator and the phase
detector. The bump at the cut-off frequency is due to higher phase noise of the YIG
oscillator at the cut-off frequency.

5.3 Interharmonic OEPLL

In Section 4.2.2 the theory of a new regime in OEPLL was presented and it was shown
that the OEPLL can also lock on the interharmonics of the optical reference repetition
rate. This operating regime can also be confirmed in theory using the same OEPLL
block diagram shown in Figure 5.8. It was discussed earlier that the phase detector
requires a zero crossing in the characteristic curve. The reason is that a PLL with
type II loop filter has an average zero phase detector output. This zero crossing easily
achieves for 1st and 3rd order characteristic curves by setting the modulator bias point
at 𝜓dc = 0. However, this is not allowed for even order interharmonic locking since
it entirely nulls the characteristic curve according to (4.49) and (4.50). In order to
make sure this zero crossing happens, the YIG oscillator signal is first amplified and
then applied to the modulator. The amplification leads to additional RF harmonic
generation that might have a positive or negative effect on the phase detector gain
and can shift the BOMPD characteristic curves toward positive or negative values
(in reference to Figures 4.9). Therefore, an experimental approach was adapted;
the modular was initially biased at 𝜓dc = 𝜋/2 and then fine tuned around this
point to achieve locking. This has been sufficient for our experiment to achieve a
stable locking. It is noteworthy that other tweaking techniques are possible, such
as attenuation of one of MZM outputs to shift the curves up or down, or adding a
current source at the balanced photodiode output node to control its zero-crossing.
The optical power is also usable as another degree of freedom to control the phase
detector gain and the loop bandwidth.

Figure 5.10 shows the OEPLL output spectrum over a frequency span of 1 GHz at
10 GHz, 10.125 GHz, 10.083 GHz and 10.0625 GHz carrier frequencies corresponding
to harmonic locking, 2nd, 3rd and 4th order interharmonic locking, respectively. A
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Figure 5.10: Power spectrum of the OEPLL output signal at (a) 10 GHz
corresponding to harmonic locking, (b) 10.125 GHz corresponding to
2nd order interharmonic locking, (c) 10.083 GHz corresponding to 3rd

order interharmonic locking and (d) 10.0625 GHz corresponding to
4th order interharmonic locking.

handheld spectrum analyzer from Anritsu (MS2760A) was used for the measure-
ment. The OEPLL does not show any spurs within 50 dBc with respect to the carrier
level. The measurement noise floor was limited by the noise of the spectrum analyzer.

The phase noise of the OEPLL has also been characterized at interharmonic
frequencies and is plotted in Figure 5.11. The OEPLL phase noise at interharmonic
frequencies is comparable to the phase noise at harmonic frequency locking. The loop
bandwidth for the harmonic locking and 2nd order interharmonic locking is slightly
above the optimum point around 1 MHz. This increase in the loop bandwidth shifts
the PSD of the noise of the loop filter resistor 𝑅1 (see Figure 5.9(a)) to higher offset
frequencies and slightly degrades the out-of-band phase noise. The loop bandwidth
can of course be adjusted by simply reducing the optical power or re-designing
the loop filter. The phase noise plot for the second order interharmonic locking at
10.125 GHz shows a slight bump around 100 MHz offset frequency. The reason for
this bump is not clear to us, but we expect to be able to suppress it by filtering the
control voltage of the tunable oscillator after the YIG driver stage.

5.4 Summary and conclusion

In this chapter, we verified the OEPLL theory given in Chapter 3. First, a design
procedure for the BOMPD was given and then the BOMPD characteristic curves with
respect to different degrees of freedom were measured. The measurement results for
both harmonic locking and interharmonic locking show a good agreement between
the theory and the practice. We also showed two examples of OEPLL, design I with
a semiconductor VCO and design II with a YIG oscillator. The design methodology
was based on the system level analysis of the OEPLL given in Chapter 3. The OEPLL
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Figure 5.11: Measured phase noise of the OEPLL output signal at
(red, left) 10 GHz, (blue, left) 10.125 GHz, (orange, right) 10.083 GHz
and (cyan, right) 10.0625 GHz carrier frequencies corresponding to
harmonic locking and 2nd, 3rd and 4th order interharmonic locking,
respectively, (dashed black) phase noise of the MLL reference scaled
to 10 GHz carrier frequency and (dashed violet) phase noise of the

YIG oscillator.

with semiconductor VCO can lock on any harmonic of the optical reference in the
frequency range of 5–10 GHz. The OEPLL with YIG oscillator has a wider frequency
range 2–20 GHz, thanks to the high bandwidth of the YIG oscillator. In addition,
the OEPLL with YIG oscillator has better phase noise performance due to lower
phase noise of the YIG oscillator and its lower tuning sensitivity. Finally, design
II was used to characterize the OEPLL at interharmonic frequencies. The phase
noise performance of the OEPLL at interharmonic frequencies is comparable to that
at harmonic frequencies. The OEPLL can lock on harmonics and up to 4th order
interharmonics of the reference repetition rate within its output frequency range
2–20 GHz.
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Chapter 6

Conclusion and Outlook

6.1 Comparison with the state of the art

Figure 6.1 compares the phase noise of the OEPLL (design I and II) with the best
state-of-the-art laboratory signal generators as well as OEPLLs from other groups.
Compared to the state-of-the-art wideband laboratory signal generators, E8257D
from Keysight, SMW200A from Rohde & Schwarz and MSG36241A from Anritsu [30–
32], the OEPLL shows superior phase noise performance at offset frequencies above
2 kHz, especially in the intermediate frequency range below 500 kHz which lies inside
the loop bandwidth. The phase noise performance of the OEPLL and the-state-of-the-
art frequency synthesizers is similar at the offset frequencies above approximately
1 MHz which is outside the loop bandwidth (at 10 GHz carrier frequency). This can
be attributed to similar tunable oscillator technology for both the state of the art and
the OEPLL. At offset frequencies below 2 kHz, the phase noise of the state-of-the-art
instruments follows the quartz oscillator phase noise which is better than that of the
MLL and consequently better than that of the OEPLL design I and II. This poor
performance at lower frequencies below 2 kHz can indeed be improved by locking
the MLL on a quartz reference or using more sophisticated methods such as OFD.

The OEPLL with VCO (Design I) has a slightly better in-band phase noise per-
formance at offset frequencies in the range of 2–200 kHz compared to state-of-the-art
frequency synthesizers. At close-in carrier offset frequencies below 2 kHz, the phase
noise is limited by the MLL which is expected to improved if the MLL repetition rate
is locked to a quartz reference or using best-in-class OFD optical sources. At offset
frequencies above 200 kHz the OEPLL phase noise is limited by the semiconductor
VCO phase noise. Laboratory-grade frequency synthesizers usually use YIG oscilla-
tors and have better phase noise at these offset frequencies, as YIG oscillators have
resonators with higher quality factors and consequently better phase noise.

The OEPLL with YIG oscillator (Design II) has superior performance compared
to the state-of-the-art frequency synthesizers almost at all offset frequencies above
2 kHz. Compared to the OEPLL with VCO (Design I) reported in [author’s publica-
tion, 53], this work has better phase noise at almost all offset frequencies. The main
reason for this improvement is using a YIG oscillator instead of an integrated VCO.
The phase noise of OEPLL (Design II) at other carrier frequencies can be found in
Appendix G.

The phase noise performance of the OEPLL reported in [28] is similar to OEPLL
with YIG oscillator at offset frequencies below 10 kHz. However, the OEPLL in [28]
has lower phase noise at offset frequencies above 10 kHz. The superior performance
of [28] at higher offset frequencies is mainly due to the lower open-loop phase
noise of the DRO used as the tunable oscillator. Also, our OEPLL optical power
budget is limited by the photodiodes and increasing the optical power has an adverse
effect on the generation-recombination noise of the photodiodes. By optimizing the
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Figure 6.1: Phase noise comparison of microwave frequency synthe-
sizers at 10 GHz and frequency references normalized to 10 GHz
carrier frequency. OEPLL Design I uses a VCO and OEPLL Design II

uses a YIG oscillator.

photodiode illumination condition or using photodiodes with larger active area, the
optical power can be increased to reduce the BOMPD phase noise without being
limited by the photodiode generation-recombination (GR) noise. The additive phase
noise of the OEPLL reported by Jung et al. [28] has been measured in [27] and can
be compared with that of our OEPLL. The additive phase noise of this work can
be considered as the difference between the reference phase noise and the output
signal phase noise. Since the phase noise of the tunable oscillator is suppressed
inside the loop bandwidth, the main source of the additive phase noise is the phase
detector noise. This explains the approximately flat shape of the additive phase noise
in [27], as the source of the phase detector noise is the shot noise of the photodiodes.
Although the additive phase noise of this work was not measured, its in-band level
can be estimated to be the phase detector noise (approximately -150 dBc/Hz). The
phase detector noise can be observed at lower carrier frequencies (see Appendix G),
where the reference phase noise is well below the phase detector noise. The phase
detector noise shows itself as a plateau in the frequency range between 20 kHz and
2 MHz. Therefore, the inside-loop additive phase noise of this work is 4 dB higher
than that of the OEPLL reported in [27] which is −154 dBc/Hz normalized to 10 GHz
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carrier frequency.
The phase noise of our OEPLL can be compared with other RF signal generation

methods such as SLCO and direct detection of the optical pulse whose phase noise
are plotted in Figure 1.1. The SLCOs reported in [5, 6] perform better than this
work because of superior performance of SLCO compared to our MLL and also the
phase noise of the BOMPD inside the loop bandwidth. The additive noise of the
direct detection scheme is usually limited by the difference of the RF power to the
thermal noise floor which can be improved by increasing the RF power using the
pulse interleaving technique and high-power photodiodes. Therefore, a combination
of the best-in-class MLL and a direct detection receiver has a better phase noise than
that of this OEPLL by more than two orders of magnitude [6, 14]. Although these
works have lower phase noise, they have a single frequency output whereas our
OEPLL has an output frequency range of 2–20 GHz.

6.2 Outlook

The reported OEPLL is capable of locking on the harmonics and the interharmonics
of the repetition rate of MLL. It was shown that the phase noise at close-in offset
frequencies is limited by the MLL phase noise. Therefore, synchronizing the MLL
with a precise quartz source can improve the phase noise at close-in offset frequen-
cies. In addition, many modern RF systems require synchronization of multiple RF
generators. Therefore, synchronization of the MLL and consequently the OEPLL
with another reference seems more necessary. It is noteworthy that the OEPLL can
also use state-of-the-art optical references such as the OFD system reported in by Xie
et al. [13] or the solid-state MLL reported by Kalubovilage et al. [14] to improve the
closer-in carrier phase noise by orders of magnitude.

In addition to phase noise improvement, the OEPLL output signal can be mixed
by a sub-Hertz-resolution frequency synthesizer to improve the frequency resolution.
The mixing scheme can be a simple multiplication of the OEPLL output signal by
a fine-resolution frequency synthesizer which is based on fractional PLL or a direct
digital synthesis (DDS) [86]. An alternative approach which is more suitable for
wideband signal generation is using offset PLL architecture [87].

Finally, integration of the OEPLL on a photonic integrated circuit (PIC) chip
either by using InP, silicon photonics (SiP) or lithium niobate-on-insulator (LNOI)
technology platforms is an interesting possibility to reduce the overall cost and size
of the system. The integrated MZMs currently do not offer excellent specifications
such as the ones offered by LiNbO3 technology, but there is wide research to im-
prove their loss and modulation efficiency that can benefit the MLL-based frequency
synthesizers.
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Appendix A

Phase Noise, Timing Jitter and
Amplitude Noise

A.1 Phase noise and timing jitter

Phase noise is defined as the random variations of the phase of a sinusoidal signal
𝑥(𝑡) as

𝑥(𝑡) = 𝑥0 cos
(︁
𝜔0𝑡 + 𝜙0 + 𝜙𝑛(𝑡)

)︁
, (A.1)

where 𝑥0 is the amplitude, 𝜔0 is the angular frequency, 𝜙0 is the offset phase and
𝜙𝑛(𝑡) is phase noise. This random variations is illustrated graphically in Figure A.1.

Δ𝑡 = Δ𝜙/𝜔0

𝑡

𝑥(𝑡)
ideal tone
tone with phase noise

Figure A.1: Illustration of phase noise in a sinusoidal signal.

Like any other random process, it is meaningful to talk about the statistical
properties of phase noise rather than its instantaneous value. Assuming phase noise
is ergodic (that is the temporal averages are equal to the ensemble averages), the
autocorrelation function of the phase noise can be written as

𝑅𝜙𝑛 (𝜏) = E[𝜙𝑛(𝑡)𝜙𝑛(𝑡 + 𝜏)], (A.2)

where E[.] denotes the expectation value. The power spectral density of the phase
noise according to Wiener–Khinchin theorem is the Fourier transform of its autocor-
relation function

𝑆𝜙𝑛 ( 𝑓 ) =
∫ +∞

−∞
d𝜏𝑅𝜙𝑛 (𝜏)𝑒−j2𝜋 𝑓 𝜏. (A.3)

The PSD of phase noise has units of Rad2/Hz. In the literature, usually what is
referred to as phase noise is the power spectral density of the phase noise.

Although describing the phase noise using equations (A.1) to (A.3) is mathemat-
ically straightforward, extracting the phase noise information from a periodic signal
requires additional effort. In addition, the effect of phase noise on the spectrum of
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the signal 𝑥(𝑡) has to be well understood. Therefore, we investigate the effect of phase
noise on the PSD of 𝑥(𝑡). The sinusoidal signal 𝑥(𝑡) in (A.1) can be expanded as

𝑥(𝑡) = 𝑥0
[︁

cos
(︁
𝜙𝑛(𝑡)

)︁
cos

(︁
𝜔0𝑡 + 𝜙0

)︁ − sin
(︁
𝜙𝑛(𝑡)

)︁
sin

(︁
𝜔0𝑡 + 𝜙0

)︁ ]︁
. (A.4)

If the phase noise variations are small,
|︁|︁𝜙𝑛(𝑡)|︁|︁ ≪ 𝜋/2, Equation (A.4) can be further

simplified to

𝑥(𝑡) ≈ 𝑥0 cos
(︁
𝜔0𝑡 + 𝜙0

)︁
⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞

𝒞

− 𝑥0𝜙𝑛(𝑡) sin
(︁
𝜔0𝑡 + 𝜙0

)︁
⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞

𝒩

. (A.5)

Equation (A.5) shows that phase noise is modulated by a sinusoidal term in quadra-
ture to the carrier. Now we calculate the autocorrelation function and PSD of the
carrier and noise terms of (A.5). The carrier term gives a autocorrelation function of

𝑅𝒞(𝜏) = 1
2𝑥

2
0 cos(𝜔0𝜏), (A.6)

and a PSD of

𝑆𝒞( 𝑓 ) = 1
4𝑥

2
0
[︁
𝛿( 𝑓 − 𝑓0) + 𝛿( 𝑓 + 𝑓0)

]︁
, (A.7)

where 𝛿( 𝑓 ) denotes the Dirac delta function and 𝑓 = 𝜔/2𝜋. The noise term gives an
autocorrelation function of

𝑅𝒩 (𝜏) = 1
2𝑥

2
0 cos(𝜔0𝜏)𝑅𝜙𝑛 (𝜏), (A.8)

and a PSD of

𝑆𝒩 ( 𝑓 ) = 1
4𝑥

2
0
[︁
𝑆𝜙𝑛 ( 𝑓 − 𝑓0) + 𝑆𝜙𝑛 ( 𝑓 + 𝑓0)

]︁
, (A.9)

Equations (A.8) and (A.9) are the mathematical basis for a popular method of phase
noise measurement using spectrum analyzer. Phase noise can be found by measuring
the power of the carrier sideband relative to the power of the carrier itself. This
method is also illustrated graphically in Figure A.2.
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Figure A.2: Effect of phase noise on the signal spectrum.



A.2. Timing jitter 75

A.2 Timing jitter

Another approach to model the random variations of the phase of a sinusoidal signal
is to model the timing uncertainties rather than the phase uncertainties. One can
simply rewrite (A.1) as

𝑥(𝑡) = 𝑥0 cos
[︃
𝜔0

(︃
𝑡 + 𝜙𝑛(𝑡)

𝜔0

)︃
+ 𝜙0

]︃
. (A.10)

This rearrangement is the key to mathematically model the timing uncertainties of
the sinusoidal signal. The jitter can consequently be defined as

jitter :=
𝜙𝑛(𝑡)
𝜔0

. (A.11)

It is usually desired to find the total value of timing uncertainty over a range of offset
frequencies. The rms-jitter can then be defined as the integral of PSD of the jitter
over the desired offset-frequency range

rms-jitter( 𝑓1 , 𝑓2) = 1
𝜔2

0

∫ 𝑓2

𝑓1
d 𝑓 𝑆𝜙𝑛 ( 𝑓 ). (A.12)

A.3 Amplitude noise

Amplitude noise can be defined as the random fluctuations of a sinusoidal signal
amplitude, illustrated graphically in Figure A.3. In a similar fashion the phase noise
was included in a noiseless tone, amplitude noise of a sinusoidal signal can be
modeled as

𝑥(𝑡) = 𝑥0
(︁
1 + 𝑎𝑛(𝑡)

)︁
cos(𝜔0𝑡 + 𝜙0), (A.13)

where 𝑎𝑛(𝑡) is the amplitude noise. Similar to what has been done for the phase
noise, the autocorrelation function and PSD of the amplitude noise can be derived

𝑅𝑎𝑛 (𝜏) = E [𝑎𝑛(𝑡)𝑎𝑛(𝑡 + 𝜏)] , (A.14)

and

𝑆𝑎𝑛 ( 𝑓 ) =
∫ +∞

−∞
d𝜏𝑅𝑎𝑛 (𝜏)𝑒−j2𝜋 𝑓 𝜏. (A.15)

−𝑥0

𝑥0

Δ𝑥 = 𝑥0Δ𝑎

𝑡

𝑥(𝑡)
ideal tone
tone with amplitude noise

Figure A.3: Illustration of amplitude noise in a sinusoidal signal.
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Appendix B

Fourier Transform

Table B.1: Fourier series; 𝑥(𝑡) is periodic with a period of 𝑇.

Fourier series coefficients:

𝑥𝑘 =
1

2𝜋

∫ 𝑇

0
d𝑡𝑥(𝑡)𝑒j𝑘𝜔0𝑡 (B.1)

|𝑥𝑘 |

𝑘

0 1 2 3 4
−1−2−3−4

∠𝑥𝑘

𝑘

Signal reconstruction:

𝑥(𝑡) =
+∞∑︂
𝑘=−∞

𝑥𝑘 𝑒
j𝑘𝜔0𝑡 (B.2)

𝑇 2𝑇
𝑡

𝑥(𝑡)

Table B.2: Fourier transform; 𝑥(𝑡) is absolutely integrable.

Fourier transform:

𝑋(𝜔) =
∫ +∞

−∞
d𝑡𝑥(𝑡)𝑒−j𝜔𝑡 (B.3)

𝜔

|𝑋(𝜔)|
∠𝑋(𝜔)

Inverse Fourier transform:

𝑥(𝑡) = 1
2𝜋

∫ +∞

−∞
d𝑡𝑋(𝜔)𝑒j𝜔𝑡 (B.4) 𝑡

𝑥(𝑡)
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Table B.3: Lowpass equivalent of bandpass signals.

Bandpass signal Fourier transform:

𝑋(𝜔) =
∫ +∞

−∞
d𝑡𝑥(𝑡)𝑒−j𝜔𝑡 (B.5)

−𝜔0 0 𝜔0
𝜔

𝑋(𝜔)

Bandpass signal inverse Fourier
transform:

𝑥(𝑡) = 1
2𝜋

∫ +∞

−∞
d𝑡𝑋(𝜔)𝑒j𝜔𝑡 (B.6) 𝑡

𝑥(𝑡)

Heaviside step function:

𝐻(𝜔) =
{︄

0 for 𝜔 ≤ 0
1 for 𝜔 > 0

(B.7)

1

𝜔

𝐻(𝜔)

Fourier transform at positive frequencies:

𝑋+(𝜔) = 𝐻(𝜔)𝑋(𝜔) (B.8)

−𝜔0 0 𝜔0
𝜔

𝑋+(𝜔)

Lowpass equivalent of bandpass signal
in frequency domain:

�̃�(𝜔) = 𝑋+(𝜔 + 𝜔0) (B.9)
−𝜔0 0 𝜔0

𝜔

�̃�(𝜔)

Lowpass equivalent of bandpass signal
in time domain:

�̃�(𝑡) = 1
2𝜋

∫ +∞

−∞
d𝑡�̃�(𝜔)𝑒j𝜔𝑡 (B.10) 𝑡

|�̃�(𝑡)|

Bandpass signal reconstruction from its
lowpass equivalent:

𝑥(𝑡) = Re
{︂
2�̃�(𝑡)𝑒j𝜔0𝑡

}︂
(B.11) 𝑡

𝑥(𝑡)
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Characteristic function of balanced
intensity modulator

As we mentioned earlier, the BIM can be implemented using a Sagnac loop or an
MZM, as they both have similar transfer characteristics. We therefore choose a bal-
anced MZM block diagram, illustrated in Figure C.1, for our analysis. Assuming the
photo detectors in Figure 3.4(a) are linear, we can directly use the output intensities
of the MZM and exclude the photodiode responsivity from our equations. The input
optical field, 𝑥, is divided into two parts and these parts enter the upper and the lower
arms of the modulator. Each part passes through two tunable phase shifters which
are controlled by two separate electrodes, RF and dc. The upper and the lower phase
shifters add positive and negative phase shifts to the optical signals, respectively.
The phase shifted signals are then recombined using a 90-degree 2×2 coupler which
obeys the following relations in the phasor domain

𝑦+ =
𝑏+ + j𝑏−√

2
and 𝑦− =

𝑏− + j𝑏+√
2

, (C.1)

where 𝑦+ and 𝑦− are the output signals of the coupler, 𝑏+ and 𝑏− are the input signals
of the coupler and j is the unit imaginary number

√−1.

𝑥

+𝜓RF/2

−𝜓RF/2

+𝜓dc/2

−𝜓dc/2

𝑎+

𝑎−

𝑏+

𝑦−𝑏−

𝑦+

𝑣RF 𝑣dc

2×2 Coupler 2×2 Coupler

Figure C.1: Block diagram of Mach-Zehnder modulator with two
separate electrodes for RF modulation and dc bias.

The output signals of the 1×2 coupler, 𝑎+ and 𝑎−, are both equal to 𝑥/√2. The
outputs of the upper and lower phase shifters are then

𝑏± =
𝑥√
2
𝑒±j𝜓/2 , (C.2)

where the phase 𝜓 follows (3.25). Combining (C.1) and (C.2), the outputs of the
modulator can be written as

𝑦± =
𝑥
2 [𝑒

±j𝜓/2 − j𝑒∓j𝜓/2] . (C.3)
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The intensities of the optical outputs can consequently be derived as

𝐼±𝑦 = 𝐼𝑥
[︁
0.5 ± 0.5 sin(𝜓)]︁ , (C.4)

where 𝐼+𝑦 is the intensity of 𝑦+, 𝐼−𝑦 is the intensity of 𝑦− and 𝐼𝑥 is the intensity of the
optical input field 𝑥.
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Appendix D

Transfer Characteristic of the Bias
Electrode Noise

The noise of the dc voltage applied to the dc electrode of the modulator is included
in (4.31) and the modulator output considering this noise voltage is given by (4.33).
The noise term in (4.33) is

𝑖𝑛,bias(𝑡) = 𝑅𝜆
[︁
𝜓𝑛(𝑡)𝐼(𝑡) cos(𝜓RF(𝑡) + 𝜓dc)

]︁ ∗ ℎ(𝑡) , (D.1)

where 𝑖n,bias denotes the noise term of the output current of the BOMPD. The term
in brackets shows that 𝜓𝑛(𝑡) is modulated by the modulation term (MT)

MT = 𝐼(𝑡) cos(𝜓RF(𝑡) + 𝜓dc) , (D.2)

which has many tones. For the phase detector application, only the dc term of MT
is important and the higher order harmonics are filtered by the loop filter. This dc
term can be written as

⟨MT⟩ =
⟨︄
𝐼0𝑇ref

+∞∑︂
𝑚=−∞

𝛿(𝑡 − 𝑚
𝑓ref

) cos(𝜓RF(𝑡) + 𝜓dc)
⟩︄
, (D.3)

where we used (3.26) and approximated the optical pulse shape as Dirac delta func-
tion. Assuming a single tone excitation of the RF electrode with (3.29) and applying
the harmonic locking condition 𝜔RF = 𝑁𝜔ref, the optical pulse samples the RF signal
at the same phase in every cycle of the RF signal. Therefore, the average of the
modulation term can be found by averaging over the first cycle of optical pulse as

⟨MT⟩ =𝐼0 cos(𝜓0) , (D.4)

where 𝜓0 is given in (3.38). Therefore with approximation of neglecting the high
frequency terms of (D.1), the output noise of the BOMPD can be written as

𝑖𝑛,bias(𝑡) ≈ 𝑅𝜆𝐼0 cos(𝜓0)𝜓𝑛(𝑡) ∗ ℎ(𝑡) . (D.5)

Finally, taking into account the locking condition 𝜓0 = 0 and assuming the photodi-
ode bandwidth is much higher that the bandwidth of the voltage noise applied to
the dc electrode, ℎ(𝑡) can be approximated as Dirac delta function and (D.5) can be
further simplified to (4.36).
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Appendix E

Gain of BOMPD with Nonlinear
Photodiode

The phase detector characteristic function is given by (3.31) and the phase detector
gain is the slope of the characteristic function at the zero crossing

𝐾𝜙 =
d

d𝜙 ⟨𝑖+PD − 𝑖−PD⟩
|︁|︁|︁
𝜓0=0

=
d

d𝜙 ⟨𝑖+PD⟩
|︁|︁|︁
𝜓0=0

− d
d𝜙 ⟨𝑖−PD⟩

|︁|︁|︁
𝜓0=0

. (E.1)

where ⟨𝑖±PD⟩ is given by (4.42). Now we find the derivative of ⟨𝑖±PD⟩ with respect to 𝜙

d
d𝜙 ⟨𝑖±PD⟩ =

d
d𝜙

[︄
𝑅𝜆0𝐼0

[︁
1 ± sin(𝜓0)

]︁
2 + 𝐼0𝑇𝑅

[︁
1 ± sin(𝜓0)

]︁/𝐸sat

]︄
, (E.2)

where we substituted (4.39) and (4.40) into (4.42). The derivative of ⟨𝑖±PD⟩ with respect
to 𝜙 can be be found using the chain rule and (3.38) as

d
d𝜙 ⟨𝑖±PD⟩ =

d𝜓0

d𝜙
d

d𝜓0

[︄
𝑅𝜆0𝐼0

[︁
1 ± sin(𝜓0)

]︁
2 + 𝐼0𝑇𝑅

[︁
1 ± sin(𝜓0)

]︁/𝐸sat

]︄

=
±2𝛼 cos(𝜙) cos(𝜓0)𝑅𝜆0𝐼0

[︁
1 ± sin(𝜓0)

]︁
(︁
2 + 𝐼0𝑇𝑅

[︁
1 ± sin(𝜓0)

]︁/𝐸sat
)︁2 . (E.3)

Imposing the zero-crossing condition, 𝜓0 = 0, on (E.3) gives

d
d𝜙 ⟨𝑖±PD⟩

|︁|︁|︁
𝜓0=0

=
±𝑅𝜆0𝐼0

√︂
𝛼2 − 𝜓2

dc

2 (1 + 𝐼0𝑇𝑅/2𝐸sat)2
. (E.4)

Substituting (E.4) in (E.1) gives the phase detector gain in (4.43).
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Appendix F

Phase Noise Measurement
Techniques

F.1 Baseband PSD measurement using cross correlation

One challenge in characterization of an ultra low phase noise signal is the measure-
ment of phase noise itself. How can one measure the PSD of a signal that is smaller
than the instrument noise floor by orders of magnitude? The answer is to use 2 pieces
of hardware in parallel and extract the correlated part of the measured signals. In
order to illustrate this technique, we use the simplified diagram shown in Figure F.1.
The mathematical formalism in this section only deals with PSD measurement of a
baseband signal and we assume the phase noise of the carrier signal is extracted using
the delay line method or the phase-locked loop method explained in Section F.2.

𝑥(𝑡)

+

+

𝑛𝐴(𝑡)

𝑛𝐵(𝑡)

C
rossC

orrelation

Ensemble
Average 𝑁

𝑦𝐴(𝑡)

𝑦𝐵(𝑡)

𝑧(𝜏)
𝑧(𝜏, 𝑁)

Signal
Under Test

Channel A

Channel B

Figure F.1: Schematic of PSD measurement setup using cross correla-
tion technique.

Note that we are interested in the average autocorrelation or the average Fourier
transform of 𝑥(𝑡). The output signals of Channel A and Channel B can be written as

𝑦𝐴(𝑡) = 𝑥(𝑡) + 𝑛𝐴(𝑡) , (F.1)
𝑦𝐵(𝑡) = 𝑥(𝑡) + 𝑛𝐵(𝑡) , (F.2)

where 𝑥(𝑡) is the signal under test (SUT), 𝑛𝐴(𝑡) & 𝑛𝐵(𝑡) are the equivalent input noise
of Channel A & B, respectively, and 𝑦𝐴(𝑡) & 𝑦𝐵(𝑡) are the outputs of Channel A & B,
respectively. Applying sample cross correlation between 𝑥𝐴 and 𝑥𝐵 yields 𝑧(𝜏)

𝑧(𝜏) = 𝑟𝑦𝐴,𝐵(𝜏) = 𝑟𝑥(𝜏) + 𝑟𝑛𝐴 ,𝑥(𝜏) + 𝑟𝑥,𝑛𝐵(𝜏) + 𝑟𝑛𝐴,𝐵(𝜏) , (F.3)
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with a Fourier transform of

𝑍( 𝑓 ) = |𝑋( 𝑓 )|2 + 𝑁𝐴( 𝑓 )𝑋∗( 𝑓 ) + 𝑋( 𝑓 )𝑁 ∗
𝐵( 𝑓 ) + 𝑁𝐴( 𝑓 )𝑁 ∗

𝐵( 𝑓 ) . (F.4)

The basic idea of cross correlation technique is to suppress the statistically indepen-
dent noise terms by averaging. The more the number of averages, the more the noise
terms are suppressed. This can indeed be seen in the formula (F.3). The expectation
value of 𝑟𝑦𝐴,𝐵(𝜏) is composed of four terms; only the first term is nonzero and all
other terms are zero due to the statistical independence of 𝑥(𝑡) & 𝑛𝐴(𝑡), 𝑥(𝑡) & 𝑛𝐵(𝑡)
and 𝑛𝐴(𝑡) & 𝑛𝐵(𝑡). However, expectation value means averaging over infinite sample
signals which is not practically possible. Therefore, we need to find out how much
suppression of the undesired noise terms is achieved as a function of number of
averages. In practice, only a two-channel hardware is used and the signals are trun-
cated over a certain period of time, then the cross correlation is performed and the
cross-correlated signals are averaged. In this analysis, for simplicity, we assume that
𝑁 pieces of two-channels hardware are available and ensemble averaging without
signal truncation is possible.

The output of the averaging block can therefore be written as

𝑧(𝜏, 𝑁) = 1
𝑁

𝑁∑︂
𝑘=1

{︁
𝑟𝑥(𝜏)

}︁
𝑘 +

1
𝑁

𝑁∑︂
𝑘=1

{︁
𝑟𝑥,𝑛𝐵(𝜏)

}︁
𝑘

+ 1
𝑁

𝑁∑︂
𝑘=1

{︁
𝑟𝑛𝐴 ,𝑥(𝜏)

}︁
𝑘 +

1
𝑁

𝑁∑︂
𝑘=1

{︁
𝑟𝑛𝐴,𝐵(𝜏)

}︁
𝑘 , (F.5)

with a Fourier transform of

𝑍( 𝑓 , 𝑁) = 1
𝑁

𝑁∑︂
𝑘=1

{︂
|𝑋( 𝑓 )|2

}︂
𝑘
+ 1
𝑁

𝑁∑︂
𝑘=1

{𝑁𝐴( 𝑓 )𝑋∗( 𝑓 )}𝑘

+ 1
𝑁

𝑁∑︂
𝑘=1

{︁
𝑋( 𝑓 )𝑁 ∗

𝐵( 𝑓 )
}︁
𝑘 +

1
𝑁

𝑁∑︂
𝑘=1

{︁
𝑁𝐴( 𝑓 )𝑁 ∗

𝐵( 𝑓 )
}︁
𝑘 , (F.6)

where the index 𝑘 refers to the sample number in the ensemble. Now we find the
mean and variance of 𝑍( 𝑓 , 𝑁). Only the first term in the right hand of (F.6) has
a non-zero average and all other terms are composed of statistically independent
random processes

E
[︂
𝑍( 𝑓 , 𝑁)

]︂
= E

[︂
|𝑋( 𝑓 )|2

]︂
= 𝑆𝑥( 𝑓 ) . (F.7)

Therefore, the average output of the cross correlator is equal to the PSD of the signal
under test. Now we look at the variance of the real and imaginary parts of 𝑍( 𝑓 , 𝑁).
We start by finding the variance of the real part of the second term on the right hand
of (F.6). In order to do that, first we write the real part as

Re {𝑁𝐴( 𝑓 )𝑋∗( 𝑓 )} = 𝑁𝐴,𝑅( 𝑓 )𝑋𝑅( 𝑓 ) + 𝑁𝐴,𝐼( 𝑓 )𝑋𝐼( 𝑓 ) , (F.8)
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where the lower 𝑅 and 𝐼 indices denote the real part and imaginary part, respectively.
Now the variance of (F.8) is

E
[︂
Re2 {𝑁𝐴( 𝑓 )𝑋∗( 𝑓 )}

]︂
=

1
2𝑆𝑛𝐴( 𝑓 )E

[︁
𝑋2
𝑅( 𝑓 )

]︁ + 1
2𝑆𝑛𝐴( 𝑓 )E

[︁
𝑋2
𝐼 ( 𝑓 )

]︁
=

1
2𝑆𝑛𝐴( 𝑓 )𝑆𝑥( 𝑓 ) , (F.9)

where we assumed the real and imaginary parts of the noise process 𝑛𝐴 are statisti-
cally independent. Averaging over an ensemble of 𝑁 samples reduces this variance
by a factor of 𝑁

E

[︄
Re2

{︄
1
𝑁

𝑁∑︂
𝑘=1

{𝑁𝐴( 𝑓 )𝑋∗( 𝑓 )}𝑘
}︄]︄

=
1

2𝑁 𝑆𝑛𝐴( 𝑓 )𝑆𝑥( 𝑓 ) . (F.10)

The variance of other terms in (F.6) can be found in a similar fashion. The final result
for both the real part and the imaginary part is

𝜎2
𝑧( 𝑓 , 𝑁) = 1

2𝑁 [𝑆𝑛𝐴( 𝑓 )𝑆𝑥( 𝑓 ) + 𝑆𝑛𝐵( 𝑓 )𝑆𝑥( 𝑓 ) + 𝑆𝑛𝐴( 𝑓 )𝑆𝑛𝐵( 𝑓 )] , (F.11)

where 𝜎2
𝑧( 𝑓 , 𝑁) denotes the variance of 𝑍( 𝑓 , 𝑁). Note that 𝑍( 𝑓 ) has already the

units of power spectral density. Therefore, with respect to the desired signal power
spectral density, 𝑆𝑥( 𝑓 ), the noise variance is proportional to 𝜎𝑧( 𝑓 ). As a result, for
the measurement of 𝑆𝑥( 𝑓 ), the noise variance is the standard deviation of 𝑍( 𝑓 , 𝑁).
The noise reduction factor can be defined relative to a single measurement without
any averaging as

NRF =
𝜎𝑧( 𝑓 , 1)
𝜎𝑧( 𝑓 , 𝑁) =

√
𝑁 , (F.12)

and in decibels as

NRFdB = 10 log10(NRF) = 5 log10(𝑁) . (F.13)

F.2 Single-channel phase noise measurement

In the previous section we showed how the noise floor of a baseband receiver can be
suppressed using two channel cross correlation technique. Note that this technique
can only be used for the measurement of PSD and statistical signal analysis, not
instantaneous measurement of a signal. For phase noise analysis, the SUT has a
bandpass nature and cannot directly be applied to a baseband receiver. Therefore,
the phase noise of the SUT has to be first extracted and then applied to a two-channel
baseband receiver. The phase noise can be discriminated using a phase detector,
usually a double balanced mixer, whose input signals are in quadrature, shown in
Figure F.2. For a complete two-channel phase noise analyzer, two pieces of the phase
noise measurement apparatus are necessary. The output signals of these single-
channel phase noise analyzers are then applied to a cross correlator to suppress the
undesired noise signals by correlation and averaging.
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𝑥𝑖(𝑡)

𝑥𝐿𝑂 (𝑡)

𝑦(𝑡)
SUT

Figure F.2: Phase detection using double balanced mixer.

The phase detector input, 𝑥𝑖(𝑡), is a single tone with an angular frequency of 𝜔0
and an amplitude of 𝐴𝑖

𝑥𝑖(𝑡) = 𝐴𝑖 sin
(︁
𝜔0𝑡 + 𝜙𝑛,𝑖(𝑡)

)︁
, (F.14)

where 𝜙𝑛,𝑖(𝑡) the phase noise of the SUT. Assuming the local oscillator (LO) signal
is in quadrature with the SUT, it can be written similarly as

𝑥𝐿𝑂(𝑡) = 𝐴𝐿𝑂 cos
(︁
𝜔0𝑡 + 𝜙𝑛,𝐿𝑂(𝑡)

)︁
. (F.15)

Balanced mixers are switching devices and operate in saturation regime with respect
to their switching input. Hence, we assume the LO signal is close to saturation levels
of the mixer and the mixer has a constant gain independent of the level of the LO
signal. Assuming the mixing process has a gain of 2𝐿 (a gain of 2𝐿 corresponds to a
gain of 𝐿 for each output mixing term) its output 𝑦(𝑡) can be written as

𝑦(𝑡) = 2𝐿𝐴𝑖 sin
(︁
𝜔0𝑡 + 𝜙𝑛,𝑖(𝑡)

)︁
cos

(︁
𝜔0𝑡 + 𝜙𝑛,𝐿𝑂(𝑡)

)︁
= 𝐿𝐴𝑖 sin

(︁
𝜙𝑛,𝑖(𝑡) − 𝜙𝑛,𝐿𝑂(𝑡)

)︁ + 𝐿𝐴𝑖 sin
(︁
2𝜔0𝑡 + 𝜙𝑛,𝑖(𝑡) + 𝜙𝑛,𝐿𝑂(𝑡)

)︁
. (F.16)

The second term on the right-hand side of (F.16) has a high frequency and can be
filtered. Assuming the variation of phase noise is small, |𝜙𝑛,𝑖(𝑡)|, |𝜙𝑛,𝐿𝑂(𝑡)| ≪ 𝜋/2,
the phase detector output can be written as

𝑦(𝑡) ≈ 𝐿𝐴𝑖
[︁
𝜙𝑛,𝑖(𝑡) − 𝜙𝑛,𝐿𝑂(𝑡)

]︁
. (F.17)

The noise of the LO signal can then be suppressed by using a cross-correlation
scheme, leading to extraction of the phase noise of SUT.

We have seen that phase detection using a balanced frequency mixer requires
quadrature operation. The quadrature signal for LO is usually generated using two
methods, delay line method and PLL method, which are explained in the following.

Delay line frequency discriminator In the delay line method, the quadrature LO
signal is a delayed version of the SUT, as illustrated in Figure F.3.

𝑥𝑖(𝑡)

𝑡𝑑
𝑥𝐿𝑂 (𝑡)

𝑦(𝑡)
SUT

Figure F.3: Phase noise measurement using delay line frequency dis-
crimination technique.

The LO signal, 𝑥𝐿𝑂(𝑡), can be written as

𝑥𝐿𝑂(𝑡) = 𝑥𝑖(𝑡 − 𝑡𝑑) = 𝐴𝑖 sin
(︁
𝜔0𝑡 − 𝜔0𝑡𝑑 + 𝜙𝑛,𝑖(𝑡 − 𝑡𝑑)

)︁
, (F.18)



F.2. Single-channel phase noise measurement 89

where 𝑡𝑑 is the delay time and is chosen such that

𝜔0𝑡𝑑 = (𝑘 − 1
2 )𝜋 , (F.19)

for a positive integer 𝑘. With this assumption, the quadrature operation of the
balanced mixer is guaranteed and the phase detector output can be written as

𝑦(𝑡) = ±𝐿𝐴𝑖
[︁
𝜙𝑛,𝑖(𝑡) − 𝜙𝑛,𝑖(𝑡 − 𝑡𝑑)

]︁
. (F.20)

The balanced mixer output is proportional to the difference between the phase noise
and a delayed version of itself. This behavior is similar to a derivative operator and
since the derivative of the phase is the frequency, this technique discriminates the
frequency noise, rather than the phase noise itself. The phase noise can then be
calculated by integration of the frequency noise. The impulse response ℎFD(𝑡) and
its Fourier transform 𝐻FD(𝜔) of the frequency discriminator are

ℎFD(𝑡) = ±𝐿𝐴𝑖
[︁
𝛿(𝑡) − 𝛿(𝑡 − 𝑡𝑑)

]︁
and 𝐻FD(𝜔) = ±2j𝐿𝐴𝑖 sin

(︃
𝜔𝑡𝑑

2

)︃
𝑒−j 𝜔𝑡𝑑

2 . (F.21)

The sine terms in the transfer function of delay line frequency discriminator leads to
nulls at offset frequencies of 𝜔 = 2𝑘𝜋/𝑡𝑑. These nulls lead to limiting the maximum
offset frequency range of this technique. For the measurement of phase noise at
offset frequencies below the first null, 𝜔 ≪ 2𝜋/𝑡𝑑, the phase detector output can be
approximated as

𝑦(𝑡) = ±𝐿𝐴𝑖𝑡𝑑 d
d𝑡𝜙𝑛,𝑖(𝑡) . (F.22)

The derivation of phase noise leads to degradation of sensitivity at low offset fre-
quencies. In addition, (F.22) shows the gain of this technique is proportional to the
delay time. This technique is especially useful for measurement of relatively noisy
signals with a high drift, such as the output of an open loop VCO. High drift of a
signal prevents using more precise, however slower, methods such as phase detection
using PLL technique.

Phase detection using PLL technique A phase detector is an inseparable block of
any phase-locked loop. If a balanced mixer is used for phase detection in a PLL with
an integrator as the loop filter, the dynamics of the loop causes a zero-average signal
at the phase detector output (for further details see Section 3.1), which is equivalent
to the quadrature operation in a balanced mixer. Figure F.4 shows the block diagram
of this technique.

𝑥𝑖(𝑡)

Tunable
OscillatorℎLF(𝑡)

𝑥𝐿𝑂 (𝑡)

𝑦(𝑡)SUT

Figure F.4: Phase noise measurement using PLL technique.
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Using the mathematical model provided in Section 3.1, the open loop transfer
function similar to (3.5) can be written as

𝐻OL(𝑠) = 𝐾𝜙𝐻LF(𝑠)𝐾𝑉𝑠 , (F.23)

where 𝐾𝑉 is the tuning sensitivity of the tunable oscillator, 𝐻LF(𝑠) is the transfer
function of the loop filter and 𝐾𝜙 is the phase detector gain. For a balanced mixer
we showed that 𝐾𝜙 = 𝐿𝐴𝑖 . The transfer function of the phase detector output to the
input phase can be expressed in terms of 𝐻OL(𝑠) as

𝑌
Φ𝑛,𝑖

(𝑠) = 𝐾𝜙

1 + 𝐻OL(𝑠) . (F.24)

This transfer function is similar to (3.12) and has a highpass behavior. This is indeed
expected of any phase noise measurement system, since the LO signal of the system
needs to track the signal under test. This means the LO signal has the same average
phase as the SUT but with a 90-degree phase shift. The rate of tracking is also
equivalent to the cut-off frequency of the transfer function given in (F.24). The noise of
the tunable oscillator is also transferred to 𝑦(𝑡) with the same transfer function given
in (F.24). Therefore, For phase noise measurement at offset frequencies sufficiently
above the loop cut-off frequency, |𝐻OL(𝜔)| ≪ 1, the phase detector output can be
approximated as

𝑦(𝑡) ≈ 𝐿𝐴𝑖
[︁
𝜙𝑛,𝑖(𝑡) − 𝜙𝑛,TO(𝑡)

]︁
, (F.25)

where 𝜙𝑛,TO(𝑡) is the phase noise of the tunable oscillator and we replaced the phase
detector gain with its equivalent value in balanced mixer.

F.3 Two-channel phase noise measurement

So far we have seen how to measure the PSD of a baseband signal that is below the
noise the noise floor of a measurement system using two-channel cross correlation
technique and also we demonstrated how to extract the phase noise of a carrier
using delay line or PLL technique. We have now the necessary tools to demonstrate
a two-channel phase noise measurement system. This system is composed of two
single-channel phase noise analyzers and a two-channel cross correlator. Figure F.5
shows the block diagram of this system. If both channels are perfectly isolated, their
additive phase noise are uncorrelated and can be suppressed by cross correlation
and averaging according to (F.13). This method is gold-standard for phase noise
measurement and is implemented in laboratory-grade phase noise test systems.

SUT

Power
Divider Channel 1 Phase

Noise Analyzer

Channel 2 Phase
Noise Analyzer

C
rossC

orrelation

Phase Noise

Figure F.5: Two-channel phase noise measurement system.
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SUT

Power
Divider

×𝑁

×𝑁

LO1

LO2

Channel 1 Phase
Noise Analyzer

Channel 2 Phase
Noise Analyzer

C
rossC

orrelation

Phase Noise

Figure F.6: Two-channel phase noise measurement of mmWave and
terahertz signals.

The frequency range of the two-channel test system can reach up to tens of
gigahertz, due to technical limitation of RF components. Further enhancement of
frequency range up to millimeter-wave and terahertz frequencies is possible using the
two-channel down-conversion scheme illustrated in Figure F.6. The high frequency
signal is first down-converted to a frequency that lies in the frequency range of each
phase noise measurement channel. The phase noise of the down-converted signals is
then extracted by each channel and their correlated part, which is the phase noise of
SUT, is extracted. The LOs and the mixers also contribute to the phase noise measured
by each channel. Therefore, it is necessary that the two LOs be uncorrelated so their
phase noise can be suppressed by cross correlation.
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Appendix G

Phase Noise and Jitter of OEPLL
with YIG Oscillator
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This work demonstrates the analysis and implementation of MLL-
based ultralow-noise optoelectronic PLL, the so-called OEPLL.
Different RF-generation techniques using MLL are discussed and
it is shown that the OEPLL is a suitable architecture for low-
noise and wide-band frequency synthesis. The OEPLL is analyzed
thoroughly at the system level and the component level, and dif-
ferent noise processes and nonlinear mechanisms are modeled.
The results are used to design an ultralow-noise OEPLL with a
frequency range of 2–20 GHz. The in-band phase noise of the
OEPLL at 100 kHz offset frequency is below −150 dBc/Hz for a
carrier frequency of 10 GHz, which is more than 10 dB below that
of state-of-the-art commercial frequency synthesizers.
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