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University, Universitätsstr. 25, Bielefeld, 33615, Germany

Abstract

When consumers are uncertain whether they have sufficient and unambiguous information re-

garding a new product, they might delay the adoption decision to a later point in time. This

“uncertainty effect” can have a major impact on the product’s market diffusion. Prior models

that account for consumers’ belief updating in such a setting usually capture that effect by re-

sorting to some form of Bayesian learning and, in so doing, typically assume that the distribution

of information with respect to the attributes of the new product is normal and that the infor-

mation points received by individual consumers are independent draws from this distribution.

Consequently, consumers’ uncertainty regarding their beliefs decreases with more information

(e.g., after talking with a peer). This strong assumption is convenient as it makes models of

opinion dynamics analytically tractable, and it works in most instances. However, when in-

consistent information is provided from two opposing sources and, thus, receiving additional

information potentially increases uncertainty of individual consumers, a different approach is re-

quired. Corresponding markets, for example, can be found for radically new products for which

consumers have strong opinions or as a result of a disinformation campaign by some competitor.

We propose an approach that can deal with such a setting and we demonstrate the value added

of this novel approach (in contrast to the traditional Bayesian approach) through computational

simulation experiments with an agent-based market model of innovation diffusion.

Keywords: multi-agent systems, innovation adoption, consumer uncertainty, market diffusion,

simulation experiment

1. Introduction

Innovation diffusion plays a role in a broad spectrum of applications related to, for example,

strategic planning, market analysis, policy evaluation, investment decisions, or product life-cycle

management. It is therefore not surprising that over the past six decades, modeling of innovation

diffusion has evolved as a vivid field of research, in which numerous models have been proposed
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for supporting managers to make better-informed decisions, optimize strategies, and enhance

the likelihood of successful market penetration of innovations (for examples, see the seminal

model by Bass, 1969, or a more recent one by Stummer et al. 2021).

As the diffusion of an innovation in a market is an aggregate of individual adoption decisions

and, for this decision, perceived uncertainty regarding the performance of or the risk associated

with a new product can be decisive, consumer uncertainty is accounted for in many models of

innovation diffusion. To this end, modelers more often than not resort to Bayesian updating

and, for analytical convenience, implicitly assume that the distribution of all information with

respect to the attributes of the new product is normal. Such an approach works nicely in

most applications, if the information points traded between the stakeholders stem from the

same information source or from several sources that provide similar information (e.g., in the

model by Dawid et al., 2024). However, the basic assumption that beliefs (prior and posterior)

are unimodal does not hold if contradictory information—possibly in the form of narratives as

framed by Shiller (2017)—from two different sources are spread among consumers upon market

introduction and the early phase of innovation diffusion.

Radical innovations such as vehicles with self-driving capabilities or AI-fueled smart services

are prime examples for such markets, because consumers cannot lean on previous experience

or expertise with such products (i.e., they start with an empty set of information) and, thus,

they have no existing (strong) opinion based on which they would disregard diverging infor-

mation. Accordingly, consumers are receptive to even small information snippets, which favors

the occurrence of distinct groups of consumers who, for example, criticize the new product for

being risky (or even outright dangerous with respect to safety or misuse of private data) versus

consumers who praise the value proposition of the same innovation. While the members of these

groups actively promote their views, many more consumers—who, in the beginning, typically

form the silent majority—are uncertain regarding which group’s opinion to follow. Further,

more mundane, examples for such a setting are new diets (low-carb, Paleo, Keto, intermittent

fasting, etc.), fracking for natural gas, crypto currencies, E10 gasoline, or the eco-friendliness

of electric vehicles. It is noteworthy that a similar setting could deliberately be provoked by a

competitor by running a negative word-of-mouth campaign that provides “alternative truth” in

an attempt to slow down market diffusion of the competing product in order to further their

own product or to win time for introducing a comparable product.

When applying the usual variant of Bayesian belief updating in such a setting (i.e., in the

presence of opposing information sources), consumers are modeled in a way that they would
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conclude that the performance of the new product lies somewhere in the middle between the

means of the two information sources (although in fact, this belief might not be supported by

any of the information received) and over time—that is, after having received plenty of diverging

information—consumers would become rather certain that this belief is correct and they would

start purchasing the new product. Obviously, such a model outcome is counterfactual, as in

reality, the real consumers’ overall perceived uncertainty increases in the presence of diverging

information as such information induces ambivalence on the side of the consumers (Priester and

Petty, 1996). It is noteworthy that sticking with Bayesian updating and simply resorting to

some (more complex) different distribution is practically infeasible, because the high number of

involved stakeholders renders it impossible to derive a closed form for such a distribution and

Markov Chain Monte Carlo methods do not work in the (frequent) cases in which stakeholders

update their beliefs with a sample size of one.

In our research, we address the “uncertainty effect” on innovation diffusion arising from

consumers who do not have sufficient and coherent (unambiguous) information regarding a new

product, and, thus, feel uncertain and delay the adoption decision to a later point. Against this

background, we investigate the impact arising from resorting to the common version of Bayesian

updating when accounting for the above-mentioned consumer uncertainty in markets with two

opposing information sources. To this end, we present a straightforward agent-based model of

a market in which a generic innovation is introduced, advertisement agents spread diverging

information, and consumer agents engage in word-of-mouth communication and periodically

decide on adopting the new product. The latter decision hinges upon (i) the agent’s current

individual belief (attitude) regarding the product’s performance and whether it satisfies an in-

dividual minimum utility requirement and (ii) the certainty regarding the current belief with

respect to whether the consumer agent considers the extent of information received so far to be

sufficient (i.e., there is no lack of knowledge) and the information to be sufficiently coherent (i.e.,

there is no lack of security). It is noteworthy that the degree of certainty also can determine a

consumer agent’s willingness to communicate the own belief to peers and, thus, influence their

adoption decision. Moreover, we assume that the novel product has an objective performance

value, which is disclosed through first-hand experience after adoption and, consequently, con-

sumer agents will be correctly informed in the long run. Still, the key question remains whether

and how the presence of diverging information can impact and, thus, delay innovation diffusion.

In light of the limitation of the usual form of Bayesian updating (i.e., when a normal distribution

of information snippets is assumed) in the investigated setting with two opposing information

3



sources, we developed an alternative approach of capturing consumer uncertainty, which ac-

counts (i) for the dissimilarity between the distributions of the information offered by the two

information sources and a normal distribution and (ii) for the relative difference in height of the

peaks of these distributions. We then integrated this approach in the agent-based market model

and implemented the model in a simulation tool.

In so doing, our research contribute is twofold: First, we introduce an alternative approach

for capturing consumers’ perceived uncertainty regarding an innovation’s attribute in markets

in which consumers are exposed to diverging information from two sources. Second, we demon-

strate the “uncertainty effect” in innovation diffusion by contrasting diffusion curves gained by

applying our new approach and diffusion curves gained for the usual variant of Bayesian updat-

ing. Furthermore, we perform sensitivity analyses for parameters used in the model, propose

theoretical as well as managerial implications, and suggest an agenda for further research.

The remainder of this work proceeds as follows. Section 2 outlines prior research on inno-

vation diffusion, Bayesian updating, and agent-based modeling, and it relates our work to these

fields of research. Section 3 introduces the constitutive entities in our agent-based model (i.e.,

consumer agents and advertisement agents) as well as their activities (most prominently, infor-

mation exchange and the decision to adopt). Section 4 describes the parameterization of our

simulation experiments. In Section 5, we outline implementation issues, before we thoroughly

discuss the results from the simulation runs demonstrating the investigated effect (i.e., the differ-

ence in innovation diffusion between applying our new approach versus resorting to traditional

Bayesian updating) and provide insights from the sensitivity analyses. Section 6 highlights the-

oretical and managerial implications, thereby suggesting directions for further research. Finally,

Section 7 concludes the paper.

2. Background

2.1. Innovation diffusion

Innovation diffusion is understood as the process by which an innovation is communicated

through certain channels over time among the participants in a social system (Rogers, 2003).

The aim of diffusion models is to determine the level of spread of a certain innovation (Mahajan

et al., 1990). Pioneering work was published already in the 1960s (e.g., Fourt and Woodlock,

1960; Chow, 1967), with the model by Bass (1969) being particularly influential. Since then,

numerous further models were proposed (see reviews by, e.g., Meade and Islam, 2006; Peres

et al., 2010; Guidolin and Manfredi, 2023). While many of these models primarily strive for
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including marketing mix-variables into the analytical Bass model (for examples, see Mahajan

et al., 1990), others employ alternative approaches such as agent-based modeling (see Sect. 2.3).

As in other models of innovation diffusion, in our own model, we implement a social network,

in which consumer engage in word-of-mouth communication, and we account for heterogeneity

among the consumer agents. While the relevance of consumer interaction through word of mouth

for innovation diffusion is obvious, this relevance is less clear for consumer heterogeneity with

respect to differences in their innovativeness (e.g., willingness to purchase a new product without

having extensive information), needs (regarding, e.g., a minimum utility), or—as addressed in

our work—the ease of dealing with uncertainty, all of which can affect the consumers’ individual

propensity to adopt. Ultimately, it is the mix of different groups of consumers ranging from

innovators to laggards (as framed by Rogers, 2003) that causes the typical S-shaped curve for

innovation diffusion: while innovators are dominant in the takeoff phase (due to their high inno-

vativeness and their tolerance of high uncertainty), interaction with and between the remaining

consumers becomes the driving force afterwards.

Interestingly, in the afterthought of their review, Peres et al. (2010) mention two issues

that nicely go along with our research. First, they suggest “the integration of cutting-edge

modeling from other research domains [such as] agent-based modeling,” which was a prediction

that realized soon after (an early overview of such approaches was provided already by Kiesling

et al., 2012). Second, Peres et al. expect that complex types of product categories will spotlight

different aspects of the diffusion process and raise new research questions. We agree with this

notion and suggest smart products as an example (as described by Stummer, 2024, who also

mentions sustainable innovations as a further category).

Such smart products can be of particular interest for studying innovation diffusion for at

least three reasons. First, from a business point of view, the customer value proposition of smart

products is more fundamental than for many other new products as smart products can learn

over time and, thus, increase their value for the user by adapting to their specific individual needs

and habits, and they can offer new business models based on, for example, pay per use. Second,

from a societal point of view, smart products have already occupied many areas of everyday

living (e.g., in the form of smartphones, smart homes, or smart wearables), and will do so for

more markets in the foreseeable future (e.g., in the form of autonomous cars, avatars, or service

robots). Accordingly, smart products will continue to broaden their impact on how we live, work,

travel, or communicate. Third, from a modeling point of view, the diffusion process of smart

products is special due to substantial uncertainty that arises during the digital transformation
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of business and society. In particular, consumers can be uncertain whether their information—

which they have received from family, friends, and peers as well as through marketing channels

such as traditional advertising or social media—regarding new products or services is sufficient,

accurate, and credible. Uncertainty is high as long as the extent of information is insufficient

(“lack of knowledge”) or ambiguous (“lack of security”). If so, consumers may postpone their

purchasing decisions and pass information to others only with reservations (i.e., the impact of

such recommendations is limited). In other words, an “uncertainty effect” may arise.

2.2. Bayesian updating

Bayesian updating forms a well-established stream of research. In the following, we outline

assumptions that are commonly made when resorting to Bayesian updating for modeling learning

(“Bayesian learning”) in an economic context (for a recent, considerably more in-depth, overview,

see Baley and Veldkamp, 2023), and we explicate issues that can arise in our specific application

case as a consequence of these assumptions—which ultimately were the reason for proposing a

different approach.

The basic idea behind Bayesian learning is that an existing belief (the “prior”) is modified

once new information is available (for which the agent calculates the “likelihood” of this new

information conforming with the prior), which can be transformed to a new updated belief (the

“posterior”). As necessary assumptions, (i) the agent knows the type of distribution (e.g., a

normal distribution) which the new information stems from and (ii) she has beliefs about the

distribution’s parameters. As all information is assumed to be drawn from the same known dis-

tribution, the agent becomes more certain about her beliefs with every update. The complexity

of this updating process highly depends on the chosen distributions. For continuous variables,

it is common practice to assume that the prior and the distribution of the new information are

normally distributed (with known variance) because this setting results in a normally distributed

posterior, for which it is straightforward to calculate the parameters of the posterior’s (normal)

distribution. Even when the variance is unknown (and, hence, has prior and posterior distribu-

tions), the agent becomes increasingly certain about the mean of the distribution (posterior). In

other words, the “precision” of the posterior, defined as the inverse of its variance, increases with

each new piece of information, regardless of how much this information diverges from previous

data, even if it leads to a higher posterior variance.

While the assumption of normally distributed information is reasonably accurate for many

scenarios, it does not hold for our specific case, in which information originates from diverging
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information sources and, thus, the information has a bimodal distribution. When applying

Bayesian updating under this assumption in our case, agents would believe that the true value

is somewhere in the middle between the values advertised by the two information sources, and

the agents would become more certain with each piece of information although the information

received is highly contradicting and none of this information indicates the value in the middle.

In order to still using Bayesian updating, we would need to change the distribution of the new

information and hence the priors, possibly by using a Gaussian mixture model. However, in our

case, the number of needed normal distributions is unknown, as word-of-mouth communication

can include information that differs from our (two) diverging information sources. Hence, the

priors of each agent would need to include one prior for each of the weights, means, and possibly

variances for a large number of (sub-) distributions. Consequently, the posteriors can no longer

be computed in closed form, and Markov Chain Monte Carlo (MCMC) methods like Metropolis-

Hasting are needed for sampling the distributions. However, MCMC procedures are not viable

in an agent-based model in which numerous agents update with a sample size of one.

It is noteworthy that Bayesian updating was used by Martins (2009) in a related application,

that is, for modeling communication between agents with opinions distant from the own. To this

end, Bayesian updating was combined with the notion of bounded confidence (Deffuant et al.,

2000; Hegselmann and Krause, 2002), that is, that the impact of new information diminishes

with the distance to ones own opinion and at a certain point no longer exists. However, for our

case of radical innovations, we propose that opinions of the agents are not sufficiently established

that they would disregard any information about the innovation.

2.3. Agent-based modeling

Agent-based modeling (ABM) is a relatively young technique, which started its major expan-

sion in the social sciences only in the early 1990s (e.g. Holland and Miller, 1991). Essentially,

it describes a complex system in a bottom-up manner (i.e., decentralized) from the perspective

of its constituent units (Bonabeau, 2002). These units—that is, the so-called agents—are self-

contained and uniquely identifiable, autonomous, and self-directed (i.e., agents relate individual

information to their own decisions and actions), have an individual state (e.g., having adopted a

particular innovation) that can vary over time, and interact with other agents (Macal and North,

2010). Therefore, employing ABM makes it straightforward to account for population hetero-

geneity regarding preferences (e.g., for certain product attributes), needs (with respect to, e.g.,

type, frequency, and quantity), individual resource constraints (e.g., budget available), specific
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decision-making rules (e.g., preference matching, stage-based approaches, utility maximization,

or meeting certain thresholds; see Negahban and Yilmaz, 2014), and further characteristics

such as the susceptibility with respect to social influence (e.g., propensity to conform with the

behavior of the respective peers).

In the past two decades, ABM has been applied extensively for studying innovation diffusion

(for an early application, see Janssen and Jager, 2002). Recently, Rand and Stummer (2021)

provide an overview of strengths (e.g., an agent’s individual attitude can be driven by the

combination of the history of this agent’s decisions, the agent’s internal notion of the external

world, the agent’s observation of the reactions of other agents in response to their actions,

and the agent’s retained memory of past events) and criticisms (e.g., regarding the sometimes

challenging parameterization, the need for a proper verification and validation, issues regarding

arbitrariness and lack of causality, as well as the computational cost incurred for simulation

experiments), Romero et al. (2023) run a bibliometric analysis, and Stummer (2024) points to

promising fields of research (e.g., consideration of social identity, supply constraints, competitors,

business model innovations, mixed methods) among which accounting for consumer uncertainty

and the application to the market of smart products closely correspond to our research described

in the article at hand.

With respect to consumer uncertainty, a couple of previous ABM approaches have already

incorporated the notion of uncertainty in their work. For example, Jager et al. (2000) show that

consumers’ degree of uncertainty regarding the outcomes of behavior as well as their uncertainty

tolerance can affect system behavior (e.g., as in their application case, over-harvesting from

a common resource). The more recent work by Zhang et al. (2022) is related to our work

in that they consider the individual agent’s opinion and its uncertainty toward this opinion.

Therein, agents accumulate product information through interactions with other agents and,

thus, uncertainty regarding the perceived utility of the product gradually decreases until it does

not constitute an adoption barrier any longer. Most recently, the ABM approach by Dawid et al.

(2024) studies how uncertainty regarding the performance and safety of autonomous vehicles

(AVs) can influence the success of two prototypical strategies governing the producers’ timing of

the release of new models and, thus, the market diffusion of the respective AVs. Their findings

suggest that consumer uncertainty and the way consumers deal with this uncertainty has crucial

implications not only for the speed of AV diffusion but also for the relative performance of the

investigated product launch strategies. However, in contrast to our approach, Dawid et al. resort

to an Bayesian updating model, an approach that is outlined in the previous section.
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Regarding smart products as the application case for ABM on innovation diffusion, two such

works were already mentioned in the previous paragraph: Zhang et al. (2022) investigate the dif-

fusion process of smartwatches and Dawid et al. (2024) study the diffusion of AVs. An additional

(real-world) case dealing with a smart washing machine is described by Stummer et al. (2021),

who advise the combination of ABM with scenario analysis. While the latter is used for generat-

ing multiple scenarios (“pictures of the future”), ABM of innovation diffusion in the investigated

scenarios offers insight into the potential outcomes of possible strategic (technological) decisions

in each of the alternative futures.

3. Model formulation

3.1. Framework

In order to investigate the effect of consumer uncertainty in the presence of two diverging

information sources, we keep our agent-based model as simple as possible (see Fig. 1 for a

graphical overview of the model, including references to the sections in which we elaborate

on the respective model elements). Accordingly, we consider only a single new product that

is equipped with a single attribute (e.g., a specific smartness functionality) determining the

product’s performance and, thus, its utility. This product is radically new, and therefore, none

of the consumers have prior information about the true product performance value. Still, the

new product is a high-involvement product, that is, consumers ponder over the adoption decision

(in contrast to, for example, some low-involvement convenience goods). The product is directly

marketed by a single producer and, consequently, we disregard competition, intermediaries such

as retailing, and we also do not account for pricing, changes in consumer behavior (e.g., an

increase or decrease in need), or social influence. The model features two types of agents:

consumer agents and advertisement agents.

Consumer agents (i) collect information through word-of-mouth communication with peers

as well as from advertisement campaigns and accordingly form their belief (attitude, opinion)

regarding the performance of the new product under consideration, (ii) occasionally decide upon

the purchase of the new product (i.e., innovation adoption) and, in the course of this decision

process, not only require a minimum utility gained from the product but also account for their

individual uncertainty, which is driven by the extent and the coherence of information received,

(iii) make first-hand experience with the new product after purchasing it, and (iv) provide their

peers with information (if sufficiently certain regarding their own belief). Consumer agents are

heterogeneous in their characteristics (e.g., with respect to the minimum utility expected or the
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First-hand 
experience

(3.3.4.)

Advertisement
(3.2./3.3.3.)

Product
(3.1.)

Social Network
(3.1.)

Word-of-mouth 
communication

(3.3.2.)

Purchase
(3.5.)

Consumers
(3.2.)

Belief updating
(3.3.1)

Perceived uncertainty
(3.4)

Figure 1: Model entities and dynamics.

extent of information required to be certain) and they are connected to other consumer agents

through a static (scale-free) social network created through the algorithm proposed by Barabási

and Albert (1999).

Advertisement agents execute advertisement campaigns by providing certain information re-

garding the product performance to a subset of consumer agents during a specified period of

time. In our simulation experiment, we use two advertisement agents offering diverging infor-

mation at the very beginning of the process, thus setting the scene for the bimodal distribution

of information for the purpose of our investigation.

Regarding the treatment of time in our simulation model, we have opted for a discrete-event

approach with a quasi-continuous timeline. Thus, we avoid consumer agents being involved in

multiple communication events at the same time, which would have required an event-scheduling

regime (as necessary in a discrete-time approach).

In the following, we first introduce the above-mentioned two types of agents and describe

the parameters and variables associated with them (Sect. 3.2). Then, we describe how consumer

agents’ beliefs are updated and describe the sources of information that may play a role in

this process, that is, word-of-mouth communication, being exposed to advertising, or making

first-hand experiences (Sect. 3.3). Next, we explain how consumer agents form their (perceived)

uncertainty (Sect. 3.4). Finally, we elaborate on the purchase decision (Sect. 3.5).
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Table 1 lists the relevant variables and parameters used in the model. It is noteworthy that,

for clarity purposes, we omitted auxiliary variables as well as parameters that are used only in

a specific part of the model; still, we explain these variables and parameters in the course of the

model description right in the place in which they appear.

Products:

a⋆ True performance value of the product

Consumer agents:

N Population size (consumer agents i = 1, . . . , N)

ai Consumer i’s belief regarding product performance

vi Consumer i’s number of received information points

umin
i Consumer i’s minimum utility, drawn from U(αmin, βmin)

vmin
i Consumer i’s minimum extent of information, drawn from Pois(λmin)

Θi Consumer i’s dataset of received information with vi tuples (ai,s, wi,s)

di, hi Determinants of consumer i’s uncertainty

Advertisement agents:

Q Amount of advertisement (advertisement agents q = 1, . . . , Q)

mdur
q Duration of advertisement campaign q

mint
q Intensity of advertisement campaign q

aadvq Content of advertisement campaign q

Information flows:

ai,s, wi,s Information received and weight of channel in information event s

ϵwom, ϵadv, ϵfhx Noise of communication channels

wwom, wadv, wfhx Weight of communication channels

k Number of new connections during generating the social network

Perceived uncertainty:

f̂i Probability density function of consumer i’s information (based on Θi)

Table 1: Most relevant variables and parameters

3.2. Agents

In our model, we account for a population of N consumer agents indexed by i (i = 1, . . . , N).

These agents are heterogeneous with respect to two individual parameters, namely, the reserva-
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tion level umin
i of the product performance as a precondition for possible product adoption and

the minimum amount (volume) vmin
i of information to make an adoption decision. The values

for two further parameters, namely, hi and di (described in detail in Sect. 3.4), are identical for

all consumer agents (for simplification purposes). Overall, the three parameters vmin
i , hi, and

di determine how a consumer agent deals with uncertainty, that is, whether she is reluctant to

adopt a new product due to a lack of knowledge (i.e., the extent of information is too low) or

due to a lack of security (i.e., the information is too ambiguous). Accordingly, the new product

needs to promise a sufficiently high performance level, and consumers need to be sufficiently

certain regarding their information base before product adoption takes place.

The consumer agents store all the information retrieved in the course of a simulation run and

use it throughout the simulation to form their individual beliefs (or attitudes) ai regarding the

performance level of the new product (see Sect. 3.3.1) and determining their (perceived) level

of uncertainty (see Sect. 3.4). Consequently, it is possible that the beliefs and the respective

behaviors of two twin agents, who otherwise have identical parameters, deviate because the

agents have received differing information. For the sake of simplicity, we model consumer agents

as stable in that they do not die and no new consumers are born, consumer characteristics do

not change, and the social network is static (i.e., no new friends are made, and existing links to

peers are not removed).

Advertisement agents form the second group of agents. Each of the Q advertisement agents

indexed by q (q = 1, . . . , Q) represent one advertisement campaign. They are characterized by

the duration mdur
q , the intensity mint

q , and the content aadvq of the campaign they represent.

3.3. Information flows

3.3.1. Belief update

In our model, a consumer agent updates her belief about the product whenever she receives

new information. This information can originate from different sources, that is, from peers

through word-of-mouth communication (see Sect. 3.3.2), from being exposed to advertisement

(see Sect. 3.3.3), or from first-hand experience after having adopted the product (see Sect. 3.3.4).

The communication channels are associated with (i) communication noises ϵwom, ϵadv, ϵfhx, which

represent minor disturbances in the communication process, and (ii) weights wwom, wadv, wfhx,

which represent the channels’ credibility.

In the course of a simulation run, each consumer i stores vi data pairs (ai,s, wi,s) containing

information points regarding the product’s performance ai,s and the corresponding weights wi,s
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in a tuple Θi, which represents the consumer’s individual database. The belief at a certain point

in time can therefore be calculated as a weighted mean:

ai =

∑vi
s=1 ai,s · wi,s∑vi

s=1wi,s
(1)

It is noteworthy that we do not account for the notion that older information might have less

impact on opinion formation than newer information. However, a corresponding extension would

be straightforward by adding a discount factor.

3.3.2. Word-of-mouth communication

A common source of information for consumers is word-of-mouth communication with their

peers—that is, between two consumers who are directly linked in the social network. In our

model, we follow Stummer et al. (2015) and schedule the communication events using exponen-

tially distributed inter-arrival times. During an event, the involved consumers independently

decide whether they want to share their belief regarding the performance of the new products

with their interlocutor. This decision is based on the consumer’s certainty regarding her own

belief, that is, consumer i will communicate her belief ai only if she has already received a suf-

ficiently high number of information points (i.e., vi ≥ vmin
i ) and if these information points are

sufficiently coherent (as described in Sect. 3.4); otherwise, she abstains from communicating her

belief (for the theoretical underpinning of this behavior, see, e.g., Cheatham and Tormala, 2015;

Tormala and Rucker, 2018). If consumer j decides to communicate her belief aj to consumer i,

consumer i adds a new entry to her information database (and, thus, vi := vi + 1) and updates

her belief ai based on Equation (1) with received information ai,vi = aj + ϵwom, where ϵwom

represents a normally distributed communication noise, and weight wi,vi = wwom.

3.3.3. Advertisement

Advertisement constitutes another source of information for consumers. To this end, we use

advertisement agents, who broadcast information to selected consumer agents. The parameter

values assigned to a certain advertisement agent determine the content (i.e., the advertised level

of product performance), the time period in which the campaign is executed, the intensity of

the campaign (i.e., the number of advertising messages), and the coverage of the campaign (i.e.,

the number and maybe the type of consumers reached). For reasons of simplicity, we employ

advertisement campaigns only in the initial phase of innovation diffusion, that is, when the new

product is introduced into the market, as a means to provide rivaling sources of information.
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Whenever an advertisement agent q reaches a consumer i, a new information event is added to

the database (again, vi := vi +1) and this consumer’s belief is updated using Equation (1) with

received information ai,vi = aadvq + ϵadv and weight wi,vi = wadv.

3.3.4. First-hand experience

After a consumer agent has adopted the new product, she makes first-hand experiences. We

model this experience in an analogous way to the above-mentioned information events, that is,

a new entry is added to the consumer agent’s data base (i.e., vi := vi + 1) and the belief is

updated according to Equation (1) with respect to ai,vi = a⋆+ ϵfhx, where a⋆ stands for the true

performance level of the new product under consideration, and the weight is wi,vi = wfhx. If

the observability of the new product’s performance is high, wfhx usually is high as well. In most

such application cases, wfhx > wwom > wadv should hold true.

3.4. Perceived uncertainty

In our model, the perceived uncertainty of consumer agents hinges upon a lack of information

or the incoherence of the information she received. We implement a straightforward method for

dealing with the first-mentioned reason in that we check whether a minimum number vmin
i of

information points has been received; alternatively, we could have resorted to a minimum sum

of weights, which would also account for the quality of the signals, but the difference would

be slim, as in the beginning, nearly all signals stem from advertisement agents with identical

weights. In contrast, it is considerably more challenging to properly address the latter reason. In

this respect, the uncertainty of an agent i obviously should increase when she receives diverging

information, because then her belief ai (which is the weighted mean over all ai,s stored in

her personal database Θi) might no longer be the point with the highest probability density

(in contrast to cases in which the distribution of information is unimodal or which feature a

dominant mode that is considerably higher than other peaks) and can even have one of the

lowest densities. Consequently, the agent’s belief ai may no longer be a good estimate for the

true product performance a⋆, and the consumer becomes uncertain about the validity of her

belief.

At first glance, it could be tempting to resort to the variance as the only measure for un-

certainty because it can be easily updated together with the belief and it has the right basic

properties. Moreover, the variance is relatively high if multiple peaks are present in the distri-

bution, increases if these peaks move further apart, and is highest if they are similar in height.
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However, the variance does not account for the specific form of the distribution; that is, for ex-

ample, the variance of a distribution in which 50% of values are around 50 and 50% are around

80 is roughly equal to that of a distribution with 17% around 40 and 83% around 80 (or 10%

around 30 and 90% around 80). This property contradicts literature on attitudinal ambivalence

according to which a higher imbalance between positive and negative information yields lower

ambivalence (e.g., Priester and Petty, 1996). Therefore, the strong increase in imbalance seen in

the above example should decrease the perceived uncertainty of our consumer agents. Moreover,

if the variance is the only measure for uncertainty, consumer agents cannot distinguish between

the case of opposing information sources, each providing its information with low variance, and

the case of a single information source providing information with high variance. In the latter

case, however, the consumer agents would experience no ambivalence and, therefore, should

have lower uncertainty and behave differently. In Part B of the online supplement, we present

exemplary simulation results that illustrate the effects of resorting to the variance as a measure

of uncertainty versus employing an alternative approach, as proposed in the following.

Therein, we account for the shape of the distribution, which needs to be estimated based

on the information points that consumer i received during (diverse) information events s and

stored in her database. Accordingly, the estimation of the underlying distribution has to be non-

parametric, and we therefore use a kernel density estimation (KDE), which is common practice

in non-parametric cases for determining a probability density function (PDF). Procedurally, each

piece of information ai,s is represented as its own distribution, and we calculate the weighted

mean over the PDFs of all these distributions. In our case, the resulting PDF is given by

f̂i(x) =
1

Wi · bi
·

vi∑
s=1

(
wi,s · ϕ

(
x− ai,s

bi

))
, (2)

where vi is the number of information points that the consumer i received, ai,s (received infor-

mation) and wi,s (corresponding weight) refer to the vi information points in Θi, Wi is the sum

of all weights (i.e., Wi =
∑vi

s=1wi,s), bi is the bandwidth parameter which is computed using

Silverman’s rule of thumb (Silverman, 2018), and ϕ(·) is the standard normal density function.

We chose the normal kernel, as it is widely used and a natural fit for our information pieces

ai,s, which include normally distributed communication noises. Experiments with other kernels

yielded similar results (for a detailed description, see Part C.5 of the online supplement).

The PDF shows the shape of the distribution of information points gathered by a certain

consumer. In the first step of the proposed approach, we thus can check whether f̂i is unimodal
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and, if so, we can rule out that consumer agent i is uncertain due to having received opposing

information. Figure 2 contrasts bimodal distributions (depicted by the solid blue line) with

their unimodal counterparts (depicted by the dashed red line), which have the same mean

value. Currently, we assume that consumers whose information distribution is unimodal are

(sufficiently) certain that the mean represents the true value (given, of course, that they have

received at least the minimum number of information points). While this assumption is sufficient

for the purpose of our research, the variance of the (unimodal) distribution could play a role

in other applications, in which a unimodal distribution also needs to be accompanied by an

acceptably low variance. If so, it would be straightforward to extend the model correspondingly

by introducing another (individual) threshold for the variance as an additional measure.
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Figure 2: Visualization of parameters hi and di. With f̂i depicted by the blue solid line, the PDF of a normal

distribution with equal mean and variance depicted by the red dashed line, and the total variation distance

between the distributions represented by the blue shaded area.

Next, we check for a dominant mode by computing the ratios between the PDF value of the

possibly dominant mode and the PDF values of the other peaks. If all the ratios are higher than

a given individual threshold hi, consumer agent i considers the mode to be dominant and the

differing information to be negligible outliers. This case is visualized in Figure 2b, in which the

black bars indicate the heights of the two peaks.

Finally, a distribution might not have a single dominant mode but still resemble the form

of a normal distribution. The three most important reasons for such a form are (i) spiky

PDFs (resulting from stochasticity or a low bandwidth parameter bi), (ii) peaks that are close

together, and (iii) the arrangement of multiple peaks with different heights that resemble a

normal distribution. To identify these and similar cases, we calculate the total variation distance

(L1 norm divided by 2) between a consumer i’s PDF and the PDF of a normal distribution with

this consumer’s belief ai as the mean and the weighted variance of all information points in Θi

as the variance. If the variation distance is smaller than a given individual threshold di, we
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consider consumer i to be sufficiently certain. An example is provided in Figure 2 in which the

blue shaded area represents the total variation distance between the distributions, which is small

for the case of the two close peaks in Figure 2c but not in the other two cases in Figures 2a and

2b.

In a nutshell, a consumer agent feels safe to communicate her belief to peers in word-of-mouth

communication (see Sect. 3.3.2) and to possibly adopt the new product (see Sect. 3.5), if she has

received sufficient information about the new product (i.e., vi ≥ vmin
i ) and if she considers this

information to be coherent (i.e., the underlying distribution is unimodal, the distribution has a

dominant mode, or the distribution has several peaks but its form still is similar to that of a

normal distribution). This is in line with the literature on ambivalence (e.g., Luce et al., 1997)

according to which consumers postpone decisions if information is insufficient or too ambiguous.

3.5. Purchase decision

Consumers decide upon the adoption of the new product whenever they receive new information

about it. A consumer agent i adopts the product if she is content with the information received

so far (as described in the preceding section) and if she believes that the product’s performance

level excels her individual reservation level. For the latter, we simply check whether ai ≥ umin
i

and, in doing so, implicitly assume that the utility function regarding the performance level

is the identity function (i.e., ui(ai) = u(ai) = ai). If necessary, it would be straightforward to

employ alternative utility functions accounting for multiple product attributes as well as varying

preferences and behaviors among consumers. After a consumer agent has become an adopter,

she receives further information about the product’s performance through first-hand experience.

4. Parameterization

As parameterization was not restricted to a certain (real-world) application case, we were free

to choose a reasonable set of parameters, allowing us to demonstrate the effects of opposing

information sources in innovation diffusion. Still, the main effects shown in this work are not

confined to a particular parameter constellation, but can be observed for a wide range of alter-

native parameter settings, which is illustrated through sensitivity analyses (see Sect. 5.4 as well

as in Part C of the online supplement).

4.1. Products

Products are characterized by their true performance value a⋆. In the baseline scenario, it is set

to a⋆ = 80, which conforms with the information provided by the well-meaning advertisement
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agents, while the opposing one advertises a considerably lower performance level (of only 50).

4.2. Consumer agents

In our simulation experiments, we allow for heterogeneity of consumer agents with respect to

certain characteristics (parameters). The minimum amount of information vmin
i is drawn from a

Poisson distribution for each consumer i with parameter λmin = 4 (i.e., vmin
i ∼ Pois(λmin)), with

draws of 0 or 1 set to 2 because KDE requires at least two information points. Accordingly,

consumers, on average, need a minimum of four information points before they can become

certain of their beliefs. With respect to the parameterization of the reservation level (i.e.,

minimum utility) for the new product’s performance umin
i , our simulation tool offers to draw

either from a normal distribution with mean µmin and variance σmin (amin
i ∼ N (µmin, σmin))

or from a uniform distribution with a minimum value αmin and maximum value βmin (amin
i ∼

U(αmin, βmin)). In the baseline scenario, we opted for a uniform distribution with αmin = 55 and

βmin = 80. These bounds were chosen because they yield reservation levels that are (clearly)

higher than the negative advertisement and lower than (or equal to) the positive advertisement.

The coherency parameters hi and di (introduced in Sect. 3.4) could in principle be consumer-

specific as well, but for reasons of keeping the model simple, we model consumer agents as homo-

geneous in this respect. We assume that consumers should become certain once approximately

90% of their information points in Θi are near the modus, which is achieved by setting hi = 9.

Moreover, we set di = 0.15 as it allows for nicely distinguishing between a normal and a bimodal

distribution already for a low number of information points (according to our experiments).

The population size is set to N = 1000 consumer agents. This seems to be sufficient, as

results from simulation runs with more consumer agents (namely, 3000, 5000, or 10000) showed

only marginal differences in the diffusion curve.

4.3. Advertisement agents

As we investigate the effect of opposing information sources and, in doing so, strive to keep the

model as simple as possible, we set the number of campaigns Q = 2 with identical values for

the duration mdur
q = mdur = 90 (days) and the intensity mint

q = mint = 0.1 (i.e., the information

sources reach ten percent of the consumer agents at any given day). Regarding the content of

the campaign aadvq , the baseline values are aadv1 = 80 for the producer’s information source and

aadv2 = 50 for the opposing information source. It should be noted that the scale for the new

product’s performance was chosen for presentation purposes and that it can easily be rescaled

if required.
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4.4. Information flows

The generation of the underlying social network is driven by parameter k, which sets the number

of new connection associated with every consumer agent who is (sequentially) added to the

network in the course of the network generation. As the stochasticity of this process can yield

different networks (even for identical k’s), we generated a complete network (using k = 3 as a

common parameter value) and used this specific network in all simulation runs.

The communication noises ϵ are drawn from normal distributions around zero with channel-

specific standard deviations σ (i.e., ϵ ∼ N (0, σ2)). The corresponding baseline values for the

standard deviation are σadv = 2, σwom = 1.33, and σfhx = 0.5, which accounts for varying levels

of precision associated with the three channels.

With respect to the weights that are given to specific information sources by consumers, we

set them identically for all consumers to wadv = 0.5, wwom = 0.75, and wfhx = 2. Obviously,

advertisement is the least trusted channel, word-of-mouth communication comes next, and per-

sonal first-hand experience is the most trustworthy. This notion is backed up by marketing

literature suggesting that advertisement has a smaller impact than inter-personal communica-

tion (e.g. Day, 1971) and by literature on attitude (belief) certainty, which states that consumers

are more certain if their information comes from direct experience (e.g. Rucker et al., 2014).

Regarding the frequency of word-of-mouth communication, we set parameter λwom = 1/30,

which implies that consumers, on average, communicate once every month with every consumer

they are directly connected with.

5. Findings

In our research, we are concerned with the “uncertainty effect” on innovation diffusion (i.e.,

consumers delay adoption due to insufficient or ambiguous information received) that in partic-

ular may arise in markets in which two divergent information sources are active (e.g., a channel

operated by the producer and an opposing channel operated by an adversary). To this end, we

implemented the ABM approach in a simulation tool (Sect. 5.1). We use this tool, first, for sim-

ulating the behavior of a regular market featuring a classical unimodal information distribution

originating from a single source of information and contrast the diffusion curves obtained by

applying our new approach with the curves obtained for the common variant of Bayesian updat-

ing, for which we also implement a required minimum number of information points (Sect. 5.2).

Afterwards, we move on to the special case of a market with two opposing information sources

(Sect. 5.3). Finally, we summarize the results from the sensitivity analyses (Sect. 5.4).
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5.1. Implementation

The agent-based model described in Section 3 was implemented by means of the software package

Anylogic 7 (https://www.anylogic.com/). As the only modification, we do not recalculate

the computationally expensive density function f̂i for consumers who have already locked in

their opinion (i.e., are sufficiently certain and have received an extraordinarily high number of

information points). This modification reduces the runtime of a scenario with a time horizon of

10 years and 1000 consumer agents to approximately 5 minutes for 20 simultaneous runs of our

baseline model (with different seeds) on a PC with a 12th Generation Intel® Core™ i7-12700 as

the CPU. Run times for different parameter sets ranged from 3 to 10 minutes.

5.2. Single information source

In order to check whether our ABM approach also generates a reasonable innovation diffusion

curve in a (standard) market with a single information source, we set up such a market. The

corresponding advertisement agent in this market communicates a performance level that is

situated in the middle of the two (opposing) agents from the baseline setting (i.e., aadv =

(80 + 50)/2 = 65) with a communication noise ϵadv that is drawn from a normal distribution

that mirrors the variance associated with the two agents (i.e., ϵadv ∼ N (0, ((80 − 50)/2)2)).

Moreover, the agent sends information with double the intensity as in the baseline model with

the two advertisement agents (i.e., mint = 2 · 0.1 = 0.2).

For this specific (unimodal) setting, Figure 3 contrasts the diffusion curves (averaged over

100 simulation runs) gained by employing traditional Bayesian updating (dashed red) with the

diffusion curve resulting from our approach (solid blue). In the first 100 days of the simulation,

depicted in Figure 3a, the number of adopters starts to increase slightly earlier and grows faster

for the Bayesian approach, but still the diffusion curves look similar and both indicate nearly

the same number of adopters (588 vs. 549) after the advertisement activity ends (i.e., after

90 days). The graph for innovation diffusion over the simulation horizon of 10 years, shown in

Figure 3b, confirms that the gap between the curves is nearly closed, with a difference of less

than 20 adopters from day 327 onward.

This diffusion curve is special to some degree in that it is extraordinarily steep in the first

part, followed by a long tail. The rapid diffusion at the beginning is induced by massive adver-

tisement, which results in consumer agents receiving, on average, an extent of information that

satisfies their minimum requirement (vmin
i ) within the first 20 days. As another factor, 40% of

consumer agents in our simulation are already content with a product performance lower than

20

https://www.anylogic.com/


0

250

500

750

1000

0 25 50 75 100
Time [Days]

N
um

be
r 

of
 A

do
pt

er
s

Approach
Bayesian
New

Bayesian
New

(a) First 100 days

0

250

500

750

1000

0 1000 2000 3000
Time [Days]

N
um

be
r 

of
 A

do
pt

er
s

(b) Full 10 years

Figure 3: Number of adopters in the presence of a single source of advertisement for (a) the first 100 days and

(b) the full simulation horizon of 10 years. The colored lines depict the mean over 100 simulation runs for the

Bayesian updating (dashed red) and our new (solid blue) approach; the shaded areas indicate the 95% confidence

intervals.

the advertised performance level, that is, their respective reservation level (minimum utility)

umin
i ≤ aadv = 65; moreover, for 60% of consumer agents, umin

i ≤ 70. The turning point of the

adoption rate is reached after 25 days, and after 80 days, the adoption rates become rather low

(with less than two new adopters per day), as numerous consumers with reservation levels below

or close to the advertised performance level have already adopted the new product. It is note-

worthy that the number of adopters after the advertisement period of 90 days is higher than just

40% because some consumer agents have beliefs exceeding the advertised information content

either because of stochasticity (as the information received by them is higher than the mean

value aadv due to communication noise) or because they received word-of-mouth communication

from adopters (who have experienced the true performance value a⋆ = 80).

The remaining non-adopters typically either have a high reservation level or they become

certain early on in a (wrong) belief that the performance level is low. First-hand experience

made by their adopting peers and communicated through the social network over time should

ultimately increase these peers’ beliefs, and eventually, they would be persuaded by the adopters

to give the new product a try. However, this process is slowed down by the fact that, after some

time, most non-adopters also communicate their own (lower) beliefs and, thus, influence each

other (plus, even might negatively affect the attitudes of adopters). Consequently, the diffusion

curve features a long tail.

Such behavior nicely resembles markets for the type of products we had in mind (e.g., AI-

driven smart services, crypto currencies, or a new drug helping in losing body weight). These
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products are strongly hyped and information is disseminated rather quickly—as opposed to a

lesser-hyped market in which consumers by themselves have to seek information in a lengthy

process. Also, it is difficult (and needs time) to persuade the remaining non-adopters, even after

the majority of consumers have given the new product a try and made (positive) first-hand

experiences. Moreover, in such a market it is very likely that the product is opposed by another

group of consumers who also might have a strong opinion and, thus, another source providing

diverging information arises, with an effect that is investigated in the following.

5.3. Opposing information sources

As we primarily strive for insights into market behavior in the presence of two competing adver-

tisement agents, we simulated this setting, and, indeed, the results provided in Figure 4 illustrate

the effect of suitably accounting for the two information sources. Therein, the respective dif-

fusion curve when employing our approach is colored blue, while the diffusion underlying the

classical Bayesian updating is colored red (as in the respective curves in Fig. 3); again, the mean

numbers of adopters over time for 100 repetitions are depicted by a solid (dashed) line, and the

95% confidence interval is represented by shaded areas. Most notable, the number of consumer

agents who adopt during the advertisement campaigns (i.e., the early adopters) decreases by

91% to only 48 adopters (see Fig. 4a). Still, the diffusion curve over the full simulation horizon

features the typical S-shape (see Fig. 4b), in which the rate of diffusion strongly increases after

approximately two years and levels off after four more years.

0

250

500

750

1000

0 25 50 75 100
Time [Days]

N
um

be
r 

of
 A

do
pt

er
s

Approach
Bayesian
New

Bayesian
New

(a) First 100 days

0

250

500

750

1000

0 1000 2000 3000
Time [Days]

N
um

be
r 

of
 A

do
pt

er
s

(b) Full 10 years

Figure 4: Number of adopters over time for our baseline model for (a) the first 100 days and (b) the full simulation

horizon of 10 years. The colored lines depict the mean over 100 simulation runs for the Bayesian updating (dashed

red) and our new (solid blue) approach; the shaded areas indicate the 95% confidence intervals.

The obvious reason for the difference between the two diffusion curves is the ambivalence
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of consumer agents regarding information received through advertisement from the opposing

information source. In other words, we see the “uncertainty effect” in that the consumers

remain uncertain in the early stages of the simulation and postpone the adoption of the new

product.

However, once a critical number of consumer agents become early adopters, they continue

to convince others, and the diffusion relatively quickly takes off. In this phase, it helps that

both advertisement agents have already stopped their communication activities (i.e., after 90

days according to their parameterization), and consumer agents only communicate their belief

if they are certain about it (or otherwise, remain silent). Consequently, it is mostly the adopters

who communicate their (favorable) beliefs, and there is almost no new (negative) information

source.

It is noteworthy that the number of adopters at the end of the simulation runs in which

the new approach is employed (i.e., the blue curve) is significantly higher (with p < 0.01) than

the respective number of adopters in the runs based on traditional Bayesian learning (i.e., the

red curve). The reason is that in the latter case, numerous consumers relatively early become

sufficiently certain in their belief that the performance level is somewhere around 65 (which is

wrong), and thus, they start to communicate this belief and, in so doing, reinforce this belief

in the market. Consequently, consumers with high reservation levels will never (or at least only

considerably later) become adopters. In contrast, when ambiguity is addressed more properly as

in the case of the new approach, consumers who at the beginning are exposed to the diverging

information remain uncertain and, thus, do not spread their belief until they have become more

certain. Consequently, the correct information (mostly) provided by the adopters (who have

already learned about the true performance value of 80) has more relative impact (due to a

considerably smaller amount of incorrect information), and it becomes easier to increase the

beliefs of agents with relatively higher reservation levels.

Lastly, a comparably large 95% confidence interval (i.e., the blue shaded area) is due to the

impact of the number of early adopters and how connected these are in the social network. The

variance in the number of early adopters is mainly driven by (i) the variability in parameteri-

zation of the consumer agents with respect to their individual minimum amount of information

vmin
i and the minimum utility umin

i and (ii) the variability in number of times consumer agents

are impacted by each of the advertisement campaigns. Thus, the speed of market diffusion can

be rather different depending on whether consumers who have certain individual characteristics

(e.g., are highly connected in the social network) are early on addressed by a certain campaign.
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5.4. Sensitivity analysis

We performed sensitivity analyses for all parameters listed in Table 1, except for the number

of advertisement agents (i.e., we limit our analysis to either one or two such agents). In the

following, we provide an overview and, essentially, confirm that the model—for a reasonable

range of parameter values—behaves as expected. More detailed simulation results (together

with figures illustrating the respective effects) are provided in Part C of the online supplement.

Regarding the parameterization of the consumer agents, an increase of the minimum utility

umin
i or the minimum amount of information vmin

i reduces the speed of innovation diffusion for

both approaches (i.e., the traditional Bayesian updating as well as our proposed approach). If

the uncertainty parameter hi (playing a role only in the new approach, and in the baseline

scenario is set to h = 9) is increased, consumer agents can less often disregard the existence

of a bimodal distribution and thus remain uncertain more often, which ultimately postpones

innovation diffusion (i.e., shifts the diffusion curve to the right). The other uncertainty parameter

di determines whether a consumer agents deems the PDF computed from the information points

in Θi to be sufficiently close to a normal distribution with identical mean and variance. If so, we

assume the PDF to be normally distributed. For low values of parameter di (i.e., smaller than

0.17 in our setting, which is the case for the baseline with di = 0.15), an increase only slightly

shifts the diffusion curve to the left (i.e., increases diffusion speed), whereas for higher values,

the shift is considerably more pronounced, and the diffusion curve quickly assumes the shape of

the diffusion curve generated when applying the traditional Bayesian approach.

With respect to the advertisement agents, increasing the parameter for the duration of a

campaign (mdur = 90 in the baseline) impedes the diffusion, as more controversial information

is brought to the market by the opposing advertisement agent, which reduces the relative (and

otherwise larger) impact of the true performance information gained and distributed by the

adopters. Increasing the intensity of the campaigns (set to mint = 0.1 in the baseline) boosts

innovation in the beginning (as it is easier for consumers to collect the minimum amount of

information) but later-on impedes innovation diffusion (again, as more controversial information

is available and the relative impact of the true information gained through first-hand experience

is reduced). We also ran simulations with alternative parameters for the advertised content

by varying the parameter for the second information source (set to aadv2 = 50 in the baseline).

It should be noted that for these analyses, we accordingly adapted the lower bound of our

distribution of minimum utilities umin
i to be equal to the modified advertisement content aadv2

(αmin = aadv2 ) as a means to isolate the effect of the distance between the advertisement contents
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from the effects of a change in their mean value. While we do not see an effect in case of Bayesian

updating, the increase of parameter aadv2 (i.e., the negative word-of-mouth information becomes

less diverging from the positive word-of-mouth information) accelerates innovation diffusion for

the newly proposed approach, because consumer agents more easily become certain. The latter

effect is particularly pronounced for values larger than 60, given that the producer’s information

source advertises aadv1 = 80.

As to the information flows, a higher value for the network parameter (set to k = 3 in the

baseline) has nearly no effect in the Bayesian approach, but shifts the diffusion curve to the

left (i.e., furthers diffusion speed) for the new approach, because word-of-mouth communication

becomes more active, and in the communication events, more favorable information is exchanged,

given that only consumers who have already become sufficiently certain engage in communication

and those typically are adopters who have already experienced the high product performance.

The relative variation of the weights wwom, wadv, and wfhx to each other shows that for higher

weights, the number of adopters increases for first-hand experience, decreases for advertisement,

and is unchanged for word-of-mouth. When applying the new approach, a high weight for

advertisement delays innovation diffusion (as it overall weakens information provided by the

adopters who have a favorable belief regarding the product’s performance), and a high weight

for word-of-mouth accelerates diffusion (as it helps to propel information from the adopters).

The parameter for true performance of the product a⋆ shows an interesting effect. Unsur-

prisingly, a higher value results in a higher number of adopters in the long run (for both cases).

However, when applying the new approach, a true performance value between the advertised

values (i.e., a⋆ < 80) could serve as a bridge between the two PDFs, making consumers certain

more easily, and, thus, furthering early innovation diffusion.

6. Discussion

In the following, we highlight the main theoretical and managerial implications, and propose

possible avenues for further research regarding these issues. Additional ideas for enriching the

specific agent-based model approach are provided in the concluding Section 7.

6.1. Theoretical perspective

As the most profound learning, researchers shall not resort to standard Bayes learning unless

they are confident that the prerequisites—that is, a normal distribution of information—are

met. Although this should be a matter of course, the convenience of sticking with the usual

25



approach might still be tempting. However, our work demonstrates the possibly large error that

may occur if not properly accounting for the “uncertainty effect” in the presence of opposing

information sources.

A research agenda for deepening the theoretical contribution in this stream of research,

first and foremost, should comprise the (empirically substantiated) identification of consumers’

strategies of dealing with (i.e., “navigating”) uncertainty when deciding upon the adoption of

new products—and, indeed, colleagues at the Center for Uncertainty Studies (CeUS, 2024) are

already working on such topics. In an intermediate step, a more profound parameterization of

consumer agents in this respect could be derived from extant literature: based on the seminal

work by Rogers (2003), for example, the minimum amount of information points of the 2.5%

innovators (and the 13.5% early adopters) are supposedly smaller than for the 34% consumers

of the late majority or the 16% laggards. Next, consumers of the same type (e.g., innovators) or

with similar beliefs could be connected in the social network with higher probability (e.g., in a

homophily-driven network, such as used by Backs et al., 2019). The latter would further group

formation with possibly interesting effects (e.g., a saddle as described by Chandrasekaran and

Tellis, 2011). Finally, it would be worthwhile to implement additional (or, alternative) measures

regarding consumers’ uncertainty. For example, we currently do not account for variance but

assume that consumers become certain once they have evidence that the underlying distribution

is unimodal, even though the variance of this distribution is high.

6.2. Managerial perspective

For practitioners, a market simulation as described in the work at hand can be useful in as-

sessing the threat of an adversary company sending contradictory information by employing a

negative word-of-mouth campaign. The simulation tool can also be used as a sandbox for testing

corresponding countermeasures.

Obviously, in order to be applied in a real-world case, the underlying model needs to be

adapted to the specific market (for a general discussion on setting up an ABM approach for

innovation diffusion, see Rand and Stummer 2021; for an example on proceeding with respect

to parameterization, see Stummer et al. 2015). First, the opposing information source, run by

certain adversaries, may not necessarily start operating right with the market introduction of

the innovation; its effort (and content) might not be constant over time (but be suitably adapted

with respect to market behavior); and it might not end strictly after 90 days. Therefore, the

challenge is to more realistically model advertising campaigns. Next, it could be interesting to
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explicitly introduce a competitor who plans to bring its own product into market and, thus, aims

to delay the market success of the first mover, or strives to establish a different ecosystem (e.g.,

VHS vs. Video 2000 or Apple vs. Android). Then, technological progress over time might be

considered. Finally, consumers could disregard certain new information due to a confirmation

bias and they could behave more actively in searching for information about the new product; in

this regard, the process of innovation adoption with its several phases (e.g., according to Rogers,

2003) could be accounted for.

7. Conclusions

The market success of radically new products can considerably be affected by consumers’ in-

creased uncertainty due to diverging information received from opposing sources. In our research,

we demonstrated this effect by means of a computational simulation experiment.

To this end, we employed a rather straightforward agent-based model of innovation diffu-

sion. While this approach serves its purpose, the agent-based model might still be refined in

several directions, all of which path the way for further research. First, the model might take

into account several products and additional decision criteria (e.g., more product attributes,

including price) and, thus, use more complex (individual) utility functions. Second, the infor-

mation in a consumer agent’s database might be discounted (i.e., the weight of older information

decreases over time), which can result in only a subset of newer information being relevant for

the consumer’s perceived uncertainty. Information also might be weighted according to whom

it stems from (i.e., trustworthiness comes into play), and it might make a difference whether

a consumer received all her information from a single peer or from several peers. As to the

latter, consumer agents might remember only the last information from each peer and disregard

earlier information, which would be more realistic, and it can be implemented easily in an ABM

approach (as opposed to a model based on Bayesian learning). Third, rethinking a decision to

adopt the new product should only take place after a substantial amount of new information has

been received (and not automatically whenever a single information point has been added to the

agent’s database). Fourth, producer’s might advertise the new product with a positive bias (for

initial insights, see the sensitivity analysis regarding the true performance value in Part C.1 of

the online supplement). If so, such a strategy might ignite disappointment and, thus, a strong

negative response on the side of consumers. Finally, the model could include the effect of social

normative influence, which constitutes a particular strength of ABM of social systems (like a

market).
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Part A: Pseudocode of the agent-based simulation

A.1 Word-of-mouth communication

Algorithm 1: Word-of-mouth communication

function wom(i,j)

if certaini = 1 then

ãj ← N (ai, σ
wom);

processInformation(j, ãj , w
wom);

end

if certainj = 1 then

ãi ← aj + ϵwom with ϵwom ∼ N (0, σwom);

processInformation(i, ãi, w
wom);

end

end

Parameters:

σwom Variance of communication noise for word-of-mouth communication

wwom Weight of word-of-mouth communication

Variables:

ai Information communicated by consumer i

ãi Information received by consumer i

certaini ∈ {0, 1} 1 iff consumer i is certain

Indices:

i, j Indices of consumers

Functions:

processInformation(i, value, weight) Function that processes the information value (here: ãi)

received by consumer i assuming a weight (here: wfhx);

function is further specified in Algorithm 5
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A.2 Marketing

Algorithm 2: Marketing

function marketing(mint, aadv)

for i ∈ [1, N ] do

if random(0, 1) ≤ mint then

ãi ← N (aadv, σadv);

processInformation(i, ãi, w
adv);

end

end

end

Parameters:

σadv Variance of communication noise for advertisement

wadv Weight of advertisement

N Population size

Variables:

aadv Information distributed by the advertisement measure

ãi Information received by consumer i

Indices:

i Index of consumer

Functions:

processInformation(i, value, weight) Function that processes the information value (here: ãi)

received by consumer i assigning a weight (here: wfhx);

function is further specified in Algorithm 5
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A.3 First-hand experience

Algorithm 3: First-hand experience

function fhx(i)

ãi ← N (a⋆, σfhx);

processInformation(i, ã, wfhx);

end

Parameters:

σfhx Variance of communication noise for first-hand experience

wfhx Weight of first-hand experience

Variables:

a⋆ True performance value of the product

ãi Information about the performance value received by consumer i

Indices:

i Index of consumer

Functions:

processInformation(i, value, weight) Function that processes the information value (here: ãi)

received by consumer i assigning a weight (here: wfhx);

function is further specified in Algorithm 5
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A.4 Purchase

Algorithm 4: Purchase decision

function purchase(i)

if certaini = 1 and ai ≥ umin
i then

adopti ← 1;

end

end

Parameters:

umin
i Consumer i’s minimum utility

Variables:

ai Consumer i’s belief about the performance value

certaini ∈ {0, 1} 1 iff consumer i is certain

adopti ∈ {0, 1} 1 iff consumer i buys the product

Indices:

i Index of consumer
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A.5 Information processing

Algorithm 5: Information processing

function processInformation(i, value, weight)

ai ← ai·Wi+value·weight
Wi+weight ;

Wi ←Wi + weight;

vi ← vi + 1;

Θi ← Θi ⊕ ((value, weight));

if vi ≥ 2 then

checkUncertainty(i);

end

end

Variables:

ai Consumer i’s belief about the performance value

vi Number of information points received by consumer i

Θi Consumer i’s individual database containing pairs of information and weight

Wi Sum of the weights of all received information points

Indices:

i Index of consumer

Functions:

checkUncertainty(i) Function that checks for consumer i whether she should be certain;

function is further specified in Algorithm 6
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A.6 Perceived uncertainty

Algorithm 6: Perceived uncertainty

function checkUncertainty(i)

certaini ← 0;

if vi ≥ vmin
i then

f̂i(x)← getKDE (i);

M ← getMaxima(f̂i(x));

mod← argmaxm∈M f̂i(m);

if size(M) = 1 then

certaini ← 1;

end

if TVDistance(f̂i,N (ai, σi)) ≤ di then

certaini ← 1;

end

sum← 0;

for m ∈M do

if f̂i(mod)/f̂i(m) ≥ hi or m = mod then

sum← sum+ 1;

end

end

if sum = size(M) then

certaini ← 1;

end

end

end
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Parameters:

vmin
i Consumer i’s minimum amount of information

hi, di Determinants of consumer i’s uncertainty

Variables:

vi Number of information points received by consumer i

ai Consumer i’s belief about the performance value

certaini ∈ {0, 1} 1 iff consumer i is certain

f̂i(x) PDF of information received by consumer i (kernel density estimation)

M Set of maxima (here for PDF f̂i)

mod Global maximum in M

σi Standard deviation of information received by consumer i

Indices:

i Index of consumer

Functions:

getKDE (i) Function that computes the PDF of information received by consumer i

using kernel density estimation (see Equation 1 in the main paper)

getMaxima(f) Function that return a set with all maxima of a function f (here: f̂i)

argmaxx∈X f(·) Function that returns the element x⋆ ∈ X (here: set M) that

maximizes function f (here: f̂i)

TVDistance(f, g) Function that computes the total variation distance between two

PDFs f and g (here: f̂i and N (ai, σi))

size(X) Function that returns the number of elements in a set X (here: M)
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Part B: The variance as an alternative measure of uncertainty

As mentioned in the main paper (in Sect. 3.4), the variance of the information might be con-

sidered as an alternative measure for a consumer agent’s uncertainty. Doing so would have the

advantage that Bayesian updating can be used for updating the variance σ2
i alongside the belief

(mean) ai of consumer i. In the following, we analyze the difference in market behavior between

applying the approach introduced in our work (referred to as “our uncertainty measure” based

on parameters di and hi) and using the variance as a proxy for uncertainty. To this end, we ran

additional computational experiments in which consumer i becomes certain if her standard de-

viation σi is below a certain threshold for the standard deviation σmax. All simulation outcomes

presented in the figures below are averaged over 20 simulation runs.

In a first set of experiments, we demonstrate that for the baseline scenario, varying (a) the

uncertainty parameter hi, which is the more dominant parameter in our approach (as compared

to di), and (b) the above-mentioned uncertainty threshold σmax can generate similar diffusion

curves (see Fig. 1). Furthermore, it is noteworthy that, in both approaches, certain parameter

values—that is, hi ≤ 1 and σmax ≥ 14, respectively—can reproduce the adoption curve resulting

from applying (basic) Bayesian updating with known variance.
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(b) Variance as a measure of uncertainty

Figure 1: Number of adopters over time for various (a) values for uncertainty parameter hi and (b) variance

cutoffs for uncertainty σmax.

From Figure 1, we can already visually identify parameter value σmax = 8 as a reasonable

counterpart for parameter value hi = 9 used in the main paper. This is confirmed by calculating

the mean squared errors for the deviation between the two diffusion curves: while the mean

squared errors are 831 for σmax = 8, they are 45,407 for σmax = 7 and 21,078 for σmax = 9. In

the following, we therefore use σmax = 8 to analyze the differences between the two uncertainty
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measures in more detail.

In the second set of experiments, we investigate the effect of varying the gap between the contents

of the two advertisement agents aadvq (in the baseline scenario: aadv1 = 80 and aadv2 = 50) by

adapting the advertisement content aadv2 of the opposing information source. For the uncertainty

measure used in our work (see Fig. 2a), the impact on the diffusion curves is small for most

changes in aadv2 (for more details and a thorough discussion, see Part C.3). In contrast, when

using the variance as an uncertainty measure, the impact of adapting the advertisement content

is considerably stronger (see Fig. 2b).
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(b) Variance as a measure of uncertainty

Figure 2: Number of adopters over time for different lower advertisement contents aadv
2 using (a) our uncertainty

measure or (b) variance as a measure for uncertainty.

In the latter case (i.e., for using the variance as a measure of uncertainty), it is noteworthy

that the (green) diffusion curve resulting from aadv2 = 60—that is, if the original gap of 80−50 =

30 is closed by 33% and, thus, the new gap is just 80 − 60 = 20—is very close to the diffusion

curve in the case of basic Bayesian updating (which is almost identical to the yellow curve).

Otherwise, if the gap is increased by 33% by setting aadv2 = 40, the rate of diffusion clearly

decelerates and the respective (i.e., the purple) curve is shifted to the right. The reason for

this effect is that the variance as a measure for uncertainty considers only a single factor and,

in particular, does not account for the shape of the underlying information distribution (i.e.,

whether it is unimodal or, as in our case, bimodal).

In a nutshell, resorting to the variance as a measure for uncertainty can generate strong effects

from relatively small changes in the parameterization of the information sources. The respective

impact can be unrealistically high, as, for example, a consumer who is uncertain when receiving

information from two opposing information sources with aadv1 = 80 and aadv2 = 50, would still be
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uncertain—although to a somewhat lesser degree—when receiving information from aadv2 = 60.

When applying our approach, in contrast, the same change in parameterization results in a

considerably less strong impact on the diffusion curve, which we deem more reasonable.

In the third set of experiments, we investigate the effect of a single outlier. In the respective

setting, all consumers start with a single information point aadv2 from the opposing information

source and afterwards receive only advertisement aadv1 = 80 from the producer’s information

source. The simulation results obtained for different values of the outlier aadv2 are depicted in

Figure 3.
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(b) Variance as a measure of uncertainty

Figure 3: Number of adopters over time for different single starting information points aadv
2 from the opposing

information source using (a) our uncertainty measure or (b) variance as a measure for uncertainty.

In both approaches, a high value of the outlier aadv2 has nearly no effect on innovation

diffusion, as such an outlier is still close to the (extensive) information provided by the producer.

For our approach (visualized in Fig. 3a), even for considerably lower values for the outlier, the

impact on innovation diffusion remains small, although the effect becomes more pronounced for

lower values of aadv2 .

When resorting to the variance as a measure for uncertainty, a similar behavior can be seen

for values of aadv2 ≥ 50 (as shown in Fig. 3b). However, for lower values, we observe only a

single simulation run (for aadv2 = 40) in which the new product succeeds on the market, while in

all the remaining runs, no adoption occurs. This result can be attributed to the strong impact

of outliers on the variance, which requires numerous information points from the producer’s

information source to compensate for the outlier: for an outlier with the value aadv2 = 40,

approximately 25 information points with aadv1 = 80 are needed to lower the standard deviation

below 8; for aadv2 = 30 and aadv2 = 20, the number of necessary information points increases
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even to 40 and 58, respectively. However, given our parameters for the advertisement, more

than 40 information points are never received by a single consumer agent, while more than 20

information points can only be gathered in rare instances—and even if some consumer agents

succeed in this respect, diffusion would still drastically slow down. Overall, we feel that such a

strong impact of a single information point is not realistic.
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Part C: Results from further sensitivity analyses

In the following, we provide results from additional sensitivity analyses in detail. To this end,

we computed 20 simulation runs for each parameter value under investigation and depict the

mean number of adopters averaged over these runs as colored lines in the figures.

C.1 Products

The only parameter regarding product characteristics is the true performance value a⋆, which is

communicated to the consumers via first-hand experience. In our sensitivity analysis, we vary

this value in the range between the advertised content provided by the two opposing information

sources (i.e., aadv1 = 80, aadv2 = 50). The mean number of adopters over time is depicted in

Figure 4.
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(b) Our approach

Figure 4: Number of adopters over time for different values for the product’s true performance a⋆ using

(a) Bayesian updating or (b) our approach.

For the Bayesian approach (with simulation results presented in Fig. 4a), lowering the true

performance value a⋆ has only a marginal impact on the first wave of adoption, during which

around 50% of the market potential can be exploited. Thereafter, the diffusion curve visibly

flattens out with decreasing performance value a⋆, and remain nearly steady for parameter values

a⋆ ≤ 65.

In contrast, the diffusion curves that are obtained by applying our approach (illustrated in

Fig. 4b) show an interesting pattern. While at the simulation horizon, the market shares—as

could be expected—are always larger in runs with a higher true performance value a⋆, in the

short term, this order is not maintained, as in runs with values of a⋆ ≤ 70 the number of early

adopters is higher than in runs with values of a⋆ ≥ 75. Moreover, the shape of the diffusion curves

change: For low values a⋆ ∈ {50, 55}, we observe a noticeable, although limited, increase in the
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number of early adopters and a flat S-shaped diffusion afterwards. Setting the true performance

values closer to the average of the advertised contents (i.e., for a⋆ ∈ {60, 65}) results in diffusion

curves that resemble delayed versions of the curves resulting from Bayesian updating (i.e., many

early adopters, flat afterwards). For simulation runs in which the true performance value is set

to a⋆ = 70, the variance of simulation outcomes is high among the twenty runs, with individual

diffusion curves from these runs showing either of the two above-mentioned forms; it should be

noted that this diversity in the shape of the diffusion curves from single runs with parameter

a⋆ = 70 is not represented in Figure 4b, as the graph only provides the averaged number of

adopters over the twenty runs.

The reason for the relatively high number of early-phase adopters in settings with a low value

for the true performance is that these innovators—all of whom received only the producer’s

advertisement promising a product performance of approximately 80 and, thus, had a favorable

opinion when adopting the new product—afterwards learn about the considerably lower true

performance values and accordingly adapt their belief to a value that is somewhere in between

the information peaks fueled by the two advertisement agents. This adaptation in belief turns

out to be beneficial in the course of early on convincing other consumers, because the word-

of-mouth communication of the early adopters nicely bridges the gap between the two extreme

values broadcasted by the opposing information sources and, thus, reduces uncertainty, which

then induces further adoption decisions. Obviously, this effect is short-lived for low values for

the true performance (i.e., for a⋆ ∈ {50, 55}), as adopters experience the low true value and

inform their peers. For a true performance value in the middle between the two information

peaks (i.e., a⋆ ∈ {60, 65}), the effect lasts longer, as consumers quickly learn about the true

value and stick with it; however, only consumers in runs with a minimum utility umin
i ≤ 60

or umin
i ≤ 65, respectively, adopt the product which is why the diffusion curve already flattens

out in a relatively early phase. Interestingly, innovation diffusion in the early phase is, to some

degree, impeded by high values for the true performance (i.e., a⋆ ∈ {75, 80}), because first-hand

experience reinforces the consumer agents’ notion of two diverging opinions prevalent in the

market, which maintains a high level of uncertainty, and only after some time, one opinion—

namely, the notion that performance is high—prevails.

It is noteworthy that the favorable impact of low values for the true performance is coun-

terintuitive, and indeed, it is rooted in a simplification of our model, as we do not account for

consumers’ disappointment after they have learned that the true value is considerably lower

than their belief at the point in time when they adopted the new product. It would be straight-
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forward to extend our model in this respect, that is, introducing negative word-of-mouth as the

consumers’ reaction to this disappointment. However, such an extension would only indirectly

contribute to answering the key question of our research, which is concerned with the uncertainty

effect in the presence of two opposing information sources. Still, the impact of a true value that

is considerably lower than the advertised value—for example, if the producer vastly exaggerates

the alleged performance of the new product and, consequently, provokes disappointment on the

consumers’ side—raises another valid (and relevant) question, which we intend to address in

future research.

C.2 Consumer agents

In our model, consumer agents i are characterized by the required minimum utility umin
i , the

minimum number of information points vmin
i sought for by them to satisfy their need for having

obtained a sufficiently large information base, and the parameters hi and di, respectively, used

in our approach for measuring uncertainty (which is assumed to be low if the distribution of the

received information resembles a normal distribution). In the following, we analyze the impact

of these parameters on the outcomes of our market simulation. In addition, we ran a sensitivity

analysis for the population size N .

First, we assume that all consumers have the same threshold for the minimum utility umin
i ,

and run simulation experiments in which this threshold is varied. The diffusion curves, when

applying either the Bayesian updating or our approach, are depicted in Figure 5.
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(b) Our approach

Figure 5: Number of adopters over time for variations of identical minimum utilities umin for all consumers using

(a) Bayesian updating or (b) our approach.

When resorting to Bayesian updating, this parameter apparently has a major effect on the

number of early adopters and the speed of diffusion afterwards (see Fig. 5a). If the threshold for
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the minimum utility is umin
i = 65 (i.e., it is in the middle between the information broadcasted

by the two sources) or even below (which is not included in the above graph), adoption is very

quick, and nearly all consumers have adopted the new product after only a short while. However,

the simulation results change remarkably with an increase in the parameter for the required

minimum utility, as such an increase entails a substantial slowdown of innovation diffusion; and

for parameter settings umin ≥ 75, the diffusion even completely halts after the early adoption

took place. Obviously, this market behavior is due to the relatively low number of consumer

agents who become convinced just from being exposed to the information sources that product

performance would be this high. Although these few adopters learn about the (high) true

performance value and afterwards engage in word-of-mouth communication, they have a hard

time competing with the information that is communicated by the non-adopters, particularly

so, as consumers must be convinced that the performance value is higher than 70.

When applying our approach, the picture is different (see Fig. 5b), as our approach is less

sensitive with respect to the parameter for the minimum utility, and, thus, for nearly all vari-

ations of this parameter, it produces a nice S-curve of innovation diffusion. The reason is that

in our approach, in contrast to the Bayesian approach, only consumer agents who are certain

communicate their beliefs to others. Therefore, after the advertisement ended in period t = 90,

(almost) only the adopters were certain and, hence, only high beliefs were communicated. The

only exception in this set of simulation runs is the case with an extraordinarily high parameter

value umin = 77.5, for which—analogous to the Bayesian case—diffusion does not continue after

the very first phase because only few consumer agents become certain just from the advertise-

ment that this high performance value indeed is correct, and the boost of experiencing the true

performance value of a⋆ = 80 does not increase their belief sufficiently strong to have a major

impact on persuading peers by means of word-of-mouth communication (as those peers have the

same high minimum utility requirement and have already collecting plenty of information which

partly was provided by the opposing information source).

Second, we investigate the case of heterogeneous minimum utilities umin
i drawn from a uniform

distribution. To this end, we vary one bound of this distribution (i.e., either the upper or the

lower bound) at a time, with the other bound remaining at the baseline value of αmin = 55

or βmin = 80, respectively. The simulation outcomes for different lower and upper bounds are

provided in Figure 6.

As expected, when the lower (upper) bound for the minimum utility is increased, we see a
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(a) Lower bound in Bayesian updating
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(b) Lower bound in our approach
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(c) Upper bound in Bayesian updating

0

250

500

750

1000

0 1000 2000 3000
Time [Days]

N
um

be
r 

of
 A

do
pt

er
s

65
70
75
80
85
90

(d) Upper bound in our approach

Figure 6: Number of adopters over time for different lower or upper bounds of a uniform distribution from which

(heterogeneous) minimum utilities umin
i are drawn; lower bounds are varied for (a) and (b); upper values are

varied for (c) and (d); simulation experiments are performed for using Bayesian updating and for our approach.

downward shift in the diffusion curves for both approaches, which is reasonable market behavior.

If lower and upper bounds become close (i.e., the lower bound is considerably higher or the upper

bound is considerably lower than in the baseline setting), the outcome resembles the case of

homogeneous minimum utilities discussed above. It is noteworthy that we also consider bounds

that are lower (higher) than the information provided by the two information sources. For

the upper bound at βmin = 90, for example, this setting implies that some consumer agents are

never content with the product performance and, therefore, they will not adopt the new product;

accordingly, the respective diffusion curve is rather low (see Fig. 6d). On the other end of the

spectrum, a lower bound of αmin = 45 creates a minimum utility for some consumer agents that

is below all information about the product’s performance; accordingly, they will adopt the new

product as soon as they become sufficiently certain of the received information and, therefore,

the respective diffusion curve is relatively high (see Fig. 6b). As a side note, we acknowledge
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that the above analysis brought our attention to a special constellation, namely, that a consumer

agent received a sufficient number of information points, with all these information points below

her minimum utility, but still the consumer agent does not adopt the new product due to the

ambiguity of the information points. In reality, a consumer most probably would adopt anyway,

which is not covered by a model but could be easily accounted for if necessary for some future

application.

Moreover, we also run experiments in which the minimum utilities umin
i are drawn from a

normal distribution with a constant standard deviation σ = 6 (as, after checking for alternative

values for σ, this setting results in a variation that is similar to the range covered by the

uniform distribution) and different mean values. The respective simulation outcomes presented

in Figure 7 show the familiar pattern of shifting the diffusion curves in the expected direction,

which indicates that the shape of the diffusion curve is not an artifact of using a uniform

distribution (as we did in the experiments discussed in the main paper).
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Figure 7: Number of adopters over time for different mean values of a normal distribution from which minimum

utilities amin are drawn when using (a) Bayesian updating or (b) our approach.

Third, we assume that all consumers have the same threshold for the minimum amount of

information vmin
i . The simulation results for different values of this parameter are shown in

Figure 8.

Unsurprisingly, an increase in the minimum amount of information vmin slows down the dif-

fusion for both the Bayesian (Fig. 8a) and our approach (Fig. 8b). This effect is stronger for our

approach, as with a higher threshold vmin, it gets more unlikely to have obtained (almost) only

information points from the producer’s source of information as a precondition to be sufficiently

certain for adopting the new product. It is noteworthy that for values vmin
i ≥ 8, the variance

between the simulation runs markedly increases in a wide range of outcomes from some runs
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without adoption until the simulation horizon and others with a rather quick diffusion (which

is not shown in the figure, as we only provide averaged results).

0

250

500

750

1000

0 1000 2000 3000
Time [Days]

N
um

be
r 

of
 A

do
pt

er
s

1
2
3
4
6
8
10
20

(a) Bayesian updating
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(b) Our approach

Figure 8: Number of adopters over time for variations of identical minimum amounts of information vmin
i for all

consumers using (a) Bayesian updating or (b) our approach.

Fourth, we also investigate the case of individual thresholds for the minimum amount of infor-

mation. To this end, the threshold for a specific consumer agent i is drawn from a Poisson dis-

tribution with parameter λmin, which, hence, is the mean over all individual minimum amounts

of information vmin
i . Analogous to the above-described case of homogeneous minimum amounts

of information, increasing parameter λmin slows down the diffusion of the innovation. However,

the effect is weaker than it was in the homogeneous case. Again, the variance between individual

simulation runs becomes considerably high for values of λmin ≥ 10.
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Figure 9: Number of adopters over time for different parameters λmin of the Poisson distribution underlying the

minimum amounts of information vmin
i using (a) Bayesian updating or (b) our approach.

Fifth, we vary uncertainty parameter hi, which determines how high the ratio between the
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modus and other peaks of the information distribution f̂i has to be for consumer i to disregard

the remaining ambivalence and become certain. If hi = 1, consumer i disregards all ambivalence

and is always certain, which corresponds to the behavior of a consumer in the Bayesian approach.

The outcomes of the simulation runs for alternative values for parameter h—which, as in our

main paper, is used for all consumers (i.e., hi = h)—are depicted in Figure 10.
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Figure 10: Number of adopters over time for different values for the uncertainty parameter h.

An increase in parameter h slows down the diffusion, because it becomes harder for consumers

to disregard ambivalence and become certain. Interestingly, the figure also indicates that for

a high parameter value for h (i.e., h ≥ 7), the number of early adopters is (nearly) constant.

The reason is that in such a setting, it becomes unlikely or even impossible for consumers to

become certain based on the h-criterion, as in most cases of early-stage adoption, the respective

consumer agents became certain due to information provided by the producer and, therefore, h

does not play a major role (as the information distributions are unimodal in most cases).

Sixth, the uncertainty parameter di is investigated. This parameter determines how low the total

variation distance between the information distribution f̂i and a normal distribution N (ai, σ
2
i )

with belief ai as the mean and the variance of information σ2
i as the variance has to be for

consumer i to regard f̂i as sufficiently close to a normal distribution and, thus, to become

certain. If di = 1, consumer i accepts every distribution as sufficiently normal and is always

certain, which resembles the case of Bayesian updating. The simulation results provided in

Figure 11 show that lowering parameter d—which is then used to parameterize all consumers

in an identical way (i.e., di = d)—slows down the diffusion at the beginning. Still, the number

of adopters is higher after approximately t = 2000. The reason is the group of non-adopters

who are certain and, thus, communicate their low beliefs. This group is larger in runs with a

larger parameter value d (in contrast to runs with a low value for d, in which it is considerably
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more difficult for consumer agents to become certain), and the non-adopters’ word-of-mouth

communication delays product adoption of consumers with a high minimum utility threshold.

Ultimately, the latter group is reached, but it takes quite some while.
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Figure 11: Number of adopters over time for different values for the uncertainty parameters d.

Seventh, the population size was varied to check whether the chosen value N = 1000 is sufficient.

As can be learned from the results presented in Figure 12, for both approaches, values of N >

1000 do not have a noticeable effect on the diffusion curves. Still, it should be noted that the

variation between the simulation runs (which is not represented in the graph) decreases with

increasing population size. The reason is that larger populations are more similar to each other

with regard to heterogeneous consumer parameters and, furthermore, the stochasticity effects of

the advertisement are smaller for a higher population size (given the higher number of draws).
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Figure 12: Number of adopters over time for different population sizes N using (a) Bayesian updating or (b) our

approach.
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C.3 Advertisement agents

In our model, advertisement agents q are characterized by the contents aadvq broadcasted by

them, the duration of an advertisement campaign mdur, and the advertising intensity mint.

In the following, we analyze the impact of these parameters on the outcomes of our market

simulation.

First, we explore the effects of varying the contents of the advertisement campaign aadvq . As

we are only interested in the difference between the contents broadcasted by the two opposing

information sources, we only vary the content of the agent with the lower value (aadv2 ) and keep

the higher value constant (aadv1 = 80). Still, and for the sake of comparability, we also adapt the

minimum utilities umin
i of our consumer agents, that is, we set αmin = aadv2 . The reason is that

we strive to isolate the effects of varying the distance between the contents from the effects of

varying the mean of the contents. The simulation results for both approaches are provided in

Figure 13.
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Figure 13: Number of adopters over time for different advertisement contents from the opposing information

source aadv
2 using (a) Bayesian updating or (b) our approach.

For the Bayesian approach, we find no difference in the diffusion curves when varying the

content of advertisement aadv2 (see Fig. 13a). In contrast, the simulation results for our approach

(see Fig. 13b) suggest that the innovation diffusion decelerates with a larger gap between the

contents of both advertisement campaigns. This effect originates from the increasing gap be-

tween the information sources and, thus, the broader range of consumer agents’ possible beliefs.

Consequently, it becomes harder for adopters to convince other consumer agents, as their be-

liefs are further apart from each other and also from the producer’s information source, which

creates broader and lower peaks in the information distributions. While the effect is gradual for
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20 ≤ aadv2 ≤ 60, it is more pronounced for 60 ≤ aadv2 ≤ 70. The reason is that for aadv2 ≥ 60, the

information from both sources appears similar enough (after communication noise is added) to

be mistaken as originating from a single source. Consequently, more consumer agents become

certain and adopt.

Second, we explore the effect of varying the advertisement duration mdur which is identical for

both advertisement agents. Figure 14 shows that increasing the duration mdur has no effect on

the number of early adopters (at least for mdur ≥ 45) but it slows down the diffusion afterwards.
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Figure 14: Number of adopters over time for different advertisement durations mdur using (a) Bayesian updating

or (b) our approach.

When applying our approach, for high values mdur ≥ 720, the above effect is sufficiently

strong that nearly no consumer adopts after the first 100 days and before the end of our simu-

lation horizon—that is, we observe, on average, less than 14 adopters for mdur = 720 and less

than two adopters for mdur = 1440. The reason for this market behavior is that a longer dura-

tion of the advertisement campaigns results in more ambivalent information, as the mean of the

advertised information (aadv1 + aadv2 )/2 = (80 + 50)/2 = 65 is lower than the true performance

value a⋆ = 80 and, hence, the simulation runs yield lower beliefs (for both approaches) and a

more persistent uncertainty (our approach).

Third, when varying the advertisement intensity mint (and in each instance, identically for both

advertisement agents), a similar effect as above can be observed, namely, that higher intensity

decelerates innovation diffusion, that is, shifts the diffusion curve to the right. Corresponding

simulation results are shown in Figure 15. It is noteworthy that for low parameter values for

the advertisement intensity, the variance between simulation runs increases, with the effect of

nearly no adoption occurring in certain runs (which, however, is not depicted in the graph). In
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contrast to the advertisement duration, increasing the advertisement intensity mint also has an

impact on the early adopters, as the diffusion curve is shifted to the left (i.e., the early adopters

adopt even earlier).
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Figure 15: Number of adopters over time for different advertisement intensities mint using (a) Bayesian updating

or (b) our approach.

C.4 Information flows

Regarding information flows, we investigate effects that can arise either from the density of our

social network or from the weights of our information channels.

During the generation of the social network, parameter k determines the number of existing

agents to which each newly added consumer agent is connected. The impact of varying this

parameter on the shape of the diffusion curve is illustrated in Figure 16.
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Figure 16: Number of adopters over time for values of the network parameter k using (a) Bayesian updating or

(b) our approach.
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For the Bayesian approach (see Fig. 16a), a noticeable, even though small, difference to the

diffusion curve obtained for k = 3 (as in the baseline parameterization) can be found only for

k = 1. The reason is that the major effect from differences in network density comes from

information diffusion in the early stages (i.e., contributing to reaching vi ≥ vmin
i ). However, in

our market setting, the advertisement agents already provide consumer agents with plenty of

information, and afterwards, the beliefs of all consumers are relatively similar, which limits the

network effect (i.e., how connected they are to each other); still, a slight effect of settings for k

in the very early phase can be found also for the Bayesian updating.

In contrast, for our approach (see Fig. 16b), an increase of the parameter k, and hence

an increase in connections in the network, considerably accelerates innovation diffusion (i.e.,

diffusion starts earlier and the diffusion curve has a greater slope). The reason is that in our

approach (almost) only the adopters engage in word-of-mouth communication and that the (few)

adopters can reach more consumers faster if they are more intensely connected in the network.

In our simulation experiments, we always used the same network (i.e., consumer agents

always have the same neighbors). To test whether different networks (with the same value for

parameter k) may have an effect, we computed 100 simulation runs with different networks (all

with k = 3). When averaging the outcomes of these runs and comparing the resulting diffusion

curve with the diffusion curve from our baseline model, the difference was negligible. It should

be noted that nevertheless it makes a difference whether to use a specific network for all runs

(as we did for our baseline model) or to generate a new network for each of the runs. In the

latter case, the standard deviation of the number of adopters in each period (and in each run)

increases on average by 13% for the Bayesian and by 20% for our approach, as compared to the

standard deviation for the baseline model.

Next, we analyze the possible effects of the weights of the communication channels. The values

of the weights are only relevant in relation to each other and, thus, the order of the weights as

described in the main paper is kept intact—that is, wfhx ≥ wwom ≥ wadv. Therefore, we only

need to vary two weights, as varying the third weight is the same as varying the other two at the

same time. Consequently, only the results for the weights of advertisement wadv and first-hand

experience wfhx are provided in Figure 17.

For the Bayesian approach, the diffusion curves shift downwards if more weight is assigned to

the advertisement channel (see Fig. 17a), and they shift upwards if more weight is assigned to the

first-hand experience (see Fig. 17c). When varying the weight for word-of-mouth communication
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(b) Our approach: ADV
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(d) Our approach: FHX

Figure 17: Number of adopters over time for different weights for the information channels; the weight of adver-

tisement (ADV) wadv is varied for (a) and (b); the weight for for-hand experience (FHX) wfhx is varied for (c)

and (d); simulation experiments are performed for Bayesian updating and for our approach.

wwom there is also a shift downwards in the diffusion curve later in the simulation, as the effect

of weaker first-hand experience dominates at later times.

Analogously, for our approach, there is an increase in the number of adopters and a slightly

accelerated innovation diffusion when increasing the weight of first-hand experience wfhx (see

Fig. 17d). Also, an increase in the weight of advertisement wadv yields a decrease in the number

of adopters. However, this decrease is accompanied by a stronger acceleration of innovation

diffusion. The effect of increasing the weight for word-of-mouth wwom is a combination of both,

which results in the diffusion curve being shifted to the left and down, as advertisement and

first-hand experience both become weaker in comparison to word-of-mouth communication.

The reason for this market behavior is that a stronger weight for advertisement results in

lower beliefs and higher uncertainty, as the opposing advertisement agents are the sources of

ambivalent information that in the mean (i.e., (aadv1 + aadv2 )/2 = (80 + 50)/2 = 65) is lower

than the true performance value a⋆ = 80. Stronger first-hand experience, however, increases the

mean belief of adopters, which makes it possible for them to convince consumers more easily.
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C.5 Remaining parameters

Alternative kernel functions that could have been used for our kernel density estimation are

the Epanechnikov (parabolic), the biweight (quartic), and the triweight function. We compared

these three alternatives to the normal kernel functions that we used in the baseline parame-

terization (see Fig. 18). The respective diffusion curves are not identical, but differences are

minimal. Accordingly, our results seem to not rely on our chosen kernel function.
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Figure 18: Number of adopters over time for different kernel functions.

Finally, we address our modification aimed at reducing computing time, which was mentioned

in Section 5.1 of the main paper. In this modification, a certain parameter defines the level of

information being considered extraordinarily high. In Figure 19, we display diffusion curves for

several variations of this parameter, which demonstrate that it does not have an effect on the

simulation outcome. Not using the modification at all (see “unres” in the graph’s legend) only

shifts the diffusion curve slightly to the left. In a nutshell, the above-mentioned modification

considerably decreased computing time without having an impact on the simulation results.
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Figure 19: Number of adopters over time for different parameter values of our modification for computational

efficiency.
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