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Abstract

The Skewed Kalman Filter is a powerful tool for statistical inference of asymmetrically distributed time

series data. However, the need to evaluate Gaussian cumulative distribution functions (cdf) of increasing

dimensions, creates a numerical barrier such that the filter is usually applicable for univariate models and

under simplifying conditions only. Based on the intuition of how skewness propagates through the state-

space system, a computationally efficient algorithm is proposed to prune the overall skewness dimension by

discarding elements in the cdfs that do not distort the symmetry up to a pre-specified numerical threshold.

Accuracy and efficiency of this Pruned Skewed Kalman Filter for general multivariate state-space models are

illustrated through an extensive simulation study. The Skewed Kalman Smoother and its pruned implemen-

tation are also derived. Applicability is demonstrated by estimating a multivariate dynamic Nelson-Siegel

term structure model of the US yield curve with Maximum Likelihood methods. We find that the data

clearly favors a skewed distribution for the innovations to the latent level, slope and curvature factors.

Keywords: state-space models, skewed Kalman filter, skewed Kalman smoother, closed skew-normal,

dimension reduction, yield curve, term structure, dynamic Nelson-Siegel

?The authors thank Dietmar Bauer for both critical and helpful comments as well as sharing his codes on the Mendell-Elston
method with us.
??The second author acknowledges financial support from the Deutsche Forschungsgemeinschaft (DFG) through Grant

No. 411754673. Declarations of interest: none.
Replication codes are available at https://github.com/wmutschl/pruned-skewed-kalman-paper.
∗Corresponding author.
Email addresses: gaygysyz.guljanov@wiwi.uni-muenster.de (Gaygysyz Guljanov), willi@mutschler.eu (Willi

Mutschler), mark.trede@uni-muenster.de (Mark Trede)

Preprint submitted to CQE Working Paper Series December 6, 2022

https://github.com/wmutschl/pruned-skewed-kalman-paper


1. Introduction

State-space models and the Kalman filter are at the heart of modern signal processing and robust control,

but they also play an inherent role in statistics and econometrics, particularly for the estimation of structural

models such as vector autoregressive or dynamic stochastic general equilibrium models, see e.g. Kilian &

Lütkepohl (2017) and Fernández-Villaverde et al. (2016) for textbook introductions. The reduced-forms of

these structural models are special cases of the class of linear state-space models developed by engineers and

statisticians to describe physical and dynamic systems. Furthermore, by assuming Gaussianity for both the

structural innovations and measurement errors the state and control variables of the system become normally

distributed. In this case, the Kalman filter is an efficient recursive procedure for inference about the state

vector and can be exploited to compute the exact Gaussian likelihood function. The filter is optimal in the

sense that it minimizes the one-step ahead prediction errors covariance matrix. More importantly, from an

applied and computational perspective, Kalman filter operations can be performed rapidly and efficiently.

However, in real data applications non-Gaussianity, and particularly skewness, is a feature of many time

series commonly used to estimate linear state-space models (de Roon & Karehnke, 2017; Fagiolo et al., 2008).

For example in the economics literature the estimated innovations systematically exhibit strong asymmetry

as recently shown by Lindé et al. (2016) for monetary policy shocks and by Ludvigson et al. (2021) for both

financial and macroeconomic uncertainty shocks. The pronounced negative skewness of stock returns and

the implications for asset pricing and investment management have been extensively documented, see e.g.

Neuberger (2012). Likewise, Ruge-Murcia (2017) finds that skewed nominal shocks (e.g. on inflation) are

important to account for slope changes in the yield curve, while asymmetric real shocks (e.g. on consumption)

are important to account for level changes. This fits seamlessly into the Macro-Finance literature, which

advocates the use of Kalman filtering techniques to model and forecast yield curves. In fact, it has long been

recognized that the first three principal components of yields, commonly labeled level, slope, and curvature,

provide a sufficient empirical summary of the entire yield curve.1 Following Diebold & Li (2006), it has

become standard practice to analyze the term structure of interest rates by estimating dynamic Nelson &

Siegel (1987)-type models with the conventional Gaussian Kalman filter. Recently, Bauer & Chernov (2021)

argue that conditional yield skewness is an important summary statistic about the state of the economy, (not

only but) especially in the face of unprecedented low interest rates. Consequently, this calls into question

the validity of the Gaussian assumption when estimating yield curves with Kalman filtering techniques.

Therefore, one needs to adapt the state-space modelling framework and algorithms to account for skew-

ness in the error term distribution. To this end, we consider the closed skew-normal (CSN) distribution

of González-Faŕıas et al. (2004b) as a suitable alternative, because it generalizes the Gaussian distribution

1Granted there is also some consensus that additional factors are important in determining the shape of the yield curve, see
e.g. Gürkaynak & Wright (2012) for a review.

1



by adding skewness while preserving some important properties of the normal distribution; namely, being

closed under (i) marginalization, (ii) conditional distributions, (iii) linear transformations (full column or

row rank), (iv) summation of independent random variables from this family, and (v) joint distributions of

independent random variables in this family, see e.g. Azzalini & Capitanio (2014) and Genton (2004) for

excellent textbook introductions. Moreover, it includes both the normal distribution as well as the popular

skew-normal distribution proposed by Azzalini (1985) and Azzalini & Dalla Valle (1996) as special cases.

Since the three basic tools in the implementation of the Kalman filter are closure under linear transfor-

mation, summation, and conditioning, the use of this distribution allows the development of closed-form

recursions that are almost identical to the Gaussian Kalman Filter. Accordingly, Naveau et al. (2005) and

Cabral et al. (2014) formulate Skewed Kalman Filters based on the CSN distribution for linear state-space

systems, whereas Rezaie & Eidsvik (2014, 2016) develop Skewed Unscented Kalman Filters for nonlinear

state-space systems and also discuss the computational aspects.

The (closed) skew-normal distribution is applied in all kinds of disciplines, to list a few: insurance claims

in property-liability (Eling, 2012), growth-at-risk analysis (Adrian et al., 2019; Wei et al., 2021; Wolf, 2022),

mental well-being studies (Pescheny et al., 2021), modelling psychiatric measures (Counsell et al., 2011), risk

management (Vernic, 2006), stochastic frontier models (Chen et al., 2014), stock returns (Chen et al., 2003),

and time series econometrics (Karlsson et al., 2021; Manouchehri & Nematollahi, 2019). The Skewed Kalman

Filter, however, is rarely used despite its great potential and familiarity of implementation. Particularly,

in economics and econometrics the literature is very sparse, Cabral et al. (2014) being a notable exception

for the analysis of UK gas consumption and Emvalomatis et al. (2011) for estimating dynamic efficiency

measurements in agricultural economics. Other applications in statistics and signal processing are usually

limited to simplified conditions and univariate settings. We suspect that this is mainly due to a numerical

problem known as “increasing skewness dimensions” for which we present a solution in this paper. Intuitively,

the problem stems from the fact that the probability density function (pdf) of the CSN distribution has two

dimensions as we multiply a Gaussian pdf by the ratio of two Gaussian cumulative distribution functions

(cdf). While the Gaussian pdf is the resemblance to the normal distribution, the skewness dimension

stems from the Gaussian cdfs. Even though evaluating Gaussian cdfs is a well understood task, it can

become numerically difficult if the dimension of the cdfs becomes very large. In more detail, if one assumes

the CSN distribution for the error terms (shocks) in the state transition equation, we can establish the

closure under summation property required for the Kalman filtering steps based on the fact that the sum

of two independent CSN distributed variables is also CSN. However, the skewness dimension grows over

time, as the dimensions of the resulting Gaussian cdfs that need to be evaluated increase by the sum of

the cdf dimensions in both variables. We therefore need to deal with high-dimensional Gaussian cdfs, the

computation of which is not difficult in the univariate case, but becomes cumbersome if not infeasible for

high-dimensional distributions, a point echoed by Amsler et al. (2021) for the skew-normal distribution.
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And this is the core numerical problem of the Skewed Kalman Filter, as in typical applications of state-

space models this skewness dimension quickly increases and may even explode as the recursion proceeds

over many time steps. Therefore, Rezaie & Eidsvik (2014) argue that for practical purposes one must

either assume simplified conditions or re-fit the updated distribution in some way. Accordingly, Naveau

et al. (2005) and Cabral et al. (2014) propose to only assume the CSN distribution for the initial state

vector. As the sum of a CSN distributed variable with a normally distributed variable is also CSN, the

Kalman filtering steps can be easily derived, but the skewness dimension stays constant. However, as we

will show, the impact of the initial distribution – and the amount of skewness – vanishes rather quickly over

time, which is typically not a feature we find in real data applications. Alternatively, Naveau et al. (2005)

tailor an extended univariate state-space model by splitting up the state vector in a linear and a skewed

part, enabling them to do the filtering without letting the skewness dimension explode. However, general

state-space models like the reduced-form representations of structural economic models cannot be put into

this extended form. Recently, Arellano-Valle et al. (2019) include the CSN distribution in the measurement

equation, while the state transition shocks are still modelled as normally distributed. But there is abundant

evidence that skewness actually stems from the innovations and not from the measurement errors; thus,

their approach is not viable in a more general setting. To sum up, the numerical problems lead to the fact

that real data applications in the literature are limited to univariate models only, although the underlying

research questions would arguably favor a multivariate approach.

To overcome all of these barriers, our main contribution is to propose a computationally efficient way

to approximate the updated distribution by reducing the skewness dimension. Our algorithm is based

on the fact that a CSN distributed random variable can be defined via a conditional distribution of two

normally distributed variables. Intuitively, in this representation, it is the correlation between the two

random variables that introduces asymmetry and skewness. If this correlation is large, then the asymmetry

of the conditional random variable, which is CSN distributed, is also large. However, if the correlation is

small, then the symmetry is only slightly affected and the CSN distribution is very similar to the Gaussian

distribution. In the extreme case, when there is no correlation at all, the conditional random variable will

be exactly the same as a normally distributed one. In other words, the Skewed Kalman Filter morphs

into the Gaussian Kalman Filter. Our approach is therefore based on a threshold, say 0.001 in absolute

value, at which we discard weakly correlated elements in the skewed Kalman filtering steps as they do not

distort the symmetry measurably. By doing so, we effectively reduce the overall skewness dimension by the

number of discarded variables, and make the Skewed Kalman Filter applicable for multivariate state-space

models without any restrictions. We call this algorithm the Pruned Skewed Kalman Filter. To motivate and

derive the algorithm, we analytically show how skewness propagates through the system, which is a second

contribution of this paper. Our third contribution is to derive the Skewed Kalman Smoother in closed-form.

As far as we are aware of, we are the first to provide the closed-form expressions and, more importantly, to
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implement the smoothing steps using our pruning algorithm.

We find that our algorithm works well in practice in terms of accuracy, speed, and applicability. To

this end, we provide ample Monte Carlo simulation evidence in both univariate and multivariate settings

to show that when the data is skewed our Pruned Skewed Kalman algorithm (i) filters and smooths the

unobserved state vector more accurately than the conventional Kalman algorithm, (ii) is only slightly more

time-consuming than the Gaussian Kalman filter for evaluating the likelihood function, and (iii) provides

accurate quasi-maximum likelihood estimators for the shock parameters in finite samples. As a real data

exercise, we demonstrate the usefulness of the filter by revisiting the multivariate dynamic Nelson & Siegel

(1987) term structure model and estimate the latent factors for the US yield curve using Kalman filtering

techniques. Estimates with the conventional Kalman filter, as in e.g. Diebold et al. (2006), yield significant

skewness in the smoothed error term distribution, which propagates through the state-space system and

makes the estimated latent factors skewed as well. This result contradicts the premise of linearity and

Gaussianity; consequently, we show that by utilizing the CSN distribution we can not only match the

skewed pattern but also our Maximum Likelihood estimation with the Pruned Skewed Kalman Filter is

clearly favored by the data.

There are, of course, various other methodologies and algorithms for statistical inference of time series

with asymmetric distributions. For instance, sequential Monte Carlo (SMC) methods can be easily adapted

to skewed distributions, but the computational complexity and runtime of these filters grows rapidly as the

state dimension increases. Skewness can also be modeled by a mixture of normal distributions for which

there are many filtering algorithms. As recently pointed out by Nurminen et al. (2018), however, Gaussian

mixtures (GM) have exponentially decaying tails and can thus be too sensitive to outlier measurements and

the computational cost of a mixture reduction algorithm is expensive. Bayesian methods are frequently

tailored to very specific modeling frameworks and assumptions, allowing for the fine-tuning of certain sam-

pling algorithms, such as combining a Gibbs sampler with Metropolis-Hastings stages, as e.g. in Karlsson

et al. (2021) for a VAR model. We do not claim that the Pruned Skewed Kalman Filter outperforms these

approaches in and of itself, but we believe that the filter’s ease of use, as well as its ability to be integrated

into current toolboxes and estimating methodologies, will encourage and accelerate its adoption across a

wide range of disciplines. Our exposition and implementation of the Pruned Skewed Kalman Filter and

Smoother are very general and resemble the simplicity of the normal Kalman filtering and smoothing rou-

tines. In terms of modeling, empirical researchers can keep their linear state-space system and merely allow

for additional flexibility by assuming the CSN distribution for the innovations rather than the normal one.

In terms of computation, any estimating approach that incorporates Kalman filtering techniques, whether

Bayesian or Frequentist, may be readily and simply changed by just switching out the Kalman filtering

routine. For example, we already have a preliminary implementation and interface for incorporating the

Pruned Skewed Kalman Filter into Dynare, which (among many other things) provides a toolbox to esti-
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mate structural dynamic stochastic general equilibrium models with both Maximum Likelihood as well as

Bayesian MCMC methods (Adjemian et al., 2022).2 To emphasize this, we offer model-independent im-

plementations of the Pruned Skewed Kalman Filter and Smoother in Julia, MATLAB, Python and R at

https://github.com/gguljanov/pruned-skewed-kalman. Overall, we intend to provide an easy-to-use

and intuitive tool for advancing empirical research in a wide range of fields where skewness is an important

and integral element of the research agenda.

The remainder of the paper is organized as follows. In section 2, we review representations and properties

of the CSN distribution that are needed for filtering and smoothing. Section 3 summarizes the closed-form

expressions and the forward and backward recursion steps for the Skewed Kalman Filter and Smoother. In

section 4, we first show how skewness propagates through the state-space system over time and then derive

our pruning algorithm. Section 5 contains the Monte-Carlo evidence and section 6 our empirical application.

Section 7 concludes.

2. Closed skew-normal distribution

In this section, we summarize the definition and properties of the CSN distribution. The exposition and

notation follow closely González-Faŕıas et al. (2004a), González-Faŕıas et al. (2004b), Grabek et al. (2011)

and Rezaie & Eidsvik (2014). Let E1 ∼ Np(0,Σ) and E2 ∼ Nq(0,∆) be independent multivariate normally

distributed random vectors. The p × p covariance matrix Σ is positive semi-definite, the q × q covariance

matrix ∆ is positive definite. Let µ and ν be real vectors of length p and q, respectively, and Γ a real q × p

matrix. Define

W = µ+ E1

Z = −ν + ΓE1 + E2.

Then  W

Z

 ∼ Np+q
 µ

−ν

 ,
 Σ ΣΓ′

ΓΣ ∆ + ΓΣΓ′

 . (1)

Let the random vector X have the same distribution as W |Z ≥ 0. Then X has a closed skew-normal (CSN)

distribution

X ∼ CSNp,q(µ,Σ,Γ, ν,∆).

2We plan to release this feature with Dynare 6.0.
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The moment generating function (mgf) of X is

MX(t) = Φq(ΓΣt; ν,∆ + ΓΣΓ′)
Φq(0; ν,∆ + ΓΣΓ′) exp(t′µ+ 1/2t′Σt)

for t ∈ Rp and Φq(·;m,S) is the cdf of the multivariate normal distribution with expectation vector m and

covariance matrix S. If the covariance matrix Σ is non-singular, then X has the probability density function

fX(x;µ,Σ,Γ, ν,∆) = Φq(Γ(x− µ); ν,∆)
Φq(0; ν,∆ + ΓΣΓ′)φp(x;µ,Σ) (2)

where φp is the pdf of a multivariate normal distribution. We do not, however, impose non-singularity in

general.

Figure 1 illustrates the pdf of a univariate CSN distribution with parameters µ = 0, Σ = 1, ν = 0 (or

ν = −8), ∆ = 1 and different values for the shape parameter Γ. We see that, in the univariate case, the

distribution is left-skewed if Γ is negative, and right-skewed if it is positive. For Γ = 0 one obtains the

(symmetric) standard Gaussian distribution. Similarly, we illustrate a bivariate CSN distribution with left-

and right-skewed marginals in figure 2 with the following parametrization:

X ∼ CSN2,2

0

0

 ,
 1 0.7

0.7 1

 ,Γ, ν,
1 0

0 1


Note that the mean and covariance ofX differ from µ and Σ unless Γ = 0 in which case the probability density

of the CSN distribution reduces to the Gaussian one. Another special case is given by CSN1,1(0, 1, γ, 0, 1)

which corresponds to the univariate standardized skew-normal distribution of Azzalini (1985). To summarize,

µ and Σ are called the location and scale parameters of “normal dimension” p, while the dimension q is

labelled “skewness dimension”. Accordingly, Γ regulates skewness continuously from the normal pdf (Γ = 0)

to a half normal pdf. The other skewness parameters ν and ∆ are somewhat open to interpretation;

however, as we outline below, they allow to establish closure of the CSN distribution under conditioning

(ν), marginalization (∆) and summation (as Φq(0; ν,∆ + ΓΣΓ′) is a constant).

One can see from (1) that the asymmetric deviation of the CSN distribution from the symmetric Gaussian

distribution results from the covariance between W and Z; in other words, it is this correlation that adds

skewness to the Gaussian distribution. Hence, the CSN distribution can be regarded as a generalization

of the normal distribution and as such inherits several of its properties. In the following, we review those

properties that are of special interest for the Skewed Kalman Filter and Smoother. Proofs can be found in

González-Faŕıas et al. (2004a) and González-Faŕıas et al. (2004b).

Property 1 (Linear transformation, full row rank).

Let X ∼ CSNp,q(µx,Σx,Γx, νx,∆x) and F be a real r × p matrix of rank r ≤ p such that FΣxF ′ is non-
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Figure 1: Density functions of univariate CSN distributions with different skewness parameters Γ and ν; other parameters are
µ = 0, Σ = 1 and ∆ = 1.

singular, then

Y = FX ∼ CSNr,q(µy,Σy,Γy, νy,∆y)

with µy = Fµx, Σy = FΣxF ′, νy = νx, Γy = ΓxΣxF ′Σ−1
y , and ∆y = ∆x + ΓxΣxΓ′x − ΓxΣxF ′Σ−1

y FΣxΓ′x.

In other words, the CSN distribution is closed under linear transformations. If F is p× p square and if both

F and Σx have full rank p, the expressions for Γy and ∆y simplify to Γy = ΓxF−1 and ∆y = ∆x.

Property 2 (Linear transformation, full column rank).

Let X ∼ CSNp,q(µx,Σx,Γx, νx,∆x) and F be a real r × p matrix with r > p and rank(F ) = p, then

Y = FX ∼ CSNr,q(µy,Σy,Γy, νy,∆y)

has a singular distribution with µy = Fµx, Σy = FΣxF ′, Γy = Γx(F ′F )−1F ′, νy = νx and ∆y = ∆x.

Property 3 (Joint distribution).

Let X ∼ CSNpx,qx(µx,Σx,Γx, νx,∆x) and Y ∼ CSNpy,qy (µy,Σy,Γy, νy,∆y) be independent random vectors.

Then

Z =

 X

Y

 ∼ CSNpz,qz (µz,Σz,Γz, νz,∆z)
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Figure 2: Density functions of bivariate CSN distributions with different skewness parameters:

(a) Γ =
[

6 0
0 6

]
, ν =

[
0
0

]
, (b) Γ =

[
6 0
0 −6

]
, ν =

[
0
0

]
, (c) Γ =

[
6 6
6 6

]
, ν =

[
0
0

]
, (d) Γ =

[
6 0
0 6

]
, ν =

[
−6
−6

]
.

with dimensions pz = px + py, qz = qx + qy and parameters

µz = (µ′x, µ′y)′ Σz =

 Σx 0

0 Σy

 Γz =

 Γx 0

0 Γy

 νy = (ν′x, ν′y)′ ∆z =

 ∆x 0

0 ∆y

 .

The joint distribution of independent CSN distributions is CSN again. Together with property 1 this implies

that sums of independent CSN random vectors (with compatible dimensions) are CSN.

Property 4 (Summation).

Let X ∼ CSNp,qx(µx,Σx,Γx, νx,∆x) and Y ∼ CSNp,qy (µy,Σy,Γy, νy,∆y) be independent random vectors.

Then

Z = X + Y ∼ CSNp,qz (µz,Σz,Γz, νz,∆z)

with dimensions p and qz = qx + qy and parameters

µz = µx + µy Σz = Σx + Σy Γz =

 ΓxΣxΣ−1
z

ΓyΣyΣ−1
z

 νz =

 νx

νy

 ∆z =

 ∆xx ∆xy

∆′xy ∆yy


8



where

∆xx = ∆x + ΓxΣxΓ′x − ΓxΣxΣ−1
z ΣxΓ′x, ∆yy = ∆y + ΓyΣyΓ′y − ΓyΣyΣ−1

z ΣyΓ′y, ∆xy = −ΓxΣxΣ−1
z ΣyΓ′y.

Note that the skewness dimension q increases when two closed skew-normal random vectors are added.

While this does not matter theoretically, it turns out to be a severe numerical problem since evaluating the

density function of the sum involves calculating the cdf of a higher dimensional normal distribution. For

practical applications it is therefore indispensable to find a good approximation with a lower q-dimension,

such as we propose in section 4.

A special case of property 4 is adding a CSN random vector X ∼ CSNp,qx(µx,Σx,Γx, νx,∆x) to a normal

random vector Y ∼ N(µy,Σy) = CSNp,qy (µy,Σy, 0, νy,∆y) of length p. For the normal distribution, the

skewness parameter is Γy = 0 (and νy and ∆y are irrelevant). Since all elements of the rows in Γz that

belong to the normal distribution are zero, the q-dimension can be adjusted. The resulting formulas for

the skewness parameters are: Γz = ΓxΣxΣ−1
z , νz = νx and ∆z = ∆x + ΓxΣxΓ′x − ΓxΣxΣ−1

z ΣxΓ′x. Hence,

qz = qx, i.e. the dimension does not increase when a normal distribution is added to a CSN distribution.

Property 5 (Conditioning).

Let X ∼ CSNp,q(µ,Σ,Γ, ν,∆) be partitioned into X1 of length p1 and X2 of length p2, such that X =

(X ′1, X ′2)′. The parameters are partitioned accordingly,

µ =

µ1

µ2

 , Σ =

Σ11 Σ12

Σ21 Σ22

 , Γ =
(

Γ1 Γ2

)

Then

X1|2 = (X1|X2 = x2) ∼ CSNp1,q(µ1|2,Σ1|2,Γ1|2, ν1|2,∆1|2)

with µ1|2 = µ1 +Σ12Σ−1
22 (x2−µ2), Σ1|2 = Σ11−Σ12Σ−1

22 Σ21, Γ1|2 = Γ1, ν1|2 = ν−(Γ2 +Γ1Σ12Σ−1
22 )(x2−µ2),

and ∆1|2 = ∆.

This property establishes that conditioning some elements of a CSN random vector on its other elements in

turn yields a CSN-distributed random variable.

To sum up, the CSN distribution has very attractive theoretical properties; however, its practical appli-

cability is limited to cases where the skewness dimension q is small or moderate (say, q < 25). If q is large

one has to evaluate the cdf of a high-dimensional multivariate normal distribution which is computationally

very demanding.3 For example, in the filtering algorithm (to be presented in the next section) the skewness

3MATLAB R2022b’s mvncdf function requires that the number of dimensions must be less than or equal to 25. We rely
instead on the Mendell & Elston (1974) method to evaluate the log cdf function which is quite fast and accurate, but also
suffers from the curse of increasing skewness dimension.
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dimension q naturally grows in each period of the observation window. This implies that the expressions

cannot be numerically evaluated after a couple of periods since they involve multivariate normal distribu-

tions with possibly hundreds of dimensions. We will suggest a new approximation method to reduce the

skewness dimension q in section 4, but first we outline the Kalman filtering and smoothing steps based on

the CSN distribution.

3. Skewed Kalman Filter and Smoother

Linear state-space models are commonly used to describe physical and dynamical systems in economics,

engineering and statistics. Since many real-world data applications exhibit skewness, we adapt the canonical

linear state-space model by assuming that the innovations ηt in the transition equation of the state variables

originate from the CSN distribution:

xt = Gxt−1 + ηt, ηt ∼ CSNp,qη (µη,Ση,Γη, νη,∆η) (3)

yt = Fxt + εt, εt ∼ N(µε,Σε) (4)

where xt is the vector of (unobserved) state variables and yt the vector of observed variables at equally spaced

time points t = 1, . . . , T . The vector of observation errors εt is assumed to be normally distributed and

independent of the CSN-distributed state variable shocks ηt. Moreover, we focus on a stable dynamic system,

i.e. the characteristic roots of the parameter matrix G are inside the unit circle. In addition, we assume that

the initial state x0 (or its distribution) is known. These assumptions allow us to focus on the increasing

dimensions problem in the Kalman recursions for the state variables. The pruning algorithm developed in

section 4 could be easily extended to a more general initialization step or time-varying parameters. Likewise,

CSN-distributed measurement errors can always be included as a structural innovation by adding an auxiliary

state variable to equation (3). In fact, this simplified framework is the one that is most commonly used for

the analysis of economic phenomena such as the one we study in section 6.

We denote the information set at time t by Ft, i.e. it includes all observations up to time t and is therefore

the σ-algebra generated by the observed variables Ft = σ(yt, yt−1, . . . , y1). The conditional distribution xs|t
of the state variable vector xs given the information set Ft is described by its CSN parameters which are

denoted by µs|t, Σs|t, Γs|t, νs|t and ∆s|t. Recursive expressions for these parameters can be derived in closed

form. Rezaie & Eidsvik (2014) summarize the recursion steps which were originally developed – and coined

the Skewed Kalman Filter – by Naveau et al. (2005). For the sake of completeness, we briefly review the

prediction, updating and smoothing equations. An online appendix provides derivation of the smoothing

step.

Prediction step:
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Assume that xt−1|t−1 ∼ CSNp,qt−1(µt−1|t−1,Σt−1|t−1,Γt−1|t−1, νt−1|t−1,∆t−1|t−1) is given. The innovations

ηt ∼ CSNp,qη (µη,Ση,Γη, νη,∆η) are independent from xt−1|t−1. The state transition equation (3) in con-

junction with closure with respect to linear transformations (properties 1 and 2) and summation (property

4) yields the one-step predictive distribution:

xt|t−1 ∼ CSNp,qt−1+qη (µt|t−1,Σt|t−1,Γt|t−1, νt|t−1,∆t|t−1) (5)

where

µt|t−1 = Gµt−1|t−1 + µη

Σt|t−1 = GΣt−1|t−1G
′ + Ση (6)

Γt|t−1 =

Γt−1|t−1Σt−1|t−1G
′Σ−1
t|t−1

ΓηΣηΣ−1
t|t−1

 (7)

νt|t−1 =

νt−1|t−1

νη


∆t|t−1 =

 ∆11
t|t−1 ∆12

t|t−1

(∆12
t|t−1)′ ∆22

t|t−1

 (8)

with

∆11
t|t−1 = ∆t−1|t−1 + Γt−1|t−1Σt−1|t−1Γ′t−1|t−1 − Γt−1|t−1Σt−1|t−1G

′Σ−1
t|t−1GΣt−1|t−1Γ′t−1|t−1

∆22
t|t−1 = ∆η + ΓηΣηΓ′η − ΓηΣηΣ−1

t|t−1ΣηΓ′η, ∆12
t|t−1 = −Γt−1|t−1Σt−1|t−1G

′Σ−1
t|t−1ΣηΓ′η

Updating step:

From the prediction step, it is known that xt|t−1 is CSN distributed. The measurement equation (4) implies

that the conditional distribution of yt given Ft−1 is also CSN distributed since it is the sum of a linear

transformation of xt|t−1 and a normal distribution. Due to property 5 (closure with respect to conditioning),

the updated distribution xt|t (i.e. the distribution of xt given Ft−1 and also yt, or in short, given Ft) is

xt|t ∼ CSNp,qt(µt|t,Σt|t,Γt|t, νt|t,∆t|t) (9)

where qt = qt−1 + qη and

µt|t = µt|t−1 + Σt|t−1F
′(FΣt|t−1F

′ + Σε)−1(yt − Fµt|t−1 − µε)

Σt|t = Σt|t−1 − Σt|t−1F
′(FΣt|t−1F

′ + Σε)−1FΣt|t−1 (10)

11



Γt|t = Γt|t−1 (11)

νt|t = νt|t−1 − Γt|t−1Σt|t−1F
′(FΣt|t−1F

′ + Σε)−1(yt − Fµt|t−1 − µε)

∆t|t = ∆t|t−1. (12)

The updating step consists of two parts, (i) a Gaussian part which updates µt|t and Σt|t using the Gaussian

Kalman Gain KGauss
t−1 = Σt|t−1F

′(FΣt|t−1F
′ + Σε)−1 and (ii) a skewed part which updates the skewness

parameters using the Skewed Kalman Gain KSkewed
t−1 = Γt|t−1K

Gauss
t−1 . In our setting the only skewness

parameter that is updated in the updating step is νt|t−1, the parameters Γt|t−1 and ∆t|t−1 are not affected

because the measurement errors are Gaussian. Obviously, without skewness, Γt|t−1 = 0, the prediction

and updating steps would be equivalent to the ones from the conventional Gaussian Kalman filter. With

skewness, however, we see that the skewness dimension qt in (5) and (9) increases in each period, because

two CSN distributed random variables are added.

This means that the skewness dimension explodes as the recursion proceeds over many time steps.

As a result the matrix dimensions grow, parameter estimation gets more complicated, sampling is

harder, and so on. Thus, for practical purposes we need to assume simplified conditions (Rezaie

& Eidsvik, 2014, p. 5).

However, instead of simplifying the conditions or imposing more stringent assumptions, we suggest an

approximation method to shrink the skewness dimension in section 4.

Smoothing:

Often, we are not only interested in the filtered distributions (xt|t) but also in the smoothed distributions

(xt|T ), i.e. estimates of the state variables that take into consideration all available observations y1, . . . , yT .

In the last period the filtered and smoothed distributions obviously coincide. The smoothed distributions

for t = T − 1, . . . , 1 can be calculated in a backward recursion. Chiplunkar & Huang (2021) present

recursion formulas for a special case involving a non-stationary (random walk) latent variable. Adapting

their approach, we present recursion formulas for the general state-space model (3) and (4) with CSN

distributed innovations. As far as we know, we are the first to do so in this general setting. For ease of

notation we define the following abbreviations:

Mt = Σt+1|TΣ−1
t+1|tGΣt|tΣ−1

t|T

Nt = −ΓηG+ ΓηMt.

Further, let OT−1, OT−2, . . . be a sequence of matrices of increasing row dimensions, such that OT−1 = NT−1

12



and, for t = T − 2, T − 3, . . . , 1,

Ot =

 Nt

Ot+1Mt

 .
The CSN parameters of xt|FT ∼ CSNp,qT (µt|T ,Σt|T ,Γt|T , νt|T ,∆t|T ) for t = T − 1, . . . , 1 are

µt|T = µt|t + Σt|tG′Σ−1
t+1|t(µt+1|T − µt+1|t)

Σt|T = Σt|t + Σt|tG′Σ−1
t+1|t(Σt+1|T − Σt+1|t)Σ−1

t+1|tGΣt|t

Γt|T =

Γt|t
Ot


νt|T = νT |T

∆t|T =

∆t|t 0

0 ∆̃t

 .

with

∆̃t =

∆η 0

0 ∆̃t+1

+

 Γη
Ot+1

 (Σt+1|T −MtΣt|TM ′t)

 Γη
Ot+1

′

for t = T − 2, T − 3, . . . , 1 and ∆̃T−1 = ∆η + Γη(Σt+1|T −MtΣt|TM ′t)Γ′η. The proof is sketched in the online

appendix. Notice that the skewness dimension remains constant (at qT ) during the backward recursion. In

particular, the skewness parameter νt|T is always equal to νT |T for all t. At each iteration, the row dimension

of Γt|t decreases. This decrease is offset by an increase in the row dimension of Ot. In a similar fashion, the

top left block of the block-diagonal matrix ∆t|T gets smaller in each iteration, while the bottom right matrix

inflates such that the dimension of ∆t|T does not change. Similarly to filtering, whether or not smoothing

is computationally feasible, depends largely on the overall skewness dimension. Hence, a way to reduce it is

also important from a smoothing perspective.

4. Pruning the skewness dimension

Our approach to reduce the skewness dimension is motivated by the characterization (1) of the CSN

distribution. Evidently, if there is no correlation between W and Z, the CSN distribution is equal to

a Gaussian distribution and the skewed Kalman filter morphs into the Gaussian one. Therefore if some

elements of Z are only weakly correlated with the elements of W , we can prune, i.e. dispose of those

elements in Z, as there is no palpable effect on the skewness behavior. Algorithm 1 outlines the pseudo-code

of our pruning algorithm.
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Algorithm 1 (Pruning Algorithm). The algorithm consists of the following steps, given skewness parameters

Σ, Γ, ν, ∆ and pruning threshold tol.

1. Construct and partition the covariance matrix

P =

P1 P ′2

P2 P4

 =

 Σ Σ · Γ′

Γ · Σ ∆ + Γ · Σ · Γ′

 (13)

2. Transform P into a correlation matrix R =

R1 R′2

R2 R4


3. Find the maximum absolute value along each row of abs(R2). Save it as vector max val.

4. Delete the rows of
(
P2 P4

)
and columns of

P ′2
P4

 corresponding to (max val < tol). Save as P̃ .

5. Compute pruned ν by removing rows corresponding to (max val < tol).

6. Compute pruned Γ = P̃2Σ−1.

7. Compute pruned ∆ = P̃4 − ΓP̃ ′2.

8. Return pruned skewness parameters Γ, ν, and ∆.

To illustrate the procedure numerically consider the following univariate example:

xt,t−1 ∼ CSN

0, 1,

 6

0.1

 ,

0

0

 ,

 1 −0.1

−0.1 1

 (14)

with a skewness dimension of 2. Applying pruning algorithm 1 with a (rather large) pruning tolerance

tol = 0.1, we get

R =


1.0000 0.9864 0.0995

0.9864 1.0000 0.0981

0.0995 0.0981 1.0000


Clearly 0.9864 > tol, but 0.0995 < tol, so we can reduce the skewness dimension by 1. Recomputing the

new skewness parameters (ν = 0, Γ = 6 · 1−1, ∆ = 37 − 6 · 6), we get the approximating distribution

CSN(0, 1, 6, 0, 1). Figure 3 depicts the pdf and cdf of the original and the approximating distributions; the

difference is hardly discernible despite the rather large pruning threshold of 0.1.

Of course, the skewness dimension can only be reduced if the correlation coefficients are sufficiently small.

We now proceed to show that the added skewness dimensions induced by the prediction steps of the Skewed

Kalman Filter will fade away over time. In other words, even though the skewness dimension grows over

time, many of the dimensions will eventually be redundant and can be removed when the density function

14



0.0

0.2

0.4

0.6

−1 0 1 2 3 4

x

pr
ob

ab
ili

ty
 d

en
si

ty
 fu

nc
tio

n

0.00

0.25

0.50

0.75

1.00

−1 0 1 2 3 4

x

cu
m

ul
at

iv
e 

di
st

rib
ut

io
n 

fu
nc

tio
n

Figure 3: Probability density functions and cumulative distribution functions of a CSN distributed random variable with two
skewness dimensions (skewness parameters as given in (14), solid lines) and the approximating CSN(0, 1, 6, 0, 1) distribution
with one skewness dimension (dashed lines).

(or the log-likelihood function) needs to be numerically evaluated. Assume that the recursion is anchored

at a given initial distribution with parameters µ0|0, Σ0|0, Γ0|0, ν0|0, ∆0|0. We first focus on the recursion

for the skewness parameter Γt|t−1 in (7) and (11), with Σt|t−1 as given in (6). Since Γt−1|t−1 appears in the

upper row in (7), the number of rows increases at each step. For instance, in period t = 4 we would obtain

Γ4|4 =



Γ0|0Σ0|0G
′Σ−1

1|0Σ1|1G
′Σ−1

2|1Σ2|2G
′Σ−1

3|2Σ3|3G
′Σ−1

4|3

ΓηΣηΣ−1
1|0Σ1|1G

′Σ−1
2|1Σ2|2G

′Σ−1
3|2Σ3|3G

′Σ−1
4|3

ΓηΣηΣ−1
2|1Σ2|2G

′Σ−1
3|2Σ3|3G

′Σ−1
4|3

ΓηΣηΣ−1
3|2Σ3|3G

′Σ−1
4|3

ΓηΣηΣ−1
4|3


.

This matrix has dimension (4qη + q0) × p where p is the number of state variables, qη is the skewness

dimension of the state shocks and q0 is the skewness dimension of the initial distribution. To find a general

expression for any period t, define Lt ≡ Σ−1
t|t−1Σt|tG′. Then,

Γt|t =



Γ0|0Σ0|0G
′∏t−1

j=1 Lj

ΓηΣη
∏t−1
j=1 Lj

ΓηΣη
∏t−1
j=2 Lj

...

ΓηΣη
∏t−1
j=t Lj


Σ−1
t|t−1 (15)

where the empty product in the last row is defined as
∏t−1
j=t Lj ≡ 1. The matrices Lt are closely related to

the updating step: multiplying both sides of (10) by G from the left and by Σ−1
t|t−1 from the right, we obtain
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the transpose of Lt:

GΣt|tΣ−1
t|t−1 = G−GΣt|t−1F

′(FΣt|t−1F
′ + Σε)−1F

As t→∞, the sequence GΣt|tΣ−1
t|t−1 converges to a constant matrix with all eigenvalues inside the unit circle

(Hamilton, 1994, prop. 13.1 and 13.2). The same is true for Lt as it is just the transpose of GΣt|tΣ−1
t|t−1.

This implies that the product terms
∏
j Lj in (15) will fade away as new rows are appended at the bottom

in every period. The rows at the top (i.e. those relating to older shocks) will fade away more quickly. Hence,

the impact of the shocks on the skewness parameter Γt|t (which according to (11) also equals Γt|t−1) is not

persistent.

Next, we turn to the skewness parameter ∆t|t, which is equal to ∆t|t−1 according to (12). The recursions

in (8) imply that the dimension of ∆t|t grows each period. The top left element of the partitioned matrix

(7) shows that the matrix

Γt−1|t−1Σt−1|t−1Γ′t−1|t−1 − Γt−1|t−1Σt−1|t−1G
′Σ−1
t|t−1GΣt−1|t−1Γ′t−1|t−1

= Γt−1|t−1Σ1/2
t−1|t−1(I − Σ1/2

t−1|t−1G
′Σ−1
t|t−1GΣ1/2

t−1|t−1)Σ1/2
t−1|t−1Γ′t−1|t−1 (16)

is added to ∆t−1|t−1 in each iteration. To show that it is positive definite consider the matrix

S ≡

 I Σ1/2
t−1|t−1G

′

GΣ1/2
t−1|t−1 Σt|t−1

 .

Since both I and Σt|t−1 − GΣ1/2
t−1|t−1I

−1Σ1/2
t−1|t−1G

′ = Ση (see (6) in the prediction step) are positive

definite, so is S (Horn & Johnson, 2017, theor. 7.7.7). Using Gallier (2010, prop. 2.1) we can conclude that

(I − Σ1/2
t−1|t−1G

′Σ−1
t|t−1GΣ1/2

t−1|t−1) is also positive definite. Hence, matrix (16) is also positive definite. As

positive definite matrices have strictly positive diagonal elements, the diagonal elements of ∆t|t keep growing

over time. Algorithm 1 reduces the skewness dimension based on the covariances in the bottom left (or top

right) partition of the covariance matrix P in (13), i.e. P2 ≡ Γt|tΣt|t. We focus on the (i, j)-th element P ij2 ,

the corresponding correlation is

Rij2 = P2
ij√

Σiit|t
√

∆jj
t|t

.

As we have shown above, each element of Γt|t matrix decreases as t increases. Further, it is a standard

result of the (steady-state) Kalman filter that each element of Σt|t converges (rather quickly) to a constant.

Therefore, P ij2 decreases as t increases. But, ∆jj increases as time passes due to our previous calculations.

All of these result in shrinking Rij2 over time. To summarize, the algorithm is guaranteed to reduce the

skewness dimension after sufficiently many periods.

The same line of thought can also be applied to the parameters of the prediction, i.e. to P2 ≡ Γt|t−1Σt|t−1
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and Rij2 = P2
ij√

Σii
t|t−1

√
∆jj

t|t−1

.

5. A Monte Carlo Study

In this section we conduct a thorough Monte Carlo study to evaluate the performance of the Pruned

Skewed Kalman Filter and Smoother in terms of accuracy and speed. To this end, we consider three different

state-space models as data-generating processes (DGP). DGP (1) is a univariate model given by the following

parametrization:

G = 0.8, F = 10, µε = 1, Σε = 0.01, µη = 0.3, Ση = 0.64, νη = 0, λη = −0.89

DGP (1)

DGP (2) is a multivariate model with four state and three observable variables:

G =


0.5488 0.1738 −0.2949 0.1534
−0.2864 0.1060 0.3628 0.3334
−0.3898 −0.0252 0.5339 0.3163

0.2389 0.1958 −0.0027 0.5519

 F =

−0.7196 0.8221 0.4602 −0.6412
−2.0887 −0.8201 −1.2380 0.3937

0.6347 −0.5109 0.8476 0.6819



Σε =

 0.0108 −0.0276 −0.0314
−0.0276 0.1129 −0.0025
−0.0314 −0.0025 0.2889

 · 10−6
µε =

 0.8565
−0.3010
−0.82705



Ση =


0.0013 −0.0111 0.0116 −0.0089
−0.0111 0.1009 −0.2301 0.1014

0.0116 −0.2301 3.3198 −1.0618
−0.0089 0.1014 −1.0618 1.0830

 µη =


0.3455
−1.8613
0.7765
−0.5964

 νη =


0
0
0
0

 λη = 0.89 DGP (2)

DGP (3) is a multivariate model with three state variables that are all observable:

G =

 0.9969 0.1256 −0.4803
−0.8221 0.0386 0.6687

0.5605 0.6397 −0.4333

 F =

1 0 0
0 1 0
0 0 1

 Σε =

1 0 0
0 1 0
0 0 1

 · 10−4
µε =

0
0
0


Ση =

0.64 0 0
0 0.36 0
0 0 0.49

 Γη =

5 0 0
0 0 0
0 0 −6

 ∆η =

1 0 0
0 1 0
0 0 1

 µη =

 0.3
−0.1
0.2

 νη =

0
0
0


DGP (3)

Note that in DGP (1) and DGP (2) we introduce the auxiliary hyperparameter λη∈]−1; 1[ to re-parametrize

the skewness parameters according to the following relationships:

Γη = ληΣη−1/2, ∆η = (1− λ2
η)Inη
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In this case, we can simplify ∆η+Γη ′ΣηΓη to the identity matrix Inη such that the unconditional expectation

vector and the covariance matrix of ηt can be calculated in closed-form (Flecher et al., 2009):

E[ηt] = µη +
(√

2
π
ληΣη1/2

)
1nη , V [ηt] = Ση

(
1− 2

π
λ2
η

)
(17)

Arellano-Valle & Azzalini (2008) and Käärik et al. (2015) provide related discussions on the usefulness of this

re-parameterization for the skew-normal distribution.4 Following a suggestion of Harvey & Phillips (1979),

the initial distribution is set to a normal one with an initial covariance matrix with 10 on the diagonal:

x0|0 ∼ CSN(0, 10Inx , 0, 0, Inx) = N(0, 10Inx). Lastly, to compute the likelihood function, we make use of

the standard predictive decomposition based on the conditional distribution of yt given yt−1:

yt|yt−1 ∼ CSN(ŷt|t−1, Ωt|t−1, K
Skewed
t−1 , νt|t−1, ∆t|t−1 + (Γt|t−1 −KSkewed

t−1 F )Σt|t−1Γ′t|t−1)

where ŷt|t−1 = Fµt|t−1+µε is the predicted value and Ωt|t−1 = FΣt|t−1F
′+Σε the prediction-error covariance

matrix of the Gaussian Kalman filter.

5.1. State estimation

For forecasting, it is helpful to condense the filtered distribution xt|t into a point estimator. Since the

CSN distribution is asymmetric, the expectation E[xt|t] is one potential, but not necessarily the best point

estimator. Let L[x̃t, xt] denote the loss function for a point estimator x̃t if the true value is xt. Depending

on the loss function, different point estimators will minimize the expected loss. Of course, if the loss function

is quadratic, i.e. L2[x̃t, xt] = (x̃t − xt)2, the expected loss is minimal if x̃t = E[xt|t]. If the loss function is

L1[x̃t, xt] = |x̃t − xt|, the best point estimator is the median of xt|t. And the asymmetric loss function

Lq[x̃t, xt] =

 a|x̃t − xt| for xt > x̃t

b|x̃t − xt| for xt ≤ x̃t

results in the a/(a + b)-quantile of xt|t as point estimator. A similar discussion applies to the smoothed

states xt|T .

We start by simulating R = 2400 sample paths for xt and yt of different length T = {40, 80, 110} (plus

a burn-in of 100 periods). The shocks ηt are drawn from the CSN distribution, whereas the measurement

errors εt are drawn from the normal distribution. To assess how well the Pruned Skewed Kalman Filter and

Smoother estimate the unobserved state variables in comparison to the conventional Skewed or Gaussian

4This is without loss of generality. We mainly use this to quickly compute E[ηt] and V [ηt] as we use these values as input
parameters for the Gaussian Kalman Filter. In fact, our replication codes contain functions to compute the unconditional
mean and the covariance matrix for any parameterization of the multivariate CSN distribution. Moreover, both in the last
simulation exercise as well as in our empirical application we do not use this re-parametrization.
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Kalman Filters and Smoothers, we compute the expected losses. That is, for each sample r = 1, ..., R the

loss is computed as

Loss(r) :=
T∑

t=20
L[x̃(r)

t , x
(r)
t ]

where in the univariate case L is any of the three loss functions L1, L2 and L3 (with a = 1 and b = 4) under

consideration, while in the multivariate case we focus only on L2. Note that in order to avoid too large an

impact of the initial distribution x0|0, the losses are calculated after a burn-in phase of 20 periods. The

expected loss is then estimated by averaging over all replications

Expected Loss = 1
R

R∑
r=1

Loss(r).

Tables 1 and 2 report the Expected Loss and the 5th and 95th percentiles of Loss(r) of our Monte-

Carlo simulation exercise for the different variants of both filters and smoothers. Three things are worth

pointing out. First, the Skewed Kalman Filter and Smoother are superior to the Gaussian Kalman Filter and

Smoother in all cases. Even though the better performance is rather small in the univariate case, it becomes

really measurable in the multivariate case. This is not surprising, since the closed skew-normal distribution

deviates only mildly from symmetry and normality (Liseo & Parisi, 2013) and the conventional Kalman

filter and smoother are naturally optimal in its domain, i.e. when data is very close to normal. Nevertheless,

in the more general case, the conventional Kalman filter and smoother simply neglect the skewed behavior;

while the Skewed Kalman Filter embeds normality as a special case. Second, our pruning algorithm is very

accurate and numerically almost equivalent to the conventional and un-pruned Skewed Kalman Filter (up to

the twelfth digit in the univariate case and up to the 5th digit in the multivariate case). Third, the pruning

threshold does not matter measurably in the univariate case and makes only a small numerical difference in

multivariate settings. Clearly, the closer the tolerance is to 0, i.e. to the un-pruned filter and smoother, the

more accurate we estimate the states. However, as we have argued above the un-pruned version of the filter

and smoother is only feasible in the univariate case, while in multivariate settings we manage to deal with

the numerical challenges for very small sample sizes only. Our pruning algorithm, on the other hand, is able

to overcome this problem. Even with very low tolerance thresholds we are able to compute the filtering and

smoothing steps without running into the curse of increasing skewness dimensionality. We conclude that

overall both the Pruned Skewed Kalman Filter and Smoother perform well in terms of accuracy. However,

there is a trade-off between accuracy and speed, which we analyze next.

5.2. Computing time

The performance of the Pruned Skewed Kalman Filter should also be evaluated in relation to its com-

puting time. Table 3 reports the time in seconds required to compute 1000 evaluations of the log-likelihood
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Gaussian Pruned Skewed Kalman Filter

DGP T Loss Kalman Filter no pruning tol=1e-6 tol=1e-4 tol=1e-2

(1) 40 L1 0.166535064
[0.1236;0.2142]

0.166527070
[0.1235;0.2144]

0.166527070
[0.1235;0.2144]

0.166527070
[0.1235;0.2144]

0.166527072
[0.1235;0.2144]

(1) 40 L2 0.002080850
[0.0012;0.0033]

0.002080707
[0.0012;0.0033]

0.002080707
[0.0012;0.0033]

0.002080707
[0.0012;0.0033]

0.002080707
[0.0012;0.0033]

(1) 40 La 0.293173611
[0.2168;0.3852]

0.293160284
[0.2167;0.3852]

0.293160284
[0.2167;0.3852]

0.293160284
[0.2167;0.3852]

0.293160278
[0.2167;0.3852]

(1) 80 L1 0.486149061
[0.4151;0.5639]

0.486122296
[0.4151;0.5638]

0.486122296
[0.4151;0.5638]

0.486122296
[0.4151;0.5638]

0.486122299
[0.4151;0.5638]

(1) 80 L2 0.006087964
[0.0045;0.0080]

0.006087485
[0.0045;0.0080]

0.006087485
[0.0045;0.0080]

0.006087485
[0.0045;0.0080]

0.006087485
[0.0045;0.0080]

(1) 80 La 0.853449643
[0.7129;1.0017]

0.853414306
[0.7127;1.0008]

0.853414306
[0.7127;1.0008]

0.853414306
[0.7127;1.0008]

0.853414297
[0.7127;1.0008]

(1) 110 L1 0.724620237
[0.6368;0.8186]

0.724598667
[0.6367;0.8185]

0.724598667
[0.6367;0.8185]

0.724598667
[0.6367;0.8185]

0.724598666
[0.6367;0.8185]

(1) 110 L2 0.009073018
[0.0071;0.0113]

0.009072577
[0.0071;0.0113]

0.009072577
[0.0071;0.0113]

0.009072577
[0.0071;0.0113]

0.009072577
[0.0071;0.0113]

(1) 110 La 1.272405929
[1.1026;1.4533]

1.272363075
[1.1024;1.4536]

1.272363075
[1.1024;1.4536]

1.272363075
[1.1024;1.4536]

1.272363052
[1.1024;1.4536]

(2) 40 L2 4.23932054
[2.1343;6.9488]

4.17299006
[2.1172;6.9381]

4.17299000
[2.1172;6.9381]

4.17298994
[2.1173;6.9382]

4.17450665
[2.0989;6.9805]

(2) 80 L2 12.30937668
[8.4001;17.0700]

- 12.11085307
[8.3181;16.9039]

12.11085498
[8.3181;16.9048]

12.11665912
[8.3003;16.9054]

(2) 110 L2 18.39547677
[13.4673;24.0186]

- 18.10271658
[13.1829;23.6744]

18.10272323
[13.1834;23.6743]

18.11208988
[13.2441;23.6814]

Table 1: Expected losses for filtered states, lower is better. 5th and 95th percentiles in square brackets.

function of univariate DGP (1) and multivariate DGP (2) for different sample sizes. We can see that as the

number of observation periods grows, it takes more time to evaluate the likelihood function in all cases. The

curse of increasing dimensionality inherent in the un-pruned Skewed Kalman Filter becomes apparent. Even

though we are able to evaluate the Gaussian cdfs of increasing dimension in the univariate case, this comes

at a cost as the computational time increases exponentially. In the multivariate case, the calculations are

still feasible in principle for small sample sizes, but explode relatively quickly for medium to large sample

sizes or require an unreasonably huge amount of computational time and memory. This becomes even more

severe if we increase the dimension of the state-space system matrices which is rather likely for real data

applications.

The proposed Pruned Skewed Kalman Filter does not suffer from this and performs convincingly well.

It is only slightly affected by a growing sample size; relatively speaking, it behaves very similar to the

conventional Kalman filter in this regard. That is, the relative time increase between a sample size of 50

and 250 is approximately 3.93 for the univariate Gaussian Kalman Filter, whereas for the Pruned Skewed

Kalman Filter we get a factor of approximately 4.15 for a very tight pruning threshold of 1e-6, and 4.25 for

a very rough tolerance of 1e-2. In absolute terms, using 1e-2 as the tolerance level is 1.5 times faster than

using 1e-6 as the tolerance level. In multivariate settings, the results are similar. The average time needed
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Gaussian Pruned Skewed Kalman Smoother

DGP T Loss Kalman Smoother no pruning tol=1e-6 tol=1e-4 tol=1e-2

(1) 40 L1 0.166539615
[0.1239;0.2143]

0.166528589
[0.1236;0.2145]

0.166528589
[0.1236;0.2145]

0.166528593
[0.1236;0.2145]

0.166528593
[0.1236;0.2145]

(1) 40 L2 0.002080868
[0.0012;0.0033]

0.002080555
[0.0012;0.0033]

0.002080555
[0.0012;0.0033]

0.002080555
[0.0012;0.0033]

0.002080555
[0.0012;0.0033]

(1) 40 La 0.293186237
[0.2162;0.3848]

0.293159668
[0.2163;0.3847]

0.293159668
[0.2163;0.3847]

0.293159662
[0.2163;0.3847]

0.293159662
[0.2163;0.3847]

(1) 80 L1 0.486116200
[0.4153;0.5645]

0.486083747
[0.4156;0.5644]

0.486083747
[0.4156;0.5644]

0.486083751
[0.4156;0.5644]

0.486083751
[0.4156;0.5644]

(1) 80 L2 0.006087517
[0.0045;0.0080]

0.006086645
[0.0045;0.0080]

0.006086645
[0.0045;0.0080]

0.006086645
[0.0045;0.0080]

0.006086645
[0.0045;0.0080]

(1) 80 La 0.853428859
[0.7133;1.0015]

0.853347310
[0.7125;1.0010]

0.853347310
[0.7125;1.0010]

0.853347295
[0.7125;1.0010]

0.853347295
[0.7125;1.0010]

(1) 110 L1 0.724563642
[0.6363;0.8186]

0.724528925
[0.6357;0.8184]

0.724528925
[0.6357;0.8184]

0.724528922
[0.6357;0.8184]

0.724528922
[0.6357;0.8184]

(1) 110 L2 0.009072162
[0.0070;0.0113]

0.009071158
[0.0070;0.0113]

0.009071158
[0.0070;0.0113]

0.009071158
[0.0070;0.0113]

0.009071158
[0.0070;0.0113]

(1) 110 La 1.272365795
[1.1024;1.4536]

1.272252405
[1.1017;1.4534]

1.272252405
[1.1017;1.4534]

1.272252381
[1.1017;1.4534]

1.272252381
[1.1017;1.4534]

(2) 40 L2 0.37817718
[0.1077;1.0473]

0.37728799
[0.1100;1.0227]

0.37728800
[0.1100;1.0227]

0.37728833
[0.1100;1.0226]

0.37740658
[0.1099;1.0301]

(2) 80 L2 0.66853761
[0.3625;1.3612]

- 0.66267846
[0.3611;1.3307]

0.66267825
[0.3611;1.3306]

0.66275740
[0.3612;1.3280]

(2) 110 L2 0.88605162
[0.5568;1.5668]

- 0.87956632
[0.5538;1.5548]

0.87956592
[0.5538;1.5549]

0.87960797
[0.5550;1.5550]

Table 2: Expected losses for smoothed states, lower is better. 5th and 95th percentiles in square brackets.

to compute the likelihood once is at least twice as fast when using a pruning threshold of 1e-2 compared to

1e-6. Combined with the results of the previous section, we conclude that a threshold of 1e-2 to 1e-4 seems

to be a good compromise between accuracy and speed for multivariate models. For univariate models, one

can easily lower this to a very small threshold such as 1e-6. In a nutshell: the lower the more accurate, the

higher the faster.

Nevertheless, we do not want to hide the obvious fact that the Gaussian Kalman Filter is clearly the

speed champion: it is roughly ten times faster than our proposed algorithm, but we are on the order of

(neglectable) milliseconds here. Other approaches to evaluate the likelihood, such as Sequential Monte

Carlo, are typically much slower by a factor of several hundred or thousand. Moreover, our implementation

of both the conventional as well as the Pruned Skewed Kalman Filters are very textbook-like to fix ideas

and highlight the underlying intuition. There is still much room for performance gains in the codes by e.g.

avoiding inverses, adapting a steady-state filter and using Chandrasekhar recursions. We experimented with

several such changes to the code and are able to cut the computational time at least by a half.5 The Pruned

Skewed Kalman Filter is therefore a very attractive and comparatively fast addition to the filtering toolkit

5Granted our implementation of the Gaussian Kalman Filter can also be made faster. That’s why we report the results for
non-optimized, textbook-style codes.
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of researchers who deal with skewed data and distributions. In the next section, we explore the finite sample

properties of quasi-maximum likelihood estimators for the skewness parameters.

Gaussian Pruned Skewed Kalman Filter

DGP T Kalman Filter no pruning 1e-6 1e-4 1e-2

(1) 50 0.2555
[0.18;0.39]

26.4004
[19.85;42.68]

5.7352
[4.26;8.55]

5.4255
[4.15;8.35]

3.7236
[2.82;5.74]

(1) 100 0.4236
[0.34;0.63]

178.4764
[164.04;272.46]

9.3932
[8.56;14.91]

9.2007
[8.30;14.70]

6.2735
[5.61;10.14]

(1) 150 0.5988
[0.51;0.92]

764.5933
[730.60;860.85]

13.8686
[13.08;14.44]

13.5295
[12.72;14.12]

9.2433
[8.61;9.72]

(1) 200 0.7869
[0.68;1.28]

2276.7823
[2208.36;2374.31]

18.7564
[17.65;19.54]

18.3690
[17.25;19.01]

12.5310
[11.65;13.20]

(1) 250 1.0029
[0.87;1.65]

5407.6977
[5292.97;5522.95]

23.8373
[22.29;24.89]

23.4432
[21.77;24.56]

15.8381
[14.71;16.57]

(2) 50 0.8439
[0.71;1.46]

554.8769
[518.17;660.16]

16.9193
[15.82;17.94]

12.8243
[11.90;15.25]

8.3821
[7.74;9.32]

(2) 100 1.6507
[1.42;2.99]

10902.8252
[9388.04;13659.95]

36.6296
[32.88;42.71]

26.8729
[24.38;30.29]

17.0615
[15.77;18.32]

(2) 150 3.3166
[2.65;5.69]

- 56.8434
[49.07;89.69]

35.2654
[30.71;55.59]

26.1939
[22.86;41.05]

(2) 200 4.6808
[3.50;7.50]

- 80.1512
[65.44;118.95]

49.6175
[40.84;74.17]

36.6851
[30.44;54.95]

(2) 250 5.2042
[4.35;9.10]

- 90.9946
[81.35;143.74]

55.7294
[50.84;88.30]

41.4539
[37.92;64.54]

Table 3: Time in seconds to compute 1000 evaluations of the log-likelihood function on AMD EPYC 7402P (24 cores, 96GB
RAM). 5th and 95th percentiles in square brackets.

5.3. Accuracy of parameter estimation

In the last simulation exercise, we generate R = 1000 datasets from the multivariate DGP (3) with

different sample sizes T = {100, 150, 200}. We then estimate the underlying parameters of the distribution

of ηt, i.e. µη, log(diag(Ση)) and diag(Γη), while fixing all other parameters at their true values.6 Note that

DGP (3) implies that η1,t is right-skewed, η2,t is symmetric (Gaussian), and η3,t is left-skewed.

Inspired by Atkinson et al. (2019), we measure parameter accuracy by reporting not only the average, 5th

and 95th percentile of our estimates in the Monte Carlo sample, but also the normalized root-mean square-

error (NRMSE) for each estimated parameter. That is, for some parameter j and Kalman filter variant f

the error is the difference between the parameter estimate θ̂j,f,r for dataset r and the true parameter value

θj :

NRMSEjf = 1
θj

√√√√ 1
R

R∑
r=1

(θ̂j,f,r − θj)2

6We log-transform the variance to avoid the non-negativity constraint during the estimation procedure. The reported
estimates are re-transformed.
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In other words, we normalize the RMSE by the true value θj to remove differences in the scales of the

parameters.

Table 4 shows the parameter estimates by used Kalman filter variant (first column header) and for the

three different sample sizes (second column header). Each cell includes the average value (first row), the 5th

and 95th percentile in square brackets (second row), and the NRMSE in curly brackets (third row). Overall

the estimates using the Pruned Skewed Kalman Filter are convincingly good both for a very low and a rather

large cutting threshold. Most mass is centered around the true value and the distribution becomes narrower

with larger sample sizes. The Pruned Skewed Kalman Filter successfully uncovers the skewed distribution

of η1,t and η3,t, but also Gaussianity of η2,t. Note that the Gaussian Kalman filter completely misses the

skewed distribution of ηt; which is evident in heavily biased values of µη and Ση. However, this bias is in

fact misleading, because when using the Gaussian Kalman filter, µη and Ση are actually estimates for E[ηt]

and V [ηt], which in our exercise are equal to [0.9192;−0.1000;−0.3433] and diag([0.2565; 0.3600; 0.1948]),

respectively. So the Gaussian Kalman filter still remains a powerful tool, if one is only concerned about

estimating the mean and variance of the process. Of course those two statistics adjust to hide the underlying

skewed distribution. In contrast, the Pruned Skewed Kalman Filter is more general as it nests Gaussianity

as a special case.

6. Estimating the US yield curve using the dynamic Nelson-Siegel exponential components

model

A yield curve is a graphical representation of the so-called term structure of interest rates, i.e. the rela-

tionship between the residual maturities of a homogeneous set of financial instruments and their computed

interest rates. In practice, however, yield curves are not observed, but need to be estimated from observed

market prices for the underlying financial instruments, typically government bonds that are traded on stock

exchanges. Diebold & Rudebusch (2013) provide an excellent textbook introduction and Wahlstrøm et al.

(2022) a recent discussion of the computational challenges to construct yield data.

Following the canonical contribution of Diebold & Li (2006), it has become standard practice to use the

dynamic Nelson & Siegel (1987) (DNS) model to forecast yields at different maturities. Forecasting is crucial

for bond portfolio management, derivatives pricing, risk management, but also for monetary policy decisions

and financial stability analysis. Intuitively, the entire yield curve can be modelled by three dynamic factors,

commonly labeled Level (Lt), Slope (St), and Curvature (Ct). The DNS model then achieves dimensionality

reduction via a tight structure on the factor loadings. The model is not only simple and intuitive, but also

parsimonious and very flexible in its ability to match changing shapes of the yield curve. Moreover, its

out-of-sample forecasting performance is often second to none. So having a well estimated DNS model is of

great importance.
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Of particular interest to us is that Diebold et al. (2006) show how to formulate the DNS model as a

linear state-space model which can be estimated by the Kalman filter. In more detail, let y(τ) denote the set

of yields where τ denotes the maturity. The cross-section of yields at any discrete point in time t = 1, ..., T

is given by the DNS curve:

yt(τ) = Lt + St

(
1− e−λτ

λτ

)
+ Ct

(
1− e−λτ

λτ
− e−λτ

)
(18)

Diebold & Li (2006) highlight the intuitiveness of the factor loadings. First, the level factor Lt is long-term

as it has an identical loading of 1 at all maturities. This means that all yields are equally affected by a

change in the level and there is no decay to zero in the limit τ → ∞. Second, the loading on the slope

factor St starts at 1 and decays monotonically and quickly to zero. An increase in St increases short yields

more than long ones; hence, it is a short-term factor and governs the slope of the yield curve. Third, the

medium-term factor Ct has a loading that starts at 0 (no short term), increases at first and then decays

back to 0 (no long term). An increase in Ct has little effect on very short and very long yields, but increases

the medium-term yields; hence, it changes the curvature of the yield curve. The parameter λ governs the

exponential decay rate and it determines the maturity at which the loading on the medium-term achieves

its maximum (e.g. 0.0609 at exactly 30 months).

The latent factors Lt, St and Ct are assumed to be time-varying according to a first-order vector autore-

gressive process: 
Lt − µL

St − µS

Ct − µC

 =


G11 G12 G13

G21 G22 G23

G31 G32 G33



Lt−1 − µL

St−1 − µS

Ct−1 − µC

+


ηLt

ηSt

ηCt

 (19)

Obviously, equation (19) is a state transition equation as in (3). To get a corresponding measurement

equation as in (4), we relate a set of N yields to the three latent factors according to (18):


yt(τ1)

yt(τ2)
...

yt(τN )

 =


1 1−e−λτ1

λτ1
1−e−λτ1

λτ1
− e−λτ1

1 1−e−λτ2

λτ2
1−e−λτ2

λτ2
− e−λτ2

...
...

...

1 1−e−λτN
λτN

1−e−λτN
λτN

− e−λτN



Lt

St

Ct

+


εt(τ1)

εt(τ2)
...

εt(τN )

 (20)

where εt(τ) is the measurement error for yield maturity τ . In a nutshell, the DNS model forms a linear

state-space system with a VAR(1) transition equation for the dynamics of the latent factors.

We follow standard practice and assume a Gaussian white noise process for the vector of measurement

errors with a diagonal covariance matrix Σε and which is independent of the vector of state transition
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disturbances ηt = (ηLt ηSt ηCt )′. So far we have been silent on the distribution of ηLt , ηSt and ηCt . Typically,

as in Diebold et al. (2006), ηt is also assumed to be a Gaussian white noise process, but allowing for ηLt ,

ηSt and ηCt to be contemporaneously correlated. However, Gaussianity of ηt implies that Lt, St and Ct

must be also normally distributed, which is in stark contrast to the empirics. For instance, the usual

proxies for the three latent factors – (y(3) + y(24) + y(120))/3 for the level, y(3)− y(120) for the slope and

2y(24)−y(120)−y(3) for the curvature factor – typically display mild to strong skewness. In our sample (i.e.

the one used by Diebold et al. (2006)) the empirical skewness coefficients are, respectively, equal to 1.14, 0.56

and 0.10. We also get similar non-symmetric coefficients for different time periods using the yield data of

Liu & Wu (2021). Thus, when estimating the linear state space model with the conventional Kalman filter,

we expect (and indeed find) that both the filtered and smoothed residuals are non-symmetric (see figure 4

for a preview of our estimation results). From a theoretical point of view, this is a sign of misspecification

of the underlying model. Therefore, we we assume a CSN(µη,Ση, νη,Γη,∆η) distribution for ηt, which is

flexible enough to capture both skewed as well as symmetric patterns in ηt. Due to identifiability issues, we

set νη = 0 and ∆η = I and fix µη = −f(Ση,Γη), where f(·) is a correction function to make E[ηt] equal

to zero according to Domı́nguez-Molina et al. (2003, sec. 2.4.). While we do allow for a non-diagonal Ση
matrix, we assume that Γη is diagonal, in order to focus on assessing whether it is a single innovation that

drives the skewness (one nonzero diagonal element in Γη and a diagonal Ση matrix) or the combined effect

of several skewed shocks (multiple nonzero diagonal elements in Γη and a non-diagonal Ση matrix).

To be close to the canonical work of Diebold et al. (2006), we use the same dataset, i.e. yields for 17

maturities (3, 6, 9, 12, 15, 18, 21, 24, 30, 36, 48, 60, 72, 84, 96, 108 and 120 months) to estimate the

following number of parameters: 9 parameters in the (3 × 3) transition matrix G; 3 level parameters µL,

µS , and µC ; 1 scalar decay rate λ that determines the measurement matrix F ; 17 measurement variances

in Σε; 3(3 + 1)/2 parameters in the scale matrix Ση; and 3 diagonal elements in Γη. In sum, 39 free

parameters that we estimate by minimizing the negative log-likelihood function, which can be computed by

using our proposed Pruned Skewed Kalman Filter. Based on our Monte Carlo evidence, we cut the skewness

dimensions at a threshold level of 1%. The initial distribution for the prediction-error decomposition of

the likelihood is set to a normal one with an initial covariance matrix with 10 on the diagonal. We do a

sophisticated search for initial parameter values (as recently emphasized by Wahlstrøm et al. (2022)) and

use a sequence and mixture of gradient-based and simulation-based optimization routines to minimize the

negative log-likelihood function.7 In more detail, we impose non-negativity on λ and the variances in Σε
by using a log transform during the optimization. Similarly, we focus on estimating the Cholesky factor

of Ση instead of Ση directly. Moreover, the likelihood is penalized if the Eigenvalues of G are outside the

7Our choice of gradient-based optimizers include two different BFGS Quasi-Newton methods (fminunc in MATLAB R2022b
and csminwel of Christopher Sims (1999)) and two different simulation based methods (the Nealder-Mead simplex search
method of Lagarias et al. (1998) implemented as fminsearch in MATLAB R2022b and the covariance matrix adaptation
evolution strategy (CMA-ES) of Hansen et al. (2003)).
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unit circle or the covariance matrices of ηt or εt are not positive semi-definite. Asymptotic standard errors

are obtained by computing the inverse of the negative log-likelihood. For the transformed parameters we

compute standard errors according to the delta method and report results for the re-transformed estimates.

Tables 5, 6 and 7 contain the estimation results. We particularly contrast the results based on the

Pruned Skewed Kalman Filter (PSKF) with the ones using the conventional Gaussian Kalman filter (KF)

to illustrate the usability of the CSN distribution in multivariate state-space settings.

KF PSKF KF PSKF KF PSKF KF PSKF
Lt−1 St−1 Ct−1 µ

Lt 0.9957
(0.008)

1.0004
(0.009)

0.0285
(0.009)

0.0253
(0.009)

−0.0222
(0.011)

−0.0218
(0.011)

8.2506
(1.086)

6.5516
(3.445)

St −0.0303
(0.016)

−0.0015
(0.014)

0.9385
(0.018)

0.9767
(0.019)

0.0395
(0.021)

0.0399
(0.020)

−1.3786
(0.499)

−1.3411
(0.925)

Ct 0.0244
(0.023)

0.0085
(0.024)

0.0232
(0.026)

−0.0005
(0.027)

0.8428
(0.031)

0.8491
(0.030)

−0.3647
(0.383)

−0.3324
(0.476)

Table 5: Parameter estimates of G, µL, µS , and µC . Left side of a double column corresponds to estimates obtained with the
conventional Kalman filter (KF), right side to estimates obtained with the pruned skewed Kalman filter (PSKF). Asymptotic
standard errors appear in parenthesis.

KF PSKF KF PSKF KF PSKF KF PSKF
Lt St Ct Γη

Lt 0.0948
(0.008)

0.1906
(0.046)

−0.0140
(0.011)

−0.0668
(0.052)

0.0436
(0.019)

0.1648
(0.105)

0 −3.4648
(0.683)

St 0.3823
(0.030)

0.7546
(0.115)

0.0092
(0.034)

0.0565
(0.142)

0 −1.9895
(0.244)

Ct 0.8019
(0.081)

1.6045
(0.354)

0 1.2147
(0.225)

Table 6: Parameter estimates of Ση and Γη . Left side of a double column corresponds to estimates obtained with the
conventional Kalman filter (KF), right side to estimates obtained with the pruned skewed Kalman filter (PSKF). Asymptotic
standard errors appear in parenthesis.

Overall, the estimates of the transition matrix G (given in the columns labeled Lt−1, St−1 and Ct−1 of

table 5) are very similar across the two filters used and in line with the results of Diebold et al. (2006). That

is, first, the eigenvalues of G are inside the unit circle, so we have a stable and covariance-stationary system.

Second, we see high persistence of Lt, St and Ct on its own lagged dynamics, whereas most of the off-

diagonals appear insignificant. While the coefficient of St−1 on Ct has a different sign for the KF compared

to the PSKF, both coefficients are not significantly different from zero. Next, we do see different estimates

of the mean factors µ (last two columns of table 5), indicating how the estimates with the conventional

Kalman filter adapt to the neglected skewness in ηt. Ση (first six columns of table 6) is estimated with

reasonable precision for both filters. There is only one marginally significant covariance term between ηLt

and ηCt for the KF, whereas in the PSKF case Ση appears to be diagonal. Note that a direct comparison

of Ση between filters is not correct, as in the KF case Ση is the covariance matrix of η, but for the PSKF

it is just a scale matrix and the covariance is a function of the skewness parameters Ση, Γη, ∆η and νη.
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Decay Standard deviation of measurement error for maturity
λ 3 6 9 12 15 18 21 24

KF 0.07776
(0.002)

26.83
(8.68)

7.55
(3.66)

9.03
(2.85)

10.45
(3.11)

9.91
(2.96)

8.65
(2.65)

7.86
(2.45)

7.21
(2.24)

PSKF 0.07783
(0.002)

26.54
(8.51)

7.35
(3.57)

9.11
(2.85)

10.48
(3.11)

9.93
(2.96)

8.65
(2.65)

7.85
(2.45)

7.19
(2.23)

Standard deviation of measurement error for maturity
30 36 48 60 72 84 96 108 120

KF 7.27
(2.28)

7.91
(2.44)

10.30
(3.00)

9.26
(2.80)

10.04
(3.02)

11.18
(3.37)

10.70
(3.40)

15.07
(4.55)

17.28
(5.12)

PSKF 7.29
(2.29)

7.93
(2.45)

10.30
(3.01)

9.25
(2.80)

10.03
(3.02)

11.14
(3.37)

10.71
(3.40)

15.13
(4.56)

17.29
(5.12)

Table 7: Parameter estimates of decay parameter λ and of standard deviations of measurement errors, expressed in basis points,
i.e. 100

√
diag(Σε). KF denotes the conventional Kalman filter and PSKF the pruned skewed Kalman filter. Asymptotic

standard errors appear in parenthesis.

Therefore, we also compute and compare the estimated covariance matrices:

ĈOV [ηt]KF =


0.0948 −0.0140 0.0436

−0.0140 0.3823 0.0092

0.0436 0.0092 0.8019

 , ĈOV [ηt]PSKF =


0.0943 −0.0181 0.0453

−0.0181 0.3716 0.0223

0.0453 0.0223 0.8076


We see that the variances of ηLt and ηSt are estimated slightly lower with the PSKF, but the differences

are negligible. The overall estimation is quite accurate according to table 7, as the standard deviations

of the measurement errors are very small (reported in basis points) and do not differ across the filters.

The same holds true for the estimate of the decay parameter λ, which would imply the loading on the

curvature factor to be maximized at a maturity of 23.06 months for the KF and 23.04 months for the PSKF.

Finally, we turn towards the estimates of the diagonal elements in Γη (last two columns of table 6). The

estimation with the PSKF indeed reveals significant left-skewness in the underlying distributions of ηLt and

ηSt , whereas ηCt is right-skewed. We use the proposed Pruned Skewed Kalman Smoother to compute the

smoothed values for ηt|T and contrast the histograms of the values with the ones from the conventional

Gaussian Kalman Smoother in figure 4. As far as we know, we are the first to actually report smoothed

(and not filtered) innovations using the CSN distribution in a multivariate state-space setting. There is a

clear skewed pattern for both filters, but also some bulging dents, which are both in clear contradiction

to a symmetric distribution.8 Theoretically speaking, this indicates a misspecification of the linear state-

space model when using the Gaussian assumption for ηt, whereas the CSN distribution is flexible enough

to incorporate the skewed shapes in the estimation. Accordingly, since the Skewed Kalman Filter nests

8A negative sign of Γη indicates left-skewness, while a positive sign indicates right-skewness. Note, however, that the
magnitude of the estimates of Γη do not directly translate into the same magnitude of the empirical skewness coefficient, as it
is a function of both Γη and Ση .
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Gaussianity as a restriction (Γη = 0), we perform a likelihood ratio test and obtain a very high test statistic

of 28.86. In summary, on the basis of our estimation results, the data strongly favors a skewed error term

distribution for ηt.
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Figure 4: Mirror histogram and kernel density estimate of smoothed innovations ηL
t|T , ηS

t|T and ηC
t|T .

7. Conclusion

The skewed Kalman filter is an analytical recursive procedure for inference about the state vector in linear

state-space systems and can be exploited to compute the exact likelihood function when the innovations

stem from the CSN distribution. An intriguing feature of the Skewed Kalman filter is that it nests both

Gaussianity and the skew-normal distribution as special cases. Previously, however, applying this filter to

data required extensive computational capabilities or was even impossible for multivariate models, because

it involves the evaluations of high-dimensional multivariate normal cdfs of growing dimensions. We propose

a fast and simple pruning algorithm to the updating step of the filter that overcomes this curse of increasing

dimensions. We theoretically demonstrate that it is valid for any dataset and set of parameter values.

Our Pruned Skewed Kalman Filter and Smoother operate effectively and efficiently in practice in spite of

– or perhaps precisely because of – its simplicity as shown in our extensive Monte Carlo study and real

data application. Therefore, we believe that the applicability of this filter extends across many disciplines

whenever the skew-normal distribution and its numerous variants are used to identify modest departures from
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symmetry, including economics, econometrics, engineering, medical science, psychology, risk management,

and statistics.

There are various areas to conduct further research. From a statistical point of view, other variants

of the closed skew-normal distribution and their application for Kalman filtering are worth investigating.

The unified skew-normal distribution of Arellano-Valle & Azzalini (2006) may be a good alternative to

alleviate some of the CSN distribution’s identification issues. From an economic point of view, our empirical

application demonstrated that yield data favors a dynamic Nelson-Siegel yield curve model with skewed

innovations. Naturally, the next step on our research agenda is to examine the forecasting performance,

especially in conjunction with other macroeconomic factors. We are also exploring the usefulness of the

Pruned Skewed Kalman Filter for estimating linearized Dynamic Stochastic General Equilibrium (DSGE)

models. Preliminary results on the workhorse model of Smets & Wouters (2007) provides evidence for

asymmetric monetary policy shocks.

In conclusion, the Pruned Skewed Kalman Filter offers an elegant, fast and appealing tool to explicitly

model and estimate departures from symmetry.
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Adjemian, S., Bastani, H., Juillard, M., Karamé, F., Mihoubi, F., Mutschler, W., Pfeifer, J., Ratto, M., Villemot, S., & Rion,

N. (2022). Dynare: Reference Manual Version 5 . Technical Report 72 CEPREMAP. URL: https://ideas.repec.org/p/

cpm/dynare/072.html.

Adrian, T., Boyarchenko, N., & Giannone, D. (2019). Vulnerable Growth. American Economic Review, 109 , 1263–1289. URL:

https://pubs.aeaweb.org/doi/10.1257/aer.20161923. doi:10.1257/aer.20161923.

Amsler, C., Papadopoulos, A., & Schmidt, P. (2021). Evaluating the cdf of the Skew Normal distribution. Empirical Economics,

60 , 3171–3202. doi:10.1007/s00181-020-01868-6.

Arellano-Valle, R. B., & Azzalini, A. (2006). On the Unification of Families of Skew-normal Distributions. Scandinavian

Journal of Statistics, 33 , 561–574. URL: https://onlinelibrary.wiley.com/doi/10.1111/j.1467-9469.2006.00503.x.

doi:10.1111/j.1467-9469.2006.00503.x.

Arellano-Valle, R. B., & Azzalini, A. (2008). The centred parametrization for the multivariate skew-normal distribution.

Journal of Multivariate Analysis, 99 , 1362–1382. doi:10.1016/j.jmva.2008.01.020.

Arellano-Valle, R. B., Contreras-Reyes, J. E., Quintero, F. O. L., & Valdebenito, A. (2019). A skew-normal dynamic linear

model and Bayesian forecasting. Computational Statistics, 34 , 1055–1085. doi:10.1007/s00180-018-0848-1.

Atkinson, T., Richter, A., & Throckmorton, N. (2019). The zero lower bound and estimation accuracy. Journal of Monetary

Economics, 115 , 249–264. doi:10.1016/j.jmoneco.2019.06.007.

Azzalini, A. (1985). A class of distributions which includes the normal ones. Scandinavian Journal of Statistics, 12 , 171–178.

URL: https://www.jstor.org/stable/4615982.

Azzalini, A., & Capitanio, A. (2014). The Skew-Normal and Related Families. Number 3 in Institute of Mathematical Statistics

Monographs. Cambridge: Cambridge University Press.

Azzalini, A., & Dalla Valle, A. (1996). The multivariate skew-normal distribution. Biometrika, 83 , 715–726. doi:10.1093/

biomet/83.4.715.

30

https://ideas.repec.org/p/cpm/dynare/072.html
https://ideas.repec.org/p/cpm/dynare/072.html
https://pubs.aeaweb.org/doi/10.1257/aer.20161923
http://dx.doi.org/10.1257/aer.20161923
http://dx.doi.org/10.1007/s00181-020-01868-6
https://onlinelibrary.wiley.com/doi/10.1111/j.1467-9469.2006.00503.x
http://dx.doi.org/10.1111/j.1467-9469.2006.00503.x
http://dx.doi.org/10.1016/j.jmva.2008.01.020
http://dx.doi.org/10.1007/s00180-018-0848-1
http://dx.doi.org/10.1016/j.jmoneco.2019.06.007
https://www.jstor.org/stable/4615982
http://dx.doi.org/10.1093/biomet/83.4.715
http://dx.doi.org/10.1093/biomet/83.4.715


Bauer, M., & Chernov, M. (2021). Interest Rate Skewness and Biased Beliefs. Technical Report w28954 National Bureau of

Economic Research Cambridge, MA. URL: http://www.nber.org/papers/w28954.pdf.

Cabral, C. R. B., Da-Silva, C. Q., & Migon, H. S. (2014). A Dynamic Linear Model with Extended Skew-normal for the Initial

Distribution of the State Parameter. Computational Statistics & Data Analysis, 74 , 64–80. doi:10.1016/j.csda.2013.12.

008.

Chen, J. T., Gupta, A. K., & Troskie, C. G. (2003). The Distribution of Stock Returns When the Market Is Up. Communications

in Statistics - Theory and Methods, 32 , 1541–1558. doi:10.1081/STA-120022244.

Chen, Y.-Y., Schmidt, P., & Wang, H.-J. (2014). Consistent estimation of the fixed effects stochastic frontier model. Journal

of Econometrics, 181 , 65–76. doi:10.1016/j.jeconom.2013.05.009.

Chiplunkar, R., & Huang, B. (2021). Latent variable modeling and state estimation of non-stationary processes driven by

monotonic trends. Journal of Process Control, 108 , 40–54. doi:10.1016/j.jprocont.2021.10.010.

Christopher Sims (1999). Matlab Optimization Software. Quantitative Macroeconomics & Real Business Cycles.

Counsell, N., Cortina-Borja, M., Lehtonen, A., & Stein, A. (2011). Modelling Psychiatric Measures Using Skew-Normal

Distributions. European Psychiatry, 26 , 112–114. doi:10.1016/j.eurpsy.2010.08.006.

de Roon, F., & Karehnke, P. (2017). A Simple Skewed Distribution with Asset Pricing Applications. Review of Finance, 21 ,

2169–2197. doi:10.1093/rof/rfw040.

Diebold, F. X., & Li, C. (2006). Forecasting the term structure of government bond yields. Journal of Econometrics, 130 ,

337–364. doi:10.1016/j.jeconom.2005.03.005.

Diebold, F. X., & Rudebusch, G. D. (2013). Yield Curve Modeling and Forecasting: The Dynamic Nelson-Siegel Approach.

The Econometric and Tinbergen Institutes Lectures. Princeton: Princeton University Press.

Diebold, F. X., Rudebusch, G. D., & Aruoba, B. S. (2006). The macroeconomy and the yield curve: A dynamic latent factor

approach. Journal of Econometrics, 131 , 309–338. doi:10.1016/j.jeconom.2005.01.011.
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