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1 Introduction

In many real-world situations, we have to deal with non-negative integer-valued time

series. Such time series are often produced in fields that include economics, insurance,

medicine, epidemiology, queueing systems, communications, and meteorology and so

on. Examples for the wide range of practical applications are the daily or monthly num-

ber of cases in epidemiology, the number of stock market transactions or stock price

changes per minute in finance and the number of photon arrivals per microsecond mea-

sured in a biological experiment. Their analysis may present some difficulties, however,

and if the analysis is based on stochastic models, these models have to reflect the integer

peculiarity of the observed series. Various models have been suggested in the litera-

ture to tackle the problem of integer-valued time series analysis. These models include

the traditional generalized linear model methodology and the state-of-the-art integer-

valued autoregressive moving average (INARMA), and integer-valued generalized au-

toregressive conditional heteroscedasticity (INGARCH) processes. The first modeling

approach is very simple and consists of choosing a suitable distribution for count data

and an appropriate link function, (see Kedem and Fokianos, 2002). The second group

of models are adaptation of the well-known ARMA and GARCH processes in the mod-

eling of continuous-state and discrete-time series to count settings by means of thinning

operators (see Weiß, 2008, for a recent review of the thinning operators). These pro-

cesses are developed to model stationary count data. Therefore, considerable effort has

been devoted to provide and prove general conditions that ensure existence and unique-

ness of second-order stationary solutions using Hilbert space techniques (see Ferland

et al., 2006; Latour, 1998; Doukhan and Wintenberger, 2008; Doukhan et al., 2012;

Neumann, 2011). Recently, Sim et al. (2021) provide conditions for ergodicity and

consistency of the maximum likelihood estimator for general-order observation-driven

models (ODMs). However, recent empirical observations indicate that some important

count data in modeling are strictly stationary, and non square-integrable (see Segnon and

Stapper, 2019).

The objective of this paper is to establish conditions for strict stationarity and ergod-

icity of the INARCH processes and existence of higher order moments. These statistical
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properties are crucial for deriving large sample properties of the maximum likelihood

estimators of the model parameters. We make use of the multiplicative ergodic theo-

rem developed by Ruelle (1982) for bounded operators in Hilbert space and show that

the necessary and sufficient conditions for stationarity is the negativity of the Lyapunov

exponent associated with these processes. Our result applies to the INGARCH model

in Ferland et al. (2006), and INFIGARCH and INHYGARCH models in Segnon and

Stapper (2019). Since the seminal paper by Bougerol and Picard (1992) the use of the

multiplicative ergodic theorem to study the stationarity of ARCH-type processes has

become very popular, see Kazakevicius and Leipus (2002); Zerner (2018).

The rest of the paper is organized as follows. Section 2 describes the modeling

framework. The main results are provided in Section 3. Section 4 presents the proofs to

the main results. Finally, Section 5 concludes.

2 Poisson INARCH(∞) Processes

2.1 Definition

A sequence of integer-valued random variables {Yt}t∈Z is said to be an INARCH(∞)

process if:

(i) the distribution of Yt conditional on the σ−field Ωt−1 = σ (Yl, l ≤ t − 1) is Poisson

with mean λt,

(ii) there exist nonnegative constants c, ψi, 1 ≤ i ≤ ∞, such that

λt = c + ψ (L) Yt, (1)

where Pr(λt > 0) = 1 and ψ (L) =
∑∞

i=1 ψiLi.

This class of models also includes:

(a) The integer-valued HYGARCH(p, d, q) model for, c is an appropriately defined

constant, and
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ψ(L) =

1 − Φ(L)
(
1 + η[(1 − L)d − 1]

)
B(L)

 (2)

=

∞∑
i=1

ψiLi,

with β0 > 0 and ϕ1, . . . , ϕm−1 ≥ 0, β1, . . . , βq ≥ 0, and ψi ≥ 0 for all i. In Eq. (2),

L denotes the lag operator. The lag polynomials are defined as Φ(L) = [1− β(L)−

α(L)] =
∑m−1

i=1 ϕiLi, where m = max(p, q), α(L) =
∑p

i=1 αiLi, β(L) =
∑q

j=1 β jL j

and B(L) =
[
1 − β(L)

]
. η ≥ 0 is an amplitude parameter, d ∈ [0, 1] and (1 − L)d is

the fractional differencing operator given by

(1 − L)d =

∞∑
k=0

Γ(k − d)Lk

Γ(−d)Γ(k + 1)
, (3)

where Γ(·) is the gamma function.

(b) The integer-valued FIGARCH(p, d, q) model for η = 1 in Eq. 2.

(c) The integer-valued GARCH(p, q) model for η = 0 in Eq. 2.

Remark 1. Segnon and Stapper (2019) show that for η ∈ (0, 1) implies that ψ(1) < 1,

and thus, the INHYGARCH process is covariance stationary.

Remark 2. Ferland et al. (2006) show that the INGARCH(p,q) process exists and is

strictly stationary with finite first and second order moments, if and only if the following

restriction is met:
∑p

i=1 αi+
∑q

j=1 β j < 1, which is equivalent to
∑∞

i=1 ψi < 1. In the simple

INGARCH(1, 1), ψi = α1β
i−1
1 for i ≥ 1 and the stationarity condition is well known to

be α1 + β1 < 1, which is equivalent to
∑∞

i=1 α1β
i−1
1 < 1 in the INARCH representation

above. The INGARCH(1, 1) reduces to an integrated INGARCH(1, 1) when the sum of

the lag coefficients is unity (α1 + β1 = 1). Segnon and Stapper (2019) point out that in

the INFIGARCH(p,q)
∑∞

i=1 ψi = 1. Thus, the process is not covariance stationary. We

note that the coefficient ψi in the INHYGARCH can be approximated by ci−1−d, with c

appropriately defined.
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Table 1: Descriptive statistics of simulated data

INFIGARCH INHYGARCH INGARCH

Overdispersion 11.812 3.736 1.522

Skewness 0.210 0.473 0.663

Kurtosis 3.028 3.301 3.452

Note: The statistics reported in the Table are the averages. The results are based on 100 replications of simulated data
with size (n=500) with the following parameters: β0 = 2, α1 = 0.3, d = 0.4, β1 = 0.2, η = 0.8.

Figure 1 illustrates the capacity of the INHYGARCH(1,d,1) model to reproduce var-

ious degree of dependence for η = 1 (INFIGARCH(1,d,1)), η = 0 (INGARCH(1,1)) and

η = 0.8 (INHYGARCH(1,d,1)). We see that with different values for the amplitude

parameter, η, various long range dependencies observed in empirical data can be cap-

tured. Furthermore, Table 1 shows that the INHYGARCH(1,d,1) model can reproduce

over-dispersion and asymmetry observed in real world data.

Figure 1: Theoretical ACF for different parameter constellations with baseline setup:
β0 = 2, α1 = 0.3, d = 0.4, β1 = 0.2, η = 0.8 and n = 500.
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Since the INFIGARCH(p, d, q) process is not covariance stationary, its appears that

the INFIGARCH(p, d, q) is not a long memory model in the common sense. How-

ever, we aim to show in the next Section that the INARCH representation of the

INHYGARCH(p, d, q) and INFIGARCH(p, d, q) processes are strictly stationary and

ergodic using a multiplicative ergodic theorem and a Lyapunov exponent. Towards this

end, we first look at the construction of an INARCH process.

2.2 Construction

Let {ut}t∈Z be a sequence of independent random variables with values in N (N is the

set of non-negative integers) with common mean ω. For each t ∈ Z and i ∈ N, let

ξ(i)
t = {ξ

(i)
t, j} j∈N represent a sequence of independent random variables having a common

mean ψi. All the variables us, ξ
(i)
t, j, (s ∈ Z, t ∈ Z, i ∈ N and j ∈ N) are assumed to

be mutually independent. Using these random variables, we introduce a sequence of

random variables {Y (n)
t } that may be considered as successive approximations of Yt:

Y (n)
t =



0, if n < 0;

ut, if n = 0;

ut +

n∑
i=1

Y (n−i)
t−i∑
j=1

ξ(i)
t−i, j if n > 0.

(4)

From (4) we can see that Y (n)
t is a finite sum of independent Poisson variables. So,

the expectation and the variance of Y (n)
t are well defined. In the next Section we want to

show that Y (n)
t , as n → ∞, admits an almost sure limit Yt and that the limiting process

{Yt}t∈Z satisfies (1), see Proposition 1. Given this result, we want to show that under mild

conditions the approximated process is strictly stationary, ergodic and has moments of

any order. Then, these statistical properties for the original process is obtained by a

limiting argument (Proposition 1) connecting the two representations.
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3 Stationarity of INARCH(∞) Processes

To prove the strict stationarity of {Yt} we first show that for any fixed n, Y (n)
t is strictly

stationary.

3.1 Some basic definitions and results

Definition 1. Let {z j} j∈N be a sequence of independent and identically distributed non-

negative integer-valued random variables with mean ψ and finite variance σ2 which

is independent of a non-negative integer-valued random variable y. The generalized

Steutel and van Harn operator, ψ⋄, is defined as

ψ ⋄ y =


y∑

i=1

zi if y > 0;

0 if y = 0.

(5)

Remark 3. The sequence {z j} j∈N is called a counting sequence. Let α⋄ be another

operator based on a counting sequence {x j} j∈N . Both operators ψ⋄ and α⋄ are said to

be independent if and only if the counting sequences {z j} j∈N and {x j} j∈N are mutually

independent.

Using the operator from Eq. 5, we may rewrite the sequence of random variables

{Y (n)
t }n∈N as

Y (n)
t =

n∑
i=1

E
(
ξ(i)

t−i

)
⋄ Y (n−i)

t−i + ut, n > 0, (6)

where E
(
ξ(i)

t−i

)
= ψi.

Proposition 1. If ψ(1) < 1 then the sequence {Y (n)
t }n∈N has an almost sure limit.

For the state space representation of Eq. 6, we consider the following nonnegative

multidimensional autoregressive process Z = (Zn)n≥0 of order one with random coeffi-

cient matrix. For a fix dimension d ∈ N, let U = (Un)n≥0 be a sequence of [0,∞)d-valued

random vectors, and let (Cn)n≥1 be an i.i.d. sequence of [0,∞)d×d-valued random matri-

ces that are given by
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Cn =



ξ(1)
t−1 ξ(2)

t−2 . . . ξ(n)
t−n

1 0 . . . . . .

...
. . .

. . .
. . .

0 . . . 1 0


. (7)

We have

Zn = E (Cn) ⋄ Zn−1 + Un, n ≥ 1, (8)

where Zn =
(
Y (n)

t ,Y (n−1)
t−1 ,Y (n−2)

t−2 , . . .Y (0)
t−n

)′
and Un = (ut, 0, . . . 0)′.

Proposition 2. Then, (6) has a stationary and ergodic solution if and only if (8) has a

stationary and ergodic solution.

Lemma 1. Let ψ(z) = zn−α1zn−1− · · ·−αn−1z−αn with
∑n

k=1 |αk| ≤ 1 and αn > 0. Then

the roots of ψ(z) are all inside the unit circle.

Lemma 2. (Lemma 5.2 in Bougerol (1987)) Let {An, n ∈ Z} be a sequence of indepen-

dent, identically distributed, random matrices such that E
(
log+ ∥A1∥

)
is finite. If, almost

surely,

lim
n→+∞

1
n

log ∥A1A2 · · ·An∥ = 0,

then the top Lyapunov exponent associated with this sequence is strictly negative.

Proposition 3. The process defined in Eq. (8) has a unique strictly stationary and er-

godic solution if and only if the top Lyapunov exponent γ associated with the random

matrices {Cn}n≥1 is strictly negative. The unique strictly stationary solution (Zn)n≥0 of

(8) is given by

Zn = Un +

n∑
k=1

E (CnCn−1 . . .Cn−k+1) ⋄ Un−k. (9)

Corollary 1. Let assume that the support of the law of U1 is unbounded and all the

coefficients ψ are nonnegative. Then, if
∑n

i=1 ψi = 1, then the INARCH process defined

in Eq. (8) has a unique stationary solution.
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3.2 Moments of the INARCH Processes

It is crucial for statistical inference to know whether the unique stationary solution has

moments of higher order. To derive conditions for the existence of higher order moments

for INARCH models we use the state space representation of the successive approxi-

mated process in (8). The following proposition guarantees the existence of higher order

moments.

Proposition 4. Let m ∈ N∗. Then the mth moment of Y (n)
t is finite if and only if the

spectral radius of the matrix E
(
C⊗m

n

)
is strictly less than 1, where C⊗m = C⊗C⊗· · ·⊗C

(m factors), ρ(C) = min{|eigenvalues of a matrix C)} and Cn is defined by Eq. (7).

4 Proofs

Proof of Proposition 1. We closely follow the Proof of Proposition 2 in Ferland et al.

(2006), Page 928. It follows from Eq. (4) that Y (n)
t is obtained through a cascade of

thinning operations along the sequence {ut}t∈Z . So, the expectation and the variance of

Y (n)
t are well defined and given by

µn = E

ut +

n∑
i=1

Y (n−i)
t−i∑
j=1

ξ(i)
t−i, j


= ω +

n∑
i=1

E


Y (n−i)

t−i∑
j=1

ξ(i)
t−i, j


(10)

Let (Ω, F, P) be the common probability space on which the relevant random vari-

ables are defined. Because Y (n)
j is a non-decreasing sequence of non-negative integers,

we have

∀ω ∈ Ω, lim
n→∞

Y (n)
t (ω) = Yt (11)

which is either finite or infinite. We will show that the set
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A∞ = {ω : Yt(ω) = ∞} =
∞⋂

n=1

∞⋃
k=n

Ak = lim sup
n

An (12)

is of probability zero, where

An =
{
ω : Y (n)

t (ω) − Y (n−1)
t (ω) > 0

}
, for n > 1. (13)

On the one hand:

E
(
Y (n)

t − Y (n−1)
t

)
≥

∞∑
k=1

Pr
{
ω : Y (n)

t (ω) − Y (n−1)
t (ω) = k

}
= Pr(An). (14)

On the other hand:

E
(
Y (n)

t − Y (n−1)
t

)
= µn − µn−1 ≡ νn. (15)

Obviously, the sequence {νn} satisfies a homogeneous finite difference equation with

a characteristic polynomial, namely ψ(z), that has all its roots outside the unit circle. As

shown in Brockwell and Davis (1991), Section 3.6, sequence {νn} tends towards zero

with a geometric rate as n → ∞. In other words, a constant Q ≥ 0 and a constant

0 < α < 1 exist such that νn ≤ Qαn. Since Pr{An} ≤ νn we get

∞∑
n=1

Pr{An} ≤ Q
∞∑

n=1

αn < ∞. (16)

By the Borel-Cantelli lemma, Pr{A∞} = 0. ■

Proof of Proposition 2. Eq. (8) is a state-space representation of (6), and thus, any

stationary solution of (8) is also a stationary solution of (6) and vice versa. Analogously,

any ergodic solution of (8) is also an ergodic solution of (6), and vice versa. The proof

of the ergodicity follows from Lemma A 1.2.7 in Brandt et al. (1990). ■

Proof of Lemma 1. Let us consider the unit circle ζ = {z : |z| = 1} and suppose∑n
k=1 |αk| < 1. The functions h(z) = zn and T (z) = −(α1zn−1 + α2zn−2 + · · · + αn)

are both analytic inside and on ζ. Hence, on ζ,

|T | ≤
r−1∑
k=0

|αn−kzk| ≤

n−1∑
k=0

|αn−k| < 1 = |h|.
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Based on the theorem of Rouché, h(z) and h(z)+T (z) have the same number of zeros

inside ζ. But h has n zeros inside ζ. Therefore, we conclude that all roots of α(z) are

inside the unit circle. ■

Proof of Proposition 3. Suppose that the top Lyapunov exponent γ is strictly negative.

We can see that the random matrices {Cn} in Eq. 7 consist of independent and iden-

tically distributed non-negative integer-valued random variables, ξ(i)
t , with the baseline

distribution f (Poisson) and with a finite mean, ψi and variance. This means that all the

coefficients of these matrices are integrable. Furthermore, the random vectors {Un}n∈N

contain i.i.d. non-negative integer-valued random variables and therefore are also inte-

grable. All these imply that E(log+ ||C1||) and E(log+ ||U1||) are finite and therefore, the

process (8) has a strictly stationary solution that is given by

Zn = Un +

∞∑
k=1

E (CnCn−1 . . .Cn−k+1) ⋄ Un−k. (17)

Conversely, let assume that there exists a strictly stationary solution {Zn}n∈N of

Eq. (6). By iterating Eq. (8), we have for n > 0,

Zn = E (Cn) ⋄ Zn−1 + Un

= E (CnCn−1) ⋄ Zn−2 + Un + E (Cn) ⋄ Un−1

= . . .

= E

n−1∏
j=0

Cn− j

 ⋄ Z0 +

n∑
j=0

E

 j−1∏
i=0

Cn−i

 ⋄ Un− j

Zn = E
(
C(n)
)
⋄ Z0 + U(n)

with n ∈ N0 and where
∏−1

i=0 Cn−i = 1.

All the coefficients of Cn, Zn and Un are nonnegative. The characteristic polynomial

of E(Cn) is Ψ(z) = zn − ψ1zn−1 − · · · − ψn−1z − ψn. By Lemma 1, the roots of Ψ(z) are

all inside the unit circle, then limt→∞ E
((∏n

j=0 Cn− j
)

ei
)
= 0 a.s. where ei denotes the

canonical basis of Rn. We have
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limn→∞ E
(∏n

j=0 Cn− j
)
= 0

limn→∞ E
(
||
∏n

j=0 Cn− j||
)
= 0

then limn→∞ E
(∏n

j=0 Cn− j
)
⋄ Z0 = 0 a.s. According to Lemma 2 the associated top

Lyapunov exponent γ is strictly negative, so that the series
∑n

j=0 E
(∏ j−1

i=0 Cn−i
)
⋄ Un− j

converges a.s. Therefore, {Zn}n∈Z is a strictly stationary solution of Eq. (6). Furthermore,

we can write the solution in (9) as Zn = F (Cn−1,Cn−1, . . . ,Un) for some measurable

function F independent of n. It follows that the strictly stationary solution is also er-

godic because Cn and Un are ergodic, see Brandt et al. (1990) Lemma A 1.2.7.

Now, we aim to prove the uniqueness of the strictly stationary solution. Let {Wn}n∈Z

be another strictly stationarity solution of Eq. (8). The norm of the following difference

for n > 0

||Zn −Wn|| = ||E (C1C2 . . .Cn) ⋄ (Z0 −W0) ||

≤ ||E (C1C2 . . .Cn) ⋄ || ||Z0 −W0||

≤ ||E
(
C(n)
)
⋄ || ||Z0 −W0||,

by Lemma 1, ||E (C1C2 . . .Cn) || converges to 0, a.s. and the fact that the law of

the difference (Z0 −W0) is independent of n, imply that Zn − Wn converges to 0 in

probability. We conclude that Zn = Wn and that Eq. (6) has a unique solution, once the

counting process are known. ■

Proof of corollary 1. By induction on n, we have

det (zIn − E(C1)) = zn

1 − n∑
i=1

ψiz−i

 .
The inequality |a − b| ≥ |(|a| − |b|)| implies that if |z| > 1, then
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det (zIn − E(C1)) > 1 −
n∑

i=1

ψi. (18)

Since the right-hand side is zero and since det (zIn − E(C1)) = 0, we conclude that

the spectral radius ρ of the matrix E(C1) is 1. Furthermore, all the coefficients of the

matrix C2C1 are almost surely positive and C1 has no zero column nor zero row. Since

C1 is not a.s. bounded, these properties imply by theorem 2 in Kesten and Spitzer (1984)

that the top Lyapunov exponent γ satisfies γ < log ρ. As result, γ < 0 and the corollary

follows from Proposition 3. ■

Proof of Proposition 4. We note that all the elements in Zn, Cn and Un are strictly posi-

tive, thus the model is irreducible, see Bougerol and Picard (1992) for more details.

Now let go back to the model in (8) and show that it has higher order moment: We

have

E
(
Z⊗m

n

)
≥ E (E(Cn) ⋄ Zn−1)⊗m + E

(
U⊗m

n

)
= E (Cn)⊗m E

(
Z⊗m

n−1

)
G1R⊗m

1

≥ G1

n∑
j=0

[
E (Cn)⊗m

] j
R⊗m

1

(19)

G1 = min{all the positive elements of E
(
U⊗m

n

)
}, R1 = (1, 0, 0 . . . , 0)′. A vector A > a

vector B means that each element of A exceeds the corresponding element of B.

If n tends to infinity, from (19) we have

n∑
j=0

[
E (Cn)⊗m

] j
R⊗m

1 < ∞. (20)

The idea here is to make use of the nonnegativity of the elements of E (Cn)⊗m and

R⊗m
1 . We first show that

[
E
(
C⊗m

n

)]Q
R⊗m

1 > 0. (21)

We will prove that (21) holds. First E (Cn)⊗m R⊗m
1 = E (CnR1)⊗m, where CnR1 =

(ξ(1)
t−1, 1, 0 . . . , 0). Let G2 = min{all the positive elements of E (CnR1)⊗m} and R2 =
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(1, 1, 0, 0, . . . , 0)′. It follows that

E (Cn)⊗m R⊗m
1 ≥ G2R⊗m

2 . (22)

From (22), we have

[
E (Cn)⊗m

]2
R⊗m

1 ≥ G2E (Cn)⊗m R⊗m
2 = G2E (CnR2)⊗m . (23)

Now, CnR2 = (ξ(1)
t−1 + ξ(2)

t−2, 1, 1, 0 . . . , 0). Let

G3 = min{all the positive elements of E (CnR2)⊗m} and R3 = (1, 1, 1, 0, . . . , 0)′. From

(23), we have

[
E (Cn)⊗m

]2
R⊗m

1 ≥ G2G3R⊗m
3 . (24)

Repeating the preceding procedure Q times, we can show that

[
E (Cn)⊗m

]Q
R⊗m

1 ≥

 Q∏
j=2

G j

R⊗m
Q , (25)

where G j > 0 and RQ = (1, 1, 1, . . . , 1). Thus, (21) holds. From (20) and (21), we have

∞∑
j=0

[
E (Cn)⊗m

] j [
E (Cn)⊗m

]Q
R⊗m

1 < ∞. (26)

Let c j
kl be the (k, l)th element of

[
E (Cn)⊗m

] j
. From (26), we know that

∑∞
j=0 c j

kl < ∞

for all k, j = 1, . . . , nm, i.e.,

∞∑
j=0

[
E (Cn)⊗m

] j
< ∞, (27)

and hence ρ
[
E
(
C⊗m

n

)]
< 1. ■

5 Conclusion

We have shown that the INARCH(∞) processes admit solutions that are strictly station-

ary and ergodic. Furthermore, we have proven that the process exhibits higher order

13



moments under certain conditions. These results are crucial for proving the asymptotic

normality of the conditional maximum likelihood estimates of the parameters in models.
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