

AMTLICHE MITTEILUNGEN

VERKÜNDUNGSBLATT DER UNIVERSITÄT PADERBORN AM.UNI.PB

AUSGABE 11.24 VOM 11. APRIL 2024

BESONDERE BESTIMMUNGEN DER PRÜFUNGSORDNUNG FÜR DEN MASTERSTUDIENGANG OPTOELECTRONICS AND PHOTONICS DER FAKULTÄT FÜR NATURWISSENSCHAFTEN AN DER UNIVERSITÄT PADERBORN

VOM 11. APRIL 2024

Besondere Bestimmungen der Prüfungsordnung für den Masterstudiengang Optoelectronics and Photonics der Fakultät für Naturwissenschaften an der Universität Paderborn

vom 11. April 2024

Aufgrund des § 2 Absatz 4 und des § 64 Absatz 1 des Gesetzes über die Hochschulen des Landes Nordrhein-Westfalen (Hochschulgesetz – HG) vom 16. September 2014 (GV.NRW. S. 547), zuletzt geändert durch Artikel 2 des Gesetzes vom 5. Dezember 2023 (GV. NRW. S. 1278), hat die Universität Paderborn folgende Ordnung erlassen:

Inhalt

§ 31 Allgemeine und Besondere Bestimmungen	
§ 32 Erwerb von Kompetenzen und Sprachenregelung	
§ 33 Akademischer Grad	
§ 34 Studienbeginn	
§ 35 Zugangsvoraussetzungen	
§ 36 Gliederung, Studieninhalte, Module	
§ 37 Teilnahmevoraussetzungen, Zulassung	5
§ 38 Prüfende	6
§ 39 Leistungen in den Modulen	6
§ 40 Masterarbeit	7
§ 41 Gesamtnote	7
§ 42 Zusatzleistungen	
§ 43 Übergangsbestimmungen	7
§ 44 Inkrafttreten, Außerkrafttreten und Veröffentlichung	7
Anhang 1: Exemplarischer Studienverlaufsplan	9
Anhang 2: Modulbeschreibungen	13

§ 31 Allgemeine und Besondere Bestimmungen

Diese Besonderen Bestimmungen gelten in Verbindung mit den Allgemeinen Bestimmungen für die Prüfungsordnungen der Masterstudiengänge der Fakultät für Naturwissenschaften an der Universität Paderborn in der jeweils geltenden Fassung (Allgemeine Bestimmungen). Für einen sachgerechten Aufbau des Studiums befindet sich im Anhang ein Studienverlaufsplan. Einzelheiten zu den Modulen können den Modulbeschreibungen im Anhang entnommen werden, die Teil dieser Besonderen Bestimmungen sind.

§ 32 Erwerb von Kompetenzen und Sprachenregelung

- (1) Das Studium im Rahmen des Masterstudiengangs Optoelectronics and Photonics vermittelt Kandidatinnen und Kandidaten vertiefte physikalische und ingenieurwissenschaftliche Grundlagen sowie spezielle Kenntnisse, Fähigkeiten und Methoden im Studienfach Optoelectronics and Photonics. Das Studium vermittelt den Studierenden neben den allgemeinen Studienzielen des § 58 Absatz 1 HG die Fähigkeit, in ihrer Arbeit die wissenschaftlichen Methoden des Studienfachs Optoelectronics and Photonics anzuwenden und weiterzuentwickeln und unter Berücksichtigung der Auswirkungen des technologischen Wandels verantwortlich zu handeln. Das Studium besteht aus einer Kombination von Lehrveranstaltungen (überwiegend im ersten Studienjahr), an denen die Studierenden teilnehmen, sowie praxisnahen und forschungsnahen Anteilen (überwiegend im zweiten Studienjahr), die die Studierenden für eine selbstständige forschende Tätigkeit im Bereich optischer Technologien zielgerichtet und fokussiert ausbilden. Aufbauend auf der exemplarischen Behandlung der Grundlagen und Anwendungen anhand der zukunftsweisenden Paderborner Forschungsgebiete wird insgesamt eine breite Einsetzbarkeit der Absolventen in vielen Bereichen moderner optischer Technologien und optoelektronischer Informationsverarbeitung erreicht. Diese Anwendungs- und Technologieorientierung wird besonders auch durch die interdisziplinäre Ausrichtung des Studienganges mit wesentlichen naturwissenschaftlichen ingenieurwissenschaftlichen Anteilen unterstützt. Durch die Masterprüfung soll festgestellt werden, ob die Studierenden die inhaltlichen Grundlagen des Studienfachs Optoelectronics and Photonics beherrschen und einen systematischen Überblick sowie ein methodisches Instrumentarium für eine selbstständige forschende Tätigkeit im Bereich des Studienfachs Optoelectronics and Photonics und seiner technologischen Anwendungen erworben haben.
- (2) Masterstudium und Masterprüfung finden in englischer Sprache statt.

§ 33 Akademischer Grad

Aufgrund des erfolgreichen Abschlusses des Masterstudiums wird der akademische Grad "Master of Science" (M.Sc.) verliehen.

§ 34 Studienbeginn

Das Studium kann zum Wintersemester aufgenommen werden.

§ 35 Zugangsvoraussetzungen

- (1) Das Studium setzt in Umsetzung des § 5 Absatz 1 Nr. 2 b) der Allgemeinen Bestimmungen einen Studienabschluss voraus, der nachfolgend beschriebene Kompetenzen beinhaltet:
 - Physikalische Grundlagen: Beherrschung der physikalischen Grundlagen in den Gebieten der Halbleiterphysik und Halbleiterbauelemente, der Elektrodynamik, der Wellenoptik sowie grundlegender spektroskopischer Techniken, der Quantentheorie, verbunden mit der Fähigkeit zur Modellbildung und abstrakten mathematischen Formulierung physikalischer Sachverhalte.
 - Praktika: Erkennen und Extrahieren wesentlicher physikalischer Zusammenhänge anhand selbst durchgeführter Experimente, Protokollierung und kritische Auswertung der Versuchsergebnisse.
 - Höhere Mathematik: Beherrschung der grundlegenden mathematischen Konzepte und Methoden, die zum Verständnis und zur Lösung von Problemen im Masterstudium Optoelectronics and Photonics benötigt werden. Hierbei handelt es sich um fundierte Kenntnisse in den Bereichen Lineare Algebra, Analysis, Fourier-Reihen, Differentialgleichungen, Vektoranalysis.

Die Feststellung über die Voraussetzungen trifft der Prüfungsausschuss.

- (2) Der Studienabschluss muss mit einer Gesamtnote von mindestens 3,0 (oder einer äquivalenten ausländischen Abschlussnote) erfolgt sein.
- (3) Fehlen Anforderungen, so kann die Einschreibung mit der Auflage erfolgen, die Anforderungen durch angemessene Studien nachzuholen und durch das Bestehen zugehöriger Prüfungen bis zur Meldung zur Masterarbeit nachzuweisen. Die Entscheidung hierüber sowie über Art und Umfang der Studien und Prüfungen trifft der Prüfungsausschuss auf der Grundlage des vorangegangenen Studienabschlusses. Dabei können auch außerhalb des Studienabschlusses erfolgreich erbrachte Prüfungsleistungen Berücksichtigung finden. Die fehlenden und nachzuholenden Studien dürfen 30 Leistungspunkte nicht überschreiten. Die Studien und Prüfungen sollten im ersten Semester des Masterstudiengangs erbracht werden.
- (4) Über die in § 5 Absatz 1 der Allgemeinen Bestimmungen genannten Voraussetzungen hinaus bestehen folgende weitere Zugangsvoraussetzungen:
 - Fremdsprachenkenntnisse in Englisch auf dem Niveau B2 des gemeinsamen europäischen Referenzrahmens für Sprachen (GER) sind erforderlich. Die Englischkenntnisse sind wie folgt nachzuweisen:
 - Bachelorabschluss im englischsprachigen Ausland oder in einem als englischsprachig akkreditierten, inländischen Studiengang oder
 - b. Test of English as Foreign Language (TOEFL) "internet-based" Test (iBT, inklusive Home Edition und Paper Edition) mit einem Ergebnis von mindestens 80 Punkten oder
 - c. IELTS-Test mit einem Ergebnis von mindestens 6.0 oder
 - d. Cambridge Test First Certificate in English (FCE) oder
 - e. durch im Niveau gleichwertige Tests oder
 - f. entsprechende schulische Vorbildung.

Als ausländische Studienbewerberin bzw. ausländischer Studienbewerber, die bzw. der nicht durch oder aufgrund völkerrechtlicher Verträge Deutschen gleichgestellt ist, ist ihre bzw. seine Studierfähigkeit durch die Ergebnisse eines GRE Revised General Test nachzuweisen. Erforderlich

sind in der Regel mindestens 157 Punkte im Teil "Quantitative Reasoning" und mindestens 4,5 Punkte im Teil "Analytical Writing" des GRE Revised General Test. Bei einer guten oder sehr guten Abschlussnote des Abschlusses gemäß § 5 Absatz 1 Nr. 2 ist der Nachweis des GRE Revised General Test nicht erforderlich. Studienbewerberinnen und Studienbewerber mit einer deutschen Hochschulzugangsberechtigung sind vom Nachweis der Studierfähigkeit ausgenommen.

- (5) Deutsche Sprachkenntnisse sind abweichend von § 5 Absatz 1 Nr. 3 der Allgemeinen Bestimmungen nicht erforderlich.
- (6) Für den Fall, dass die Studienbewerberin bzw. der Studienbewerber in dem bisherigen Studiengang an einer Hochschule im Geltungsbereich des Grundgesetzes eine nach der Prüfungsordnung erforderliche Prüfung endgültig nicht bestanden hat und der bisherige Studiengang eine erhebliche inhaltliche Nähe zu dem Masterstudiengang Optoelectronics and Photonics aufweist, wird die Einschreibung unter den Voraussetzungen des § 5 Absatz 3 der Allgemeinen Bestimmungen versagt.

§ 36 Gliederung, Studieninhalte, Module

Im Masterstudiengang Optoelectronics and Photonics sind folgende Module zu absolvieren:

- aus der Modulgruppe Fundamentals of Optoelectronics:
 Modul Analysis and Design of Electronic Circuits (6 LP) (Pflichtmodul)
 Modul Modelling and Simulation (6 LP) (Pflichtmodul)
- aus der Modulgruppe Core Subjects I:
 Modul Optoelectronic Semiconductor Devices (6 LP) (Pflichtmodul)
 Modul Computational Optoelectronics and Photonics I (6 LP) (Pflichtmodul)
- aus der Modulgruppe Core Subjects II:
 Modul Electromagnetic Waves and Waveguides (9 LP) (Pflichtmodul)
 Modul Integrated Optics and Photonics (6 LP) (Pflichtmodul)
- Modul Lab Courses (5 LP) (Pflichtmodul)
- Vier Module aus Modulgruppe Specialization (Wahlpflichtmodule) (je 6 LP)
- Modul Topics in Optoelectronics and Photonics (4 LP) (Pflichtmodul)
- Modul General Studies (4 LP) (Wahlpflichtmodul)
- Modul Lab Project (14 LP) (Pflichtmodul)
- Modul Master Thesis (30 LP) (Pflichtmodul)

§ 37 Teilnahmevoraussetzungen, Zulassung

- (1) Teilnahmevoraussetzungen für ein Modul gemäß § 7 Absatz 2 Satz 5 der Allgemeinen Bestimmungen regeln die Modulbeschreibungen.
- (2) Zur Masterarbeit kann nur zugelassen werden, wer zum Zeitpunkt des Antrags auf Zulassung das Modul Lab Project erfolgreich abgeschlossen hat, mindestens 74 LP erreicht hat und im Falle der Einschreibung unter Auflagen gemäß § 35 Absatz 2 das Bestehen der zugehörigen Prüfungen nachgewiesen hat.
- (3) Weitere Voraussetzungen für die Teilnahme an Prüfungen gemäß § 12 Absatz 2 der Allgemeinen Bestimmungen werden in den Modulbeschreibungen geregelt.

§ 38 Prüfende

Der Kreis der Prüfenden kann im Rahmen des § 65 HG erweitert werden.

§ 39 Leistungen in den Modulen

- (1) In den Modulen sind Leistungen nach Maßgabe der Modulbeschreibungen zu erbringen.
- (2) Prüfungsleistungen werden gemäß § 15 der Allgemeinen Bestimmungen in Form von Klausuren, mündlichen Prüfungen oder in anderen Formen erbracht. Folgende andere Formen sind insbesondere vorgesehen:
 - 1. Referat:

Referate sind Präsentationen über ein selbstständig erarbeitetes Thema im thematischen Umfeld einer Lehrveranstaltung. Dabei sollen die Studierenden nachweisen, dass sie zur Recherche und wissenschaftlichen Ausarbeitung eines vorgegebenen Themas in der Lage sind und die Ergebnisse vermitteln können. Das Thema wird mit der bzw. dem Lehrenden abgesprochen.

2. Gesamtheit der Versuche:

Ein Versuch umfasst die Vorbereitung (inklusive Literaturrecherchen), die Durchführung (inklusive Reflexionen zu Kommentaren der Betreuer), die schriftliche Ausarbeitung (Praktikumsbericht von ca. 10 Seiten ohne Anhänge, inklusive Literaturrecherchen), die Präsentation und ein Gespräch über die schriftliche Ausarbeitung von ca. 15 Minuten. Es wird eine Note für die Gesamtheit der schriftlichen Ausarbeitungen (einschließlich der Präsentationen und Gespräche) Versuche vergeben. Die schriftlichen Ausarbeitungen (einschließlich der Präsentationen und Gespräche) der Versuche werden im gleichen Verhältnis bei der Bewertung der Prüfung berücksichtigt.

3. In den Praktika sollen die Kandidatinnen und Kandidaten nachweisen, dass sie eine experimentelle Aufgabe angemessen vorbereiten, unter Berücksichtigung von Sicherheitsaspekten durchführen, auswerten und dokumentieren können. Um die Zusammenarbeit zu üben und aus Sicherheitsaspekten, werden die Versuche in der Regel in Kleingruppen von zwei bis vier Studierenden gemeinsam durchgeführt. Es besteht eine verpflichtende Teilnahme an den Praktikumstagen.

Vor Beginn des jeweiligen Versuches überzeugt sich die bzw. der Betreuende, ob die Vorbereitung der Studierenden ausreicht, um den Versuch erfolgreich und sicher durchführen zu können. Ist dies nicht der Fall, so kann der Versuch erst zu einem späteren Termin durchgeführt werden.

Näheres regeln die Modulbeschreibungen. Sofern in den Modulbeschreibungen Rahmenvorgaben enthalten sind, setzt die bzw. der jeweilige Lehrende fest, was im Rahmen qualifizierter Teilnahme konkret zu erbringen ist. Dies wird spätestens in den ersten drei Wochen der Vorlesungszeit von der bzw. dem jeweiligen Lehrenden und im Campus Management System der Universität Paderborn oder in sonstiger geeigneter Weise bekannt gegeben.

(3) Die Dauer einer Klausur beträgt 60 bis 180 Minuten.

Die Dauer einer mündlichen Prüfung beträgt 30-45 Minuten.

Die Dauer eines Referats beträgt ca. 30 Minuten.

Näheres regeln die Modulbeschreibungen.

- (4) Im Rahmen qualifizierter Teilnahme kommt in Betracht:
 - Kurzklausur (15 45 Minuten)

Näheres regeln die Modulbeschreibungen. Sofern in den Modulbeschreibungen Rahmenvorgaben enthalten sind, setzt die bzw. der jeweilige Lehrende fest, was im Rahmen qualifizierter Teilnahme konkret zu erbringen ist. Dies wird spätestens in den ersten drei Wochen der Vorlesungszeit von der bzw. dem jeweiligen Lehrenden und im Campus Management System der Universität Paderborn oder in sonstiger geeigneter Weise bekannt gegeben.

§ 40 Masterarbeit

- (1) Die Masterarbeit soll einen Umfang von 50 bis 70 Seiten (ohne Anhänge) haben. Die Bearbeitungszeit für die Masterarbeit beträgt 5 Monate.
- (2) Eine mündliche Verteidigung gemäß § 19 der Allgemeinen Bestimmungen ist erforderlich. Die mündliche Verteidigung dauert 30-45 Minuten. Masterarbeit und mündliche Verteidigung haben eine Gewichtung von 5:1 bei der Bildung der Note für das Abschlussmodul.

§ 41 Gesamtnote

Die Gesamtnote wird gemäß § 21 der Allgemeinen Bestimmungen gebildet.

§ 42 Zusatzleistungen

Studierende können Zusatzleistungen gemäß § 20 der Allgemeinen Bestimmungen in nicht teilnehmerbegrenzten Modulen des Studiengangs erbringen.

§ 43 Wiederholung von Prüfungsleistungen

Die Anzahl der Prüfungsversuche gemäß § 22 Absatz 1 der Allgemeinen Bestimmungen ist auf vier begrenzt.

§ 44 Übergangsbestimmungen

- (1) Diese Prüfungsordnung gilt für alle Studierenden, die erstmalig ab dem Wintersemester 2024/25 für den Masterstudiengang Optoelectronics and Photonics der Fakultät für Naturwissenschaften an der Universität Paderborn eingeschrieben werden.
- (2) Studierende, die vor dem Wintersemester 2024/2025 an der Universität Paderborn für den Masterstudiengang Optoelectronics and Photonics eingeschrieben worden sind, können ihre Bachelorprüfung einschließlich Wiederholungsprüfungen letztmalig im Sommersemester 2027 nach der Prüfungsordnung für den Masterstudiengang Optoelectronics and Photonics der Fakultät für Naturwissenschaften an der Universität Paderborn vom 16. Juni 2017 (AM.Uni.Pb. 49.17), zuletzt geändert durch Satzung vom 30. Oktober 2018 (AM.Uni.Pb 54.18), ablegen. Ab dem Wintersemester

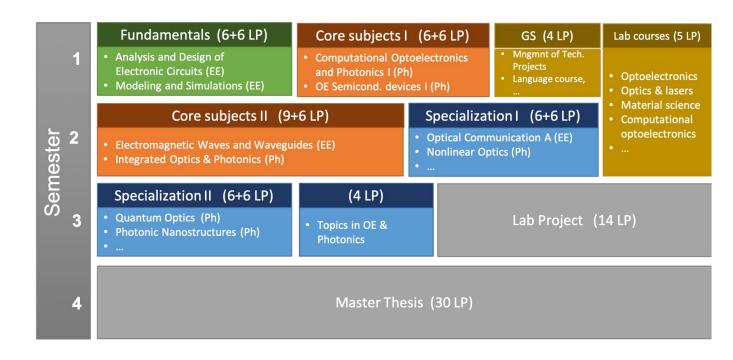
- 2027/2028 wird die Masterprüfung einschließlich Wiederholungsprüfungen nach dieser Prüfungsordnung abgelegt.
- (3) Auf Antrag beim Prüfungsausschuss können Studierende in diese Prüfungsordnung wechseln. Der Wechsel ist unwiderruflich.

§ 45 Inkrafttreten, Außerkrafttreten und Veröffentlichung

- (1) Die Besonderen Bestimmungen treten am 1. Oktober 2024 in Kraft.
- (2) Die Besonderen Bestimmungen werden in den Amtlichen Mitteilungen der Universität Paderborn (AM.Uni.Pb.) veröffentlicht.
- (3) Mit Inkrafttreten dieser Besonderen Bestimmungen treten die Besonderen Bestimmungen der Prüfungsordnung für den Masterstudiengang Optoelectronics and Photonics der Fakultät für Naturwissenschaften an der Universität Paderborn in der Fassung vom 30. Oktober 2018 außer Kraft. § 44 bleibt unberührt.
- (3) Gemäß § 12 Absatz 5 HG kann nach Ablauf eines Jahres seit der Bekanntmachung dieser Ordnung gegen diese Ordnung die Verletzung von Verfahrens- oder Formvorschriften des Hochschulgesetzes oder des Ordnungs- oder des sonstigen autonomen Rechts der Hochschule nicht mehr geltend gemacht werden, es sei denn,
 - 1. die Ordnung ist nicht ordnungsgemäß bekannt gemacht worden,
 - 2. das Präsidium hat den Beschluss des die Ordnung beschließenden Gremiums vorher beanstandet,
 - 3. der Form- oder Verfahrensmangel ist gegenüber der Hochschule vorher gerügt und dabei die verletzte Rechtsvorschrift und die Tatsache bezeichnet worden, die den Mangel ergibt, oder
 - 4. bei der öffentlichen Bekanntmachung der Ordnung ist auf die Rechtsfolge des Rügeausschlusses nicht hingewiesen worden.

Ausgefertigt aufgrund des Beschlusses des Fakultätsrates der Fakultät für Naturwissenschaften vom 3. Mai 2023 sowie nach Prüfung der Rechtmäßigkeit durch das Präsidium der Universität Paderborn vom 28. Juni 2023.

Paderborn, den 11. April 2024


Die Präsidentin der Universität Paderborn

Professorin Dr. Birgitt Riegraf

Anhang 1: Studienverlaufsplan

Semester	Modul oder Modulgruppe	Modul	LP	Workload (h)
1.	Fundamentals	Analysis and Design of Electronic Circuits	6	180
	Fundamentals	Modelling and Simulations	6	180
	Core Subjects I	Optoelectronic Semiconductor Devices	6	180
	Core Subjects I	Computational Optoelectronics and Photonics I	6	180
	Lab courses	Lab courses	3	90
	General Studies	General Studies	4	120
Summe			31	930
2.	Core Subjetcs II	Integrated Optics and Photonics	6	180
	Core Subjects II	Electromagnetic Waves and Waveguides	9	270
	Specialization I	1 Modul aus Wahlangebot	6	180
	Specialization I	1 Modul aus Wahlangebot	6	180
	Lab courses	Lab courses	2	60
Summe			29	870
3.	Specialization II	1 Modul aus Wahlangebot	6	180
	Specialization II	1 Modul aus Wahlangebot	6	180
	Topics in Optoelectronics and Photonics	Topics in Optoelectronics and Photonics	4	120
	Lab Project	Lab Project	14	420
Summe			30	900
4.	Thesis	Master Thesis	30	900
Summe			30	900

Der Studienverlaufsplan gilt als Empfehlung und Orientierung und kann individuell anders Zusammengestellt werden. Zu beachten sind dabei die Voraussetzungen zur Belegung bestimmter Module nach den Modulbeschreibungen.

Universität Paderborn AM 11.24	Seite 11 von 67	
Modulübersicht Master		
Modulgruppe Fundamentals of Optoelectronics	SWS	Leistungspunkte
Analysis and Design of Electronic Circuits	V 2; Ü 2	6
Modelling and Simulation	V 2; Ü 2	6
Modulgruppe Core Subjects I	sws	Leistungspunkte
Optoelectronic Semiconductor Devices	V 2; Ü 2	6
Computational Optoelectronics and Photonics I	V 2; Ü 2	6
	sws	Leistungspunkte
Modulgruppe Core Subjects II		
Integrated Optics and Photonics	V 2; Ü 2	6
Electromagnetic Waves and Waveguides	V 2; Ü 4	9
Modulgruppe Specialization in Optoelectronics and Photonics	SWS	Leistungspunkte
Im SS angeboten:		
Nonlinear Optics	V 2; Ü 2	6
Optical Communication A	V 2; Ü 2	6
Optical Communication B	V 2; Ü 2	6
Computational Optoelectronics & Photonics II	V 2; Ü 2	6
Quantum Communication and Information	V 2; Ü 2	6
Optics of Solid-State Systems and Nanostructures	V 2; Ü 2	6
Quantum Information Theory	V 2; Ü 2	6
Theoretical Quantum Optics	V 2; Ü 2	6
Sensor Technology	V 2; Ü 2	6
Optical Waveguide Theory	V 2; Ü 2	6
Quantum Electronics	V 2; Ü 2	6
Im WS angeboten:		

Optical Waveguide Theory	V 2; Ü 2	6
Quantum Electronics	V 2; Ü 2	6
Im WS angeboten:		
Quantum Optics	V 2; Ü 2	6
Physics and Technology of Nanomaterials	V 3; Ü 1	6
Fast Integrated Circuits for Wireline Communications	V 2; Ü 2	6
Data Science for Dynamical Systems	V 2; Ü 2	6
Photonic Nanostructures	V 2; Ü 2	6
Semiconductor Heterostructures: Fundamentals and Applications	V 2; Ü 2	6

Weitere Module	SWS	Leistungspunkte
Lab Courses	P 4	5
Topics in Optoelectronics & Photonics	S 2	4
Lab Project		14
Master Thesis (Masterarbeit inkl. Kolloquium)		30
General Studies, aus dem Lehrangebot der Universität Paderborn		4

Anhang 2: Modulbeschreibungen

Analysis and Design of Electronic Circuits

Analysis and Design of Electronic Circuits

Modulgruppe:	Workload (h):	LP:	Studiensemester:	Turnus:	Dauer (in	Sprache:	P/WP:
Fundamendals	180	6	1.	Jedes WS	Sem.):	eng	Р
					1		

1 Modulstruktur:

	Lehrveranstaltung	Lehr- form	Kontakt- zeit (h)	Selbst- studium (h)	Status (P/WP)	Gruppen- größe (TN)
a)	Analysis and Design of Electronic Circuits	V	30	60	Р	50
b)	Analysis and Design of Electronic Circuits	Ü	30	60	Р	50

2 Wahlmöglichkeiten innerhalb des Moduls:

keine

3 Teilnahmevoraussetzungen:

Keine

Empfohlen:

Gute Kenntnisse in Differentialgleichungen, Laplace-Transformation, Fourier-Transformation, Analyse elektrischer Netze (Kirchhoffsche Gesetze, Norton-Äquivalent, Thevenin-Äquivalent, Übertragungsfunktionen, Bode-Diagramm usw.), Physik der Halbleiterbauelemente (Banddiagramm, Leitungsmechanismen in Halbleitern, Minoritäts- und Majoritätsladungsträger, Physik des pn-Übergangs, Physik der MOS-Kapazität)), Physik von Halbleiterbauelementen (Band- diagramm, Leitungsmechanismen in Halbleitern, Minoritäts- und Majoritätsladungsträger, n-Typ-, p-Typ-Halbleiter, Physik des pn-Übergangs, Physik der MOS-Kapazität), Halbleiterbauelemente (physikalische Funktionsweise und Bauelementgleichungen von pn-Diode, MOS-Transistor und bipolarem Transistor), grundlegende Kenntnisse der Digitaltechnik (boolesche Algebra, Wahrheitstabellen, kombinatorische Logik)

4 Inhalte:

Die Vorlesung gibt eine Einführung in die Analyse und den Entwurf von analogen und digitalen Schaltungen und Systemen. Sie baut auf den Grundkenntnissen der elektronischen Bauelemente (Bachelor-Niveau) auf. Die Vorlesung stellt einen modernen Ansatz zur Analyse und zum Entwurf elektronischer Schaltungen und Systeme vor, der mathematische Analyse und Schaltungssimulation kombiniert. Inhalte

- Nichtlineare Großsignalmodellierung von pn-Diode, Bipolar Junction Transistor (BJT) und MOS-Transistor
- Nichtlineare Großsignalanalyse von Schaltungen mit Dioden, BJTs und MOS-Transistoren
- Lineare Modellierung und Ein-/Zwei-Tor-Darstellung von Dioden, Transistoren und Verstär- kern
- Lineare Kleinsignalanalyse von BJT- und MOS-Transistor-Verstärkern
- Analyse von Einzeltransistorverstärkern

- Analyse von Differenzialverstärkern
- Modellierung und Analyse von Operationsverstärkerschaltungen
- CMOS-Logik
- Analyse und Entwurf von kombinatorischen Logikschaltungen
- Analyse und Entwurf von sequentiellen Logikschaltungen
- Anwendungsbeispiele

5 Lernergebnisse (learning outcomes) / Kompetenzen:

Die Studierenden sind in der Lage

- geeignete Methoden zur Analyse und zum Entwurf von analogen Systemen zu beschreiben
- geeignete Methoden für die Analyse und den Entwurf digitaler Systeme zubeschreiben
- die Grenzen der verschiedenen Methoden zu beurteilen
- das Verhalten von einfachen analogen und digitalen Schaltungen zu verstehen und zu berechnen
- ein numerisches Simulationswerkzeug (SPICE) für elektronische Systeme und Schaltungssimulationen anzuwenden
- typische Komponenten und Subsysteme beschreiben

Schlüsselqualifikationen:

Die Vorlesung vermittelt Kompetenzen im Bereich des Zusammenspiels verschiedener Modellierungstechniken, mathematischer Analyseansätze und numerischer Simulation sowie deren effektive Anwendung für den Entwurf elektronischer Systeme. Die Methoden für den analogen Elektronikentwurf sind übertragbar auf den Entwurf zeit- und amplitudenkontinuierlicher Systeme. Die Methoden für den digitalen Entwurf sind übertragbar auf den Entwurf zeit- und amplitudendiskreter Systeme.

6 Prüfungsleistung:

[X] Modulabschlussprüfung (MAP) [] Modulprüfung (MP) [] Modulteilprüfungen (MTP)

zu	Prüfungsform	Dauer bzw. Umfang	Gewichtung für die Modulnote
a) und	Klausur oder	120–180 Min.	100%
b)	Mündliche Prüfung oder	30–45 Min. 30	
	Referat	Min.	

7 Studienleistung / qualifizierte Teilnahme:

keine

8 Voraussetzungen für die Teilnahme an Prüfungen:

keine

9 Voraussetzungen für die Vergabe von Leistungspunkten:

Die Vergabe der Leistungspunkte erfolgt, wenn die Modulabschlussprüfung bestanden ist.

10 Gewichtung für Gesamtnote:

Das Modul wird mit der Anzahl seiner Leistungspunkte gewichtet (Faktor: 1).

11 Verwendung des Moduls in anderen Studiengängen:

Das Modul wird auch im Masterstudiengang Electrical Systems Engineering und Masterstudiengang Computer Engineering verwendet.

12 Modulbeauftragte/r:

Prof. Dr.-Ing. J. Christoph Scheytt

13 Sonstige Hinweise:

Lehrveransatltungs-Homepage

https://www.hni.uni-paderborn.de/en/system-and-circuit-technology/teaching/ circuit-and-system-design/ Methodische Umsetzung

- Vorlesung mit Powerpoint-Präsentation und händischen mathematischen Ableitungen über Tablet und Beamer
- Ein Teil der Übungen als handschriftliche Rechenaufgaben mit Tablet und Beamer
- Der zweite Teil der Übungen als praktische Entwurfsaufgaben unter Verwendung der LTspice-Simulation

Lernmaterialien, Literaturangaben

Vorlesungsfolien und Videos; Übungsfolien. Zusätzliche Literaturhinweise werden in der ersten Vorlesung gegeben

- Richard C. Jaeger, Travis N. Blalock, "Microelectronic Circuit Design", McGraw Hill, 4th edition, 2010
- Neil H. E. Weste, David Money Harris, "CMOS VLSI Design", Addison Wesley, 4th edition, 2010

Modelling and Simulation

Modelling and Simulation

Modulgruppe:	Workload (h):	LP:	Studiensemester:	Turnus:	Dauer (in	Sprache:	P/WP:
Fundamendals	180	6	1.	Jedes WS	Sem.):	eng	Р
					1		

1 Modulstruktur:

	Lehrveranstaltung	Lehr- form	Kontakt- zeit (h)	Selbst- studium (h)	Status (P/WP)	Gruppen- größe (TN)
a)	Modelling and Simulation	٧	30	60	Р	100
b)	Modelling and Simulation	Ü	30	60	Р	100

2 Wahlmöglichkeiten innerhalb des Moduls:

keine

3 Teilnahmevoraussetzungen:

Keine

Empfohlen:

- Vorkenntnisse in der Programmierung in Matlab werden vorausgesetzt
- Kenntnisse in Mathematik und Physik auf dem Niveau der Hochschulreife

4 Inhalte:

In dieser Vorlesung werden Techniken zur Konstruktion von Modellen und Simulationen technischer Systeme vorgestellt und umgesetzt.

Inhalt

- Einführung in den Modellierungsprozess
- Zahlendarstellung in Digitalrechnern
- Numerische Schemata für gewöhnliche Differentialgleichungen
- Numerische Methoden für partielle Differentialgleichungen
- Diskrete Simulationen

5 Lernergebnisse (learning outcomes) / Kompetenzen:

Nach dem Besuch des Kurses sind die Studierenden in der Lage

- Modellierungsschemata und numerische Methoden einzuordnen und zu analysieren
- numerische Methoden für technisch-physikalische Systeme zu identifizieren und anzuwenden
- die erzielten Ergebnisse zu veranschaulichen und physikalisch zu bewerten
- numerische Algorithmen zu erweitern, zu entwickeln und zu validieren

6		Prüfungsleistung:						
	[X] Modula	abschlussprüfung (MAP) [] Modulprüfung (MP)	[] Modulteilprüfung	gen (MTP)				
	zu	Prüfungsform	Dauer bzw. Umfang	Gewichtung für die Modulnote				
	a) und	Klausur oder	120–180 Min.	100%				
	b)	Mündliche Prüfung	30–45 Min.					
		oder Referat	30 Min.					
7	Studienle	istung / qualifizierte Teilnahme:		_				
	keine							
8	Vorausse	tzungen für die Teilnahme an Prüfungen:						
	keine							
9	Vorausse	tzungen für die Vergabe von Leistungspunkten:						
	Die Verga	be der Leistungspunkte erfolgt, wenn die Modulabschlussp	orüfung bestanden ist.					
10	Gewichtu	ng für Gesamtnote:						
	Das Modu	l wird mit der Anzahl seiner Leistungspunkte gewichtet (Fa	aktor: 1).					
11	Verwendu	ung des Moduls in anderen Studiengängen:						
	Das Modu	l wird auch im Masterstudiengang Electrical Systems Engi	neering verwendet.					
12	Modulbea	nuftragte/r:						
	Prof. Dr. Jens Förstner							
13	Sonstige Hinweise: Implementierung Die theoretischen Konzepte werden in Form von Vorlesungen vermittelt. Die Übungen bestehen aus einfachen Diskussionsfragen sowie klassischen mathematischen Problemen, die von den Studierenden selbstständig gelöst werden sollen. Darüber hinaus werden die Studierenden für ausgewählte Themen selbst geschriebene sowie kommerzielle Software einsetzen.							

Optoelectronic Semiconductor Devices

Optoelectronic Semiconductor Devices

Modulgruppe:	Workload (h):	LP:	Studiensemester:	Turnus:	Dauer (in	Sprache:	P/WP:
Core Subjects I	180	6	1.	Jedes WS	Sem.):	eng	Р
					1		

1 Modulstruktur:

	Lehrveranstaltung	Lehr- form	Kontakt- zeit (h)	Selbst- studium (h)	Status (P/WP)	Gruppen- größe (TN)
a)	Optoelectronic Semiconductor Devices	V	30	60	Р	bis zu 60
b)	Optoelectronic Semiconductor Devices	Ü	30	60	Р	bis zu 30

2 Wahlmöglichkeiten innerhalb des Moduls:

keine

3 Teilnahmevoraussetzungen:

keine

4 Inhalte:

Der erste Teil der Vorlesung gibt einen Überblick über die Physik der Licht emittierenden Dioden und die statischen Eigenschaften von Halbleiterlasern beginnend bei den festkörperphysikalischen Grundlagen bis hin zum Design und Betrieb der wichtigsten Halbleiter-LED und Laserdioden. Der zweite Teil befasst sich mit den dynamischen Eigenschaften von Halbleiterlasern, ihren spektralen Eigenschaften sowie den Grundlagen verschiedener Halbleiterphotodetektoren.

- Bedeutung optoelektronischer Halbleiterbauelemente
- Licht emittierende Dioden LED
- Laserdiode statische Eigenschaften
- Laserdiode dynamische Eigenschaften
- Optoelektronische Detektoren

5 Lernergebnisse (learning outcomes) / Kompetenzen:

Die Studierenden sollen befähigt werden, die grundlegenden Konzepte der optoelektronischen Halbleiterbauelemente zu verstehen und selbstständig auf Problemstellungen anzuwenden.

- haben fundierte Grundkenntnisse der Licht emittierenden Halbleiterbauelemente wie LEDs und Laserdioden,
- besitzen das physikalische Verständnis der statischen, dynamischen und spektralen Eigenschaften von LEDs und Halbleiterlasern,
- können Grundkenntnisse des Einflusses von Quantenstrukturen auf die Eigenschaften moderner optoelektronischer Halbleiterbauelemente anwenden,
- haben die F\u00e4higkeit, diese Kenntnisse im Design und Betrieb optoelektronischer Halbleiterbauelemente einzusetzen.
- besitzen grundlegende Kenntnisse über die Arbeitsweise und Einsatzfähigkeit von verschiedenen Halbleiterphotodetektoren.

6	Prüfungs	leistung:						
	[X] Modula	abschlussprüfung (MAP)	[] Modulprüfung (MP)	[] Modulteilprüfunç	gen (MTP)			
	zu	Prüfungsform		Dauer bzw. Umfang	Gewichtung für die Modulnote			
	a) und b)	Klausur oder Mündliche Prüfung		120–180 Min. 30–45 Min.	100%			
7	Studienleistung / qualifizierte Teilnahme: keine							
8	Voraussetzungen für die Teilnahme an Prüfungen: keine							
9	Vorausse	tzungen für die Vergabe vor	n Leistungspunkten:					
	Die Verga	be der Leistungspunkte erfolg	t, wenn die Modulabschlussp	orüfung bestanden ist.				
10	Gewichtu	ng für Gesamtnote:						
	Das Modu	l wird mit der Anzahl seiner Le	eistungspunkte gewichtet (Fa	ıktor: 1).				
11	Verwendu	ıng des Moduls in anderen S	Studiengängen:					
	Das Modu	I wird auch im Masterstudieng	gang Physik verwendet.					
12	Modulbeauftragte/r:							
	Prof. Dr. I	Dirk Reuter , Prof. Dr. Donat A	AS					
13	Sonstige	Hinweise:						
	keine							

Computational Optoelectronics and Photonics I

Computational Optoelectronics and Photonics I

Modulgruppe:	Workload (h):	LP:	Studiensemester:	Turnus:	Dauer (in	Sprache:	P/WP:
Core Subjects I	180	6	1.	Jedes WS	Sem.):	eng	Р
					1		

1 Modulstruktur:

	Lehrveranstaltung	Lehr- form	Kontakt- zeit (h)	Selbst- studium (h)	Status (P/WP)	Gruppen- größe (TN)
a)	Computational Optoelectronics and Photonics I	V	30	60	Р	bis zu 60
b)	Computational Optoelectronics and Photonics I	Ü	30	60	Р	bis zu 30

2 Wahlmöglichkeiten innerhalb des Moduls:

keine

3 Teilnahmevoraussetzungen:

keine

4 Inhalte:

- Anwendungsbezogene Einführung in die praxisorientierte numerische Umsetzung mathematischer Probleme und die grafische Aufbereitung berechneter Daten
- Lichtpropagation in nanostrukturierten Festkörpern
- Quantenmechanischer Oszillator im optischen Resonator
- Exzitonen in niederdimensionalen Halbleitersystemen gekoppelt an propagierende Lichtfelder
- Lokalisierte elektronische Zustände und deren Eigenschaften in Nanostrukturen
- Einfache Modelle zur Quantenoptik und Quanteninformation

5 Lernergebnisse (learning outcomes) / Kompetenzen:

- erwerben anhand konkreter Beispiele ein grundlegendes Verständnis für nanostrukturierte Festkörper und ihren Einsatz in photonischen Strukturen,
- können, ausgehend von der mathematischen Beschreibung physikalischer Systeme, die relevanten Gleichungen numerisch abstrakt umsetzen,
- sind in der Lage, unter Anleitung Programmcodes zu entwickeln sowie Softwarepakete zu verwenden, um die in der Vorlesung behandelten Fragestellungen numerisch zu analysieren,
- sind in der Lage, nichtlineare Bewegungsgleichungssysteme unter Anleitung numerisch umzusetzen und zu analysieren,
- können komplexe physikalische Sachverhalte graphisch aufbereiten und die Ergebnisse sinnvoll darstellen.

6	Prüfungsleistung:							
	[X] Modulabschlussprüfung (MAP) [] Modulprüfung (MP) [] Modulteilprüfungen (MTP)							
	zu	Prüfungsform		Dauer bzw. Umfang	Gewichtung für die Modulnote			
	a) und	Klausur oder		120–180 Min.	100%			
	b)	Mündliche Prüfung		30–45 Min.				
7	Studienle	istung / qualifizierte Teilna	hme:					
	keine							
8	Voraussetzungen für die Teilnahme an Prüfungen:							
	keine							
9	Voraussetzungen für die Vergabe von Leistungspunkten:							
	Die Verga	be der Leistungspunkte erfol	gt, wenn die Modulabschlussp	prüfung bestanden ist.				
10	Gewichtu	ng für Gesamtnote:						
	Das Modul wird mit der Anzahl seiner Leistungspunkte gewichtet (Faktor: 1).							
11	Verwendu	ıng des Moduls in anderen	Studiengängen:					
	Das Modu	l wird auch im Masterstudien	igang Physik verwendet.					
12	Modulbea	uftragte/r:						
	Prof. Dr. S	Prof. Dr. Stefan Schumacher, Dr. Matthias Reichelt						
13	Sonstige	Hinweise:						
	keine							

Integrated Optics and Photonics

Integrated Optics and Photonics

Modulgruppe:	Workload (h):	LP:	Studiensemester:	Turnus:	Dauer (in	Sprache:	P/WP:
Core Subjects II	180	6	2.	SS	Sem.):	eng	Р
					1		

1 Modulstruktur:

	Lehrveranstaltung	Lehr- form	Kontakt- zeit (h)	Selbst- studium (h)	Status (P/WP)	Gruppen- größe (TN)
a)	Integrated Optics and Photonics	V	30	60	Р	bis zu 60
b)	Integrated Optics and Photonics	Ü	30	60	Р	bis zu 30

2 Wahlmöglichkeiten innerhalb des Moduls:

keine

3 Teilnahmevoraussetzungen:

keine

4 Inhalte:

- Ausbreitung elektromagnetischer Wellen in optischen Wellenleitern (Wellengleichung, Grenzbedingungen und Modendispersionsrelationen für planare Wellenleiter)
- Ausgewählte Materialien und Herstellungsverfahren (Ionenaustausch in Gläsern und Kristallen, Diffusionswellenleiter in LiNbO₃, epitaktisch hergestellte Wellenleiter in Halbleitermaterialien)
- Theorie gekoppelter Moden (Beschreibung mit Eigenmoden des ungestörten Systems, Beschreibung mit lokalen Normalmoden des Realsystems)
- Elektrooptische Bauelemente (elektrooptischer Effekt in dielektrischen Kristallen, Modulatoren und Schalter)
- Nichtlinear optische Bauelemente

5 Lernergebnisse (learning outcomes) / Kompetenzen:

Den Studierenden sollen die grundlegenden Konzepte der integrierten Optik und Photonik sowie deren Anwendungen vermittelt werden.

- haben die Fähigkeit, Fragestellungen aus dem Bereich der integrierten Optik zu erkennen, zu analysieren und gegenüber der konventionellen klassischen Optik abzugrenzen,
- können die Wellenausbreitung in geführten Strukturen quantitativ beschreiben und diese Beschreibung (näherungsweise) auf verschiedenste Wellenleitergeometrien eigenständig anwenden,
- sind f\u00e4hig, ausgehend von den physikalischen Grundlagen das Funktionsprinzip integrierter optischer Bauelemente zu beschreiben und mit Methoden der Theorie der gekoppelten Moden selbstst\u00e4ndig analytische oder numerische Modellierung einfacher Bauelemente durchzuf\u00fchren,
- können komplexere integrierte optische Strukturen eigenständig analysieren, deren Funktionskomponenten erkennen und deren Funktion beschreiben,
- können sich selbstständig mit aktueller englischsprachiger Fachliteratur zu der Thematik integrierter optischer Bauelemente und photonischer Strukturen beschäftigen.

6	Prüfungsleistung:								
	[X] Modula	bschlussprüfung (MAP) [] Modulprüfung (MP)	[] Modulteilprüfungen (MTP)						
	zu	Prüfungsform	Dauer bzw. Umfang	Gewichtung für die Modulnote					
	a) und b)	Klausur oder Mündliche Prüfung	120–180 Min. 30–45 Min.	100%					
7	Studienleistung / qualifizierte Teilnahme: keine								
8	Voraussetzungen für die Teilnahme an Prüfungen: keine								
9		zungen für die Vergabe von Leistungspunkten: Die der Leistungspunkte erfolgt, wenn die Modulabschlussp	prüfung bestanden ist.						
10		ng für Gesamtnote: wird mit der Anzahl seiner Leistungspunkte gewichtet (Fa	aktor: 1).						
11		ng des Moduls in anderen Studiengängen: wird auch im Masterstudiengang Physik verwendet.							
12	2 Modulbeauftragte/r: Prof. Dr. Christine Silberhorn, Prof. Dr. Tim Bartley								
13	Sonstige Hinweise: keine								

Electromagnetic Waves and Waveguides

Electromagnetic Waves and Waveguides

Modulgruppe:	Workload (h):	LP:	Studiensemester:	Turnus:	Dauer (in	Sprache:	P/WP:
Core Subjects II	270	9	2.	Jedes SS	Sem.):	eng	Р
					1		

1 Modulstruktur:

	Lehrveranstaltung	Lehr- form	Kontakt- zeit (h)	Selbst- studium (h)	Status (P/WP)	Gruppen- größe (TN)
a)	Electromagnetic Waves and Waveguides	V	30	60	Р	50
b)	Electromagnetic Waves and Waveguides	Ü	30	60	Р	50
c)	Electromagnetic Waves and Waveguides - Practical Excercise	Ü	30	60	Р	50

2 Wahlmöglichkeiten innerhalb des Moduls:

keine

3 Teilnahmevoraussetzungen:

Keine

4 Inhalte:

Inhalte der Lehrveranstaltung Electromagnetic Waves and Waveguides

- Wiederholung der Grundlagen: Maxwellsche Gleichungen, konstitutive Beziehungen, Kontinuitätsbedingungen, Energie,
- Grundlagen: Frequenzrau, lineare Materialmodelle, Kramer-Kronig-Relation, Poynting- Theorem
- die Wellengleichung und ihre Lösungen: ebene Wellen, optische Polarisation, Dämpfung, stehende Wellen,
- Dispersion: Phasen- und Gruppengeschwindigkeit, Gruppengeschwindigkeitsdispersion,
- Grenzflächen: Fresnelsche Formeln für normalen und schrägen Einfall, Snellsches Gesetz, Transfermatrixmethode.
- Wellenleiter: Modenklassifikation, Hohlwellenleiter (Rechteck- und axialsymmetrische), planare dielektrische Wellenleiter und optische Fasern, Dämpfung in Wellenleitern, Leitungstheorie, S-Parameter,
- Resonatoren: Grundlagen, Hohlraumresonatoren, Verluste in Resonatoren, dielektrsche Resonatoren
- Abstrahlung von Wellen: Fernfeldnäherung, Dipol- und lineare Antennen, Antennencharakteristika, Antennenarrays
- Anwendung der in der Vorlesung gelehrten Verfahren auf eine konkrete Klassifikations- oder Regressionsaufgabe und Auswertung und Diskussion der erzielten Ergebnisse.

5 Lernergebnisse (learning outcomes) / Kompetenzen:

Fachliche Kompetenz:

Nach dem Besuch des Kurses sind die Studierenden in der Lage

- zeitharmonische elektromagnetische Felder mathematisch zu modellieren
- geeignete analytische Methoden zu identifizieren und anzuwenden
- die erhaltenen Ergebnisse physikalisch zu interpretieren und zu visualisieren
- theoretische Modelle für elektromagnetische Feldprobleme zu erweitern, zu entwickeln und zu validieren

Schlüsselqualifikationen:

Die Studierenden

- lernen, die erworbenen Fähigkeiten auch auf andere Disziplinen zu übertragen
- erweitern ihre Kooperations- und Teamfähigkeit sowie die Präsentationsfähigkeiten im Rahmen der Lösung der Übungsaufgaben
- erlernen Strategien zur Wissensbeschaffung aus Literatur und Internet
- erwerben eine fachspezifische Fremdsprachenkompetenz

6 Prüfungsleistung:

[X] Modulabschlussprüfung (MAP) [] Modulprüfung (MP) [] Modulteilprüfungen (MTP)

zu	Prüfungsform	Dauer bzw. Umfang	Gewichtung für die Modulnote
a) bis	Klausur oder	120–180 Min.	100%
c)	Mündliche Prüfung oder	30–45 Min. 30	
	Referat	Min.	

7 Studienleistung / qualifizierte Teilnahme:

zu	Form	Dauer bzw. Umfang	SL/QT
c)	2 Kurzklausuren	15 – 45 Min.	QT

8 Voraussetzungen für die Teilnahme an Prüfungen:

keine

9 Voraussetzungen für die Vergabe von Leistungspunkten:

Die Vergabe der Leistungspunkte erfolgt, wenn die Modulabschlussprüfung bestanden und die qualifizierte Teilnahme an der Lehrveranstaltung c) des Moduls nachgewiesen ist.

10 Gewichtung für Gesamtnote:

Das Modul wird mit der Anzahl seiner Leistungspunkte gewichtet (Faktor: 1).

11 Verwendung des Moduls in anderen Studiengängen:

Das Modul wird auch im Masterstudiengang Electrical Systems Engineering verwendet.

12 Modulbeauftragte/r:

Prof. Dr. Jens Förstner

13 | Sonstige Hinweise:

Hinweise der Lehrveranstaltung Electromagnetic Waves and Waveguides : Implementierung

Die theoretischen Konzepte werden in Form von Vorlesungen vermittelt. Die Übungen bestehen aus einfachen Diskussionsfragen sowie klassischen Feldproblemen mit mathematischen Lösungen, die von den Studierenden selbständig gelöst werden sollen.

Lehrmittel, Literatur

 Folien und Vorlesungsskripte, zusätzliche Empfehlungen für Lehrbücher werden in der Vorlesung gegeben.

Optical Waveguide Theory

Optical Waveguide Theory

Modulgruppe:	Workload (h):	LP:	Studiensemester:	Turnus:	Dauer (in	Sprache:	P/WP:
Specialization	180	6	2.	SS	Sem.):	eng	WP
					1		

1 Modulstruktur:

	Lehrveranstaltung	Lehr- form	Kontakt- zeit (h)	Selbst- studium (h)	Status (P/WP)	Gruppen- größe (TN)
a)	Optical Waveguide Theory	V	30	60	WP	50
b)	Optical Waveguide Theory	Ü	30	60	WP	50

2 Wahlmöglichkeiten innerhalb des Moduls:

keine

3 Teilnahmevoraussetzungen:

Keine

Empfohlen: Grundlagen der Elektrodynamik (auf Niveau des Kurses "Elektromagnetische Wellen"), Mathematische Grundlagen (Bachelor Niveau).

4 Inhalte:

Kurzbeschreibung

Dielektrische optische Wellenleiter sind Schlüsselelemente heutiger integrierter optischer/photonischer Schaltkreise. Dieser Kurs bietet eine Einführung zur theoretischen Behandlung und eine Grundlage für weitergehende Modellierung, Simulation und Design von Wellenleitern. Inhalt

- Photonik, integrierte Optik, dielektrische Wellenleiter: Beispiele, Motivation.
- Kurze Wiederholung der benötigten mathematischen Hilfsmittel.
- Maxwellgleichung in verschiedenen Formulierungen, Klassen von Problemen.
- Normale Moden in dielektrischen optischen Wellenleitern, Orthogonalität, Vollständigkeit, Streumatrizen, reziproke Schaltkreise.
- Beispiele für dielektrische optische Wellenleiter (Mehrschichtsysteme, integriert-optische Kanäle, Glasfasern), gebogene Wellenleiter, Whispering-Gallery Moden.
- Coupled mode theory in konventioneller kodirektionaler, und hybrid analytischer/numerischer Variante,
 Störungstheorie für optische Wellenleiter.
- Optional: Behandlung von Randbedingungen, Anfangsbedingungen (Strahlpropagations- Methode),
 Wellenleiter-Diskontinuitäten (BEP/QUEP Simulationen), Photonische-Kristall- Wellenleiter und -Fasern,
 plasmonische Wellenleiter.

5 Lernergebnisse (learning outcomes) / Kompetenzen:

Fachkompetenz:

Die Studierenden sind nach dem Besuch der Lehrveranstaltung in der Lage,

- Systeme der integrierten Optik und Photonik mathematisch zu formulieren (Modellbildung, Analysieren)
- Analytische Lösungsmethoden und Näherungsverfahren zu identifizieren, anzuwenden und zu validieren (Anwenden, Synthetisieren, Evaluieren)
- die gewonnenen Ergebnisse zu veranschaulichen und physikalisch zu bewerten (Evaluieren)
- theoretische Modelle für Systeme der integrierten Optik und Photonik zu entwickeln und deren Gültigkeit zu validieren (Synthetisieren, Evaluieren) Fachübergreifende Kompetenzen:

Die Studierenden

- lernen, die erworbenen Kenntnisse und Fertigkeiten disziplinübergreifend einzusetzen (Elemente der Elektrotechnik, Physik und Mathematik werden angesprochen),
- erweitern ihre Kooperations- und Teamfähigkeit sowie Präsentationskompetenz bei der Bearbeitung von Übungsaufgaben und der Vorstellung und Diskussion ihrer eigenen Lösungen,
- erlernen Strategien zum Wissenserwerb durch Literaturstudium und Internetnutzung,
- erwerben weitere fachbezogene Fremdsprachenkompetenz.

g:

[X] Modulabschlussprüfung (MAP) [] Modulprüfung (MP) [] Modulteilprüfungen (MTP)

zu	Prüfungsform	Dauer bzw. Umfang	Gewichtung für die Modulnote
a) und	Klausur oder	120–180 Min.	100%
b)	Mündliche Prüfung	30–45 Min.	
	oder Referat	30 Min.	

7 Studienleistung / qualifizierte Teilnahme:

keine

8 Voraussetzungen für die Teilnahme an Prüfungen:

keine

9 Voraussetzungen für die Vergabe von Leistungspunkten:

Die Vergabe der Leistungspunkte erfolgt, wenn die Modulabschlussprüfung bestanden ist.

10 Gewichtung für Gesamtnote:

Das Modul wird mit der Anzahl seiner Leistungspunkte gewichtet (Faktor: 1).

11 Verwendung des Moduls in anderen Studiengängen:

Das Modul wird auch im Masterstudiengang Electrical Systems Engineering verwendet.

12 Modulbeauftragte/r:

Dr. Manfred Hammer

13 Sonstige Hinweise:

Hinweise der Lehrveranstaltung Optical Waveguide Theory:

Lehrveranstaltungsseite

http://ei.uni-paderborn.de/tet/

Methodische Umsetzung

Die theoretischen Konzepte werden in der Form einer Vorlesung präsentiert; Übungen und Hausaufgaben vertiefen und ergänzen die Theorie.

Quantum Electronics

Quantum Electronics

Modulgruppe	Workload (h):	LP:	Studiensemester:	Turnus:	Dauer	Sprache:	P/WP:
: Specialization	180	6	2.	SS	(in Sem.):	eng	WP
·					1		

1 Modulstruktur:

	Lehrveranstaltung	Lehr- form	Kontakt- zeit (h)	Selbst- studium (h)	Status (P/WP)	Gruppe größe (
a)	Quantum Electronics	V	30	60	WP	bis zu 6
b)	Quantum Electronics	Ü	30	60	WP	bis zu 3

2 Wahlmöglichkeiten innerhalb des Moduls:

keine

3 Teilnahmevoraussetzungen:

keine

4 Inhalte:

Grundlegende Konzepte der Quantenelektronik, deren optischer, elektrischer und optoelektronischer Grundlagen sowie deren Anwendungen. Verständnis und mathematische Formulierung der physikalischen Sachverhalte und Modelle.

- Experimenteller Zugang zu Quantensystemen
- Atome und Quantenstrukturen als Zwei-Niveau-Systeme
- Kohärente Licht-Materie-Wechselwirkung
- Festkörperbasierte Quantenbits
- Halbleiter-Quantenpunkte
- Quantenbits in starken optischen Feldern und Resonatoren
- Funktionelle Strukturen und Anwendungen

5 Lernergebnisse (learning outcomes) / Kompetenzen:

- verfügen über ein fundiertes Fachwissen auf dem Gebiet der Quantenelektronik,
- verfügen über ein fundiertes Wissen zu Zwei-Niveau Systemen,
- verfügen über ein fundiertes Wissen zur Licht-Materie Wechselwirkung in starken Feldern,
- sind in der Lage, die physikalischen Gesetzmäßigkeiten mathematisch zu beschreiben,
- sind in der Lage, grundlegende Gesetzmäßigkeiten der Quantenelektronik herzuleiten,
- können die physikalischen und technischen Grundlagen sowie Anwendungen der Quantenelektronik anschaulich kommunizieren.

1	1								
6	Prüfungs	leistung:							
	[X] Modula	abschlussprüfung (MAP)	[] Modulprüfung (MP)	[] Modulteilprüfunç	gen (MTP)				
	zu	Prüfungsform		Dauer bzw. Umfang	Gewichtung fü die Modulnote				
	a) und	Klausur oder		120–180 Min.	100%				
	b)	Mündliche Prüfung		30–45 Min.					
7	Studienle	istung / qualifizierte Teilna	ahme:						
	keine								
8	Voraussetzungen für die Teilnahme an Prüfungen:								
	keine								
9	Vorausse	tzungen für die Vergabe v	on Leistungspunkten:						
	Die Verga	be der Leistungspunkte erfo	olgt, wenn die Modulabschlussp	orüfung bestanden ist.					
10	Gewichtu	ng für Gesamtnote:							
	Das Modu	l wird mit der Anzahl seiner	Leistungspunkte gewichtet (Fa	aktor: 1).					
11	Verwendu	ing des Moduls in andere	n Studiengängen:						
	Das Modu	I wird auch im Masterstudie	ngang Physik verwendet.						
12	Modulbea	uftragte/r:							
	Prof. Dr. k	(laus Jöns , Prof. Dr. Christ	ine Silberhorn						
13	Sonstige	Hinweise:							
	keine								

Nonlinear Optics

Nonlinear Optics

Modulgruppe:	Workload (h):	LP:	Studiensemester:	Turnus:	Dauer (in	Sprache:	P/WP:
Specialization	180	6	2.	SS	Sem.):	eng	WP
					1		

1 Modulstruktur:

	Lehrveranstaltung	Lehr- form	Kontakt- zeit (h)	Selbst- studium (h)	Status (P/WP)	Gruppen- größe (TN)
a)	Nonlinear Optics	V	30	60	WP	bis zu 60
b)	Nonlinear Optics	Ü	30	60	WP	bis zu 30

2 Wahlmöglichkeiten innerhalb des Moduls:

keine

3 Teilnahmevoraussetzungen:

keine

4 Inhalte:

- Nichtlineare optische Suszeptibilität (Beschreibung nichtlinear-optischer Prozesse, formale Definition und Eigenschaften der nichtlinearen Suszeptibilität)
- Wellenoptische Beschreibung nichtlinearer Wechselwirkungen (Wellengleichung für nichtlinear-optische Medien, Phasenanpassung, Manley-Rowe-Beziehung, SHG und SFG, nichtlineare Optik an Grenzflächen)
- Intensitätsabhängiger Brechungsindex (Halbleiter-Nichtlinearitäten, Pulsausbreitung und Solitonen, optische Phasenkonjugation, optische Bistabilität)
- Elektrooptischer und photorefraktiver Effekt (elektrooptischer Effekt, elektrooptische Modulatoren, photorefraktiver Effekt)

5 Lernergebnisse (learning outcomes) / Kompetenzen:

Die Studierenden sollen befähigt werden, die grundlegenden Konzepte der nichtlinearen Optik korrekt und fundiert auf Problemstellungen der Physik anzuwenden und selbständig zu bearbeiten.

- können Fragestellungen aus dem Bereich der nichtlinearen Optik erkennen, analysieren und gegenüber der linearen Optik abgrenzen,
- können zur Lösung von nichtlinearen Wellengleichungen Näherungen anwenden,
- können eigenständig Problemstellungen der nichtlinearen Optik erkennen und entsprechend angebrachte Lösungsstrategien bei Standardproblemen, die nichtlineare Effekte beinhalten, entwickeln,
- sind in der Lage, einfache Abstraktionen von komplexeren Problemstellungen beim Umgang mit der nichtlinearen Optik anzuwenden und diese auf Näherungen zur Lösung der Problemstellung zu übertragen,
- besitzen die F\u00e4higkeit, komplexere physikalische Zusammenh\u00e4nge aus dem Bereich der nichtlinearen Optik selbst\u00e4ndig zu beurteilen und unter Anwendung des erworbenen Wissens numerische oder analytische L\u00f6sungsans\u00e4tze in Bezug auf ihre N\u00e4herungen zu bewerten,
- können sich selbstständig mit aktueller englischsprachiger Fachliteratur zur Thematik der nichtlinearen Optik beschäftigen.

6	Prüfungs	eistung:								
	[X] Modula	abschlussprüfung (MAP) [] Modulprüfung (MP) [] Modulteilprüfung	gen (MTP)						
	zu	Prüfungsform	Dauer bzw. Umfang	Gewichtung für die Modulnote						
	a) und b)	Klausur oder Mündliche Prüfung	120–180 Min. 30–45 Min.	100%						
7	Studienleistung / qualifizierte Teilnahme: keine									
8	Voraussetzungen für die Teilnahme an Prüfungen: keine									
9		tzungen für die Vergabe von Leistungspunkter be der Leistungspunkte erfolgt, wenn die Modulab								
10		ng für Gesamtnote: I wird mit der Anzahl seiner Leistungspunkte gewi	chtet (Faktor: 1).							
11		ing des Moduls in anderen Studiengängen: I wird auch im Masterstudiengang Physik verwend	let.							
12		Modulbeauftragte/r: Prof. Dr. Thomas Zentgraf, Prof. Dr. Christine Silberhorn								
13	Sonstige keine	Sonstige Hinweise:								

Optical Communication A

Optical Communication A

Modulgruppe:	Workload (h):	LP:	Studiensemester:	Turnus:	Dauer (in	Sprache:	P/WP:
Specialization	180	6	2.	SS	Sem.):	eng	WP
					1		

1 Modulstruktur:

	Lehrveranstaltung	Lehr- form	Kontakt- zeit (h)	Selbst- studium (h)	Status (P/WP)	Gruppen- größe (TN)
a)	Optical Communication A	٧	30	60	WP	50
b)	Optical Communication A	Ü	30	60	WP	50

2 Wahlmöglichkeiten innerhalb des Moduls:

keine

3 Teilnahmevoraussetzungen:

Keine

4 Inhalte:

Kurzbeschreibung

Die Vorlesung Optische Nachrichtentechnik A vermittelt Grundkenntnisse auf dem Gebiet der Optischen Nachrichtentechnik und der hierbei verwendeten optischen Komponenten. Inhalt

• Grundlagen: Maxwell-Gleichungen, Wellenausbreitung, Polarisation, dielektrische Schichtwellenleiter und kreiszylindrische Wellenleiter, Dispersion, Laser, Photodioden, optische Verstärker, Modulation, Signalformate, optische Empfänger, Rauschen, Regeneratoren, Wellenlängenmultiplex. Hier werden die wichtigsten Zusammenhänge vermittelt.

5 Lernergebnisse (learning outcomes) / Kompetenzen:

Fachkompetenz:

Die Studierenden sind nach dem Besuch der Lehrveranstaltung in der Lage, im behandelten Umfang

- die Funktionsweise von Komponenten, Phänomenen und Systemen der Optischen Nachrichtentechnik zu verstehen, modellieren und anzuwenden und
- Kenntnisse der Optoelektronik anzuwenden.

Fachübergreifende Kompetenzen:

- können die Kenntnisse und Fertigkeiten disziplinübergreifend einzusetzen,
- können methodenorientiertes Vorgehen bei der systematischen Analyse einsetzen und sind durch die abstrakte und präzise Behandlung der Inhalte in der Lage, sich selbst weiterzubilden

6	3		[] Modulteilprüfun	prüfungen (MTP)		
	zu	Prüfungsform	Dauer bzw. Umfang	Gewichtung für die Modulnote		
	a) und b)	Klausur oder Mündliche Prüfung oder Referat	120–180 Min. 30–45 Min. 30 Min.	100%		
7	Studienle keine	istung / qualifizierte Teilnahme:				
8	Vorausse keine	tzungen für die Teilnahme an Prüfungen:				
9		tzungen für die Vergabe von Leistungspunkten: De der Leistungspunkte erfolgt, wenn die Modulabschlussp	orüfung bestanden ist.			
10	Gewichtung für Gesamtnote: Das Modul wird mit der Anzahl seiner Leistungspunkte gewichtet (Faktor: 1).					
11	Verwendung des Moduls in anderen Studiengängen: Das Modul wird auch im Masterstudiengang Electrical Systems Engineering und Masterstudiengang Computer Engineering verwendet.					
12		uftragte/r: leinhold Noé				
13	 Sonstige Hinweise: Lernmaterialien, Literaturangaben Skripte, Übungsblätter und weiterführende Literatur (Auszug): R. Noe, Essentials of Modern Optical Fiber Communication, Springer, 2. Auflage / 2nd Edition, 2016, ISBN 978-3-662-49621-3, ISBN ISBN 978-3-662-49623-7 Petermann/Voges, Optische Kommunikationstechnik, Springer-Verlag (modernes Nachschlagewerk) 2002 D. As, Univ. Paderborn, Vorlesung Optoelektronik W. Sohler, Univ. Paderborn, Vorlesung Integrierte Optik G. Grau, W. Freude, Optische Nachrichtentechnik, Springer-Verlag, Heidelberg, 1991, (um- fassend, viele Zwischenschritte fehlen) K.J. Ebeling, Integrierte Optoelektronik, Springer-Verlag, Heidelberg, 1992 HG. Unger, Optische Nachrichtentechnik, Teile I und II, Hüthig-Verlag Heidelberg, 1984 und 1985, (Schwerpunkt optische Wellenleiter) Yariv, Optical Electronics, Holt, 1984 (und weitere Werke, sehr physikalisch, kaum Nachrichtentechnik) R. Th. Kersten, Einführung in die Optische Nachrichtentechnik, Springer-Verlag 					

Optical Communication B

Optical Communication B

Modulgruppe:	Workload (h):	LP:	Studiensemester:	Turnus:	Dauer (in	Sprache:	P/WP:
Specialization	180	6	2.	SS	Sem.):	eng	WP
					1		

1 Modulstruktur:

	Lehrveranstaltung	Lehr- form	Kontakt- zeit (h)	Selbst- studium (h)	Status (P/WP)	Gruppen- größe (TN)
a)	Optical Communication B	٧	30	60	WP	50
b)	Optical Communication B	Ü	30	60	WP	50

2 Wahlmöglichkeiten innerhalb des Moduls:

keine

3 Teilnahmevoraussetzungen:

Keine

4 Inhalte:

Kurzbeschreibung

Die Vorlesung Optische Nachrichtentechnik B vermittelt Kenntnisse auf dem Gebiet der Modenkopplung in der Optischen Nachrichtentechnik und erklärt damit die Funktion vieler optischer Komponenten. Inhalt

Modenkopplung: Polarisationsmodendispersion, Modenorthogonalität, konstante und periodische, ko- und kontradirektionale Modenkopplung, Profile differentieller Gruppenlaufzeit, elektrooptischer Effekt. Die Funktion vieler passiver und aktiver optischer Elemente wird so erklärt, u.a. Amplituden- und Phasenmodulatoren, breitbandige und wellenlängenselektive Koppler, Bragg-Gitter, polarisationserhaltende Lichtwellenleiter, Polarisationstransformatoren, Entzerrer für Polarisationsmodendispersion und chromatische Dispersion.

5 Lernergebnisse (learning outcomes) / Kompetenzen:

Fachkompetenz:

Die Studierenden sind nach dem Besuch der Lehrveranstaltung in der Lage, im behandelten Umfang

- die Funktionsweise von Komponenten, Phänomenen und Systemen der Optischen Nachrichtentechnik zu verstehen, modellieren und anzuwenden und
- Kenntnisse der Optoelektronik anzuwenden.

Fachübergreifende Kompetenzen:

- können die Kenntnisse und Fertigkeiten disziplinübergreifend einzusetzen,
- können methodenorientiertes Vorgehen bei der systematischen Analyse einsetzen und sind durch die abstrakte und präzise Behandlung der Inhalte in der Lage, sich selbst weiterzubilden.

6	Prüfungsleistung: [X] Modulabschlussprüfung (MAP) [] Modulprüfung (MP) [] Modulteilprüfungen (MTP)					
	zu zu	Prüfungsform	Dauer bzw. Umfang	Gewichtung für die Modulnote		
	a) und b)	Klausur oder Mündliche Prüfung oder Referat	120–180 Min. 30–45 Min. 30 Min.	100%		
7	Studienle keine	istung / qualifizierte Teilnahme:	·			
8	Vorausse keine	tzungen für die Teilnahme an Prüfungen:				
9		tzungen für die Vergabe von Leistungspunkten: be der Leistungspunkte erfolgt, wenn die Modulabschl	lussprüfung bestanden ist.			
10	Gewichtung für Gesamtnote: Das Modul wird mit der Anzahl seiner Leistungspunkte gewichtet (Faktor: 1).					
11	Verwendung des Moduls in anderen Studiengängen: Das Modul wird auch im Masterstudiengang Electrical Systems Engineering und Masterstudiengang Computer Engineering verwendet.					
12		uuftragte/r: Reinhold Noé				
13	Sonstige Hinweise: Lernmaterialien, Literaturangaben Skripte, Übungsblätter und weiterführende Literatur (Auszug): • Noe, Essentials of Modern Optical Fiber Communication, Springer, 2. Auflage / 2nd Edition, 2016, ISBN 978-3-662-49621-3, ISBN ISBN 978-3-662-49623-7 • Petermann/Voges, Optische Kommunikationstechnik, Springer-Verlag (modernes Nachschlagewerk) 2002 • D. As, Univ. Paderborn, Vorlesung Optoelektronik • W. Sohler, Univ. Paderborn, Vorlesung Integrierte Optik • G. Grau, W. Freude, Optische Nachrichtentechnik, Springer-Verlag, Heidelberg, 1991, (umfassend, viele Zwischenschritte fehlen) • K.J. Ebeling, Integrierte Optoelektronik, Springer-Verlag, Heidelberg, 1992 • HG. Unger, Optische Nachrichtentechnik, Teile I und II, Hüthig-Verlag Heidelberg, 1984 und 1985, (Schwerpunkt optische Wellenleiter) • Yariv, Optical Electronics, Holt, 1984 (und weitere Werke, sehr physikalisch, kaum Nachrichtentechnik) • R. Th. Kersten, Einführung in die Optische Nachrichtentechnik, Springer-Verlag					

Computational Optoelectronics and Photonics II

Computational Optoelectronics and Photonics II

Modulgruppe:	Workload (h):	LP:	Studiensemester:	Turnus:	Dauer (in	Sprache:	P/WP:
Specialization	180	6	2.	SS	Sem.):	eng	WP
					1		

1 Modulstruktur:

	Lehrveranstaltung	Lehr- form	Kontakt- zeit (h)	Selbst- studium (h)	Status (P/WP)	Gruppen- größe (TN)
a)	Computational Optoelectronics and Photonics II	V	30	60	WP	bis zu 60
b)	Computational Optoelectronics and Photonics II	Ü	30	60	WP	bis zu 30

2 Wahlmöglichkeiten innerhalb des Moduls:

keine

3 Teilnahmevoraussetzungen:

keine

4 Inhalte:

- Anwendung von Vielteilchenmethoden auf nanostrukturierte photonische Systeme
- Numerische Analyse elektronischer Zustände in niederdimensionalen Strukturen
- Numerische Analyse optischer Nichtlinearitäten in niederdimensionalen Strukturen
- Lichtpropagation unter Kopplung an die nichtlinearen optischen Anregungen im Medium
- Anwendungen nichtlinearer optischer Propagationseffekte wie Bistabilität und Solitonen

5 Lernergebnisse (learning outcomes) / Kompetenzen:

Die Studierenden

- vertiefen, aufbauend auf dem Modul Computational Optoelectronics I, anhand konkreter Beispiele ihr Verständnis für nanostrukturierte Festkörper und ihren Einsatz in photonischen Strukturen,
- besitzen die Fähigkeit, Vielteilchenmethoden auf nanostrukturierte Festkörpersystem anzuwenden und die resultierenden Gleichungen numerisch auszuwerten,
- besitzen die F\u00e4higkeit, das nichtlineare optische Anregungsverhalten von nanostrukturierten Festk\u00f6rpersystemen numerisch zu berechnen,
- können mathematische Formulierungen physikalischer Modellsysteme selbstständig numerisch umsetzen,
- können selbstständig Programmcodes entwickeln, um die behandelten Inhalte numerisch zu analysieren.

6 Prüfungsleistung:

[X] Modulabschlussprüfung (MAP) [] Modulprüfung (MP) [] Modulteilprüfungen (MTP)

zu	Prüfungsform	Dauer bzw. Umfang	Gewichtung für die Modulnote
a) und b)	Klausur oder	120–180 Min.	100%
<i>U</i>)	Mündliche Prüfung	30–45 Min.	

7	Studienleistung / qualifizierte Teilnahme: keine					
8	Voraussetzungen für die Teilnahme an Prüfungen: keine					
9	Voraussetzungen für die Vergabe von Leistungspunkten: Die Vergabe der Leistungspunkte erfolgt, wenn die Modulabschlussprüfung bestanden ist.					
10	Gewichtung für Gesamtnote: Das Modul wird mit der Anzahl seiner Leistungspunkte gewichtet (Faktor: 1).					
11	Verwendung des Moduls in anderen Studiengängen: Das Modul wird auch im Masterstudiengang Physik verwendet.					
12	Modulbeauftragte/r: Prof. Dr. Stefan Schumacher, Dr. Matthias Reichelt					
13	Sonstige Hinweise: keine					

Quantum Communication and Information

Quantum Communication and Information

Modulgruppe:	Workload (h):	LP:	Studiensemester:	Turnus:	Dauer (in	Sprache:	P/WP:
Specialization	180	6	2.	SS	Sem.):	eng	WP
					1		

1 Modulstruktur:

	Lehrveranstaltung	Lehr- form	Kontakt- zeit (h)	Selbst- studium (h)	Status (P/WP)	Gruppen- größe (TN)
a)	Quantum Communication and Information	V	30	60	WP	bis zu 60
b)	Quantum Communication and Information	Ü	30	60	WP	bis zu 30

2 Wahlmöglichkeiten innerhalb des Moduls:

keine

3 Teilnahmevoraussetzungen:

keine

4 Inhalte:

In dem Modul werden die grundlegenden Konzepte und Protokolle der Quantenkommunikation und Quanteninformationsverarbeitung vermittelt.

- Einführung in die Grundlagen der Quanteninformation (mathematische Formulierung des Informationsbegriffs, Axiome der Quantenmechanik)
- Qubits, und Quantenmessungen
- Zusammengesetze Systeme, No-Cloning Theorem, Verschränkte Zustände, Bell Ungleichungen
- Quantenkryptographie (Protokolle, experimentelle Implementierungen, Sicherheitsbeweise und Lauschangriffe)
- Quantenteleportation, Quantengatter, "Quantum Dense Coding" (Protokolle und Implementierung)
- Verschränkungsdistillation und "Quantum Repeater"

5 Lernergebnisse (learning outcomes) / Kompetenzen:

Beherrschung der grundlegenden Konzepte der Quantenkommunikation, inklusive der Kenntnis wichtiger Protokolle und deren Implementierungen in der Praxis.

- sind befähigt, interdisziplinär zu arbeiten und sich Grundlagen aus anderen Fachgebieten anzueignen,
- sind mit den abstrakten Konzepten aus der Informationstheorie sowie der Quantenphysik vertraut und können deren Verbindung in relevanten physikalischen Experimenten darstellen,
- haben die grundlegende Idee für neuartige Quantentechnologien, genuin quantenphysikalische Eigenschaften für praktische Anwendungen nutzbar zu machen, verinnerlicht,
- verstehen das Prinzip verschränkter Zustände und die Bedeutung für die moderne Interpretation der Quantenphysik,
- kennen die grundlegenden Protokolle der Quantenkommunikation und Quanteninformationsverarbeitung,

keine

	1								
	einar	beiten und finden somit eine	ngsthemen, die nur teilweise b en ersten Einstieg für eigenstä en zukünftiger Technologien re	indiges Forschungsarb	peiten,				
6	Prüfungsl	eistung:							
	[X] Modula	abschlussprüfung (MAP)	[] Modulteilprüfun	[] Modulteilprüfungen (MTP)					
	zu	Prüfungsform		Dauer bzw. Umfang	Gewichtung für die Modulnote				
	a) und	Klausur oder		120–180 Min.	100%				
	b)	Mündliche Prüfung		30–45 Min.					
7	Studienleistung / qualifizierte Teilnahme: keine								
8	Vorausset keine	tzungen für die Teilnahme	an Prüfungen:						
9	Vorausset	tzungen für die Vergabe v	on Leistungspunkten:						
	Die Vergal	oe der Leistungspunkte erfo	lgt, wenn die Modulabschluss _l	prüfung bestanden ist.					
10	Gewichtu	ng für Gesamtnote:							
	Das Modu	I wird mit der Anzahl seiner	Leistungspunkte gewichtet (Fa	aktor: 1).					
11	Verwendu	ing des Moduls in anderer	Studiengängen:						
	Das Modu	l wird auch im Masterstudie	ngang Physik verwendet.						
12	Modulbea	uftragte/r:							
	Prof. Dr. C	hristine Silberhorn							
13	Sonstige	Hinweise:							

Optics of Solid-State Systems and Nanostructures

Optics of Solid-State Systems and Nanostructures

Modulgruppe:	Workload (h):	LP:	Studiensemester:	Turnus:	Dauer (in	Sprache:	P/WP:
Specialization	180	6	2.	SS	Sem.):	eng	WP
					1		

1 Modulstruktur:

	Lehrveranstaltung	Lehr- form	Kontakt- zeit (h)	Selbst- studium (h)	Status (P/WP)	Gruppen- größe (TN)
a)	Optics of Solid-State Systems and Nanostructures	V	30	60	WP	bis zu 60
b)	Optics of Solid-State Systems and Nanostructures	Ü	30	60	WP	bis zu 30

2 Wahlmöglichkeiten innerhalb des Moduls:

keine

3 Teilnahmevoraussetzungen:

keine

- Semiklassische Beschreibung der Licht-Materie-Wechselwirkung in Festkörpern und Nanostrukturen
- Lineare und nichtlineare optische Eigenschaften von Zwei- und Mehrniveausystemen
- Optische Bloch-Gleichungen
- Rabi-Oszillationen, Quantenschwebungen
- Theoretische Beschreibung von Anrege-Abfrage- und Vierwellenmisch-Experimente
- Mikroskopische Vielteilchentheorie für optische Anregungen in Halbleitern und Nanostrukturen
- Halbleiter-Bloch-Gleichungen
- Exzitonen und weitere Vielteilcheneffekte
- Relaxation und Dephasierung
- Selbstkonsistente Beschreibung der Lichtausbreitung in Festkörpern und Nanostrukturen; Polaritonen

5 Lernergebnisse (learning outcomes) / Kompetenzen:

- kennen die Herleitung und die grundlegenden Eigenschaften der optischen Bloch-Gleichungen,
- können die optischen Bloch-Gleichungen mit verschiedene Näherungsstrategien lösen und die Ergebnisse zur Beschreibung linearer und nichtlinearer optischer Eigenschaften nutzen,
- sind mit Konzepten zur Beschreibung von Vielteilcheneffekten in der Halbleiteroptik vertraut und können diese zur Herleitung der Halbleiter-Bloch-Gleichungen anwenden,
- können im Rahmen der Halbleiter-Bloch-Gleichungen exzitonische Effekte in linearen optischen Spektren berechnen und näherungsweise nichtlineare optische Eigenschaften beschreiben,
- kennen die grundlegenden physikalischen Prozesse, die zum Dephasieren der optischen Polarisation und zur Energierelaxation optisch erzeugter Ladungsträgerbesetzungen führen,
- kennen das grundlegende Konzept der selbstkonsistenten Beschreibung der Lichtausbreitung in Festkörpern und können damit fundamentale Effekte für einfache Geometrien näherungsweise berechnen.
- kennen die Möglichkeiten und Grenzen der semiklassischen Vielteilchentheorie für die Festkörperoptik und können Ergebnisse aus der Fachliteratur vor diesem Hintergrund bewerten.

6	Prüfungsleistung:							
	[X] Modula	abschlussprüfung (MAP) [] Modulprüfung (MP)	[] Modulteilprüfungen (MTP)					
	zu	Prüfungsform	Dauer bzw. Umfang	Gewichtung für die Modulnote				
	a) und b)	Klausur oder Mündliche Prüfung	120–180 Min. 30–45 Min.	100%				
7 Studienleistung / qualifizierte Teilnahme: keine								
8	Voraussetzungen für die Teilnahme an Prüfungen: keine							
9		tzungen für die Vergabe von Leistungspunkten: be der Leistungspunkte erfolgt, wenn die Modulabschluss	sprüfung bestanden ist.					
10		ng für Gesamtnote: ıl wird mit der Anzahl seiner Leistungspunkte gewichtet (F	aktor: 1).					
11		ung des Moduls in anderen Studiengängen: Il wird auch im Masterstudiengang Physik verwendet.						
12		auftragte/r:						
		Forsten Meier, Prof. Dr. Stefan Schumacher						
13		Hinweise:						
	keine							

Quantum Information Theory

Quantum Information Theory

Modulgruppe:	Workload (h):	LP:	Studiensemester:	Turnus:	Dauer (in	Sprache:	P/WP:
Specialization	180	6	2.	SS	Sem.):	eng	WP
					1		

1 Modulstruktur:

	Lehrveranstaltung	Lehr- form	Kontakt- zeit (h)	Selbst- studium (h)	Status (P/WP)	Gruppen- größe (TN)
a)	Quantum Information Theory	V	30	60	WP	bis zu 60
b)	Quantum Information Theory	Ü	30	60	WP	bis zu 30

2 Wahlmöglichkeiten innerhalb des Moduls:

keine

3 Teilnahmevoraussetzungen:

keine

4 Inhalte:

- Quantenmechanik in moderner Formulierung (Zustände, Effekte, Operationen und Darstellungstheoreme)
- Separabilität und Nichtseparabilität statistischer Operatoren
- Einstein-Podolsky-Rosen-Paradoxon
- Quantenkryptographie
- Quantencomputer
- Quantenteleportation

5 Lernergebnisse (learning outcomes) / Kompetenzen:

Die Studierenden sollen grundlegende Konzepte der Quanteninformationstheorie erlernen. Sie sollen befähigt werden, aktuelle Forschungsarbeiten zu verstehen und grundlegende Berechnungen selbst durchzuführen.

- kennen die moderne Formulierung der Quantenmechanik,
- sind mit dem Begriff der Separabilität/Nichtseparabilität vertraut und können diesen auf statistische Operatoren anwenden.
- kennen die dem Einstein-Podolsky-Rosen-Paradoxon zugrunde liegenden Vorstellungen und Interpretationen sowie die guantenmechanische Beschreibung verschränkter Zustände,
- kennen die grundlegenden Prozesse, die die Basis für die Quantenkryptographie, den Quantencomputer und die Quantenteleportation bilden, und können die Phänomene anhand von Modellsystemen beschreiben.

6	Prüfungsleistung:									
	[X] Modulabschlussprüfung (MAP) [] Modulprüfung (MP) [] Modulteilprüfungen (MTP)									
	zu	Prüfungsform		Dauer bzw. Umfang	Gewichtung für die Modulnote					
	a) und b)	Klausur oder Mündliche Prüfung		120–180 Min. 30–45 Min.	100%					
7	Studienle keine									
8	Vorausse keine	Voraussetzungen für die Teilnahme an Prüfungen: keine								
9		tzungen für die Vergabe vo be der Leistungspunkte erfol	on Leistungspunkten: gt, wenn die Modulabschlussp	prüfung bestanden ist.						
10		ng für Gesamtnote:	_eistungspunkte gewichtet (Fa	aktor: 1)						
11		ung des Moduls in anderen		aktor. 1).						
"		ll wird auch im Masterstudien	•							
12		Modulbeauftragte/r: Prof. Dr. Jan Sperling, Prof. Dr. Torsten Meier								
13	Sonstige keine	Sonstige Hinweise:								

Theoretical Quantum Optics

Theoretical Quantum Optics

Modulgruppe:	Workload (h):	LP:	Studiensemester:	Turnus:	Dauer (in	Sprache:	P/WP:
Specialization	180	6	2.	SS	Sem.):	eng	WP
					1		

1 Modulstruktur:

	Lehrveranstaltung	Lehr- form	Kontakt- zeit (h)	Selbst- studium (h)	Status (P/WP)	Gruppen- größe (TN)
a)	Theoretical Quantum Optics	V	30	60	WP	bis zu 60
b)	Theoretical Quantum Optics	Ü	30	60	WP	bis zu 30

2 Wahlmöglichkeiten innerhalb des Moduls:

keine

3 Teilnahmevoraussetzungen:

keine

4 Inhalte:

- Kanonische Feldquantisierung
- Fock-Zustände, kohärente Zustände, geguetschtes Licht
- Statistik von Lichtzuständen
- Phasenraumfunktionen (*P*-, *W*-, *Q*-Funktion)
- Bunching und Antibunching
- Korrelationsfunktionen
- Quantentheorie der Licht-Materie-Wechselwirkung
- Jaynes-Cummings-Modell, dressed states

5 Lernergebnisse (learning outcomes) / Kompetenzen:

Die Studierenden sollen grundlegende Konzepte der theoretischen Quantenoptik erlernen. Sie sollen befähigt werden, aktuelle Forschungsarbeiten zu verstehen und grundlegende Berechnungen selbst durchzuführen.

- kennen das Konzept des Photons und verstehen den Umgang mit Photonen-Operatoren,
- kennen die theoretische Beschreibung von Lichtzuständen, die in modernen Experimenten erzeugt werden können,
- sind mit der theoretischen statistischen Interpretation von Licht vertraut und können so Messergebnisse deuten.
- kennen die Phasenraumfunktionen der wichtigsten Lichtzustände,
- kennen das unterschiedliche Verhalten von klassischem und quantisiertem Licht bezüglich der Licht-Materie-Wechselwirkung,
- kennen die Herleitung und Auswertung des Jaynes-Cummings-Modells und können es auf einfache erweiterte Modellsysteme übertragen.

6	Prüfungs	leistung:								
	[X] Modula	abschlussprüfung (MAP)	[] Modulprüfung (MP)	[] Modulteilprüfun	gen (MTP)					
	zu	Prüfungsform		Dauer bzw. Umfang	Gewichtung für die Modulnote					
	a) und b)	Klausur oder Mündliche Prüfung		120–180 Min. 30–45 Min.	100%					
7	Studienle keine	Studienleistung / qualifizierte Teilnahme: keine								
8	Voraussetzungen für die Teilnahme an Prüfungen: keine									
9		tzungen für die Vergabe vo be der Leistungspunkte erfol _s	on Leistungspunkten: gt, wenn die Modulabschlussp	orüfung bestanden ist.						
10		ng für Gesamtnote: I wird mit der Anzahl seiner L	eistungspunkte gewichtet (Fa	aktor: 1).						
11		ung des Moduls in anderen I wird auch im Masterstudien								
12		uftragte/r: as Reichelt, Prof. Dr. Torsten	Major							
42		,	Welei							
13	_	Hinweise:								
	keine									

Sensor Technology

Sensor Technology

Modulgruppe:	Workload (h):	LP:	Studiensemester:	Turnus:	Dauer (in	Sprache:	P/WP:
Specialization	180	6	2.	SS	Sem.):	eng	WP
					1		

1 Modulstruktur:

	Lehrveranstaltung	Lehr- form	Kontakt- zeit (h)	Selbst- studium (h)	Status (P/WP)	Gruppen- größe (TN)
a)	Sensor Technology	٧	30	60	WP	50
b)	Sensor Technology	Ü	30	60	WP	50

2 Wahlmöglichkeiten innerhalb des Moduls:

keine

3 Teilnahmevoraussetzungen:

Keine

4 Inhalte:

Inhalte der Lehrveranstaltung Sensor Technology:

Kurzbeschreibung

Die Lehrveranstaltung "Mikrosensorik" behandelt Konzepte und Wirkprinzipien mikroelektronischer Sensoren. Das Arbeitsgebiet erstreckt sich von Temperatur- und Strahlungssensoren über chemische Sensoren wie die Lambdasonde im automotiven Bereich bis hin zu Magnetfeldsensoren, so dass ein breites Spektrum abgedeckt wird. Ebenfalls soll das Grundverständnis der Herstellung hybrider und integrierter Sensoren vermittelt werden. Inhalt

Im Einzelnen werden die folgenden Themen behandelt:

- Herstellungsverfahren
- Temperatursensoren
- · Sensoren für Kraft, Druck und Beschleunigung
- Magnetfeldsensoren
- Feuchtesensoren
- Chemische Sensoren

5 Lernergebnisse (learning outcomes) / Kompetenzen:

Fachkompetenz:

Die Studierenden sind nach dem Besuch der Lehrveranstaltung in der Lage,

- die Herstellungsverfahren mikroelektronischer Bauelemente zu verstehen und zuerklären
- die Wirkprinzipien verschiedener Sensoren nachzuvollziehen und zu beschreiben
- Anwendungsgebiete der unterschiedlichen Sensoren für reale Einsatzzweckezuzuordnen

Fachübergreifende Kompetenzen:

Die Studierenden können

- Anwendungsspezifische Lösungen finden
- die trainierten Problemlösungsstrategien disziplinübergreifend einsetzen,
- ihre Lösungen den anderen Teilnehmern in Übungen präsentieren und
- die erworbenen Kompetenzen im Selbststudium vertiefen.

6	Prüfungsl	•	[] Modulteilprüfung	gen (MTP)								
	zu	Prüfungsform	Dauer bzw. Umfang	Gewichtung für die Modulnote								
	a) und b)	Klausur oder Mündliche Prüfung oder	120–180 Min. 30–45 Min.	100%								
		Referat	30 Min.									
7	Studienleistung / qualifizierte Teilnahme: keine											
8	Voraussetzungen für die Teilnahme an Prüfungen: keine											
9	Voraussetzungen für die Vergabe von Leistungspunkten: Die Vergabe der Leistungspunkte erfolgt, wenn die Modulabschlussprüfung bestanden ist.											
10	Gewichtung für Gesamtnote:											
	Das Modu	l wird mit der Anzahl seiner Leistungspunkte gewichtet (Faktor	: 1).									
11		ing des Moduls in anderen Studiengängen:										
	Das Modu	l wird auch im Masterstudiengang Electrical Systems Engineer	ing verwendet.									
12		uftragte/r: Ilrich Hilleringmann										
13		sche Umsetzung										
	• Pr	orlesung mit Projektor und Tafel äsenzübungen mit Übungsblättern zu den theoretischen Grund urch Übungsteilnehmer	dlagen, Präsentati	on der Lösungen								
	Lernmate Vorlesun	erialien, Literaturangaben gsfolien										
	• El	bel: Mikrosensorik	auf der Webseite	 Hilleringmann: Mikrosystemtechnik Elbel: Mikrosensorik Aktuelle Hinweise auf ergänzende Literatur und Lehrmaterialien auf der Webseite 								

Quantum Optics

Quantum Optics

Modulgruppe:	Workload (h):	LP:	Studiensemester:	Turnus:	Dauer (in	Sprache:	P/WP:
Specialization	180	6	3.	WS	Sem.):	eng	WP
					1		

1 Modulstruktur:

	Lehrveranstaltung	Lehr- form	Kontakt- zeit (h)	Selbst- studium (h)	Status (P/WP)	Gruppen- größe (TN)
a)	Quantum Optics	V	30	60	WP	bis zu 60
b)	Quantum Optics	Ü	30	60	WP	bis zu 30

2 Wahlmöglichkeiten innerhalb des Moduls:

keine

3 Teilnahmevoraussetzungen:

keine

4 Inhalte:

In dem Modul werden die grundlegenden Konzepte behandelt, die zum Verständnis der Quantenoptik mit Licht benötigt werden. Im Detail werden folgende Themen diskutiert:

- Photonenstatistiken und Photodetektion von Quantenlicht
- Grundlegende Ideen der Feldquantisierung, Fock-Zustände und ein- bzw. mehrmodige Quantenzustände
- Kohärente Zustände und Phasenraumdarstellungen des Lichts
- Strahlteiler und Interferometer in der Quantenoptik, Hong-Ou Mandel Interferenz
- Nicht-klassisches Licht, Einphotonen-Zustände, gequetschte Zustände, Homodyn-Detektion
- Korrelationsfunktionen und Quantenkohärenz, Hanbury-Brown Twiss Experimente

5 Lernergebnisse (learning outcomes) / Kompetenzen:

Beherrschung der grundlegenden Konzepte der Quantenoptik, inklusive der Kenntnis spezifischer Phänomene, die quantenoptische Beobachtung von klassischen Experimenten abgrenzen.

- sind mit den Konzepten der Quantenoptik vertraut und können diese mit experimentellen Aufbauten verknüpfen.
- sind befähigt, Rechenmethoden aus der Quantenmechanik für die Berechnung praktischer Probleme der experimentellen Quantenoptik einzusetzen,
- können quantenoptische Beobachtungen von rein klassischen optischen Experimenten abgrenzen,
- verstehen das Prinzip der Feldquantisierung und deren Implikationen für die Definition eines Photons und der formal korrekten Beschreibung des Welle-Teilchen Dualismus,
- verstehen die Modellierung "klassischen" Laserlichts und die Bedeutung von Photonenstatistiken,
- beherrschen die Berechnung von Quanteninterferenzen in verschiedenen Aufbauten,
- können die Anwendbarkeit nicht-klassischer Lichtzustände in der Praxis beurteilen.

6	Prüfungsl	leistuna:								
		abschlussprüfung (MAP)	[] Modulprüfung (MP)	[] Modulteilprüfung	gen (MTP)					
	zu	Prüfungsform		Dauer bzw. Umfang	Gewichtung für die Modulnote					
	a) und b)	Klausur oder Mündliche Prüfung		120–180 Min. 30–45 Min.	100%					
7	Studienle keine	Studienleistung / qualifizierte Teilnahme: keine								
8	Voraussetzungen für die Teilnahme an Prüfungen: keine									
9		tzungen für die Vergabe vo be der Leistungspunkte erfolç	• .	orüfung bestanden ist.						
10		ng für Gesamtnote: I wird mit der Anzahl seiner L	eistungspunkte gewichtet (Fa	aktor: 1).						
11		ung des Moduls in anderen I wird auch im Masterstudien	• •							
12		uftragte/r: Christine Silberhorn, Prof. Dr.	Tim Bartley							
13		Hinweise:								

Semiconductor Heterostructures: Fundamentals and Applications

Semiconductor Heterostructures: Fundamentals and Applications

Modul-Nr.:	Workload (h):	LP:	Studiensemester:	Turnus:	Dauer (in	Sprache:	P/WP:
01e	180	6	1.	WS	Sem.):	eng	WP
					1		

1 Modulstruktur:

	Lehrveranstaltung	Lehr- form	Kontakt- zeit (h)	Selbst- studium (h)	Status (P/WP)	Gruppen- größe (TN)
a)	Semiconductor Heterostructures: Fundamentals and Applications	V	30	60	WP	bis zu 60
b)	Semiconductor Heterostructures: Fundamentals and Applications	Ü	30	60	WP	bis zu 30

2 Wahlmöglichkeiten innerhalb des Moduls:

keine

3 Teilnahmevoraussetzungen:

keine

4 Inhalte:

- Grundlagen niedrigdimensionaler HL-System (Quantisierungsenergie, Zustandsdichten, Fermi-Energien, Wellenfunktionen ...)
- Elektronische Eigenschaften von Halbleiterheterostrukturen
- Optische Eigenschaften von Halbleiterheterostrukturen
- Materialsysteme, Herstellungsmethoden, Bauelemente

5 Lernergebnisse (learning outcomes) / Kompetenzen:

Beherrschung der grundlegenden Konzepte im Bereich der Halbleiterheterostrukturen mit den Aspekten Herstellung und elektrische und optische Eigenschaften.

- besitzen ein umfassendes qualitatives Verständnis von Halbleiterheterostrukturen,
- besitzen Kenntnisse der Grundlagen der quantitativen Beschreibung der relevanten Phänomene,
- haben die Fähigkeit, das Gelernte auf Probleme aus dem Bereich der Halbleiterheterostrukturen anzuwenden, die Ergebnisse zu diskutieren und mit Bezug auf das Fachgebiet einzuordnen.

6	Prüfungsleistung:											
	[X] Modu	labschlussprüfung (MAP) [] Modulprüfung (MP)	[] Modulteilprüfung	gen (MTP)								
	zu	Prüfungsform	Dauer bzw. Umfang	Gewichtung für die Modulnote								
	a)-b)	Klausur oder mündliche Prüfung	120–180 Min. 30–45 Min.	100%								
7	Studienle keine	Studienleistung / qualifizierte Teilnahme: keine										
8	Voraussetzungen für die Teilnahme an Prüfungen: keine											
9		etzungen für die Vergabe von Leistungspunkten: abe der Leistungspunkte erfolgt, wenn die Modulabschlussp	rüfung bestanden ist.									
10		ung für Gesamtnote: ul wird mit der Anzahl seiner Leistungspunkte gewichtet (Fal	ktor: 1).									
11		lung des Moduls in anderen Studiengängen: ul wird auch im Masterstudiengang Physik und Masterstudie	engang Materials Scie	nce verwendet.								
12		auftragte/r: Dirk Reuter, Prof. Dr. Donat As										
13		e Hinweise: nisse in Festköper- und Halbleiterphysik sind wünschenswei	rt									

Physics and Technology of Nanomaterials

Physics and Technology of Nanomaterials

Modulgruppe:	Workload (h):	LP:	Studiensemester:	Turnus:	Dauer (in	Sprache:	P/WP:
Specialization	180	6	3.	WS	Sem.):	eng	WP
					1		

1 Modulstruktur:

	Lehrveranstaltung	Lehr- form	Kontakt- zeit (h)	Selbst- studium (h)	Status (P/WP)	Gruppen- größe (TN)
a)	Physics and Technology of Nanomaterials	V	45	90	WP	bis zu 60
b)	Physics and Technology of Nanomaterials	Ü	15	30	WP	bis zu 30

2 Wahlmöglichkeiten innerhalb des Moduls:

keine

3 Teilnahmevoraussetzungen:

keine

4 Inhalte:

- Thermodynamische und kristallographische Grundlagen und Eigenschaften von Nanomaterialien
- Herstellung dünner Schichten aus der flüssigen Phase und dem Vakuum, Epitaxie, Be- und Entnetzung
- Strukturierung und Modifikation dünner Schichten mittels thermischer, nasschemischer, ionenstrahlgestützter und plasmabasierter Verfahren
- Laterale Strukturierung dünner Schichten und Oberflächen mittels konventioneller und moderner Lithographieverfahren
- Herstellung, Prozessierung und Anwendung ein-, zwei- und dreidimensionaler Nanoobjekte (Nanodrähte und -röhrchen, Graphen und andere 2D-Materialien, Nanocluster, Quantum Dots, Core-Shell-Strukturen)

5 Lernergebnisse (learning outcomes) / Kompetenzen:

Die Studierenden sollen befähigt werden, technologische Konzepte zur Herstellung nanostrukturierter Materialien und Oberflächen zu erarbeiten und deren Erfolgsaussichten abzuschätzen.

- verstehen die besonderen Eigenschaften, die Materialien durch Nanostrukturierung bekommen,
- kennen unterschiedliche grundlegende Konzepte und Verfahren zur Herstellung von Strukturen, die in einer, zwei oder drei Dimensionen nanoskalige Abmessungen haben,
- verstehen die physikalischen Hintergründe dieser Verfahren auf atomistischer oder molekularer Basis,
- können die qualitativen bzw. quantitativen Modelle, die solche Verfahren beschreiben, anwenden,
- haben die F\u00e4higkeit, die erlernten Methoden auf neue Fragestellungen und Materialsysteme disziplin\u00fcbergreifend anzuwenden und in unterschiedlichen Weisen miteinander zu kombinieren,
- sind in der Lage, sich zusätzliche Technologien der Nanostrukturherstellung durch Studium der Fachliteratur und aus Internetquellen selbstständig zu erarbeiten und reflektiert zu präsentieren.

	D	• .					
6	Prüfungsl	•					
	[X] Modula	bschlussprüfung (MAP)	[] Modulprüfung (MP)	[] Modulteilprüfung	gen (MTP)		
	zu	Prüfungsform		Dauer bzw. Umfang	Gewichtung für die Modulnote		
	a) oder	Klausur oder		120–180 Min.	100%		
	b)	Mündliche Prüfung		30–45 Min.			
7	Studienlei	stung / qualifizierte Teilnal	nme:				
	keine						
8	Voraussetzungen für die Teilnahme an Prüfungen:						
	keine						
9	Voraussetzungen für die Vergabe von Leistungspunkten:						
	Die Vergal	oe der Leistungspunkte erfolg	gt, wenn die Modulabschlussprüt	ung bestanden ist.			
10	Gewichtu	ng für Gesamtnote:					
	Das Modul	wird mit der Anzahl seiner L	eistungspunkte gewichtet (Fakto	or: 1).			
11	Verwendu	ng des Moduls in anderen	Studiengängen:				
	Das Modul wird auch im Masterstudiengang Physik sowie im Masterstudiengang Materials Science verwendet.						
12	Modulbeauftragte/r:						
	Prof. Dr. J	örg Lindner, Prof. Dr. Dirk Re	uter				
13	Sonstige I	Hinweise:					
	keine	keine					

Fast Integrated Circuits for Wireline Communications

Fast Integrated Circuits for Wireline Communications

Modulgruppe:	Workload (h):	LP:	Studiensemester:	Turnus:	Dauer (in	Sprache:	P/WP:
Specialization	180	6	3.	WS	Sem.):	eng	WP
					1		

1 Modulstruktur:

	Lehrveranstaltung	Lehr- form	Kontakt- zeit (h)	Selbst- studium (h)	Status (P/WP)	Gruppen- größe (TN)
a)	Fast Integrated Circuits for Wireline Communications	V	30	60	WP	50
b)	Fast Integrated Circuits for Wireline Communications	Ü	30	60	WP	50

2 Wahlmöglichkeiten innerhalb des Moduls:

keine

3 Teilnahmevoraussetzungen:

Empfohlen: Modul "Analysis and Design of Electronic Circuits" oder vergleichbare Module / Vorlesungen

4 Inhalte:

Kurzbeschreibung

In der Glasfaserkommunikation werden heutzutage in kommerziellen Systemen sehr hohe Bitraten von über 100 Gb/s pro optischem Kanal und mehreren Tb/s in einer Glasfaser erreicht. In ähnlicher Weise treten heute bei der Signalübertragung zwischen Chips hohe Bitraten von mehr als 10 Gb/s an einem einzelnen Gehäuse-Pin auf, die über Leiterplatten und preisgünstige serielle Kabelverbindungen übertragen werden müssen. In Zukunft werden durch den Fortschrittder CMOS-Technologie und der optischen Kommunikationstechnik die Datenraten weiter kontinuier- lich steigen. Der Entwurf von elektronischen Schaltungen für hohe Bandbreiten bzw. Bitraten er- fordert ein gutes Systemverständnis im Hinblick auf die typischen Sende-/Empfangsarchitekturen, Komponenten und Signaleigenschaften. Überdies ist ein gutes Verständnis des Schaltungsentwurfs integrierter Schaltungen und eine genaue Höchstfrequenz-Modellierung von passiven und aktiven Bauelementen notwendig. Ziel der Vorlesung ist es, den Studenten ein Verständnis des methodischen Entwurfs schneller integrierter, elektronischer Schaltungen für die digitale leitungs- gebundene Kommunikationstechnik zu vermitteln. Ein Teil der Übungen wird als CAD-Übung unter Nutzung moderner Chip-Entwurfssoftware durchgeführt.

Die Vorlesung vermittelt den methodischen Entwurf von schnellen, integrierten, elektronischen Schaltungen für digitale leitungsgebundene Kommunikationssysteme. Ein Teil der Übungen wird als CAD-Übung unter Nutzung moderner Chip-Entwurfssoftware durchgeführt. Die Vorlesung behandelt:

- Sende- und Empfangsarchitekturen für die Glasfaserkommunikation
- Sende- und Empfangsarchitekturen für die Chip-to-chip-Kommunikation
- Systemtheoretische Grundlagen
- Halbleitertechnologien und integrierte HF-Bauelemente
- Verstärkerschaltungen
- Logikschaltungen in Stromschaltertechnik (CML)
- PLL-Technik für Synthesizer und Taktrückgewinnung
- Messverfahren

5 Lernergebnisse (learning outcomes) / Kompetenzen:

Fachkompetenz:

Der Studierende wird in der Lage sein: Sende- und Empfangsarchitekturen für die Breitbandkommunikation zu beschreiben und zu analysieren. Halbleitertechnologien und Hochfrequenz-Baulemente für die Breitbandkommunikation zu verstehen und zu beschreiben. Schaltungstechniken für Sende- und Empfangsschaltungen zu analysieren und Massnahmen zur Optimierung zu beschreiben. Schaltungen in PLL-Technik für Frequenzsynthese und Taktrückgewinnung zu be- schreiben. Messmethoden zu beschreiben. Fachübergreifende Kompetenzen:

Die Studenten lernen, wie verschiedene interdisziplinäre wissenschaftliche Bereiche - wie mathematische Signal- und Systemanalyse, nichtlineare und lineare Schaltungsanalyse, Halbleiterphysik, Bauelemente und Hochfrequenztechnik - zur Entwicklung von Kommunikations- Anwendungen miteinander kombiniert werden.

6 Prüfungsleistung:

[X] Modulabschlussprüfung (MAP)

[] Modulprüfung (MP)

[] Modulteilprüfungen (MTP)

zu	Prüfungsform	Dauer bzw. Umfang	Gewichtung für die Modulnote
a) und	Klausur oder	120–180 Min.	100%
b)	Mündliche Prüfung oder	30–45 Min.	
	Referat	30 Min.	

7 Studienleistung / qualifizierte Teilnahme:

keine

8 Voraussetzungen für die Teilnahme an Prüfungen:

keine

9 Voraussetzungen für die Vergabe von Leistungspunkten:

Die Vergabe der Leistungspunkte erfolgt, wenn die Modulabschlussprüfung bestanden ist.

10 Gewichtung für Gesamtnote:

Das Modul wird mit der Anzahl seiner Leistungspunkte gewichtet (Faktor: 1).

11 Verwendung des Moduls in anderen Studiengängen:

Das Modul wird auch im Masterstudiengang Electrical Systems Engineering verwendet.

12 Modulbeauftragte/r:

Prof. Dr.-Ing. J. Christoph Scheytt

13 Sonstige Hinweise:

Methodische Umsetzung

Vorlesung mit Übungen (einschließlich rechnerunterstütztem Entwurf mit IC-Entwurfssoftware) Lernmaterialien, Literaturangaben

Handouts und Literatur-Referenzen werden in der Vorlesung angegeben.

- E. Säckinger, "Broadband Circuits for Optical Fiber Communication", Wiley, 2005
- B. Razavi, "Design of Integrated Circuits for Optical Communications", McGraw-Hill, 2003

Bemerkungen

Im Rahmen der Vorlesung wird eine 2-tägige Exkursion zum IHP Leibnizinstitut für Innovative Mikroelektronik in Frankfurt (Oder) mit Besichtigung einer modernen Chipfertigung angeboten (Teilnahme ist freiwillig).

Photonic Nanostructures

Photonic Nanostructures

Modulgruppe:	Workload (h):	LP:	Studiensemester:	Turnus:	Dauer (in	Sprache:	P/WP:
Specialization	180	6	3.	WS	Sem.):	eng	WP
					1		

1 Modulstruktur:

	Lehrveranstaltung	Lehr- form	Kontakt- zeit (h)	Selbst- studium (h)	Status (P/WP)	Gruppen- größe (TN)
a)	Photonic Nanostructures	٧	30	60	WP	bis zu 60
b)	Photonic Nanostructures	Ü	30	60	WP	bis zu 30

2 Wahlmöglichkeiten innerhalb des Moduls:

keine

3 Teilnahmevoraussetzungen:

keine

4 Inhalte:

- Licht-Materie-Wechselwirkung (Maxwell'sche Gleichungen in Materie, Wellengleichung und Helmholtz-Gleichung, optische Antwort von Materialien, Polarisationsfeld, dielektrische Funktion von Isolatoren, Halbleitern und Metallen)
- Photonische Nanostrukturen (eindimensionale Periodizität: Bragg-Reflektoren, Transfermatrixalgorithmus; optische Resonatoren I: Mikropillar-Resonatoren; optische Resonatoren II: Mikrodisks und Ring-Resonatoren, elektromagnetische Felder in periodischen Medien, Symmetrien und Photonik, photonische Kristall-Membranen; optische Resonatoren III: Defekte in photonischen Kristallen)
- Plasmonische Nanostrukturen (Grenz- und Oberflächen-Plasmon-Polaritonen, metallische Nanopartikel, optische Metamaterialien)

5 Lernergebnisse (learning outcomes) / Kompetenzen:

Die Studierenden sollen befähigt werden, die grundlegenden Konzepte der Lichtwechselwirkung mit Nanostrukturen korrekt und fundiert auf aktuelle Problemstellungen der modernen Physik anzuwenden und selbstständig Problemlösungen zu erarbeiten.

- können eigenständig Fragestellungen aus dem Bereich der Nanooptik erkennen, differenzieren und gegenüber der Optik an makroskopischen Objekten abgrenzen,
- haben die F\u00e4higkeit zur Beschreibung und Beurteilung auftretender Effekte bei der Wechselwirkung von Licht mit dielektrischen und metallischen Nanostrukturen,
- können Lösungsansätze bei komplexeren Problemstellungen beim Umgang mit optischen Nanostrukturen selbstständig entwickeln und unter Anwendung des erworbenen Wissens begründen,
- können sinnvolle analytische und numerische Näherungsverfahren zur Lösung von Problemstellung im Bereich der Nanophotonik unter Anleitung entwickeln und begründen,
- besitzen die Fähigkeit, sich selbstständig mit aktueller englischsprachiger Fachliteratur zur Thematik der Nanooptik zu beschäftigen.

6	Prüfungs	leistung:						
	[X] Modulabschlussprüfung (MAP) [] Modulprüfung (MP) [] Modulteilprüfungen (MTP)							
	zu	Prüfungsform		Dauer bzw. Umfang	Gewichtung für die Modulnote			
	a) und b)	Klausur oder Mündliche Prüfung		120–180 Min. 30–45 Min.	100%			
7	Studienle keine	istung / qualifizierte Teilnah	nme:					
8	Voraussetzungen für die Teilnahme an Prüfungen: keine							
9	Vorausse	tzungen für die Vergabe vo	n Leistungspunkten:					
	Die Verga	be der Leistungspunkte erfolg	ıt, wenn die Modulabschlussp	orüfung bestanden ist.				
10	Gewichtu	ng für Gesamtnote:						
	Das Modu	l wird mit der Anzahl seiner L	eistungspunkte gewichtet (Fa	aktor: 1).				
11	Verwendu	ing des Moduls in anderen	Studiengängen:					
	Das Modu	l wird auch im Masterstudieng	gang Physik sowie im Master	studiengang Chemie v	verwendet.			
12	Modulbea	uftragte/r:						
	Prof. Dr. C	Cedrik Meier, Prof. Dr. Thomas	s Zentgraf					
13	Sonstige	Hinweise:						
	keine							

Data Science for Dynamical Systems

Data Science for Dynamical Systems

Modulgruppe:	Workload (h):	LP:	Studiensemester:	Turnus:	Dauer (in	Sprache:	P/WP:	
Specialization	180	6	3.	WS	Sem.):	eng	WP	
					1			

1 Modulstruktur:

	Lehrveranstaltung	Lehr- form	Kontakt- zeit (h)	Selbst- studium (h)	Status (P/WP)	Gruppen- größe (TN)
a)	Data Science for Dynamical Systems	٧	30	60	WP	bis zu 30
b)	Data Science for Dynamical Systems	Ü	30	60	WP	bis zu 30

2 Wahlmöglichkeiten innerhalb des Moduls:

keine

3 Teilnahmevoraussetzungen:

keine

4 Inhalte:

Inhalte der Lehrveranstaltung Data Science for Dynamical Systems:

Der vorliegende Kurs ist modular aufgebaut und wird für verschiedene Studiengänge bzw. Fakultäten interdisziplinär angeboten. Je nach verfügbarem Vorwissen der Teilnehmerinnen und Teilnehmer wird ein studiengangsspezifischer Inhaltszuschnitt erfolgen. Übergreifende Kernthemen sind u.a.

- Grundlagen Modellbildung dynamischer Systeme anhand Differential- und Differenzenglei- chungsmodellen
- Datengetriebene Identifikationsverfahren für lineare Modelle auf Basis des Ansatzes der kleinsten Fehlerquadrate (least squares)
- Datengetriebene Identifikationsverfahren für nichtlineare Modelle (z.B.künstliche neuronale Netze)
- Lernen von datengetriebenen Modellen unter Einbindung von a priori Systemwissen
- Identifikation zugrundeliegender Modellstrukturgleichungen (Topologieselektion) z.B. mittels Regularisierung oder Hypothesentests hinsichtlich konkurrierender Zielkriterien
- (Datengetriebene) Modellreduktion
- Manipulation der zur Verfügung stehenden Modelleingangsdaten (Dimensionsreduktions sowie Augmentationsverfahren) z.B. Autoencoder, Hauptkomponentenanalyse sowie Kernelmethoden
- Statistische Bewertung der zur Verfügung stehenden Eingangs- und Ausgangsdaten dynamischer Systeme sowie entsprechende Verfahren zur Systemanregung
- Statistische Bewertung der erzielten Modellgüte (Über- vs. Unteranpassung) mittels Kreuz- Validierung

Neben der Vermittlung der methodischen Kenntnisse werden umfangreiche programmier- und simulationstechnische Übungen mittels moderner Softwareprogramme (insbesondere in der Pro- grammiersprache Julia) erarbeitet. Vielfältige Anwendungsbeispiele aus der Praxis verschiedener Domänen (z. B. Ingenieur-, Naturund Wirtschaftswissenschaften) runden die Veranstaltung ab.

5 Lernergebnisse (learning outcomes) / Kompetenzen:

Nach Abschluss der Lehrveranstaltung sind die Teilnehmerinnen und Teilnehmer in der Lage

- Methoden zur Identifikation dynamischer Systeme zu beschreiben sowie anzuwenden,
- Identifikationsresultate kritisch zu bewerten,
- KomplexedatengetriebeneModellierungsaufgabenininterdisziplinärenTeamszuerfassen, zu analysieren, zielführende Lösungsmethoden abzuleiten sowie eigenständig erarbeitete Ergebnisse zu beurteilen.

6	Prüfungsleistung:
v	i i i ai ai la sicistai la i

[X] Modulabschlussprüfung (MAP) [] Modulprüfung (MP) [] Modulteilprüfungen (MTP)

ZI	u	Prüfungsform	Dauer bzw. Umfang	Gewichtung für die Modulnote
a) und	Klausur oder	120–180 Min.	100%
b)	Mündliche Prüfung oder	30–45 Min.	
		Referat	30 Min.	

7	Studienleistung /	qualifizierte	Teilnahme:
---	-------------------	---------------	------------

keine

8 Voraussetzungen für die Teilnahme an Prüfungen:

keine

9 Voraussetzungen für die Vergabe von Leistungspunkten:

Die Vergabe der Leistungspunkte erfolgt, wenn die Modulabschlussprüfung bestanden ist.

10 Gewichtung für Gesamtnote:

Das Modul wird mit der Anzahl seiner Leistungspunkte gewichtet (Faktor: 1).

11 Verwendung des Moduls in anderen Studiengängen:

keine

12 Modulbeauftragte/r:

Dr.-Ing. Oliver Wallscheid, Jun.-Prof. Dr. Sebastian Peitz

13 Sonstige Hinweise:

keine

Lab Courses Lab Courses LP: Modulnummer: Workload (h): Studiensemester: Turnus: Dauer (in Sprache: P/WP: Sem.): 1.+2.150 5 Jedes eng Semester 2

1 Modulstruktur:

	Lehrveranstaltung	Lehr- form	Kontakt- zeit (h)	Selbst- studium (h)	Status (P/WP)	Gruppen- größe (TN)		
a)	Lab Courses	Р	60	90	Р	4 (zwei	
						Gruppen		
						parallel		
						betreut)		

2 Wahlmöglichkeiten innerhalb des Moduls:

Keine

3 Teilnahmevoraussetzungen:

keine

4 Inhalte:

Inhalte der Lab Courses sind Versuche aus dem Bereich der Optoelektronik und Photonik. Die Studierenden wählen drei Versuche aus einem Themenkatalog aus, der über das elektronische Campus Managementsystem bekanntgegeben wird. Versuche zu folgenden Themen sind möglich: Ellipsometrie und winkelaufgelöste optische Analytik, Wellenleiter-Charakterisierung, Parametrische Photonenpaar Quellen, Diodengepumpter Festkörperlaser mit Frequenzverdopplung, Optische Längenmessung, Charakterisierung optoelektronischer Bauelemente: LED-Laser, Nichtlineare Optik auf dem Computer, Photodetektoren, Optische Nachrichtentechnik und Hochfrequenztechnik, Elektromagnetische Feldsimulationen, Moderne Leuchtmittel, Korrellierte Mikroskopie. Der konkrete Themenkatalog wird über das elektronische Campus Managementsystem bekanntgegeben.

5 Lernergebnisse (learning outcomes) / Kompetenzen:

Hinführung zum selbstständigen Handeln und Experimentieren durch die Bearbeitung von kleinen forschungsnahen Projekten mit klar umrissener Aufgabenstellung. Die durchzuführenden Versuche sind so gestaltet, dass wesentliche Anteile an selbständigem Experimentieren und Aufbauen der Versuche enthalten sind. Damit wird eine Brücke hergestellt, zwischen dem Anspruch typischer Versuche aus dem Fortgeschrittenenpraktikum aus dem Bachelorstudiengang Physik, die noch weitgehend unter sehr detaillierter Anleitung mit fertigen Apparaturen durchgeführt werden, und dem wissenschaftlichen Arbeiten, wie es in den Modulen des Lab Project und der Master Thesis erforderlich ist. Die angebotenen Versuche sind so ausgelegt, dass sie deutlich über typische Lehrbuchthemen und –effekte hinausgehen und anwendungsbezogene Aspekte mit einbeziehen, die für die spätere Arbeit in einem forschungsnahen beruflichen Umfeld im Bereich Optoelektronik als berufsqualifizierend angesehen werden. Das Erkennen und Extrahieren wesentlicher Zusammenhänge aus eigenen experimentellen Erfahrungen wird erlernt, sowie die Auswertung und Darstellung der Ergebnisse, sowie deren Präsentation.

- lernen das selbstständige Handeln und Experimentieren durch die Bearbeitung von kleinen forschungsnahen Projekten mit klar umrissener Aufgabenstellung,
- erlernen den Umgang mit modernen komplexen physikalischen Experimentiermethoden in einem realen Forschungsumfeld einer Arbeitsgruppe,

keine

	 erlernen den Umgang mit wissenschaftlicher englischsprachiger Spezialliteratur sowohl zur Vorbereitung auf die verschiedenen Versuche als auch durch Dokumentation der erzielten Ergebnisse im Stile einer wissenschaftlichen Veröffentlichung, können gewonnene wissenschaftliche Ergebnisse im Kontext aktueller Forschung erläutern. 											
6	Prüfungsleistung:											
	[X] Modula	abschlussprüfung (MAP) [] Modulprüfung	(MP) [] Modulteilprüfung	, ,								
	zu	Prüfungsform	Dauer bzw.	3								
	a)	Gesamtheit der Versuche	Umfang 3 Versuche	Modulnote 100%								
	[a)	Gesammen der Versuche	3 Versucite	100 /0								
7	Studienle	istung / qualifizierte Teilnahme:										
	keine											
8	Vorausse	tzungen für die Teilnahme an Prüfungen:										
	Die bzw. c	er Studierende muss an den Versuchstagen anv	vesend gewesen sein.									
9	Vorausse	tzungen für die Vergabe von Credits:										
	Die Verga	be der Leistungspunkte erfolgt, wenn die Modula	bschlussprüfung bestanden ist.									
10	Gewichtu	ng für Gesamtnote:										
	Das Modu	l wird mit der Anzahl seiner Leistungspunkte gev	vichtet (Faktor: 1).									
11	Verwendu	ıng des Moduls in anderen Studiengängen:										
	Das Modu	I wird auch im Masterstudiengang Physik sowie	im Masterstudiengang Material	Science verwendet.								
12	Modulbea	uftragte/r:										
	Prof. Dr. T	homas Zentgraf										
13	Sonstige	Hinweise:										
1	1											

Keine.

Topics in Optoelectronics and Photonics											
Topics in Optoelectronics and Photonics Modulnummer: Workload (h): LP: Studiensemester: Turnus: Dauer (in Sem.): eng 1								P/WP:			
1		truktur: Lehrveranstaltung			Lehr- form	Kontakt- zeit (h)	Selbst- studium (h)	State (P/W		uppen- öße (TN)	
2	a) Wahlmi	Topics in Optoelectron			S	30	90	Р	20		
3	Wahlmöglichkeiten innerhalb des Moduls: keine Teilnahmevoraussetzungen:										
4	Inhalte: Im Rahmen des Seminars werden die Studierenden dazu angeleitet, aktuelle Themen aus den Bereichen der modernen Physik aufzugreifen, zu vertiefen und schließlich im Rahmen der Veranstaltung in eigenen Präsentationen vorzutragen. Diese Möglichkeit zur Darbietung eines eigenen Beitrags soll sowohl der fachbezogenen Ausbildung auf aktuellen Forschungsgebieten dienen, wie auch der Entwicklung von Fähigkeiten in puncto persönliche Präsentation. Aktuelle Themen zur Zeit sind: Heterodyn-Interferometer, Weißlicht-Interferometrie, Parametrische Verstärker, Interferometrische Längenmessung, Optische Inkrementalenkoder, Rubidium Atomuhren, Optische Frequenzkämme, STED Mikroskopie, Erbium-dotierte Glasfaserverstärker, Monomodige Halbleiterlaser, Femtosekunden Laser: Kerr-lens modelocking, FRET Energietransfer, Einzelphotonquellen, Erzeugung verschränkter Photonen, Hong-Ou-Mandel-Effekt, Holographie, Moderne Solarzellen, THz Spektroskopie, Optische Kohärenztomographie, SHG Mikroskopie, Optische Gassensorik, Raman-Spektroskopie, Materialbearbeitung mit Lasern, Photonzahl-auflösende Detektoren,										
5	CCD-Sensoren, Streak-Kameras Lernergebnisse (learning outcomes) / Kompetenzen: In der Vorbereitungsphase: Aufbereitung und Vertiefung des Themas durch eigene Studien und Recherchen. Den Bezug zu angrenzenden Teilgebieten des Themas erkennen und formulieren. Den Vortrag nach didaktischen und fachlichen Gesichtspunkten ausarbeiten. In der Vortragsphase: Training der eigenen Präsentationsfähigkeit und Dialogfähigkeit bei der Beantwortung von Fragen. Das Halten und Hören eines wissenschaftlichen Vortrags sowie die Leitung der Diskussion wird eingeübt. Damit werden Präsentations- und Moderationskompetenzen gefördert.										
6	[X] Mod	gsleistung: ulabschlussprüfung (M	AP)	[] Modu	ulprüfung	(MP)	[] Modulteilpr			on a fiin din	
	a)	Prüfungsform Referat					Dauer b Umfang ca. 30 Min.	DZW.	Modulnot	ing für die te	
7	,	leistung / qualifiziert	e Teiln	ahme:							
8		setzungen für die Tei	Inahm	e an Prüfunç	gen:						

9	Voraussetzungen für die Vergabe von Credits:
	Die Vergabe der Leistungspunkte erfolgt, wenn die Modulabschlussprüfung bestanden ist.
10	Gewichtung für Gesamtnote:
	Das Modul wird mit der Anzahl seiner Leistungspunkte gewichtet (Faktor: 1).
11	Verwendung des Moduls in anderen Studiengängen:
	Keine.
12	Modulbeauftragte/r:
	Prof. Dr. Stefan Schumacher, beteiligte Hochschullehrer der Physik und Elektrotechnik
13	Sonstige Hinweise:
	keine

Lab Project												
Lab Project												
Modulnummer: Workload (h): LP: Studie 3					Studiensemester: 3		Dauer (in Sem.):		Sprache: eng	P/WP:		
1	Modulstr	uktur:			1							
	L	Lehrveranstaltung				Kontakt- zeit (h)	Selbst- studium (h)	Stat (P/V		ruppen- öße (TN)		
	a) L	ab Project			Vers.	5	415	Р	1			
2	Wahlmöglichkeiten innerhalb des Moduls: Keine.											
3	Teilnahm Keine.	evoraussetzungen:	1									
4	Inhalte:											
5		ch eng umrissene Pro bnisse (learning ou	•			er Umgebung].					
6	dadurch zur Lösung komplexer Probleme befähigt werden, wobei neben der Eigenständigkeit auch die Organisationsfähigkeit erlernt werden soll. Sie sollen auch in der Lage sein, die Forschungsaufgabe zu formulieren, die Auswahl der Methoden und die Analyse zu dokumentieren und das Ergebnis ihrer Arbeit strukturiert zu präsentieren. Nach dem Abschluss der Projektarbeit verfügen die Studierenden über vertiefte fachliche Kompetenzen in einem ausgewählten Bereich und erkennen den Anwendungsbezug ihrer Studieninhalte. Prüfungsleistung:											
		abschlussprüfung (M Prüfungsform	IAP)	[] IVIOal	ulprüfung	(MP)	[] Modulteilpr Dauer k			ıng für die		
	Zu	Fidiuligatoriii					Umfang	JZVV.		Modulnote		
	a)	Referat					ca. 30 Min.		100%			
7	Studienle keine	eistung / qualifiziert	e Teiln	ahme:								
8	Vorausse keine	tzungen für die Tei	Inahm	e an Prüfunç	gen:							
9		tzungen für die Ver	•									
10		be der Leistungspur Ing für Gesamtnote		oigt, wenn di	e Modula	bschlussprüf	ung bestande	n ıst.				
10		ılı wird mit der Anzah		· Leistunaspu	ınkte aev	vichtet (Fakto	or: 1).					
11		ung des Moduls in a			•		,					
12	Modulbe	auftragte/r: Stefan Schumacher,	beteilia	te Hochschu	llehrer de	er Physik und	I Elektrotechni	k				
13		Hinweise:	_ : :9	22		, z vv	2 12 2 2 2 2 1 1 1					

General Studies												
General Studies												
Modulnummer: Work			Workload (h): 120	LP :	Studiensemester: 1.		Turnus: WS	Dauer (in Sem.):		Sprache: de/eng		P/WP: WP
1	Moduls	strukt	tur:		l		l					
		Lehrveranstaltung					Kontakt- zeit (h)	Selbst- studium (h)	Stat (P/V		ppen- Se (TN)	
	a)	Gen	eral Studies			Vers.	30	90	WP		Vers	3.
2	Wahlmöglichkeiten innerhalb des Moduls: Lehrveranstaltungen außerhalb des eigenen Studiengangs aus dem Wahlangebot der Universität Paderborn, welches im elektronischen Campusmanagement System bekannt gegeben wird.											
3	Teilnal keine	nmev	oraussetzungen:									
4	Inhalte	:										
			altungen außerha	lb des	eigenen St	udiengan	s aus dem	Wahlangebot	der	Univers	sität	Paderborn,
			elektronischen Car	•		•	ekannt gegel	ben wird.				
5		_	isse (learning ou							_		
			eral Studies sind			•	•				•	,
			d andererseits Wi Fachkulturen zu	•	•			•	•	•		
			chnik oder der Ph			iile iviodu	ie solien nici	it iiii direkteri	iaciiii	chen or	meia	IIII Deleich
6	Prüfun Keine.			<u>y oo</u>	90							
7	Studie	nleist	ung / qualifizierte	e Teiln	ahme:							
-			Teilnahme zu jede] .						
8			ıngen für die Tei									
	keine											
9			ungen für die Ver der Leistungspun	•			ierte Teilnahı	me in der Leh	rverar	nstaltun	g nac	chgewiesen
10	Gewicl	ntung	für Gesamtnote	:								
			eht nicht in die Ge									
11		ndung	g des Moduls in a	andere	n Studiengä	ingen:						
42	keine		tuo ato lu									
12			tragte/r: fan Schumacher, v	verschi	edene (Impo	rt aus ve	rschiedenen	Bereichen)				
13			nweise:	. 0. 00111	Sacrio (IIIIpo	٧٥		201010110111				
	keine	J · ·										

Master Thesis												
Master Thesis												
Modulnummer: Workload (h): LP 900 30			LP: 30	Studiensemester: 4		Turnus: WS/SS	Dauer (in Sem.):		Sprache: eng		he:	P/WP :
1	Modulstr	uktur:										
	L	Lehrveranstaltung				Kontakt- zeit (h)	s	Selbst- studium h)	Status (P/WP)			ppen- Se (TN)
	a) N	laster Thesis				10	8	89,5	Р		1	
	b) N	lündliche Verteidigur	ng			0,5			Р		1	
2	Wahlmög	lichkeiten innerhal	b des N	Moduls:								
3	Erfolgreic	evoraussetzungen: h abgeschlossenes Bestehen der zugehö	Lab Pr	•			s ei	rlangt, im Fa	alle d	er Eins	chrei	bung unter
4	Inhalte: Selbständ	ige Bearbeitung eir n deren Relevanz in	nes Fo	rschungsthe	mas, Da	rstellung d					Ergel	onisse und
5	_	<mark>bnisse (learning ou</mark> Erlernen des selbstä				beitens anl	han	d eines kom	plexe	ren Fors	schur	ngsthemas.
6	Prüfungs	leistung:										
	[] Modula	oschlussprüfung (MA	.P)	[] Modul	prüfung (Modulteilpri		,		
	zu	Prüfungsform				l		ang	ZW.	Gewid Modu		g für die
	a)	Masterarbeit						bis 70 Se ne Anhänge)		5/6		
	b)	Mündliche Verteid	igung i	nkl. Prüfungs	sgespräcl	n (3	30-4	5 Min.		1/6		
7	Studienle keine	istung / qualifiziert	e Teiln	ahme:								
8	Voraussetzungen für die Teilnahme an Prüfungen: Voraussetzung für die Teilnahme an der mündlichen Verteidigung ist die als bestanden bewertete schriftliche Masterarbeit.										schriftliche	
9	Die Verg	etzungen für die Ver abe der Leistungs gespräch bestanden	punkte				eit	und die m	ündli	che Ve	erteidi	gung inkl.
10		ıng für Gesamtnote										
		ıl wird mit der Anzah				richtet (Fak	tor:	1).				
11		ung des Moduls in a	andere	n Studiengä	ingen:							
40	Keine.											
12		auftragte/r:	hoto:::-	ta Uaabaab	الماءة عاء	r Dhuaile	~ ∟	laktratash=!				
13		Stefan Schumacher,	beteilig	LE MOCHSCNU	nenrer de	i Pilysik ur	iu E	iekuotechnii	٨			
13	keine	Hinweise:										
	עבווופ											

HERAUSGEBER PRÄSIDIUM DER UNIVERSITÄT PADERBORN WARBURGER STR. 100 33098 PADERBORN HTTP://WWW.UNI-PADERBORN.DE