
www.wiwi.uni−bielefeld.de

Bielefeld University
P.O. Boxx 10 01 31
33501 Bielefeld - Germany

ISSN 2196-2173

Faculty of Business Administration and Economics

Working Papers in Economics and Management

➔

No. 03-2024
October 2024

Deep Q-learning of prices in oligopolies:

the number of competitors matters

Herbert Dawid Philipp Harting Michael Neugart

Deep Q-learning of prices in oligopolies: the number

of competitors matters

Herbert Dawid* Philipp Harting� Michal Neugart�

August 2024

Abstract

Artificial intelligence algorithms are increasingly used for online
pricing and are seen as a major threat to competitive markets. We
show that if firms use a deep Q-network (DQN) as an example of a
state-of-the-art machine learning algorithm, prices are supra-competitive
in duopoly but quickly move to competitive prices as the number of
competitors in an oligopoly increases. This finding is very robust con-
cerning variations of the exploration and learning rate used in the DQN
algorithm.

Keywords: algorithmic price setting, deep Q-network, oligopoly, supra-
competitive prices

1 Introduction

Firms increasingly turn to algorithms to support their decision processes and
autonomously determine their actions. This is particularly true for transac-
tions taking place on online platforms. It is conjectured that retailers track
their competitors’ pricing decisions and that about “Two thirds of them use
software programs that autonomously adjust their own prices based on the
observed prices of competitors”. (European Commission, 2017, p. 5).

*Department of Business Administration and Economics and Center for Mathematical
Economics, Bielefeld University, Germany, hdawid@uni-bielefeld.de

�GREDEG, Université Côte d’Azur, France and Bielefeld University, Germany,
philipp.harting@uni-bielefeld.de

�Department of Law and Economics, Technical University of Darmstadt, Germany,
michael.neugart@tu-darmstadt.de

1

Concerns have been raised, among others, by competition authorities
that “The availability of real-time pricing information may also trigger au-
tomatised price coordination. The wide-scale use of such software may in
some situations, depending on the market conditions, raise competition con-
cerns.” (European Commission, 2017, p. 5), see also (Competition and
Market Authority, 2018; Monopolies Commission, 2018).

Following up on an earlier contribution by Waltman and Kaymak (2008),
the concerns about algorithmic collusion have been reinforced by several
recent analyses showing, in simulation models, the emergence of supra-
competitive prices of firms in duopolies with different market designs when
(tabular) Q-learning algorithms (see, e.g. Calvano et al., 2020, 2021; Klein,
2021; Abada and Lambin, 2023; Epivent and Lambin, 2024) or reinforcement
learning with synchronous updating (Asker et al., 2022, 2024) are used for
pricing. The amount of collusion is, however, mitigated or even overall
eliminated if the algorithm can incorporate additional information about a
market’s demand structure, referred to asynchronous updating (Asker et al.,
2022, 2024).

Which pricing algorithms firms use is a black box, such that it is of
great importance to understand the robustness of these results concerning
the type of algorithms employed by firms. As it has been used in market
simulations so far, basic tabular Q-learning algorithms were mostly devel-
oped in the 1990s. Importantly, they are not designed to deal with large
state spaces, which arise as firms choose a particular price from a possibly
large price vector. Therefore, as is also conjectured by competition authori-
ties (Competition and Market Authority, 2018), it seems natural that firms
use more advanced algorithms rather.

This paper explores the possibility of supra-competitive prices in an
oligopoly where the pricing algorithm is a deep Q-network (DQN). Con-
sidering the interaction of firms whose pricing decisions are taken by DQNs
allows us to address the important question of how the number of competi-
tors in a market populated by firms relying on algorithmic pricing influences
the level of emerging prices.

Deep Q-network algorithms are not only prevalent in the machine learn-
ing literature (Mnih et al., 2015; Goodfellow et al., 2016), but also are heav-
ily used in the recent applied literature on solving complex firm problems
(Liu, 2023; Zhao and Lee, 2022; Qiu et al., 2020). Compared to tabular
Q-learning, DQNs exhibit faster convergence and, more importantly, do not
suffer from the curse of dimensionality if the dimension of the state space
grows. This is of great importance in market settings where the state is
often given by the vector of actions of all competitors in the previous pe-

2

riod, which implies that the number of firms in the market determines the
dimension of the state space. While this strongly restricts the number of
interacting firms that can be handled using tabular Q-learning, the use of
DQNs also allows firms to learn pricing strategies in markets with many
competitors.1

Our main findings are that, whereas in a duopoly setting DQNs might
lead to prices very close to the monopoly level, the supra-competitive pric-
ing resulting from the interaction of these algorithms quickly vanishes as the
number of firms increases. In particular, markets with at least five competi-
tors robustly yield prices close to the Nash equilibrium level. These findings
are robust concerning changes in the key parameters of the algorithm.

2 Deep Q-learning in oligopolies

To closely link our contribution to previous analyses, our market setting, in
which firms use DQNs to set prices, is equivalent to Calvano et al. (2020).
It is a repeated pricing game in which firms face a logit demand

qi,t =
e

ai−pi,t
µ∑k

j=1 e
aj−pi,t

µ + e
a0
µ

, (1)

where ai are product quality indexes, a0 the attractiveness of an outside
good, k the number of firms, and µ > 0 an index governing the degree
of horizontal differentiation. The price of firm i in period t is pi,t, and
the marginal cost is denoted by ci, such that firms maximize profits πi,t =
qi,t(pi,t − ci). We denote the Nash equilibrium price with pN and the price
under perfect collusion (i.e., maximizing the sum of all profits) with pM ,
which we refer to as the monopoly price. We set all market parameters to
the values used in (Calvano et al., 2020) (see Online Appendix A).

Firms set prices simultaneously and a DQN algorithm decides every pe-
riod on a firm’s price.2 More specifically, the algorithm sets its price using a
deep neural network which represents an action-value function Q(si, pi; θi),
where si ∈ S is the state of firm i in period t, pi a potential action of
firm i in period t, i.e., a price from a finite set of prices P , and θi the

1Tabular Q-learning in (Cournot-)oligopolies with up to six firms has been studied in
Waltman and Kaymak (2008), however, they assume that firms, apart from their action,
only take into account the average action of all competitors, such that the dimension of
the state space is independent from the number of firms.

2A detailed description of the DQN, including a pseudocode and the values of all
parameters, is provided in the Online Appendix A.

3

vector of weights in the neural network. The state space S is given by all
possible combinations of prices chosen by all firms in the previous period,
si,t = (p1,t−1, .., pk,t−1).

The input nodes of a DQN, which represent the action-value function
Q(si, pi; θi), correspond to the components of the state si of firm i. Each
output node corresponds to a price p ∈ P and estimates the Q-value for this
price under the current state. In our DQNs, there are two hidden layers
between the input and the output layer, with the number of nodes in each
hidden layer following rules of thumb developed in the literature on deep
neural networks (see, e.g., Bengio, 2012)

Firm i trains the DQN by adjusting every period the vector of weights
θi,t to reduce the mean-squared error of the right-hand side of a Bellman
equation. The adjustment of the weights follows a standard gradient descent
algorithm with a learning rate α. As a default in our analysis, we use the
algorithm with ’online gradient descent’ (Bengio, 2012), which means that
updating is based only on the most recent observation. Alternatively, the
updating of weights might be based on a random sample from a backward
window of past observations, referred to as ’experience replay’ (see, Mnih
et al., 2015). Our motivation to mainly use online gradient descent is to
stay close to the existing papers on Q-learning on markets (e.g. Calvano
et al., 2020; Epivent and Lambin, 2024), which all rely only on the most
recent observation in each step of their training step.3 However, we check
the robustness of our findings concerning the use of experience replay and
provide the corresponding results in the Online Appendix B.

A greedy algorithm guarantees that the actions chosen are experimented
with. The ϵ-greedy model of exploration chooses the action pi,t maximiz-
ing Q(si,t, pi; θi,t) with probability 1− ϵt and randomizes uniformly over all
actions with probability ϵt. The exploration rate declines with ϵt = e−βt,
where β > 0 is the exploration parameter. Thus, initially, firms choose their
prices to a large extent randomly, but as time passes, actions in line with
the highest Q-value become more likely.

In each simulation run, we let the firms train their DQNs for T = 5 ·
105 periods while interacting with each other. We then study the long-run
prices and profits emerging if each firm in each period chooses the price
p = argmaxp[Q(st, p; θ

∗
i)], where θ∗i denotes the network weights learned

3In other game theoretic frameworks, such as the prisoner’s dilemma, recent work has,
however, explored properties of reinforcement learning of tabular Q type with training data
drawn from backward windows with size substantially larger than one, see, e.g.,Barfuss
and Meylahn (2023).

4

(a) (b)

Figure 1: Panel (a) shows the distribution of long-run values of profit gain
∆ and panel (b) dynamics of mean values and 25% as well as 75% quantiles
(dotted) of prices of firm 1 (blue) and firm 2 (yellow) in a duopoly with
DQN parameters α = 0.001, β = 6 · 10−5.

by firm i at the end of the T training periods.4 If prices converge to a
fixed point, the long-run profit π̄i for firm i is given by the firm’s profit in
this fixed point. If price cycles emerge, the average profit of a firm during
the cycle determines π̄i. Following the recent literature in this area (c.f.
Calvano et al., 2020), we use the profit gain ∆ = (π̄− πN)/(πM − πN) with
π̄ = 1

k

∑k
i=1 π̄i as the indicator for the degree of supra-competitive prices

emerging in the market.

3 Results

We first address whether DQN learning in duopoly markets generates supra-
competitive long-run prices, as observed in simulations relying on tabular
Q-learning algorithms. Figure 1 depicts the distribution of long-run values of
∆ across 100 batch runs as well as the corresponding dynamics of mean prices
for a duopoly (k = 2), with a learning rate α = 0.001 and an exploration
parameter β = 6 · 10−5.5 The figure shows that for this parametrization
of the DQN algorithm, both firms set prices at or at least very close to the
monopoly level in all runs. The mean value of the profit gain across the runs

4All presented results are based on a Julia implementation of the model using the Flux
package for implementing the deep neural networks and the gradient descent algorithm.

5It should also be noted that the value of the learning rate α is not directly comparable
to the learning rates reported in papers using tabular Q-learning, since the interpretation of
this parameter in the context of the stochastic gradient descent used in DQNs is different.

5

Figure 2: Dynamics of greedy prices of firm 1 as functions of the competitor’s
price in the previous period for five single runs in a duopoly with DQN
parameters α = 0.001, β = 6 · 10−5. For each run, lines are generated by
estimating third-order polynomial functions f1(t) and f2(t) using the time
series of p2(t − 1) and p∗1(t) and plotting (f1(t), f2(t)), t = 0, .., T with the
arrow indicating the direction as time increases. The purple line shows the
best reply function of the (static) duopoly model. It intersects the red line
at the Nash price pN ≈ 1.47.

in the batch is ∆ = 0.96, which is substantially higher than the ∆ values
reported for tabular Q-learning in Calvano et al. (2020).6 Furthermore,
convergence typically occurs after about 80.000 periods and, therefore, is
about ten times faster than results based on tabular Q-learning reported in
the literature.

To illustrate the mechanism underlying the emergence of supra-competitive
prices, Figure 2 shows, for five single runs, how greedy prices of firm 1 (p∗1(t))
relate to the price of firm 2 in the previous period (p2(t − 1)). The figure
clearly shows that DQN does not learn to follow the best reply function of
the (static) duopoly model but instead seems to mimic price increases of
the competitor with a slight delay such that a coordinated, gradual ascent
towards the monopoly price emerges, as can be seen between periods 40.000
and 80.000 in Figure 1(b).

Having established that strongly supra-competitive prices might emerge
in duopolies with pricing decisions made by DQN algorithms, we now exam-

6Depending on the choice of the learning rate α and the exploration parameter β
Calvano et al. (2020) obtain average profit gain values between 0.65 and 0.9.

6

Figure 3: Boxplots of distribution of long-run values of profit gain ∆ for
k = 2, 3, 4, 5 firms and α = 0.001, β = 6 · 10−5.

ine how robust this phenomenon is concerning an increase in the number of
competitors. In Figure 3, we show boxplots of the long-run prices over 100
batch runs for the duopoly (k = 2) and oligopolies with three to five firms
under our standard parameter setting. While the profit gain is still close to
one for k = 3, it quickly decreases as more firms are in the market. For k = 4
firms, the distribution of emerging long-run prices is very broad. Examining
the exact distribution of ∆ values (not shown here) reveals that whereas
prices in the direct neighborhood of the Nash equilibrium level emerge in
about 20% of the runs, for this setting, there are still about 10% of runs
which lead to coordination on prices close to the monopoly level. However,
supra-competitive prices almost completely disappear for five firms. In most
runs with k = 5, the profit gain is close to zero, meaning that prices close
to the Nash equilibrium level emerge.7

Close to Nash equilibrium outcomes for five firms do not depend on
our particular choices of the learning rate and the exploration parameter.
In Figure 4, we show heat maps for the mean (panel (a)) and standard
deviation (panel (b)) of long-run profit gains across the batch runs with
k = 5 firms, where the learning rate α and the exploration parameter β
vary within a wide range of values. The figure shows that for all parameter
constellations, the average profit gain is below ∆ = 0.2 and in large parts
of the parameter space is well below ∆ = 0.1. Furthermore, the variation
across runs is relatively small, with the standard deviation of profit gains
consistently below 0.2.

In the Online Appendix B, we demonstrate that our finding is also in-

7Closer inspection of the distribution of ∆ values shows that in less than 10% of the
runs a ∆ value above 0.25 emerges.

7

(a) (b)

Figure 4: Panel (a) shows (color-coded) mean values and panel (b) standard
deviations over 100 batch runs of long-run values of profit gain ∆ for k = 5
and a variation of α in the range [0.0005, 0.01] with stepsize 0.0005 and β in
[5 ∗ 10−6, 10−4] with stepsize 5 ∗ 10−6.

dependent of our choice of using online gradient descent rather than expe-
rience replay for updating the weights of the neural networks in the DQN
algorithm. In particular, considering analogous figures to Figures 3 and 4 for
DQNs with experience replay (parameterized according to standard values
from the machine learning literature), we show that also for this version of
the DQN algorithm, the average profit gain decreases strongly as the num-
ber of firms goes up. The average gain is consistently low if five firms are in
the market. If firms use DQNs with experience replay, already for markets
with four competitors in the majority of runs, the profit gains are below
∆ = 0.3, such that the effect of an increase in k on average profit gains
seems to be stronger for the case of DQNs with experience replay rather
than online gradient descent.

To connect our findings with the existing literature, it should be noted
that they differ qualitatively from results obtained in Waltman and Kaymak
(2008), who show that in the framework of Cournot oligopolies tabular Q-
learning yields quantities substantially below the level of the Nash equilibria
for any number of firms between two and six. Apart from the facts that they
used quantity rather than price competition and tabular Q-learning rather
than DQNs, the main difference between their setup and ours is that the
state firms take into account is always two-dimensional, consisting of the
own quantity as well as the total quantity of competitors in the previous
period. Since they use a model with linear inverse demand, where the dis-
tribution of quantities across competitors has no impact on the price, this

8

assumption seems reasonable. However, in our framework, with price setting
and a non-linear demand curve, it seems essential that firms consider the
individual prices of all competitors, as it is implemented in our simulations.
Our observation that the profit gains of firms using DQNs decrease as the
number of competitors go up is consistent with findings obtained in Hettich
(2021) for a quite different DQN specification and parametrization as well
as a very short time horizon for the training. Relating our finding to the
experimental literature, it is interesting to note that a standard finding in
experiments with human subjects is that, as observed in our simulations, the
frequency of the occurrence of supra-competitive prices strongly decreases
as the number of firms increases from two to four or five (e.g., Huck et al.,
2004; Orzen, 2008).

4 Conclusion and policy implication

To the extent to which algorithms set supra-competitive prices, consumers
are hurt. While it is well documented that firms use pricing algorithms,
which algorithms are used is a black-box (c.f. Spann et al., 2024). To evaluate
whether and how algorithmic pricing affects market outcomes, algorithms
that are likely to be used have to be analyzed. We explore the properties of
a deep Q-network pricing algorithm in an oligopoly setting. This algorithm
is a state-of-the-art machine learning tool capable of dealing with high-
dimensional state spaces that arise as more firms interact. In line with most
recent simulation studies, we find that supra-competitive prices emerge in
duopoly. However, prices quickly move toward (Nash) equilibrium levels as
the number of firms increases.

Our findings suggest that competition authorities must be concerned
about the emergence of supra-competitive prices due to the use of ML-based
algorithms only if the market is highly concentrated with a very low number
of relevant market participants. Hence, fostering market entry is an efficient
strategy for keeping the undesirable effects of algorithms on price levels in
check. However, avoiding supra-competitive prices in markets with two or
three competitors is exceptionally challenging. Results reported in Calvano
et al. (2020) or Asker et al. (2024) suggest that in such narrow markets,
the price levels emerging from the interaction of algorithms of tabular Q-
learning type depend strongly on the details of the algorithms. Exploring
this issue further in the context of DQN is left for future research.

9

References

Abada, I. and X. Lambin (2023): “Artificial intelligence: Can seemingly
collusive outcomes be avoided?” Management Science, 69, 5042–5065.

Asker, J., C. Fershtman, and A. Pakes (2022): “Artificial intelligence,
algorithm design, and pricing,” AEA Papers and Proceedings, 112, 452–
56.

——— (2024): “The impact of artificial intelligence design on pricing,”
Journal of Economics & Management Strategy, 33, 276–304.

Barfuss, W. and J. M. Meylahn (2023): “Intrinsic fluctuations of rein-
forcement learning promote cooperation,” Scientific Reports, 13, 1309.

Bengio, Y. (2012): “Practical recommendations for gradient-based training
of deep architectures,” in Neural networks: Tricks of the trade, ed. by
G. Montavon, G. Orr, and K.-R. Müller, Springer, chap. 19, 437–478.

Calvano, E., G. Calzolari, V. Denicoló, and S. Pastorello (2020):
“Artificial intelligence, algorithmic pricing, and collusion,” American Eco-
nomic Review, 110, 3267–97.

——— (2021): “Algorithmic collusion with imperfect monitoring,” Interna-
tional Journal of Industrial Organization, 79, 102712.

Competition and Market Authority (2018): “Pricing algorithms:
Economic working paper on the use of algorihms to facilicate collusion and
personalized pricing,” CMA: Competition and Market Authority, CMA94.

Epivent, A. and X. Lambin (2024): “On algorithmic collusion and
reward–punishment schemes,” Economics Letters, 237, 111661.

European Commission (2017): Report from the Commission to the Coun-
cil and the European Parliament, Final report on the E-commerce Sector
Inquiry, Brussels: European Commission COM(2017) 229 final.

Goodfellow, I., Y. Bengio, and A. Courville (2016): Deep learning,
Camgridge, Massachusetts: MIT press.

Hettich, M. (2021): “Algorithmic Collusion: Insights from Deep Learn-
ing,” SSRN Electronic Working Papers.

10

Huck, S., H.-T. Normann, and J. Oechssler (2004): “Two are few
and four are many: number effects in experimental oligopolies,” Journal
of Economic Behavior & Organization, 53, 435–446.

Klein, T. (2021): “Autonomous algorithmic collusion: Q-learning under
sequential pricing,” The RAND Journal of Economics, 52, 538–558.

Liu, X. (2023): “Dynamic coupon targeting using batch deep reinforcement
learning: An application to livestream shopping,” Marketing Science, 42,
637–658.

Mnih, V., K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Os-
trovski, et al. (2015): “Human-level control through deep reinforce-
ment learning,” Nature, 518, 529–533.

Monopolies Commission (2018): “Biennial Report XXII: Digital change
requires legal adjustments regarding price algorithms, the media sector
and the supply of medicines,” German Monopolies Commission.

Orzen, H. (2008): “Counterintuitive number effects in experimental
oligopolies,” Experimental Economics, 11, 390–401.

Qiu, D., Y. Ye, D. Papadaskalopoulos, and G. Strbac (2020): “A
deep reinforcement learning method for pricing electric vehicles with dis-
crete charging levels,” IEEE Transactions on Industry Applications, 56,
5901–5912.

Spann, M., M. Bertini, O. Koenigsberg, R. Zeithammer, D. Apari-
cio, Y. Chen, F. Fantini, G. Z. Jin, V. Morwitz, P. P. Leszczyc,
et al. (2024): “Algorithmic Pricing: Implications for Consumers, Man-
agers, and Regulators,” National Bureau of Economic Research, NBER
32540.

Waltman, L. and U. Kaymak (2008): “Q-learning agents in a Cournot
oligopoly model,” Journal of Economic Dynamics and Control, 32, 3275–
3293.

Zhao, Z. and C. K. M. Lee (2022): “Dynamic pricing for EV charging
stations: A deep reinforcement learning approach,” IEEE Transactions
on Transportation Electrification, 8, 2456–2468.

11

Acknowledgments

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation)– Project-ID 317210226 – SFB 1283. The authors gratefully
acknowledge the computing time provided to them on the high-performance
computer Noctua 2 at the Paderborn Center for Parallel Computing (PC2).
This is funded by the German Federal Ministry of Education and Research
and the state governments participating on the basis of the resolutions of the
Joint Science Conference (GWK) for the national high-performance comput-
ing at universities (www.nhr-verein.de/unsere-partner).

12

http://www.nhr-verein.de/unsere-partner)

Online Appendix

A Details of the DQN Algorithm

A.1 Description of the algorithm

The function Qi(si, p; θi) for firm i, determining the Q-values for action
p ∈ P in state si, is represented by a deep neural network with weight
vector θi. This network is used to determine the greedy prices, i.e., the
action pi,t, which in a state si,t is associated with the largest Q-value, and
weights that are updated every period using stochastic gradient descent. We
denote by m = |P | the number of prices the firm can choose from. More
precisely, we use a neural network with one input layer with k nodes, h
hidden layers, each with vl, l = 1, ..h nodes, and a layer with m output
nodes. The activation functions in the nodes of the hidden layer are sigmoid
of the form ϕ(x) = 1

1+e−x , whereas, as is common in the literature (see, e.g.
Mnih et al., 2015), the activation function of the output nodes is the identity.
Denoting by θ̃ljl,jl+1

for l = 0, .., h the weight between node jl in layer l and
jl+1 in layer l + 1 (with l = 0 denoting the input layer and l = h + 1 the
output layer) and writing all weights as one vector of the form θi = θ̃ljl,jl+1

with i =
(∑l−1

l̃=0
vl vl+1

)
+(jl−1)vl+1+ jl+1 the function represented by the

neural network can be written as

Qi(si, p; θi) =

vh∑
jh=1

θ̃hjh,jh+1
·ϕ

 vh−1∑
jh−1=1

. . . ϕ

 v1∑
j1=1

θ̃1j1,j2 · ϕ

 v0∑
j0=1

θ̃0j0,j1si,j0

 ,

where jh+1 ∈ {1, ..,m} is the index of p in the set P of potential prices. The
reward of firm i in period t is given by its scaled profit, i.e., ri,t = χπi,t,
where we allow for scaling of the objective with factor χ > 0 to improve
learning behavior. Defining the loss function at t as

Li,t(θi,t) =

(
Qi(si,t, pi,t; θi)−

(
ri,t + γmax

p′
Q(si,t+1, p

′; θ̃i,t)

))2

the gradient is given by qi,t =
∂Li,t(θi,t)

∂θi,t
. Here, θ̃i,t denotes the weights of the

target neural network, which is used for generating the Q-learning targets
used in the loss function. Every τT period, the weights of the target network
are set equal to the weights θi,t and then kept constant for the following τT

periods.

13

Algorithm 1 Firm behavior

1: procedure determineState
2: si,t = (p1,t−1, .., pk,t−1)

3: procedure setPrice
4: if rnd < ϵt then pi,t ← random choice
5: else pi,t = maxpQ(si,t, p; θi,t)

6: procedure reward
7: ri,t = χ(pi,t − c)qi,t

8: procedure UpdateQ
9: Add experience (si,t, pi,t, πi,t, si,t+1) to Di,t−1

10: Drop (si,t−T , pi,t−T , πi,t−T , si,t−T +1) from Di,t−1

11: → backward window Di,t

12: Sample minibatch Dm
t of size nm from Dt

13: For each {(si,l, pi,l, πi,l, si,l+1)} ∈ Dm
i,t

14: Set yi,l = ri,l + γmaxp′ Q̃(si,l+1, p
′; θ̃i,t)

15: and Li,l = (Q(si,l, pi,l; θi,t)− yi,l)
2

16: Average gradient: ḡi,t = 1/nm
∑

l∈Dm
t

∂Li,l

∂θi,l
17: θi,t+1 ← θi,t+1 + αḡi,t

18: procedure UpdateQ̃
19: if t mod τT = 0 then

θ̃i,t+1 ← θi,t+1

20: procedure UpdateGreedyParameter
21: ϵt+1 ← ϵte

−β

Under online gradient descent, the weights are updated every period
according to

θi,t+1 = θi,t + αgi,t,

where α > 0 denotes the learning rate.
Under experience replay a minibatch of size nm is drawn from a backward

window Di,t consisting of the last T observations:

Di,t = {(si,t−T , pi,t−T , πi,t−T , si,t−T +1), ..., (si,t, ai,t, πi,t, si,t+1)}.

For each element in the minibatch, the corresponding gradient is calculated
(using weights θi,t, θ̃i,t), and the θi,t is updated using the average gradient
of the minibatch.

To minimize the effect of heterogeneities of initial neural network weights
θi on the variance of results across runs, we generated one default initial-

14

k pN πN pM πM

2 1.47 0.22 1.92 0.34

3 1.35 0.12 2.0 0.25

4 1.33 0.08 2.05 0.2

5 1.31 0.06 2.1 0.17

Table 1: Values of the prices and profits under Nash equilibrium and
monopoly pricing for k = 2, .., 5

ization of weights, which is used for all runs, both with online gradient
descent and experience replay. We verified that our results hardly change if
stochastic initialization of weights is used instead.

The simulation setup is summarized in Algorithm 1 .

A.2 Parametrization

For the parameters of the market model, we follow Calvano et al. (2020) and
set them to ai = 2, ci = 1 for i = 1, .., k, a0 = 0 and µ = 0.25. In Table 1,
we provide the values of the prices and profits under Nash equilibrium and
monopoly pricing for k = 2, .., 5.

The discretized price space P is given by an equidistant grid of m = 18
prices between p = pN − ξ(pM − pN) and p̄ = pM + ξ(pM − pN) with
ξ = 0.6.8 The discount rate γ is set equal to 0.95. Hyper-parameters of
the neural network are set as follows; see also Bengio (2012): We use neural
networks with h = 2 hidden layers with the number of nodes in the four
layers given by v = (k, ⌊2(k+m)

3 ⌋, ⌊3(k+m)
2 ⌋,m). In the baseline specification,

the learning rate is α = 0.001, and the exploration parameter is β = 6 ·10−5.
Under online gradient descent, the frequency of network update is τT = 1.
Under experience replay, the size of the minibatch is nm = 32 drawn from a
backward window of size T = 105. The frequency of network update under
experience replay is τT = 104. Rewards are scaled by a factor of χ = 10.

B Results for DQN learning with experience re-
play

In Figure 5, we show the box plots of the profit gain ∆ for DQNs with ex-
perience replay and k = 2, 3, 4, 5 firms. Comparable to an algorithm with

8This value of ξ is larger than ξ = 0.1 chosen in Calvano et al. (2020) in order to avoid
potential boundary effects that might occur during the DQN training.

15

Figure 5: Boxplots of distribution of long-run values of profit gain ∆ for
DQNs with experience replay and k = 2, 3, 4, 5 firms and α = 0.001, β =
6 · 10−5.

online gradient descent, profit gains fall as the number of firms increases.
Profit gains are almost zero for five firms, confirming our main result. A
further robustness test is shown in Figure 6, varying, again, the key param-
eters α and β for the case of five firms. For a large set of parameters, the
mean values of the profit gain are close to zero, see Panel (a). The variance
over the 100 batch runs is very small (c.f. Panel (b)). Considering the prices
in these runs shows that in almost all runs the firms converge to the price
in P that is closest to the Nash equilibrium price.

16

(a) (b)

Figure 6: Panel (a) shows (color-coded) mean values and panel (b) standard
deviations over 100 batch runs of long-run values of profit gain ∆ for DQNs
with experience replay, k = 5 and a variation of α in the range [0.0005, 0.01]
with stepsize 0.0005 and β in [5 ∗ 10−6, 10−4] with stepsize 5 ∗ 10−6.

17

	Introduction
	Deep Q-learning in oligopolies
	Results

	Conclusion and policy implication
	Details of the DQN Algorithm
	Description of the algorithm
	Parametrization

	Results for DQN learning with experience replay

