

Emissionsverhalten von Linienbussen - Teil 1

Dieselantrieb mit nachgerüstetem Abgasrückführungssystem und Erdgasantrieb im Vergleich

LANUV-Fachbericht 14

Emissionsverhalten von Linienbussen – Teil 1
rieb mit nachgerüstetem Abgasrückführungssystem und Erdgasantrieb im Vergleich
LANUV-Fachbericht 14
Jmwelt und Verbraucherschutz Nordrhein-Westfalen Recklinghausen 2009

IMPRESSUM

Herausgeber: Landesamt für Natur, Umwelt und Verbraucherschutz NordrheinWestfalen (LANUV NRW)

Leibnizstraße 10, 45659 Recklinghausen

Telefon 02361 305-0 Telefax 02361 305-3215

E-Mail: poststelle@lanuv.nrw.de

Der vorliegende Fachbericht ist der Abschlussbericht eines Forschungsvorhabens,

das der TÜV NORD Mobilität GmbH & Co. KG im Auftrag des

LANUV NRW durchgeführt hat.

Autoren: Martin Kleinebrahm, Leif-Erik Schulte, Sergej Dreger

(TÜV NORD Mobilität GmbH & Co. KG, Institut für Fahrzeugtechnik und Mobilität, Fachgebiet

TUV NORD

Mobilität

Motoren/Nutzfahrzeuge)

Projektbetreuung: Dr. Andreas Brandt (LANUV NRW)

Fotos: TÜV NORD Mobilität GmbH & Co. KG, wenn nicht anders angegeben

ISSN: 1864-3930 LANUV-Fachberichte

Informations- Informationen und Daten aus NRW zu Natur, Umwelt und

dienste: Verbraucherschutz unter
• www.lanuv.nrw.de

Aktuelle Luftqualitätswerte zusätzlich im
• WDR-Videotext Tafeln 177 bis 179

Bereitschafts- Nachrichtenbereitschaftszentrale des LANUV NRW

dienst: (24-Std.-Dienst): Telefon 0201 714488

Nachdruck – auch auszugsweise – ist nur unter Quellenangaben und Überlassung von

Belegexemplaren nach vorheriger Zustimmung des Herausgebers gestattet.

Die Verwendung für Werbezwecke ist grundsätzlich untersagt.

INHA	LT	SEITE
1	EINLEITUNG	5
2	ZIELSETZUNG	7
3	VORGEHENSWEISE	7
3.1	Allgemeines	7
3.2	Nachrüstsystem	8
3.3	Versuchsfahrzeuge	9
3.3.1	Solobus MAN NL 263 / E3 SL-A	9
3.3.2	Gelenkbus Mercedes O 530 GN 3 Citaro	12
3.3.3	Gelenkbus MAN NG 313 CNG	13
3.4	Streckenauswahl	14
3.5	Messtechnik und Fahrzeugausrüstung	10
3.5.1	Messtechnik für gasförmige Komponenten	16
3.5.2	Messung des Abgasmassenstromes	22
3.5.3	Messung der Umgebungsdaten	23
3.5.4	Messung der geodätischen Daten	23
3.5.5	Drehmomentmessung	24
3.5.6	Geschwindigkeitsmessung	25
3.5.7	Messung der Motordrehzahl	25
4	ERGEBNISSE	26
4.1	Allgemeine Vorgehensweise	20
4.2	Zyklusentwicklung "Düsseldorfer Zyklus"	27
4.2.1	Vorbemerkung zur Besonderheit des Voith DIWA® Getriebes	28
4.2.2	Vorgehensweise	32
4.2.3	Referenzdatenbank	32
4.2.4	Normierung und Klassierung der Daten	34
4.2.5	Geschwindigkeitsverteilung, mittlere Geschwindigkeit	36
4.2.6	Beschleunigungsleistung	39
4.2.7	Fahrstreckenauswahl für den Referenzfahrzyklus	40
4.2.8	Repräsentativer Fahrzeugzyklus (v(t) - Fahrzyklus)	42
4.2.8.	1 Analyse des Referenzfahrzyklus	43
4.2.8.2	2 Erstellung von Musterzyklen und Auswahl des repräsentativen Fahrzyklus	46
4.2.8.3	3 Vollendung des repräsentativen Fahrzyklus	50

7	ANHANG	97
6 2	ZUSAMMENFASSUNG	96
5 E	BETRIEBSVERHALTEN	90
4.4.8	NO ₂ -Emissionen	85
4.4.7	Fahrzeugvergleiche	82
4.4.6	Stickoxidemissionen Gasbus	80
4.4.5	Stickoxidemissionen Gelenkbus	78
4.4.4	Stickoxidemissionen Solobus	75
4.4.3	Streckenbetrachtung	73
4.4.2	Leistungsbezogene Ergebnisse	70
4.4.1	Streckenbezogene Ergebnisse	66
4.4	Ergebnisse im Realbetrieb	65
4.3.3	Ergebnisse im Düsseldorfer Zyklus	64
4.3.2	Ergebnisse im ETC (European Transient Cycle)	62
4.3.1	Ergebnisse im ESC (European Stationary Cycle)	61
4.3	Prüfstandsvermessung	60
4.2.10	Abschließende Zyklusbetrachtung	58
4.2.9.3	Repräsentativer Motorzyklus (Teil 3)	58
4.2.9.2	Repräsentativer Motorzyklus (Teil 2)	57
4.2.9.1	Repräsentativer Motorzyklus (Teil 1)	56
4.2.9	Repräsentativer Motorzyklus ($M_{rel}(n_{rel})$ -Zyklus)	54

1 Einleitung

Mit der EU-Rahmenrichtlinie über die Beurteilung und die Kontrolle der Luftqualität (RL 96/62/EG) und den zugehörigen Tochterrichtlinien (z.B. 1999/30/EG, 2000/69/EG, 2002/3/EG) werden Luftqualitätsziele zur Vermeidung oder Verringerung schädlicher Auswirkungen auf die menschliche Gesundheit und die Umwelt festgelegt. Die Beurteilung der Luftqualität in den Mitgliedstaaten der EU erfolgt nach einheitlichen Methoden und Kriterien.

Die Umsetzung dieser Richtlinien in deutsches Recht erfolgte durch Novellierung des Bundes-Immissionsschutzgesetzes (BImSchG) und der 22. Verordnung zum BImSchG im Jahr 2002.

Als Folge der Umsetzung der EU-Richtlinien gelten wesentlich schärfere Grenzwerte für die wichtigsten Luftschadstoffe. Die nachfolgende Tabelle 1 und Tabelle 2 geben einen Überblick über die Grenzwerte für Stickstoffoxide (NO_x) und Partikel (PM10). Die Richtlinie 96/62/EG schreibt zudem vor, dass die Belastungssituation regelmäßig durch Messung oder Modellrechnung zu ermitteln und zu beurteilen ist. Im Falle der Feststellung einer unzulässig hohen Umweltbelastung muss ein Luftreinhalteplan (LRP) aufgestellt werden.

Im Jahr 2002 wurde an der Messstation in der Corneliusstraße in Düsseldorf ein Jahresmittelwert für Stickstoffdioxid von 59 μ g/m³ festgestellt. Dieser Messwert hat nicht nur den ab 2010 gültigen Jahresmittelgrenzwert für den NO₂ von 40 μ g/m³ deutlich überschritten, sondern lag auch über dem zulässigen Toleranzbereich (Grenzwert + Toleranzmarge) für das Jahr 2002, der bei 56 μ g/m³ liegt.

Tabelle 1: Grenzwerte für NO₂ und NO_x

	Grenzwert	Toleranzmarge
1-Stunden- Grenzwert Gesundheitsschutz	200 μg/m³ NO₂ über 1 Stunde bei höchstens 18 Überschreitungen im Kalenderjahr, einzuhalten ab 1.1.2010	50% ab Inkrafttreten bis 1.1.2010 in gleichen Jahresraten auf 0% zu mindern
Jahresgrenzwert Gesundheitsschutz	40 μg/m³ NO ₂ Kalenderjahres-mittelwert, einzuhalten ab 1.1.2010	50% ab Inkrafttreten bis 1.1.2010 in gleichen Jahresraten auf 0% zu mindern
Jahresgrenzwert Vegetationsschutz	30 μg/m³ NO _x (NO+NO ₂), als Kalenderjahresmittelwert	keine
Alarmschwelle	400 μg/m³ NO ₂ , gemessen über 3 aufeinander folgende Stunden an repräsentativen Orten über mindestens 100 km² oder in ganzen Ballungsräumen, wenn sie kleiner sind	keine

Tabelle 2: Grenzwerte für Partikel (PM10)

	Grenzwert	Toleranzmarge
24-Stunden- Grenzwert	50 μg/m³ PM ₁₀ über 24 Stunden, höchstens 35 Überschreitungen im Jahr, einzuhalten ab 1.1.2005	50% bei Inkrafttreten, in gleichen Jahresraten zu mindern auf 0%
Jahresgrenzwert	40 μg/m³ PM ₁₀ über 1 Kalenderjahr, einzuhalten ab 1.1.2005	20% bei Inkrafttreten, in gleichen Jahresraten zu mindern auf 0%

Neben der Überschreitung des zulässigen Jahresmittelwertes für Stickstoffdioxid wurde im Jahre 2003 auch die Überschreitung des ab 2005 gültigen Grenzwertes für Partikel (PM10) festgestellt. Daraufhin wurde die Aufstellung eines Luftreinhalteplanes für die südliche Innenstadt von Düsseldorf veranlasst. Der Luftreinhalteplan bezieht sich allerdings nur auf die NO₂-Belastung, nicht auf die Partikelbelastung. Der Luftreinhalteplan für Düsseldorf-Südliche Innenstadt sieht unter den zahlreichen Maßnahmen zur Reduzierung der NO₂-Belastung auch die schrittweise Umstellung der städtischen Fahrzeuge sowie der gesamten Busflotte der Rheinbahn auf emissionsarme Antriebsarten vor. Dies soll teilweise durch Neubeschaffung von modernen Bussen und durch Umrüstung der vorhandenen Busse auf fortschrittliche Abgasnachbehandlungssysteme erfolgen.

Die Buspopulation der Rheinbahn weist eine sehr große Zahl von Fahrzeugen auf, die der Abgasnorm Euro III (1999/96/EG, Grenzwertzeile A) entsprechen, was einem Stickoxidgrenzwert von 5 g/kWh entspricht. Diese Fahrzeuge werden voraussichtlich noch für ca. 10 Jahre eingesetzt werden. Eine solche Situation zwingt zu Maßnahmen, die die NO_x-Emissionen an bereits im Betrieb befindlichen Fahrzeugen reduzieren. Das hier beschriebene Projekt dokumentiert die Nachrüstung zweier Busse mit Abgasnachbehandlungssystemen und die damit erzielten Ergebnisse.

2 Zielsetzung

Berechnungen des Landesamtes für Natur, Umwelt und Verbraucherschutz des Landes Nordrhein-Westfalen haben gezeigt, dass mit der derzeitigen Buspopulation eine deutliche Absenkung der Stickoxidemission der Busse des öffentlichen Nahverkehrs notwendig ist, um die Situation in der südlichen Innenstadt von Düsseldorf zu verbessern. Die Absenkung sollte hierbei zumindest die Euro V Grenzwerte (2 g/kWh), besser noch 1 g/kWh erreichen. Mit einer solchen, deutlichen Absenkung der Stickoxidemissionen wurde auch eine entsprechende Verminderung der NO₂-Emission erwartet. Um diese Ziele zu erreichen, müssten die vorhandenen Euro III Busse mit Nachrüsttechnologien ausgestattet werden, die die vorhandenen Stickoxidemissionen um deutlich mehr als 50% reduzieren. Zielsetzung des Projektes ist der grundsätzliche Nachweis, dass das gewählte Nachrüstungssystem das Potential besitzt, die bestehenden NO_x-Emissionen auf die gewünschten Zielwerte abzusenken. Darüber hinaus soll gezeigt werden, inwieweit die erreichte Emissionsreduktion im Realbetrieb der Busse dargestellt werden kann.

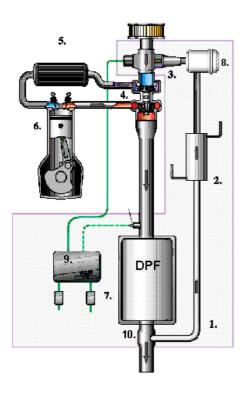
Um speziell die Bedingungen des Busbetriebes in Düsseldorf darzustellen, ist ein weiteres Ziel die Entwicklung eines Fahrzyklus ("Düsseldorfer Zyklus"), der für eine Stadt mit den topographischen und verkehrstechnischen Bedingungen, die man in Düsseldorf vorfindet, repräsentativ ist, um die Möglichkeit zu eröffnen, vergleichende Untersuchungen auf einem Motorprüfstand durchzuführen.

Um Alternativen zu den dieselbetriebenen Bussen mit in den Vergleich einzubeziehen, sollte auch ein Gasbus, der dem derzeitigen Stand der Technik entspricht, auf den gleichen Strecken wie die Dieselbusse vermessen werden.

3 Vorgehensweise

3.1 Allgemeines

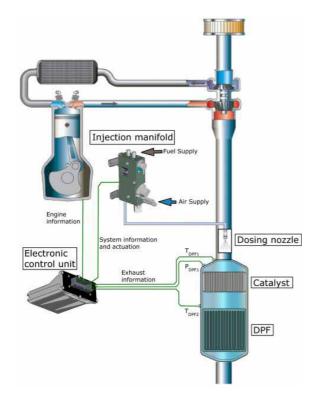
Zur Erreichung der o.g. Projektziele wurde im Vorfeld ein Nachrüstsystem ausgesucht, dessen Hersteller die Erreichung der Emissionsziele in Aussicht gestellt hat. Dieses System sollte an zwei unterschiedlichen Bussen der Rheinbahn installiert werden. Zur Applikation der Systeme wurden zwei entsprechende Busmotoren auf dem Prüfstand des Nachrüstsystemherstellers aufgebaut. Um nach der Umrüstung der Motoren die grundsätzliche Eignung des Systems zu dokumentieren und um die Betriebserlaubnis der Fahrzeuge wiederherstellen zu können, wurden beide Busmotoren den Typprüfungstests unterzogen, die für Euro III – Fahrzeuge mit fortschrittlicher Abgasnachbehandlung vorgesehen sind. Zusätzlich wurden auch Untersuchungen im "Düsseldorfer Zyklus" durchgeführt.


Für die Vermessung der Busse im Realbetrieb der Rheinbahn wurde folgende Vorgehensweise gewählt:

Zur Dokumentation des Ausgangszustandes wurden die beiden zur Nachrüstung vorgesehenen Busse auf ihre Emissionen hin vermessen. Die hierzu benutzten Linienführungen wurden im Vorfeld durch die Rheinbahn ausgewählt. Die Streckenführung sollte als repräsentativ für den Busbetrieb bei der Rheinbahn gelten. Während der Erstvermessung wurden auch Daten zur Entwicklung des "Düsseldorfer Zyklus" aufgenommen. Um Alternativen zur Nachrüstung von Dieselbussen zu betrachten, wurde auch ein Gasbus auf den gleichen Strecken wie der vergleichbare Dieselbus vermessen.

Nach erfolgter Umrüstung der Fahrzeuge auf das Abgasnachbehandlungssystem wurden die beiden Fahrzeuge noch dreimal vermessen. Die erste Vermessung fand kurz nach der Umrüstung statt, um den Neuzustand zu dokumentieren. Jeweils eine weitere Vermessung erfolgte in der Mitte und am Ende des geplanten Beobachtungszeitraumes.

3.2 Nachrüstsystem


Im Vorfeld des hier beschriebenen Projektes wurde ein Abgasnachbehandlungssystem des schwedischen Herstellers stt emtec ausgewählt. Dieses Nachrüstsystem besteht aus einer Niederdruck Abgasrückführung in Verbindung mit einem aktiv regenerierten Partikelfilter. Abbildung 1 zeigt den grundsätzlichen Systemaufbau. Abbildung 2 stellt die Funktion der aktiven Filterregeneration dar. Über das AGR-Ventil wird für den jeweiligen Kennfeldpunkt die richtige AGR-Menge eingestellt.

- 1. Rückführsystem
- 2. AGR-Kühler
- 3. AGR-Ventil
- 4. Turbolader
- 5. Ladeluftkühler
- 6. Motor (Verbrennungsraum)
- 7. Partikelfilter
- 8. Sekundärfilter
- 9. Steuergerät
- 10. Dynamische AGR-Entnahme

Abbildung 1: Prinzipbild Niederdruck Abgasrückführung

Die Grafik verdeutlicht die Funktionsweise des aktiv regenerierenden Filtersystems.

Bei Regenerationsbedarf wird Kraftstoff in das Abgasrohr eingedüst. Der dem Filter vorgeschaltete Oxidations-Katalysator erzeugt durch seine exotherme Reaktion die notwendige Wärme, um die Regeneration des Partikelfilters sicherzustellen.

Abbildung 2: Aktive Filterregeneration

3.3 Versuchsfahrzeuge

Bei der Auswahl der Versuchsfahrzeuge waren die Buspopulation sowie der Einsatz der Fahrzeuge auf den als repräsentativ ausgewählten Strecken zu berücksichtigen. Beide Fahrzeuge besitzen eine Euro III Homologation.

3.3.1 Solobus MAN NL 263 / E3 SL-A

Bei dem ersten Fahrzeug handelt es sich um einen Solobus. Der Antrieb dieses Fahrzeuges wird durch einen Motor sichergestellt, der die Euro III Grenzwerte mithilfe einer gekühlten Hochdruck AGR erfüllt. Abbildung 3 zeigt das Fahrzeug.

Abbildung 3: MAN Solobus NL 263 / E3 SL-A

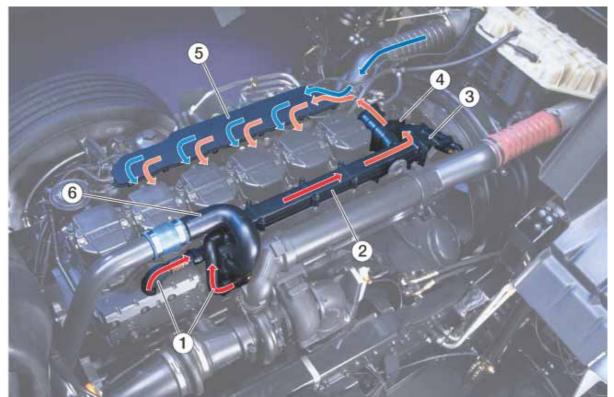


Abbildung 4: Abgasrückführung [Quelle: MAN]

Abbildung 4 zeigt das grundsätzliche Schema einer gekühlten Abgasrückführung. Hierbei bedeuten ① die Abgasentnahme auf der Hochdruckseite der Turbine des Abgasturboladers, ② der Abgasrückführkühler, ③+④ die AGR-Klappe mit den Flatterventilen, ⑤ das Saugrohr und ⑥ die Kühlwasserzuführung zum AGR-Kühler.

Die durch das pulsierende Abgas entstehenden Druckspitzen erreichen temporär Werte, die Abgas von der Hochdruckseite der Turbine durch den Kühler über Regelklappe und Flatterventile in das Saugrohr des Motors strömen lassen. Rückströmungen werden durch die Flatterventile verhindert. Durch dieses rückgeführte Abgas wird die Spitzentemperatur der Verbrennung abgesenkt und die Reaktionen so beeinflusst, dass nach der Verbrennung geringere NO_x-Konzentrationen verbleiben. Über die AGR-Klappe wird die AGR ein- bzw. ausgeschaltet. Unter normalen Betriebsbedingungen kann bei entsprechender Motorapplikation über weite Bereiche des Motorkennfeldes Abgas zurückgeführt werden und so die Stickstoffoxid-Rohemission des Motors entsprechend reduziert werden. Bei der Nachrüstung dieses Fahrzeuges wurde die Ansteuerung der serienmäßigen AGR-Klappe nicht mehr über das Motorsteuergerät getätigt, sondern wurde über das Steuergerät des Nachrüstsystems mit angesteuert. Die Tabelle 3 fasst die technischen Daten des Fahrzeuges zusammen.

Tabelle 3: Technische Daten MAN NL 263 / E3 SL-A

Fahrzeug	Solobus MAN NL 263 / E3 SL-A
Motortyp	D 2866 LUH23 Euro III
Motorleistung	191 kW bei 1900 min ⁻¹
Motordrehmoment	1050 Nm bei 800 - 1300 min ⁻¹
Getriebe	Voith DIWA® 854.3
Geniese	4-Gang Automatgetriebe

3.3.2 Gelenkbus Mercedes O 530 GN 3 Citaro

Bei dem zweiten Versuchsfahrzeug handelt es sich um einen Gelenkbus O 530 GN 3 Citaro. Im Gegensatz zu dem MAN Solobus hat dieses Fahrzeug im serienmäßigen Zustand keine AGR. Die Grenzwerte werden hier durch eine anders ausgelegte motorische Verbrennung erreicht, die zu niedrigeren Spitzentemperaturen führt und somit eine geringere Stickstoffoxidbildung bewirkt. Abbildung 5 zeigt das Versuchsfahrzeug. In der Tabelle 4 sind die technischen Daten des Fahrzeuges zusammengefasst.

Abbildung 5: Mercedes Gelenkbus O 530 GN 3 Citaro

Tabelle 4: Technische Daten O 530 GN 3 Citaro

Fahrzeug	Gelenkbus MB O 530 GN 3 Citaro
Motortyp	OM 457 hLA 934 Euro III
Motorleistung	220 kW bei 2000 min-1
Motordrehmoment	1250 Nm bei 1100 min-1
Getriebe	Voith DIWA® 854.3
Geti lebe	4-Gang Automatgetriebe

3.3.3 Gelenkbus MAN NG 313 CNG

Als drittes Fahrzeug wurde ein erdgasbetriebener Bus vermessen. Da im Fuhrpark der Rheinbahn kein geeignetes Fahrzeug zu Verfügung stand, wurde hier mit Hilfe der Ruhrgas AG auf ein Fahrzeug zurückgegriffen, welches in Frankfurt an der Oder stationiert ist. Das Fahrzeug entspricht dem derzeitigen Stand der Technik. Abbildung 6 zeigt das Fahrzeug.

Abbildung 6: Erdgasbus MAN NG 313 CNG

Tabelle 5 zeigt die technischen Daten des Fahrzeuges.

Tabelle 5: Technische Daten MAN NG 313 CNG

Fahrzeug	Gelenkbus MAN NG 313 CNG
Motortyp	E2876LUH01 EEV
Motorleistung	228 kW bei 2000 min-1
Motordrehmoment	1250 Nm von 1000 - 1700 min-1
Getriebe	ZF 5 HP 592C 5-Gang Automatgetriebe

3.4 Streckenauswahl

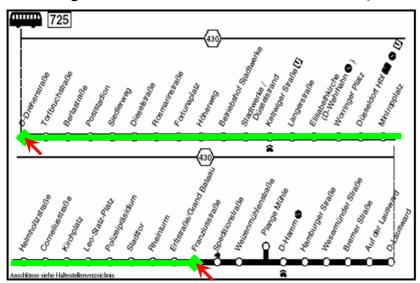

Für die Streckenauswahl wurden unterschiedliche Kriterien angesetzt. Zum einen sollten die gefahrenen Strecken die Situation in der südlichen Innenstadt von Düsseldorf widerspiegeln, zum anderen sollten auch die topographischen Bedingungen des Düsseldorfer Busbetriebs zum Tragen kommen. Darüber hinaus sollte auch noch ein Mischbetrieb zwischen Innenstadt und Ausfallstrecken in die Außenbezirke dargestellt werden. Mit diesen Vorgaben wurden von der Rheinbahn drei Streckenführungen ausgewählt, die den gewünschten Kriterien bestmöglich entsprechen. Es wurde eine Strecke ausgewählt, die nur mit dem Solobus gefahren wurde. Eine zweite Strecke wurde wiederum nur mit dem Gelenkbus gefahren. Die dritte ausgewählte Strecke wurde mit beiden Fahrzeugen befahren. Um hinreichend viele Daten zu erhalten, wurden bei allen Messfahrten die Linien mehrfach durchfahren. Der Gasbus wurde genauso eingesetzt, wie der Diesel-Gelenkbus. Die Tabelle 6 zeigt die Strecken und die jeweilige Messhäufigkeit. Die von beiden Busformen gemeinsam befahrene Strecke stellt im Wesentlichen den Innenstadtbetrieb dar und ist deutlich kürzer als die anderen Streckenführungen. Die Abbildung 7 bis Abbildung 9 zeigen die jeweiligen Streckenverläufe der befahrenen Linien.

 Tabelle 6:
 Streckenführung für die einzelnen Versuchsfahrzeuge

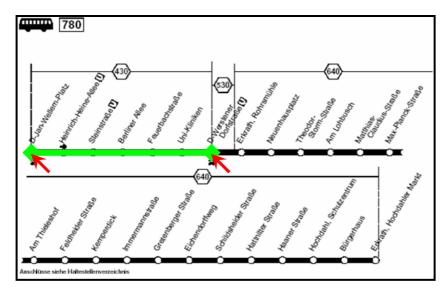

Fahrzeug	Fahrten ID	Strecken ID	Linien Nr.	Startstelle	Endstelle
	1	1	733	St. Vinzenz Krankenhaus	Am Püttkamp
	2	2	733	Am Püttkamp	St. Vinzenz Krankenhaus
	3	1	733	St. Vinzenz Krankenhaus	Am Püttkamp
	4	2	733	Am Püttkamp	St. Vinzenz Krankenhaus
Solobus	5	3	780	Jan-Wellem-Platz	Werstener Dorfstraße
Solobus	6	4	780	Werstener Dorfstraße	Jan-Wellem-Platz
	7	3	780	Jan-Wellem-Platz	Werstener Dorfstraße
	8	4	780	Werstener Dorfstraße	Jan-Wellem-Platz
	9	3	780	Jan-Wellem-Platz	Werstener Dorfstraße
	10	4	780	Werstener Dorfstraße	Jan-Wellem-Platz
	11	5	725	Franziusstraße	Dreherstraße
	12	6	725	Dreherstraße	Franziusstraße
	13	5	725	Franziusstraße	Dreherstraße
	14	6	725	Dreherstraße	Franziusstraße
Calankhua	15	3	780	Jan-Wellem-Platz	Werstener Dorfstraße
Gelenkbus	16	4	780	Werstener Dorfstraße	Jan-Wellem-Platz
	17	3	780	Jan-Wellem-Platz	Werstener Dorfstraße
	18	4	780	Werstener Dorfstraße	Jan-Wellem-Platz
	19	3	780	Jan-Wellem-Platz	Werstener Dorfstraße
	20	4	780	Werstener Dorfstraße	Jan-Wellem-Platz

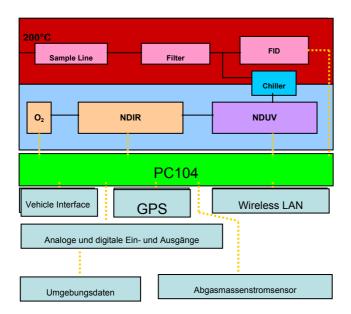
Abbildung 7: Streckenverlauf Solobuslinie 733 [Quelle: Rheinbahn AG]

Abbildung 8: Streckenverlauf Gelenkbuslinie 725 [Quelle: Rheinbahn AG]

Abbildung 9: Streckenverlauf Solo- / Gelenkbuslinie 780 [Quelle: Rheinbahn AG]

3.5 Messtechnik und Fahrzeugausrüstung

Ziel bei der Vermessung der Realemissionen von Fahrzeugen ist es, möglichst Ergebnisse zu erzeugen, die mit Messwerten aus Typprüfungen vergleichbar sind. Es ist nicht möglich, auf der Straße Typprüfbedingungen zu erzeugen, so dass direkt vergleichbare Endergebnisse erzeugt werden können. Es ist aber sehr wohl möglich, Messdaten zu erzeugen, die mit bestimmten Messsituationen an Prüfständen vergleichbar sind. Vorraussetzung hierfür ist allerdings, dass Messtechnik benutzt wird, die möglichst auf den gleichen physikalischen Prinzipien basiert wie Labormesstechnik, bzw. vergleichbare Ergebnisse liefert. Wie vorangegangene Vorhaben gezeigt haben, ist dies insbesondere für gasförmige Emissionen ein erreichter Stand der Technik.


Die an den Fahrzeugen installierte Messtechnik wurde über ein eigenes Stromaggregat, welches bei den Messfahrten im Fahrzeug mitgeführt wurde, mit elektrischer Energie versorgt. Grundsätzlich wäre zwar auch eine Verbindung mit dem elektrischen Netz des Fahrzeuges möglich, aber es wurde darauf verzichtet, um den Belastungszustand des Motors durch eine höhere Belastung der Lichtmaschine nicht zu verfälschen.

3.5.1 Messtechnik für gasförmige Komponenten

Für die Messung der gasförmigen Komponenten wurde das SEMTECH-D der Firma Sensors benutzt. Mit Ausnahme des NO_x-Analysators ist der prinzipielle Aufbau des Systems ähnlich der Messtechnik, die in den Regelwerken der EG zur Messung von Dieselmotoren im unverdünnten Abgas beschrieben ist. Hierbei gibt es einen beheizten Teil, der die Entnahmeleitung von der Messgassonde, ein beheiztes Filter und den FID (Flammen-Ionisations-Detektor) zur Bestimmung der Kohlenwasserstoffe beinhaltet. Die Beheizung auf mindestens 180 °C ist notwendig, um Kondensation von Kohlenwasserstoffen zu verhindern. Ein Teilstrom des Messgases wird zur Trocknung über einen Kühler geführt und dann dem NDIR Analysator (Nicht-Dispersiver-Infrarot-Analysator) zur Bestimmung der CO- und CO₂-Konzentration, dem elektrochemischen O2- Analysator und der NDUV-Messbank (Nicht-Dispersive-Ultraviolet-Messbank) zur Bestimmung von NO und NO2 zugeführt. Die Trocknung ist notwendig, da diese Messgeräte nicht mit feuchtem Abgas betrieben werden können. Ein im Messsystem angeordneter Rechner verwaltet das Gesamtsystem und führt die Daten aus den unterschiedlichen Quellen zusammen. Tabelle 7 bis Tabelle 10 geben eine Übersicht über die Spezifikationsdaten der verwendeten Analysatoren. Neben dem eigentlichen Analysesystem können ebenfalls Daten aus einem GPS-System, einem Abgasmassensensor und diversen analogen und digitalen Eingängen gesammelt werden. Angeschlossen sind auch Sensoren zur Erfassung der atmosphärischen Daten. Zur Bedienung des Systems wird ein externer Rechner mit der entsprechenden Software über ein LAN angebunden. Abbildung 10 zeigt das Messsystem SEMTECH D der Firma Sensors. Abbildung 11 verdeutlicht den grundsätzlichen Systemaufbau.

Abbildung 10: Semtech-Messgerät [Quelle: Sensors, Inc.]

Abbildung 11: Systemaufbau SEMTECH-D [Quelle: Sensors, Inc.]

Die zum Betrieb des Messsystems notwendigen Gase wurden im Bus mitgeführt. Da der Gasverbrauch sehr gering ist, können grundsätzlich sehr kleine Druckgasflaschen benutzt werden, die teilweise auch im SEMTECH-D Gehäuse untergebracht werden können. Für die umfangreichen Messungen dieses Projektes war es jedoch sinnvoll, größere Flaschen zu verwenden.

Da der gesamte Gasentnahmeweg sowie ein Teil des Messsystems auf 190 °C beheizt wird, ist vom Zeitpunkt des Einschaltens des Gerätes bis zur Betriebsbereitschaft mit mindestens einer Stunde Aufwärm- und Vorbereitungszeit zu rechnen. Am Ende dieser Vorbereitung steht die Kalibrierung des Systems. Dies wurde bei den Messungen dieses Projektes vor jeder Messfahrt durchgeführt und bei Zwischenstopps während der Fahrt nochmals überprüft.

Abbildung 12: Raum für Messtechnik und Gasflaschenaufbewahrung

 Tabelle 7:
 Spezifikationen des FID [Quelle: Sensors, Inc.]

Dange of Magaurement	0 - 100, 0 - 1,000,and 0 - 10,000 PPMC User Selectable		
Range of Measurement	0 - 100 PPM Range	0 - 10,000 PPM Range	
Accuracy	±1.0 % of reading or ±5 PPM whichever is greater	±1.0 % of reading or ±25 PPM whichever is greater	
Resolution	0.1 PPM	1.0 PPM	
Linearity	±0.5 % of reading or ±3 PPM whichever is greater	±0.5 % of reading or ±10 PPM whichever is greater	
Repeatability	±0.5 % of reading or ±2 PPM whichever is greater	±0.5 % of reading or ±10 PPM whichever is greater	
Noise	±2 PPM	±10 PPM	
Span drift	±0.5 % of reading or 3 PPM Whichever is greater over 8 hrs	±0.5 % of reading or 15 PPM Whichever is greater over 8 hrs	
Warm up time	60 minutes	60 minutes	
Response time	T90 ≤ 2 seconds	T90 ≤ 2 seconds	
Flow rate	2 LPM	2 LPM	
Data rate	Up to 4 Hz, configurable	Up to 4 Hz, configurable	
Operating temperature	191 °C	191 °C	

 Tabelle 8:
 Spezifikationen der NDIR-Messbank [Quelle: Sensors, Inc.]

Gas	СО	СО	CO ₂
	Low Range	High Range	
Range of Measurement	0 – 5,000 PPM	0 – 8%	0 – 20%
Accuracy	±3 % of reading or 50 PPM, whichever is greater	±3 % of reading or ±0.02%, whichever is greater	±3 % of reading or ±0.1%, whichever is greater
Resolution	1 ppm	.001%	.01%
Linearity	±1 % of reading or 20 PPM, whichever is greater	±1 % of reading or ±0.01%, whichever is greater	±1 % of reading or ±0.05 %, whichever is greater
Repeatability	±1 % of r whichever is greater reading or 20 PPM,	±1 % of reading or ±0.01%, whichever is greater	±1 % of reading or ±0.05 %, whichever is greater
Noise	±20 PPM	±20 PPM	±0.02%
Span drift	±0.5 % of reading or 20 PPM, whichever is greater over 8 hrs	±0.5 % of reading or ±0.01%, whichever is greater over 8 hrs	±2 % of reading over 8hours
Warm up time	45 minutes	45 minutes	45 minutes
Response time	T90 ≤ 3 seconds	T90 ≤ 3 seconds	T90 ≤ 3 seconds
Flow rate	2 LPM	2 LPM	2 LPM
Data rate	0.83 Hz	0.83 Hz	0.83 Hz
Operating temperature	5 to 50 °C	5 to 50 °C	5 to 50 °C

 Tabelle 9:
 Spezifikation der NDUV-Messbank [Quelle: Sensors, Inc.]

	NO	NO ₂
Range of Measurement	0 to 5,000 PPM	0 to 500 PPM
Accuracy	±3 % of reading or 15 PPM, whichever is greater	±3 % of reading or 10 PPM, whichever is greater
Resolution	1 PPM	1 PPM
Linearity	±1 % of reading or 5 PPM, Whichever is greater	±1 % of reading or 5 PPM, whichever is greater
Repeatability	±1 % of reading or 5 PPM, whichever is greater	±1 % of reading or 5 PPM, whichever is greater
Noise	±2 PPM	±2 PPM
Span drift	±1 % of reading or 20 PPM, whichever is greater over 8 hrs	±10 PPM over 8 hours
Warm up time	45 minutes	45 minutes
Response time	T90≤2 seconds	T90≤2 seconds
Data Rate	Up to 2 Hz, configurable	Up to 2 Hz, configurable
Flowrate	3LPM	3LPM
Operating temperature	5 to 50 °C	5 to 50 °C

 Tabelle 10:
 Spezifikation elektrochemischer O2 Analysator [Quelle: Sensors, Inc.]

Range of Measurement	0 to 25 %
Accuracy	± 2 % of reading or ± 1 % Oxygen whichever is greater
Resolution	0.1 %
Linearity	±0.5 % of reading or ±0.5 % whichever is greater
Repeatability	$\pm 0.25~\%$ of reading or $\pm 0.3~\%$ Oxygen whichever is greater
Noise	0.1 % Oxygen
Span drift	1 % of reading or ± 0.5 % Oxygen whichever is greater
Warm up time	5 minutes
Responsetime	T90 < 6 seconds
Flowrate	0.5 to 3 LPM
Operatingtemperature	5 to 50 °C

3.5.2 Messung des Abgasmassenstromes

Zur Messung des Abgasmassenstromes wurde ein EFM (Electronic Flow Meter) der Firma SENSORS eingesetzt. Das System arbeitet nach dem Pitot-Rohr Prinzip, wobei über den dynamischen Staudruck im Vergleich zum statischen Druck die durchströmende Masse ermittelt wird. Abbildung 13 zeigt das Gesamtsystem mit Messrohr, Schlauchbündel und Auswerteeinheit. Die Tabelle 11 und Tabelle 12 geben Überblick über die Spezifikationen des Messsystems.

Abbildung 13: Electronic Flow Meter [Quelle: Sensors, Inc.]

Tabelle 11: Spezifikationen des EFM-Messrohres [Quelle: Sensors, Inc.]

Flow Tube Outer Diameter	5 inches 127 mm
Recommended vehicle application	Heavy-Duty Diesel 12 – 18 liters
Flow rate ¹ at back-pressure of	1,700 SCFM
10 inches H ₂ O (24.91 mbar)	48.1 m³/min
Flow rate ¹ at back-pressure of	2,100 SCFM
15 inches H ₂ O (37.36 mbar)	59.5 m³/min
Flow tube length	35 in
	889 mm
Flow tube weight	12.2 lbs
	5.5 kg

Tabelle 12: Allgemeine EFM-Spezifikationen [Quelle: Sensors, Inc.]

Exhaust temperature range²

Exhaust temperature accuracy

±1% rdg or ±2 °C,
whichever is greater

Flow measurement linearity

Flow measurement accuracy

±2.5 % of reading, or
±1.5 % of full scale,
whichever is greater

 $\begin{tabular}{lll} Warm-up time & 15 minutes \\ Response time & $T_{90} < 1 \ s$ \\ Data rate & $1-4 \ Hz$ \\ Power requirements & $12 \ V_{DC}, 50 \ W$ \\ Communications & RS-232, CAN \\ \end{tabular}$

Electronics module dimensions 10.25 in L

6.375 in W 4.0 in H 26 mm L 162 mm W 102 mm H

Electronics module weight 7.6 lbs 3.4 kg

3.5.3 Messung der Umgebungsdaten

Zur Bestimmung der Korrekturfaktoren bei der Auswertung der Messungen war die Kenntnis der Umgebungsdaten von großer Wichtigkeit. Temperatur und Barometerstand sowie die relative Feuchte wurden durch geeignete Sensoren erfasst. Die Anordnung der Temperatur- und Feuchtemessstelle war hierbei so gewählt, dass sie nahe an der Ansaugung der Motorverbrennungsluft lag. Es wurde ein handelsüblicher kombinierter Sensor zur Erfassung der Lufttemperatur und der relativen Feuchte benutzt und die Signale über die analogen Eingänge in das SEMTECH-D eingeschleust.

3.5.4 Messung der geodätischen Daten

Zur Messung der geodätischen Größen wurde ein GPS-System benutzt. Neben den Längenund Breitengraden wurden die Geschwindigkeit über Grund sowie die Höhe über NN mitprotokolliert. Die Antenne für das GPS-System war auf dem Fahrzeugdach angebracht.

At an exhaust gas temperature of 200 °C. Higher flow rates can be measured at higher back-pressures.

As determined using a NIST traceable LFE flow stand.

3.5.5 Drehmomentmessung

Um die Möglichkeit zu besitzen, leistungsbezogene Emissionsdaten zu ermitteln, bedurfte es der zeitaufgelösten Ermittlung eines Drehmomentes im Antriebsstrang. Die Applikation einer Drehmomentmessung an ein Serienfahrzeug ohne eine Änderung des Serienzustandes lässt nicht viele Möglichkeiten zu. In diesem Projekt wurde die Messung über Anbringung von Dehnmessstreifen (DMS) auf der Kardanwelle realisiert.

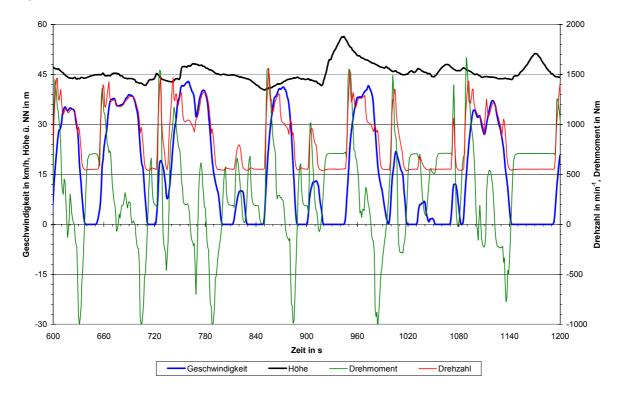
Die Anbringung der DMS ist ein sehr zeitaufwendiger Vorgang, der äußerste Sorgfalt und Sachkenntnis verlangt. In Abbildung 14: ist ein solcher aufgeklebter DMS im Rohzustand zu sehen. Zwei solcher Streifen wurden um jeweils 180° versetzt auf der Welle angeordnet. Die anschließende elektrische Verschaltung zu einer Wheatstoneschen Brücke, die Anbringung der Antenne und die Energieversorgung des Messsystems vervollständigen die Messanordnung. Das so applizierte System wird zum Schluss mit einem an der Welle angesetzten Hebelarm und Kalibriergewichten kalibriert. Die Messdaten wurden dem SEMTECH-D als Analogwert zur Verfügung gestellt.

Abbildung 14: Dehnmessstreifen im Rohzustand

3.5.6 Geschwindigkeitsmessung

Neben der Geschwindigkeitsmessung über das GPS-System wurde noch parallel die Geschwindigkeit über ein optisches Messsystem der Firma Datron, Typ DLS 1 ermittelt. Das Signal des Systems wurde verarbeitet und über einen Analogeingang dem SEMTECH-D zugeführt. Das Geschwindigkeitssignal wurde als redundantes System zum GPS-System benutzt, da Verbindungsausfälle des GPS-Systems möglich sind und dann Fehlsignale entstehen können. Des Weiteren wird über die Geschwindigkeit, das Hinterachs-Übersetzungsverhältnis und die Reifendaten die Kardanwellendrehzahl ermittelt. Abbildung 15: zeigt das Messsystem am Fahrzeug.

Abbildung 15: Geschwindigkeitsmesssystem am Fahrzeug


3.5.7 Messung der Motordrehzahl

Um die ermittelten Massenemissionsergebnisse in einem motorischen Kennfeld einordnen zu können, bedurfte es noch der Messung der Motordrehzahl. Hierzu konnte keine einheitliche Messtechnik benutzt werden, da die Möglichkeiten des messtechnischen Abgriffes der Drehzahl für jedes Fahrzeug unterschiedlich waren. Das jeweils am Fahrzeug gefundene Drehzahlsignal wurde mit einer geeigneten Messdatenverarbeitung in ein Analogsignal umgeformt und an das SEMTECH-D weitergegeben.

4 Ergebnisse

4.1 Allgemeine Vorgehensweise

Die aufgezeichneten Messdaten wurden in eine Access-Datenbank überführt und als erstes auf die Plausibilität überprüft. Dazu wurden die Zeitverläufe von Geschwindigkeit, Motordrehzahl, Drehmoment und Höhenprofil für jede Fahrt graphisch dargestellt und manuell auf Fehler überprüft. Die fehlerhaften Bereiche wurden markiert und für die weitere Auswertung nicht berücksichtigt. So konnte z.B. eine Messung des Solobusses wegen Ausfall der Drehmomentmessung nicht leistungsbezogen ausgewertet werden. Abbildung 16 zeigt beispielhaft die zeitlichen Signalverläufe eines Fahrtabschnittes. Ähnliche Vorgehensweise wurde auch für die gasförmigen Emissionen (CO, CO₂, HC, NO_x) angewandt.

Abbildung 16: Exemplarischer Zeitverlauf

Um die relativen Motorbelastungen bestimmen zu können, muss für jede gemessene Motordrehzahl die entsprechende Motorleistung bei Volllast bekannt sein. Dazu wurden die für jeden Motor vorliegenden Leistungswerte der Volllastkurve mittels eines Polynoms 6. Grades angenähert. Für die weitere Auswertung wurden zwei normierte Leistungswerte bestimmt:

- relative Leistung P_{rel}
- normierte Leistung P_{norm}

Die relative Leistung P_{rel} ist das Verhältnis der aktuell gemessenen Leistung P_{akt} zur Volllastleistung bei der entsprechenden Motordrehzahl $P_{max}(n)$:

$$P_{rel} = \frac{P_{akt}}{P_{\max}(n)}$$

Die normierte Leistung P_{norm} ist das Verhältnis der aktuell gemessenen Leistung P_{akt} zur Nennleistung des Motors P_{nenn} :

$$P_{norm} = \frac{P_{akt}}{P_{nenn}}$$

Die Werte der beiden normierten Leistungen wurden in 5%-Schritten klassiert.

Die gemessenen Motordrehzahlen wurden zunächst zur Plausibilisierung in Drehzahl-Geschwindigkeitsdiagrammen dargestellt (Siehe Abbildung 18).

Für die Auswertung wurde ebenfalls eine normierte, relative Drehzahl n_{rel} bestimmt:

$$n_{rel} = \frac{(n - n_{idle})}{(s - n_{idle})}$$

Dabei ist:

n: aktuell gemessene Motordrehzahl

n_{idle}: Leerlaufdrehzahl

s: Nennleistungsdrehzahl

Die Werte der normierten Drehzahl wurden ebenfalls in 5%-Schritten klassiert.

4.2 Zyklusentwicklung "Düsseldorfer Zyklus"

Wie bereits vorher beschrieben, soll für die Stadt Düsseldorf ein spezieller Fahrzyklus entwickelt werden, der folgende Merkmale aufweisen soll:

- Repräsentativität
- Nachfahrbarkeit auf dem Motorprüfstand
- Übertragbarkeit auf andere Städte mit ähnlichen Bedingungen
- Anwendbarkeit für andere, stadtbusspezifische Themen

Das Fahrprofil soll als Geschwindigkeit / Zeit-Profil [v(t)-Fahrprofil] und als Drehmoment / Drehzahl-Profil [M(n)-Fahrprofil] dargestellt werden und eine zeitliche Ausdehnung von 1800 Sekunden haben.

Zur Auswertung der gemessenen Daten, war die Kenntnis der technischen Daten der Testfahrzeuge von großer Wichtigkeit. In der folgenden Tabelle 13 sind die für die Berechnung wichtigen technischen Daten noch einmal zusammengefasst.

 Tabelle 13:
 Technische Daten der Versuchsfahrzeuge

Fahrzeug	Solobus	Gelenkbus
	MAN NL 263 / E3 SL-A	MB O 530 GN 3 Citaro
Motorleistung	191 kW bei 1900 min ⁻¹	220 kW bei 2000 min ⁻¹
Motordrehmoment	1050 Nm bei 800 - 1300 min ⁻¹	1250 Nm bei 1100 min ⁻¹
Getriebeübersetzung	1.Gang: 5,05(nur im	1.Gang: 4,9(nur im
	Anfahrpunkt)	Anfahrpunkt)
	2.Gang: 1,36	2.Gang: 1,36
	3.Gang: 1,0	3.Gang: 1,0
	4.Gang: 0,73	4.Gang: 0,73
	R-Gang: 4,3	R-Gang: 4,1
Antriebsachse	Portalachse,	Portalachse,
	Außenplanetenachse	Außenplanetenachse
	Achsübersetzung: 5,74	Achsübersetzung: 5,771
Bereifung	275/70 R 22,5	275/70 R 22,5
Zul. Gesamtmasse	18000 kg	28000 kg
Test-Gesamtmasse	15240 kg	21420 kg
Höhe über alles	2880 mm	3076 mm
Breite	2500 mm	2550 mm

4.2.1 Vorbemerkung zur Besonderheit des Voith DIWA® Getriebes

In der Abbildung 17 sind die realen Fahrwiderstandskurven des Gelenkbusses, d.h. der Leistungsbedarf, den das Fahrzeug zur Fahrt bei einer bestimmten Geschwindigkeit benötigt, durch die Projektion der einzelnen Betriebspunkte in das Leistungskennfeld sehr gut erkennbar. Auch die Motorschubkurve, die die vom Motor aufgenommene Leistung darstellt, wenn der Fahrer das Gaspedal nicht betätigt und der Motor vom Fahrzeug geschoben wird sowie die Retarderbremskurve, d.h. die von der ins Getriebe integrierten hydraulischen Bremse erzeugte Bremsleistung, sind sehr gut sichtbar.

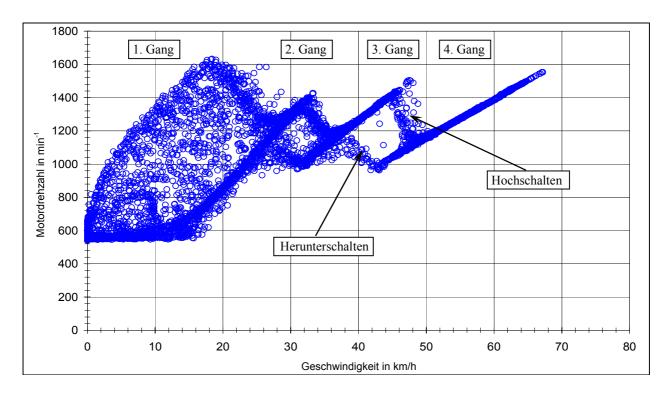
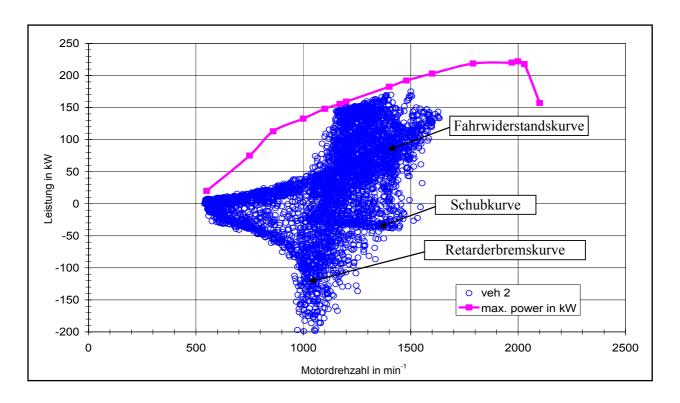



Abbildung 17: Leistungskennfeld

Betrachtet man die Drehzahl / Geschwindigkeitsdarstellung in Abbildung 18 wird eine Besonderheit des verwendeten Busgetriebes deutlich.

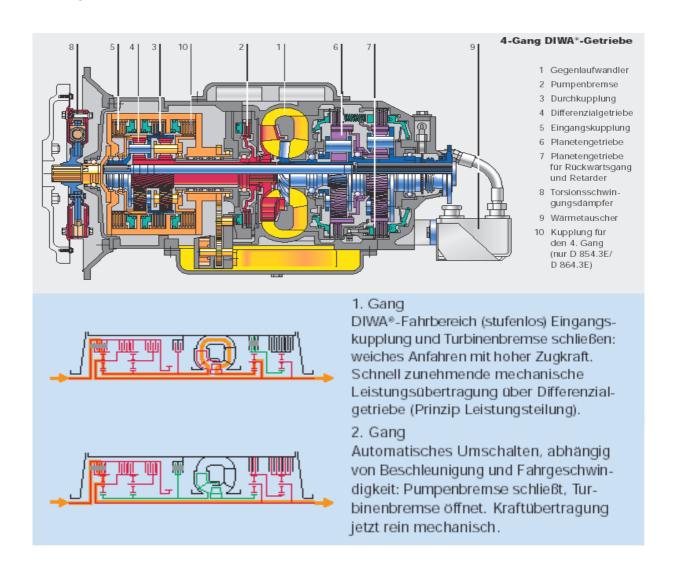


Abbildung 18: Drehzahl / Geschwindigkeitsdiagramm

Die technische Besonderheit dieses Getriebes ist der Differenzialwandler (DIWA). Vor dem hydrodynamischen Wandler befindet sich ein Planetendifferenzialgetriebe, welches die Motorleistung teilt.

Ein Teil der Motorleistung wird mechanisch übertragen, ein anderes Teil der Leistung wird hydraulisch übertragen. Mit steigender Fahrgeschwindigkeit wird der hydraulische Anteil kleiner bis das Getriebe in den 2. Gang schaltet und die Leistung dann rein mechanisch übertragen wird. Dadurch ist das Übersetzungsverhältnis des 1. Ganges nur im Anfahrpunkt konstant, im weiteren Geschwindigkeitsbereich bis etwa 35 km/h ist das Übersetzungsverhältnis variabel und lastabhängig. Dies führt zu der, in Abbildung 18 sichtbaren Punktwolke bei geringen Geschwindigkeiten.

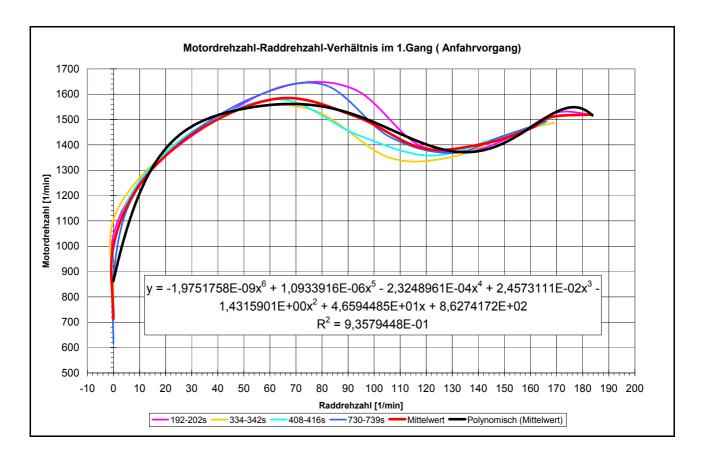

Die Abbildung 19 zeigt den inneren Aufbau des Getriebes und den Leistungsfluss im 1. und 2. Gang.

Abbildung 19: Voith DIWA® Automatgetriebe [Quelle: Voith AG]

Im Drehzahl-Geschwindigkeits-Diagramm (Abbildung 18) sind die einzelnen Getriebestufen ersichtlich. Dabei sind die oberen Flanken die Hochschaltflanken und die unteren die Herunterschaltflanken. Durch die variable, lastabhängige Übersetzung ist der Bereich des ersten Ganges breit gestreut.

Um das Übersetzungsverhältnis des 1. Ganges mathematisch beschreiben zu können, wurden mehrere Anfahrvorgänge mit ähnlichen Charakteristiken ausgesucht und verglichen. Aus den Anfahrvorgängen wurde ein Mittelwert gebildet und darüber eine Trendfunktion gelegt. Die folgende Abbildung 20 zeigt die angenäherte Funktion des 1. Ganges.

Abbildung 20: Mathematische Funktion des 1. Ganges

Die Problematik des 1. Ganges, nämlich die Last- und Drehzahlabhängigkeit der Übersetzung, stellt auch hohe Anforderungen an die Motorenprüfstände. Der Motorenprüfstand muss hochdynamisch sein und die Fahrwiderstandskurve sowie Soll-Motormoment und Soll-Motordrehzahl aus dem v(t)-Fahrprofil berechnen können. Dazu müssen neben dem Fahrzeuggewicht und den Übersetzungen des Schaltgetriebes sowie des Achsgetriebes auch die Schaltpunkte des Schaltgetriebes bekannt sein.

Während beim Handschaltgetriebe die Schaltpunkte relativ einfach festzulegen sind, z.B. bei einer bestimmten Motordrehzahl und Fahrgeschwindigkeit, stellt die variable, lastabhängige Übersetzung des 1. Ganges des Voith DIWA® Automatgetriebes eine große Herausforderung für den Motorenprüfstand dar. Nicht alle Prüfstände können diese Aufgabe bewerkstelligen.

Aus der Tatsache, dass der Düsseldorfer Fahrzyklus auf jedem vorschriftenkonformen dynamischen Motorenprüfstand nachfahrbar sein soll, resultiert der Schritt zur Entwicklung eines relativen M(n)-Fahrprofils, welches gleiche Anforderungen an die Motorenprüfstände wie der europäische Zulassungszyklus ETC ($\underline{\mathbf{E}}$ uropean $\underline{\mathbf{T}}$ ransient $\underline{\mathbf{C}}$ ycle) stellt.

Somit kann der Düsseldorfer Fahrzyklus auf jedem Motorenprüfstand gefahren werden, der die Anforderungen für den ETC erfüllt.

4.2.2 Vorgehensweise

Bei der Entwicklung des repräsentativen Fahrzyklus wurde der folgende 4-Schritte-Ansatz verwendet:

- 1. Sammeln von Messdaten, Berechnung und Klassierung der zusätzlich notwendigen Daten, wie mittlere Geschwindigkeit, Beschleunigung, Leistung etc.
- 2. Erzeugung einer Referenz-Datenbank, die alle Messdaten der Testfahrzeuge sowie wichtige Einflussparameter wie Stillstandsanteile, mittlere Geschwindigkeit und Beschleunigung, Leistung etc. beinhaltet. Bildung eines Referenzfahrzyklus aus der Referenzdatenbank.
- 3. Ableitung eines transienten Fahrzeugzyklus aus dem Referenzfahrzyklus in Form eines Geschwindigkeit-Zeit-Fahrprofils.
- 4. Transformation des transienten Fahrzeugzyklus in einen transienten Motorzyklus in Form eines relativen Drehmoment-Drehzahl-Fahrprofils.

4.2.3 Referenzdatenbank

Die Messdaten wurden mit einer Frequenz von 1 Hz aufgezeichnet, d.h. pro Sekunde wurde jeweils ein Datensatz gespeichert. Dies führte zu einer relativ großen Datenmenge. Um die Handhabung der Messdaten bei der Weiterbearbeitung zu vereinfachen, wurden alle Daten in einer Access-Datenbank zusammengefasst. Neben den gemessenen Daten (Geschwindigkeit, Motordrehzahl, Drehmoment, gasförmige Emissionen) enthält die Datenbank wichtige gerechnete oder aus den Messwerten abgeleitete Daten. Die wichtigsten Parameter der Referenzdatenbank sind in der Tabelle 14 kurz erklärt.

 Tabelle 14:
 Wichtige Parameter der Referenzdatenbank

Parameter	Beschreibung
veh_no	Fahrzeugnummer
ID_strecke	Streckennummer
ID_Fahrt_nr	Fahrtnummer
time	Zeit in s
M_cardan_k orr	Korrigiertes, gemessenes Drehmoment in Nm
n_cardan	Kardanwellendrehzahl in min-1, gerechnet aus der Geschwindigkeit und Achsübersetzung
P_korr_kW	Korrigierte Leistung in kW, gerechnet aus n_cardan und M_cardan_korr
v_korr	Korrigierte, gemessene Geschwindigkeit in km/h
v_korr_kl	Gerundete Geschwindigkeit, klassiert in 5 km/h - Schritten
ag	Beschleunigung in m/s², gerechnet aus der Geschwindigkeit
ag_kl	Gerundete Beschleunigung, klassiert in 0,1 m/s² - Schritten
P_rel	Relative Leistung in %
aP_rel	Änderung der P_rel pro Sekunde in %
P_rel_kl	Gerundete relative Leistung, klassiert in 10% - Schritten
P_norm	Normierte Leistung in %
P_norm_kl	Gerundete normierte Leistung, klassiert in 10% - Schritten
P_max	Maximale Leistung bei gegebener Drehzahl in kW
n	Gemessene Motordrehzahl in min-1
n_rel	Relative Motordrehzahl in %
n_rel_kl	Gerundete Relative Motordrehzahl, klassiert in 5% - Schritten
an_rel	Änderung der n_rel pro Sekunde in %

4.2.4 Normierung und Klassierung der Daten

Um die einzelnen Fahrabschnitte besser miteinander vergleichen zu können, wurden die wichtigsten fahrzyklusrelevanten Messgrößen, wie die Geschwindigkeit, die Motordrehzahl, die Beschleunigung und die Leistung normiert und klassiert.

Die gemessenen Geschwindigkeitswerte wurden gerundet und in 5 km/h-Schritten klassiert.

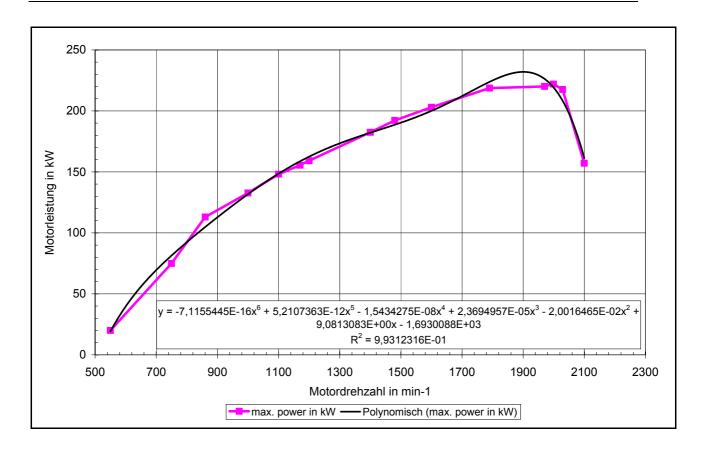
Die Fahrzeugbeschleunigung a wurde aus der gemessenen Geschwindigkeit berechnet. Durch die zeitliche Auflösung von 1 Hz vereinfachte sich die Berechnungsformel für die Beschleunigung zu

$$a = \frac{\Delta v}{3.6}$$

Die gerechneten Beschleunigungswerte wurden ebenfalls gerundet und in 0,1 m/s²-Schritten klassiert.

Die Leistung P wurde aus der Kardanwellendrehzahl n_{cardan} und dem gemessenen Drehmoment an der Kardanwelle M_{cardan} nach der Formel

$$P = \frac{M_{cardan} \cdot n_{cardan}}{9550}$$


rechnerisch bestimmt. Das gemessene Kardanwellendrehmoment wurde noch um einen eventuell vorhandenen Nullpunkt-Offset korrigiert. Der Korrekturwert wurde aus dem Mittelwert der Drehmomentmesswerte gebildet, bei denen das Fahrzeug definitiv gestanden hat, der Motor im Leerlauf war und das Getriebe sich im ausgekuppelten Zustand (Neutralstellung) befand, d.h. die Kardanwelle entlastet sein müsste. Die Größenordnung der Korrektur lag hierbei deutlich unter 0,1 % der Maximaldrehmomente.

Die Kardanwellendrehzahl wurde aus der Fahrzeuggeschwindigkeit v, dem Reifenabrollumfang U und der Hinterachsübersetzung i_A nach folgender Formel berechnet

$$n_{cardan} = \frac{v \cdot i_A}{U}$$

Die Normierung und Klassierung von Leistung und Drehzahl wurde wie in Kapitel 4.1 beschrieben vorgenommen.

Die Maximalleistung $P_{max}(n)$ wurde durch die Annäherung der Motor-Volllastkurve mittels eines Polynoms 6. Ordnung bestimmt. Die folgende Abbildung 21 zeigt die Approximationsfunktion der Volllastkurve.

Abbildung 21: Maximalleistung (Volllastkurve)

4.2.5 Geschwindigkeitsverteilung, mittlere Geschwindigkeit

Eine sehr wichtige Größe für die Fahrprofilentwicklung ist die Geschwindigkeit des Fahrzeugs. In Abbildung 22 ist ein 10 Minuten langer Ausschnitt des Geschwindigkeitssowie des Motordrehzahlverlaufes dargestellt. Dabei sind die kurzen Stillstandsabschnitte zwischen zwei Fahrabschnitten jeweils die Haltestellenstopps, die etwas längeren Abschnitte sind Ampelstopps bzw. verkehrsbedingte Stopps. An der Motordrehzahlkurve sind die Schaltpunkte des Getriebes zu erkennen.

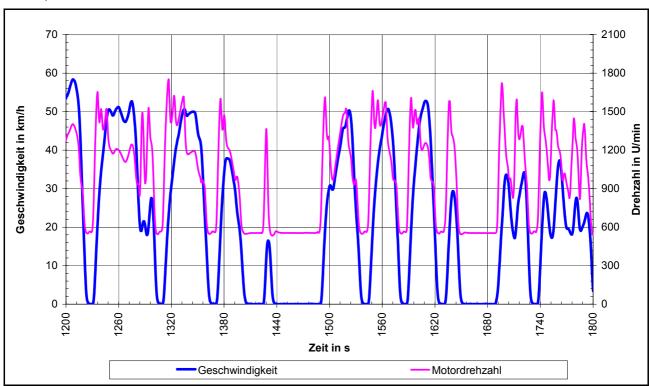


Abbildung 22: Geschwindigkeits- und Motordrehzahlverlauf (Ausschnitt über 600s)

Für alle Fahrten wurden die mittlere Geschwindigkeit und die Stillstandsanteile gerechnet. Als Stillstand wurden dabei die Fahrgeschwindigkeiten kleiner als 2 km/h definiert.

In Abbildung 23 ist die kumulierte Häufigkeitsverteilung der Fahrgeschwindigkeiten der beiden Busse dargestellt. Aus dem Diagramm ist zu erkennen, dass die Geschwindigkeitscharakteristik der Buslinie 725 (rote Linien oben) deutlich von den beiden anderen Buslinien 780 und 733 abweicht. Sie ist wesentlich langsamer. Die Linien 733 und 780 haben in etwa ähnliche Geschwindigkeits-Charakteristiken.

Aus dem Diagramm ist auch zu erkennen, dass der Solobus im Allgemeinen etwas schneller fährt als der Gelenkbus. Neben dem etwas besseren Leistungsgewicht könnte auch der Fahrereinfluss ein möglicher Grund dafür sein. Die beiden Busse wurden von zwei verschiedenen Fahrern gesteuert. Dies sollte zwar im Projekt möglichst vermieden werden, ließ sich aber aus betriebsablauftechnischen Gründen bei der Rheinbahn nicht durchhalten.

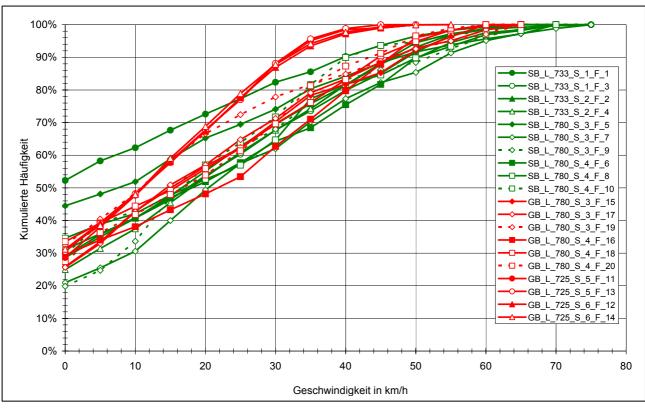


Abbildung 23: Kumulierte Geschwindigkeitsverteilung

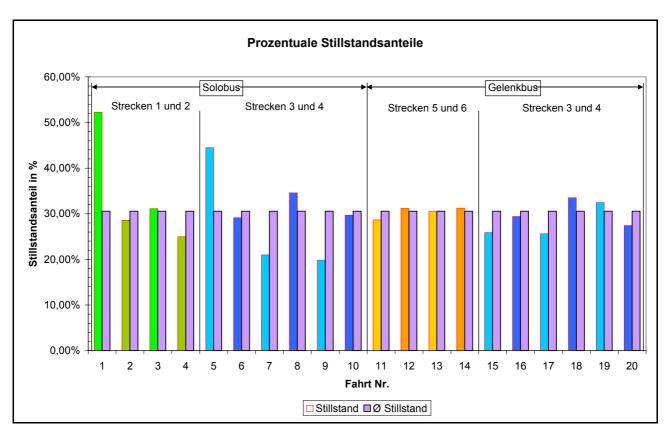


Abbildung 24: Stillstandsanteile der Testfahrzeuge

In Abbildung 24 sind die prozentualen Stillstandsanteile von allen Fahrten dargestellt. Die mittlere Standzeit bei allen Linien beträgt durchschnittlich etwa 31 %. Die höheren Standzeiten der Fahrten 1 und 5 mit dem Solobus sind durch das außerplanmäßige Anhalten wegen Messtechnikproblemen bedingt. Diese Fahrten sind nicht repräsentativ und werden bei der weiteren Betrachtung nicht mehr berücksichtigt.

In Abbildung 25 sind die Durchschnittsgeschwindigkeiten (v_ave) von allen Fahrten zusammengefasst. Hierbei ist ebenfalls zu erkennen, dass die Linie 725 (Strecken 5 u. 6) deutlich langsamer ist.

Die Durchschnittsgeschwindigkeit auf diesen Strecken beträgt etwa 15 km/h, während die mittlere Geschwindigkeit aller Fahrten (v ave alle Fahrten) bei ca. 20 km/h liegt.

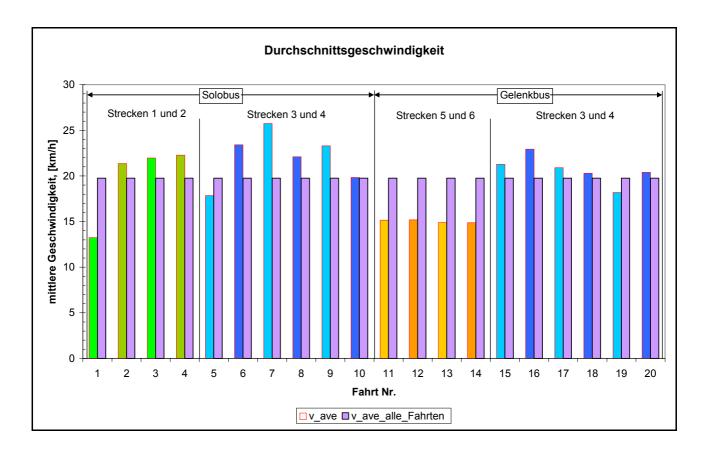


Abbildung 25: Mittlere Geschwindigkeiten der Testfahrzeuge

Des Weiteren ist zu erkennen, dass die Durchschnittsgeschwindigkeiten auf den Strecken 5 und 6 fast konstant sind, während die Durchschnittsgeschwindigkeiten auf den anderen Strecken relativ großen Schwankungen unterzogen sind.

Die geringere Durchschnittsgeschwindigkeit der Fahrten 1 und 5 ist durch das außerplanmäßige Anhalten wegen der aufgetretenen Probleme mit der Messtechnik bedingt. Die etwas geringere Durchschnittsgeschwindigkeit der Fahrt 19 ist durch den dichten Feierabendverkehr auf der Strecke hervorgerufen.

Aufgrund der während der Testfahrt aufgetretenen Probleme mit der Drehmomentmessung beim Solobus und der damit fehlenden Möglichkeit der Leistungsbestimmung werden bei der weiteren Fahrprofilentwicklung nur die Messdaten des Gelenkbusses verwendet.

Diese Tatsache bringt jedoch keinen großen Nachteil für die Repräsentativität des Fahrzyklus mit sich. Denn, wie aus Abbildung 23 ersichtlich, haben sowohl der Solobus als auch der Gelenkbus in etwa ähnliche relative Motorbelastungen. Das höhere Gewicht des Gelenkbusses wird durch die höhere Motorleistung kompensiert.

4.2.6 Beschleunigungsleistung

Die maximal mögliche Fahrzeugbeschleunigung ist von der Fahrgeschwindigkeit und dem Leistungsgewicht des Fahrzeuges abhängig. Das Beurteilungsmaß der Fahrzeugbeschleunigung ist die Beschleunigungsleistung P_A , welche das Produkt aus Fahrgeschwindigkeit v, Fahrzeugbeschleunigung a und Fahrzeugmasse m darstellt

$$P_{A} = m \cdot a \cdot v$$

In Abbildung 26 sind die mittleren positiven Beschleunigungsleistungen (Pa_ave) aller Fahrten dargestellt. Die Unterschiede der einzelnen Fahrten resultieren hauptsächlich aus äußeren Verkehrssituationen.

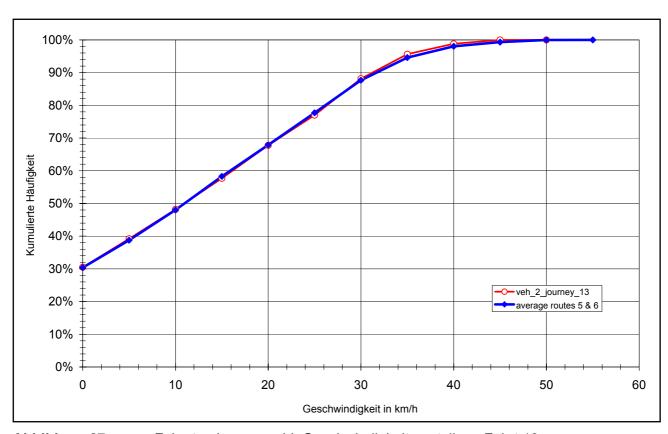
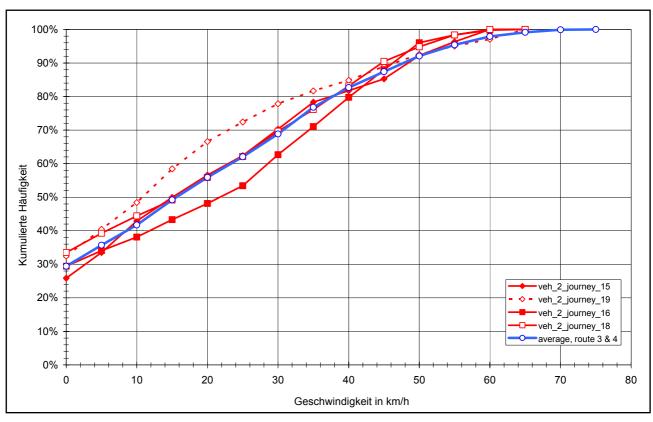


Abbildung 26: Mittlere positive Beschleunigungsleistung


4.2.7 Fahrstreckenauswahl für den Referenzfahrzyklus

Um die am besten passenden Fahrabschnitte zu selektieren, wurden alle Fahrten hinsichtlich ihrer Fahrgeschwindigkeit untersucht. Wie schon oben erwähnt unterscheiden sich die 5 und 6 von den anderen Strecken. Nach dem Veraleich Fahrgeschwindigkeitsverteilung der einzelnen Fahrten auf den Strecken 5 und 6 mit der durchschnittlichen Geschwindigkeitsverteilung aller Fahrten auf diesen Strecken hat sich die Fahrt 13 als die am Ähnlichsten dem Durchschnitt entsprechend herausgestellt (siehe Abbildung 27). Diese Fahrt wurde als repräsentativ für die Fahrstrecken 5 und 6 bewertet und für die Fahrzyklusentwicklung ausgewählt.

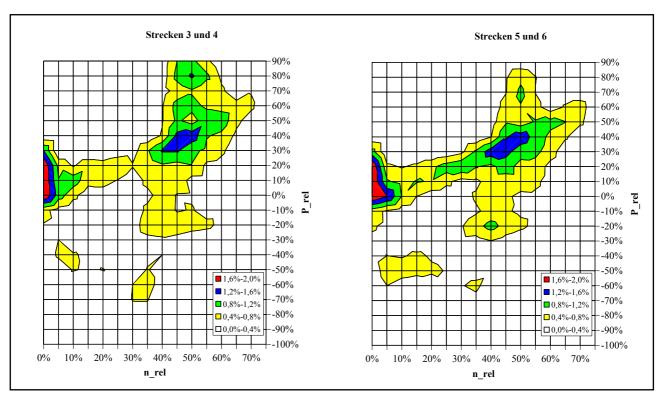

Analog zu den Fahrten auf den Strecken 5 und 6 wurden auch die Fahrten auf den Strecken 3 und 4 untersucht. Dabei wurden die Fahrten 15 und 18, die in etwa dem Durchschnitt aller Fahrten dieser Strecken entsprechen, ausgewählt. Um die realen Verkehrsbedingungen besser widerspiegeln zu können, wurden zusätzlich auch zwei vom Durchschnitt abweichende Fahrten ausgewählt, die etwas schnellere Fahrt 16 und die langsamere Fahrt 19 (siehe Abbildung 28).

Abbildung 27: Fahrstreckenauswahl; Geschwindigkeitsverteilung Fahrt 13

Abbildung 28: Fahrstreckenauswahl; Geschwindigkeitsverteilung Fahrten 15,16,18,19

Abbildung 29: Streckenbezogene Verteilung der Motorbelastung

In Abbildung 29 ist die streckenbezogene Häufigkeitsverteilung der Motorbelastung dargestellt. Hierbei gilt: je dunkler die Farbe, desto häufiger befindet sich der Motor in dem Lastbereich.

Aus den Diagrammen ist ersichtlich, dass die beiden Streckenpaare 3/4 und 5/6 in etwa ähnliche Motorbelastungen hervorrufen. Dabei befindet sich der Motor am Häufigstem im unteren Drehzahlbereich mit niedrigen Lasten und im Teillastbereich. Der Volllastbereich ist so gut wie nicht vertreten. Die etwas höhere Motorbelastung auf den Strecken 3 und 4 ist mit der höheren Fahrgeschwindigkeit erklärt.

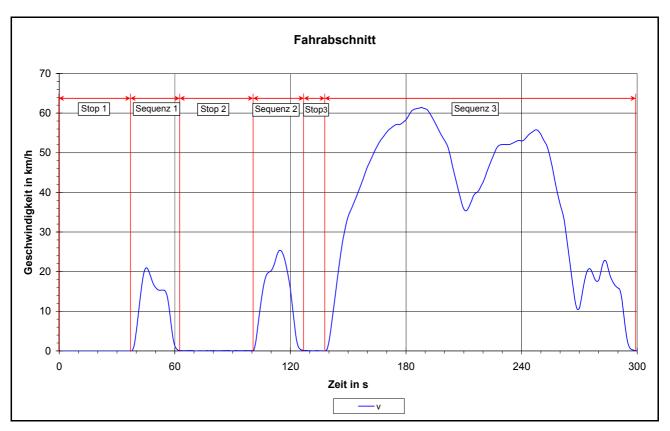
Der Referenzfahrzyklus besteht somit aus 5 Fahrten und dauert 7115 Sekunden. In der Tabelle 15 sind die Zeitdauern sowie Längen und Durchschnittsgeschwindigkeiten der einzelnen Fahrten zusammengefasst.

Tabelle 15: Zusammensetzung Referenzfahrzyklus

Fahrt Nr.	Dauer, [s]	Strecke, [m]	mittlere Geschwindigkeit, [km/h]
13	2709	11208,55	14,90
15	1140	6737,27	21,28
16	908	5786,12	22,94
18	1027	5788,39	20,29
19	1331	6724,33	18,19
Referenzzyklus	7115	36244,66	18,34

4.2.8 Repräsentativer Fahrzeugzyklus (v(t) - Fahrzyklus)

Der aus den Messdaten abgeleitete Referenzfahrzyklus ist zwar repräsentativ für das wirkliche Verhalten der Stadtomnibusse, jedoch ist er viel zu lang für die Untersuchungen am Motorenprüfstand. Deshalb wird aus dem Referenzfahrzyklus ein repräsentativer Fahrzyklus abgeleitet, der dieselben Charakteristiken zeigt wie der Referenzfahrzyklus. Die Fahrzyklusdauer wurde wie beim ETC auf 30 min (1800 s) begrenzt.


Für die Ableitung des repräsentativen Fahrzyklus wird folgende Vorgehensweise benutzt:

- Analyse des Referenzfahrzyklus
- Bildung von Musterzyklen (sample cycles)
- Statistischer Vergleich zwischen dem Referenzzyklus und den Musterzyklen und Auswahl des repräsentativen Fahrzyklus
- Vollendung des repräsentativen Fahrzyklus.

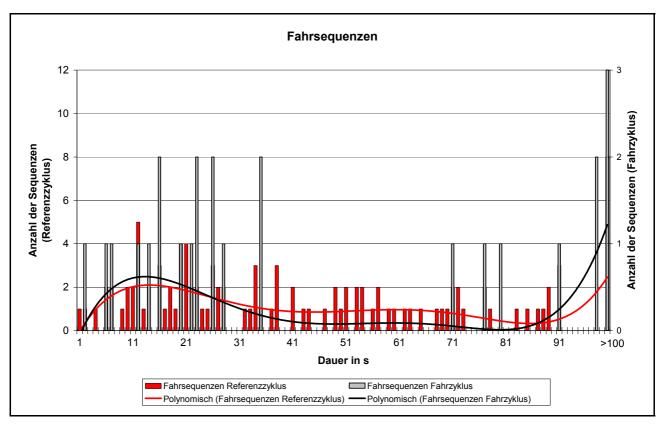
4.2.8.1 Analyse des Referenzfahrzyklus

Ein wichtiges Element für die Analyse ist die Zeitdauer der Fahrsequenzen und der Stopps. Eine Fahrsequenz ist definiert als ein Geschwindigkeitsabschnitt zwischen zwei Stopps. Ein Stopp ist definiert als ein Zeitabschnitt mit durchgehender Geschwindigkeit gleich Null (bzw. < 2 km/h). Die Abbildung 30 zeigt als Beispiel einen kurzen Zyklus, bestehend aus 3 Fahrsequenzen und 3 Stopps.

Die Anzahl der Stopps ist normalerweise gleich der Anzahl der Fahrsequenzen. Allerdings wurde bei den Vermessungsfahrten die Datenaufzeichnung immer mit einem Stopp begonnen und mit einem Stopp beendet. Dadurch ist die Anzahl der Stopps beim Referenzzyklus um 5 höher als die der Fahrsequenzen.

Abbildung 30: Beispiel Fahrabschnitt

Die Analyse des Referenzzyklus beginnt mit der Separation der Fahrsequenzen (microtrips) und der Stopps. Dabei werden die Geschwindigkeitsabschnitte immer zusammen mit den (relativen) Motorleistungsabschnitten betrachtet. Im nächsten Schritt werden die durchschnittlichen Dauern der Fahrsequenzen und der Stopps berechnet. Mit der Kenntnis der durchschnittlichen Dauern lässt sich die Anzahl der Fahrsequenzen n_{seq} und der Stopps n_{stop} des repräsentativen Fahrzyklus nach folgender Formel errechnen:


$$n_{seq} = n_{stop} = \frac{t_{Zykl}}{(t_{ave,seq} + t_{ave,stop})}$$

Mit der gewünschten Fahrzyklusdauer t_{Zykl} = 1800 s und der durchschnittlichen Sequenzendauer $t_{ave, seq}$ = 47 s sowie der durchschnittlichen Stoppdauer $t_{ave, stop}$ = 19 s beträgt die theoretische Anzahl der Fahrsequenzen und der Stopps 27. In der Tabelle 16 sind die einzelnen Dauern der Fahrsequenzen und der Stopps des Referenzfahrzyklus zusammengefasst.

Tabelle 16: Dauern der Fahrsequenzen und der Stopps (Referenzzyklus)

NI.		Dauer der	Fahrsequ	enzen in s	enzen in s Dauer der Stopps in s					
Nr.	Fahrt 13	Fahrt 15	Fahrt 16	Fahrt 18	Fahrt 19	Fahrt 13	Fahrt 15	Fahrt 16	Fahrt 18	Fahrt 19
1	47	60	12	12	44	26	9	31	18	4
2	57	56	18	20	21	15	26	50	43	6
3	4	7	21	22	62	15	42	46	42	24
4	41	27	160	156	68	25	2	10	16	12
5	49	22	91	28	72	26	14	14	36	12
6	11	27	12	20	34	13	18	19	24	24
7	34	41	148	91	21	2	15	22	46	13
8	14	85	13	12	26	12	15	18	17	9
9	6	73	63	148	37	13	11	6	22	12
10	77	17	108	71	18	6	23	43	25	34
11	7	89		2	11	22	17	3	23	22
12	50	91		113	32	31	24		18	23
13	23	28			20	5	12		2	15
14	16	87			6	52	21			12
15	35	146			19	13	22			15
16	26				33	3	13			51
17	78				9	55				3
18	88				24	14				26
19	16				65	16				9
20	23				38	44				38
21	51				25	17				13
22	12				89	13				18
23	70				136	32				24
24	10					21				2
25	77					2				
26	43					20				
27	54					29				
28	14					8				
29	26					17				
30	20					5				
31	71					16				
32	53					13				
33	83					11				
34	21					12				
35	54					14				
36	38					1				
37	10					17				
38	59					8				
39	57					15				
40	16					17				
41	51					12				
42	53					11				
43	69					20				
44	72					14				
45	38					13				
46	49					1				
47	1					26				
48	34					2				
49						6				

Der repräsentative Fahrzyklus muss eine ähnliche Verteilung der Fahrsequenz- und Stoppdauern zeigen, wie der Referenzzyklus. Dadurch, dass der Referenzzyklus im Allgemeinen eine viel größere Anzahl an Sequenzen besitzt, lässt sich dessen Verteilung nicht direkt auf den repräsentativen Fahrzyklus übertragen. Die Verteilung der Sequenzenund Stoppdauern des repräsentativen Fahrzyklus wird mit Hilfe des Gaußschen Prinzips der kleinsten Quadrate angenähert. In der Abbildung 31 und Abbildung 32 sind die Verteilungen der Fahrsequenzdauern und der Stoppdauern des Referenzzyklus sowie des späteren repräsentativen Fahrzyklus dargestellt. Zusätzlich sind die Trendlinien der jeweiligen Verteilungen maßstabsgerecht dargestellt, aus denen ersichtlich ist, dass die Verteilungen der Sequenzen und der Stopps des Fahrzyklus mit denen des Referenzzyklus relativ gut korrespondieren.

Abbildung 31: Verteilung der Fahrsequenzdauern

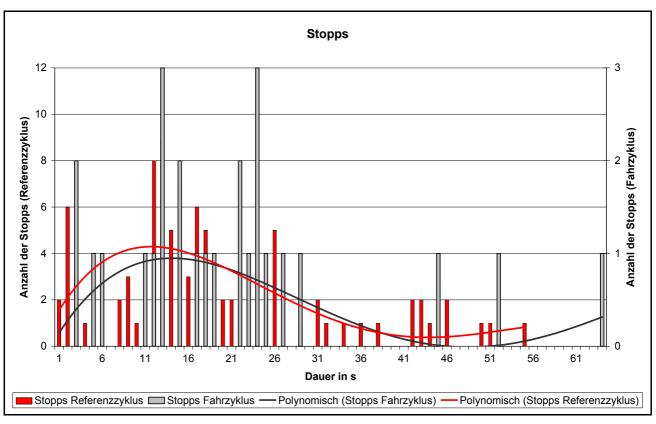


Abbildung 32: Verteilung der Stoppdauern

4.2.8.2 Erstellung von Musterzyklen und Auswahl des repräsentativen Fahrzyklus

Nachdem die Verteilung der Fahrsequenzdauern bekannt ist, werden Musterzyklen erstellt, die aus verschiedenen Sequenzen der vorher berechneten Sequenzendauern zusammengesetzt werden. Um die richtigen Fahrsequenzen zu finden, wird ein Satz von Sequenzen für jede berechnete Dauer zusammengestellt. Diese Sequenzen werden aus den Messdaten des Referenzfahrzyklus ausgewählt. Die Sequenzen der ähnlichen Dauern müssen möglichst große Variation an Fahrgeschwindigkeiten zeigen, um möglichst viele verschiedene Musterzyklen erzeugen zu können. Die Stopps werden zum Musterzyklus in einer späteren Phase hinzugefügt.

Nachdem für jede berechnete Sequenzlänge ein Satz von Fahrsequenzen ausgewählt ist, werden mehrere Musterzyklen der gewünschten Länge erstellt. Aus diesen Kombinationen von Sequenzen wird diejenige ausgewählt, die mit dem Referenzzyklus am vergleichbarsten ist. Die Kriterien, die zum Vergleich verwendet werden, müssen noch definiert werden.

Als Vergleichskriterium für die Fahrgeschwindigkeitsmuster wird die Fahrgeschwindigkeit-Beschleunigungs-Matrix (*v-a*-Matrix) verwendet. Dies ist die beste Charakterisierung der Fahrmuster, denn aus der *v-a*-Matrix lassen sich alle Zyklusparameter ableiten.

Für den Vergleich der Motorleistung wird eine zweidimensionale Matrix der relativen Motorleistung und der Änderung der relativen Motorleistung pro Zeiteinheit (hier: 1 s) ($_{rel}$ - $_{rel}$ / $_{dt''}$ -Matrix) verwendet.

Die P_{rel} - dP_{rel}/dt - sowie die v-a-Matrix des Referenzzyklus kann aufgestellt werden, sobald der Referenzzyklus entwickelt ist. Die Matrixzellen enthalten die zeitlichen Anteile der Wertekombination aus der relativen Motorleistung und der Änderung der relativen Motorleistung (bzw. Fahrgeschwindigkeit- und Beschleunigungswerte). Die Zellenwerte der Matrizen des

Referenzzyklus werden durch die Gesamtdauer des Referenzzyklus geteilt und mit der gewünschten Fahrzyklusdauer multipliziert. Das ergibt dann die Zeitdauer, die eine bestimmte Kombination aus P_{rel} und dP_{rel} /dt (bzw. aus v und a) in dem repräsentativen Fahrzyklus zeigen sollte. In der Tabelle 17 und Tabelle 18 sind die v-a- und P_{rel} -dt-Sollmatrizen für den Fahrzyklus dargestellt. Die Werte für die Fahrgeschwindigkeit, Beschleunigung, relative Leistung und die Änderung der relativen Leistung sind dabei, wie in Kapitel 4.1 beschrieben, klassiert. Die Zyklusdauer beträgt 1269 Sekunden (exklusive Stopps).

Wenn die v-a- und P_{rel} - dP_{rel}/dt - Matrizen des Musterzyklus ein ähnliches Häufigkeitsverteilungsmuster wie die Sollmatrizen zeigen, sind alle wichtigen Zyklusparameter und -Eigenschaften vergleichbar mit dem Referenzzyklus und somit repräsentativ für den wirklichen Straßenverkehr.

Die Auswahl des repräsentativen Fahrzyklus erfolgt mittels eines statistischen Vergleichs zwischen den beiden Matrizen des Referenzzyklus und denen des jeweiligen Musterzyklus. Der statistische Vergleich wird mit dem Chi-Quadrat-Anpassungstest durchgeführt. Dabei werden die beobachteten Häufigkeitswerte des Musterzyklus mit den Häufigkeitswerten des Referenzzyklus verglichen. Je besser die Übereinstimmung der Häufigkeitswerte des Muster- und des Referenzzyklus ist, desto kleiner wird die Testgröße X^2 . Die Testgröße X^2 wird nach folgender Formel berechnet:

$$X^{2} = \sum_{i=1}^{k} \frac{(N_{i} - n_{i}^{*})^{2}}{n_{i}^{*}}$$

Mit:

X²: Chi-Quadrat-Testgröße

N_i: beobachtete Werte (Musterzyklus)

n;: erwartete Werte (Referenzzyklus)

Die beobachteten Häufigkeitswerte werden vom Musterzyklus und die erwarteten Werte vom Referenzzyklus (auf die gewünschte Zyklusdauer umgerechnet) berechnet.

Tabelle 17: v-a-Sollmatrix für den Fahrzyklus (Zeit in [s], ohne Stopps)

							v,[kn	n/h]						
a, [m/s ²]	0	5	10	15	20	25	30	35	40	45	50	55	60	65
1,40	0,0	0,3	0,0	0,0										
1,30	0,0	0,5	1,0	0,3	0,0									
1,20	0,0	4,3	2,8	1,3	0,0	0,0								
1,10	1,0	8,9	6,1	5,6	1,8	0,0	0,0							
1,00	1,3	6,8	6,6	3,8	4,3	0,0	0,0	0,0						
0,90	1,0	2,8	4,3	4,0	5,8	1,5	0,0	0,0	0,0					
0,80	0,5	2,3	5,3	6,1	3,8	5,6	0,8	0,0	0,0	0,0				
0,70	0,0	2,8	3,3	5,6	6,1	5,6	5,3	0,3	0,0	0,0	0,0			
0,60	0,5	5,1	5,3	6,3	7,8	9,4	9,6	3,0	0,5	0,0	0,0	0,0		
0,50	0,3	3,8	4,0	4,8	8,6	12,9	9,4	7,3	5,8	2,0	0,0	0,0	0,0	
0,40	0,3	5,8	5,8	7,1	6,1	8,1	13,9	12,9	8,1	4,6	0,5	0,0	0,0	0,0
0,30	1,0	8,3	6,3	5,1	8,1	6,1	13,4	10,6	7,1	7,1	5,3	0,5	0,5	0,0
0,20	0,3	5,8	6,1	6,8	6,8	6,6	11,6	10,6	9,1	8,9	11,1	4,6	3,5	0,5
0,10	1,0	6,6	9,6	7,6	7,3	4,0	9,1	14,7	7,1	8,9	9,9	11,1	4,8	2,5
0,00	1,0	6,1	9,1	10,1	9,1	6,8	14,9	9,1	9,6	9,9	9,9	9,1	8,6	4,0
-0,10	1,0	8,6	6,6	12,1	7,3	7,3	11,4	9,6	7,1	9,1	10,1	2,8	3,3	1,8
-0,20	1,0	6,3	6,3	7,6	8,6	6,8	13,7	11,9	9,1	6,8	6,6	3,3	2,5	1,3
-0,30	0,8	4,0	3,8	5,8	10,6	8,3	10,9	9,4	3,8	3,0	3,0	1,8	1,0	0,3
-0,40	5,3	6,6	6,8	5,3	8,6	7,3	6,6	4,3	2,0	1,8	1,0	0,8	0,8	0,0
-0,50	0,0	7,6	3,0	4,0	6,6	7,3	5,1	6,3	4,6	1,5	2,3	0,5	0,0	0,0
-0,60	0,0	10,6	5,1	5,6	3,8	3,3	5,6	5,6	2,3	2,8	1,3	0,3	0,0	0,0
-0,70	0,0	6,8	4,0	4,3	3,3	4,8	4,6	1,0	0,5	2,0	0,8	0,0	0,0	0,0
-0,80	0,0	5,1	5,3	3,5	5,3	4,0	2,5	1,3	0,3	0,0	0,0	0,0	0,0	0,0
-0,90	0,0	4,8	5,6	4,6	4,3	3,3	2,3	2,5	1,3	1,0	0,0	0,0	0,0	0,0
-1,00	0,0	2,3	3,8	3,8	4,0	4,3	2,3	1,0	0,3	0,3	0,3	0,0	0,0	0,0
-1,10	0,0	1,0	5,1	4,3	2,0	1,0	2,8	1,8	1,5	0,0	0,0	0,0	0,0	0,0
-1,20	0,0	0,3	3,3	2,8	2,0	1,8	1,3	0,3	0,0	0,3	0,0	0,0	0,0	
-1,30	0,0	0,0	2,3	3,3	0,3	0,5	0,8	0,0	0,3	0,0	0,0	0,0		
-1,40	0,0	0,0	0,8	0,5	0,3	0,5	0,3	0,3	0,3	0,3	0,0			
-1,50	0,0	0,0	0,3	1,3	0,8	0,3	0,3	0,0	0,0	0,0			ļ	
-1,60	0,0	0,0	0,3	0,0	0,5	0,3	0,0	0,0	0,0				-	
-1,70	0,0	0,0	0,3	0,3	0,0	0,0	0,0	0,0						
-1,80	0,0	0,0	0,0	0,3	0,0	0,3	0,0							
-1,90	0,0	0,0	0,0	0,0	0,3	0,0								

Tabelle 18: P_{rel} - dP_{rel} / dt -Sollmatrix für den Fahrzyklus (Zeit in [s], ohne Stopps)

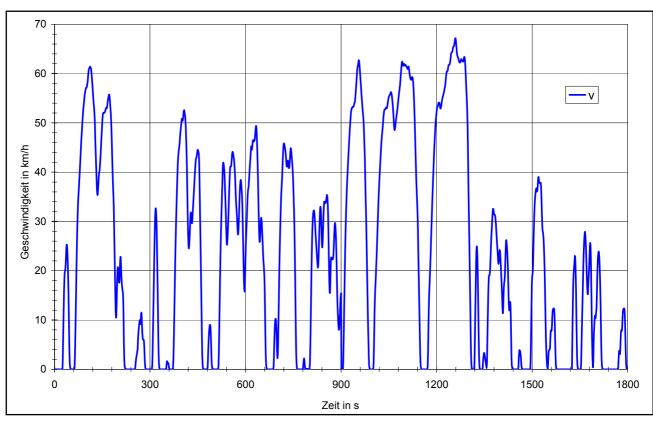
						P _{rel}					
dP _{rel} / dt	< 0%	0%	10%	20%	30%	40%	50%	60%	70%	80%	90%
60%	0,3										
55%	0,5	0,0									
50%	0,5	0,0	0,0								
45%	3,0	0,0	0,0	0,0							
40%	6,6	0,3	0,0	0,0	0,0						
35%	9,1	0,3	0,3	0,0	0,0	0,0					
30%	16,7	1,5	0,3	0,5	0,5	0,0	0,0				
25%	16,2	3,0	1,5	1,3	0,8	0,0	0,0	0,0			
20%	20,7	5,6	5,1	6,3	4,3	1,0	0,8	0,0	0,0		
15%	25,6	7,3	9,4	12,6	11,4	7,6	4,0	2,8	1,0	0,0	
10%	31,6	7,8	12,6	18,7	14,2	14,9	13,9	9,1	4,3	1,5	0,0
5%	33,9	8,9	23,0	30,4	19,2	19,0	22,0	15,9	9,4	9,9	3,5
0%	67,3	9,9	27,1	47,1	22,8	13,9	13,9	19,2	13,2	19,2	19,7
-5%	51,9	7,8	14,7	23,8	18,0	11,6	10,9	9,1	6,3	5,1	5,6
-10%	34,9	6,6	7,1	14,4	13,7	9,9	7,8	6,3	3,8	2,3	1,5
-15%	28,8	9,4	7,3	5,8	7,8	8,6	5,6	5,1	2,3	2,0	0,5
-20%	13,4	1,8	8,9	7,1	6,3	4,6	3,3	2,5	2,5	0,8	0,5
-25%	9,1	0,8	1,8	4,6	2,8	4,6	3,3	3,0	1,0	0,8	0,5
-30%	8,3	1,0	0,8	2,0	3,3	3,0	1,0	1,0	0,3	0,5	0,3
-35%	3,5	0,8	1,5	0,3	0,3	1,3	1,3	1,0	0,0	1,0	0,0
-40%	1,5	0,3	0,5	0,0	0,0	0,5	1,5	1,0	0,3	0,3	0,0
-45%	1,0	0,0	0,3	0,0	0,3	0,3	0,3	0,3	0,3	0,0	0,0
-50%	0,8	0,0	0,0	0,0	0,3	0,0	0,0	0,8	0,3	0,0	0,0
-55%	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,3	0,0	0,0	0,0
-60%	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,3	0,0

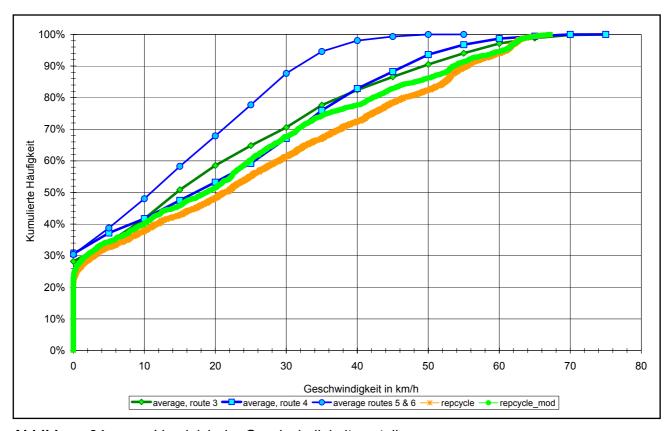
Nach dem statistischen Vergleich wurde der in Abbildung 33 dargestellte Fahrzyklus ausgewählt

Die Zusammensetzung des Fahrzyklus ist in der folgenden Tabelle 19 dargestellt.

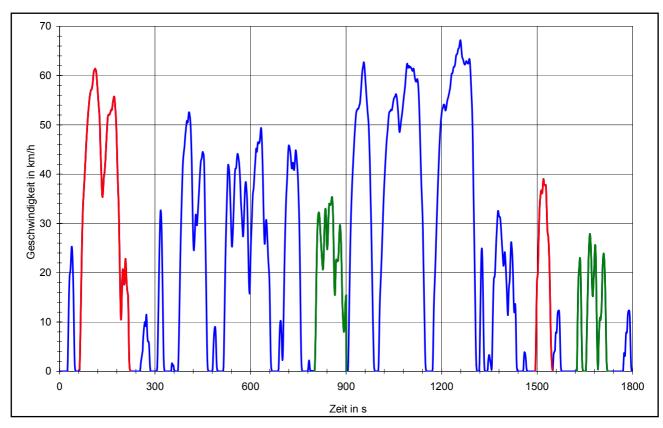
Tabelle 19: Zusammensetzung des Fahrzyklus

Mus	terzyklu	S			Refere	enzzyklu	IS	
Fahrabschnitt Nr.	t_start	t_end	Dauer	Strecke	Fahrt Nr.	t_start	t_end	Dauer
1	1	900	900	4	18	111	1010	900
2	901	985	85	4	16	182	266	85
3	986	994	9	4	16	347	355	9
4	995	1161	167	3	15	974	1140	167
5	1162	1310	149	3	19	1183	1331	149
6	1311	1314	4	3	15	1137	1140	4
7	1315	1769	455	5	13	373	827	455
8	1770	1800	31	5	13	607	637	31
Sumn	ne		1800					1800




Abbildung 33: Ausgewählter repräsentativer Fahrzyklus

4.2.8.3 Vollendung des repräsentativen Fahrzyklus


Nachdem der repräsentative Zyklus ausgewählt ist, werden die Fahrsequenzen und die Stopps sinnvoll geordnet. Bei der Anordnung der Fahrsequenzen wird das wirkliche Verhalten der Stadtbusse im Straßenverkehr berücksichtigt. Der Fahrzyklus wird dabei in drei Teile aufgeteilt, die folgende städtische Straßen repräsentieren:

- 1. Straßen im Stadtkern oder in Wohngegenden mit einer zulässigen Geschwindigkeit von max. 30 km/h (Zone 30). Dieses Fahrzyklusteil enthält kurze Fahrsequenzen mit einer Durchschnittsgeschwindigkeit < 15 km/h mit häufigen Haltestellenstopps. Am Ende dieses Zyklusabschnitts ist ein längerer Stopp angeordnet, der das Warten an einer ampelgeregelten Straßenkreuzung bzw. an einer ungeregelten Kreuzung der Neben- und Hauptstraßen repräsentieren soll.
- 2. Innerstädtische Hauptstraßen mit einer zulässigen Geschwindigkeit von 50 km/h. Dieses Zyklusteil enthält längere Fahrsequenzen mit einer Durchschnittsgeschwindigkeit von ca. 25 km/h und wenigen Haltestellenstopps.
- 3. Das dritte Zyklusteil repräsentiert die gut ausgebauten inner- oder außerstädtischen Straßen mit einer Geschwindigkeitsbegrenzung von mindestens 70 km/h (z.B. mehrspurige Landstraßen oder Stadtautobahnen). Dieses Zyklusteil enthält lange Fahrsequenzen mit einer Durchschnittsgeschwindigkeit von etwa 40 km/h und wenigen Haltestellenstopps.

Bevor die richtige Anordnung der Fahrsequenzen durchgeführt werden konnte, musste der ausgewählte Fahrzyklus noch von Hand korrigiert werden. Bei der Kontrolle der Geschwindigkeitsverteilung des ausgewählten Zyklus hat sich herausgestellt, dass der Fahrzyklus schneller als der Durchschnitt aller Fahrten ist (siehe Abbildung 34, orangefarbene Linie). Der Grund für die Abweichung ist die höhere Durchschnittsgeschwindigkeit sowie geringere Stillstandsanteile. Um die Durchschnittsgeschwindigkeit zu reduzieren wurden zwei, in Abbildung 35 rot markierte Fahrsequenzen entfernt. Zum Ausgleich wurden die grün markierten Fahrsequenzen jeweils einmal wiederholt. Zusätzlich mussten die Stoppdauern angepasst werden.

Abbildung 34: Vergleich der Geschwindigkeitsverteilung

Abbildung 35: Modifikation des Fahrzyklus

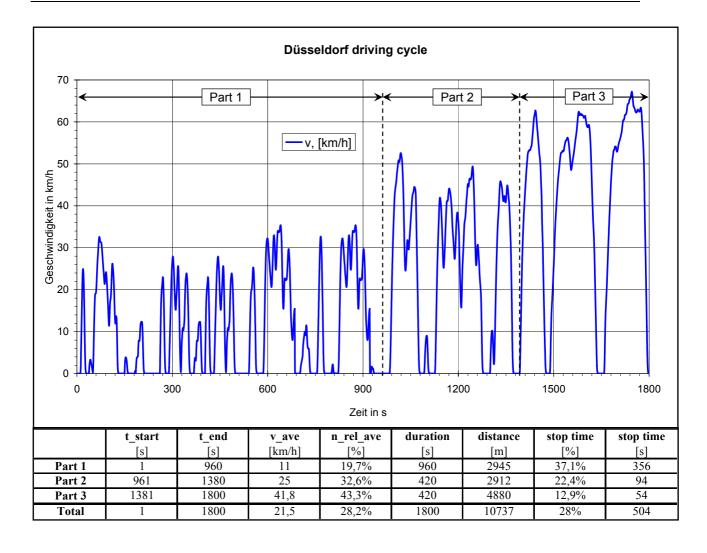

Der so modifizierte endgültige Fahrzyklus ist in

Abbildung 36 und die Zykluszusammensetzung in der Tabelle im Anhang dargestellt. Die Geschwindigkeitsverteilung des modifizierten Fahrzyklus ist in Abbildung 34 als grüne Linie dargestellt.

An dieser Stelle wäre die Aufgabenstellung der Fahrzyklusentwicklung erfüllt, wenn es die Problematik der variablen Übersetzung des ersten Ganges nicht gäbe. Diese Problematik macht den repräsentativen Fahrzeugzyklus für viele Motorenprüfstände nutzlos, denn sie können die variable Übersetzung nicht simulieren.

Aus diesem Grund wird im nächsten Abschnitt ein repräsentativer Motorzyklus in Form eines relativen M(n) - Fahrprofils aus dem repräsentativen Fahrzeugzyklus entwickelt. Der große Vorteil des relativen Fahrprofils ist seine universelle Anwendbarkeit für jeden Motor. Man kann für jeden Motor das normierte Fahrprofil entnormieren, indem man auf dem Prüfstand eine Volllast- und eine Schleppkurve des Motors fährt und dann die absoluten Werte für das Motordrehmoment und die Motordrehzahl bestimmt.

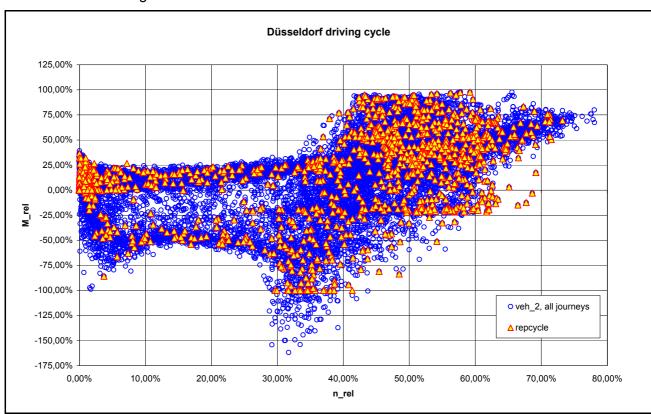
Die Voraussetzung für die universelle Anwendbarkeit des relativen Fahrprofils ist jedoch eine ähnliche Motorbelastung. Dies wurde aber mit den Messfahrten dieses Projektes bewiesen, denn das größere Gewicht des Gelenkbusses wird durch die größere Motorleistung wettgemacht, sodass die relative Motorbelastung sehr ähnlich ist.

Abbildung 36: Der Düsseldorfer Fahrzyklus (v(t)-Diagramm)

4.2.9 Repräsentativer Motorzyklus ($M_{rel}(n_{rel})$ -Zyklus)

Der repräsentative Motorzyklus wurde aus dem repräsentativen Fahrzeugzyklus abgeleitet. Da für jeden Punkt des Fahrzeugzyklus auch die entsprechende Motordrehzahl und das Kardanwellendrehmoment vorlagen, konnte die Transformation des Fahrzeugzyklus in den Motorzyklus relativ einfach durchgeführt werden.

Aus dem Kardanwellendrehmoment wurde die Leistung bestimmt. Die absoluten Motordrehzahl- und Leistungswerte mussten noch, wie in Kapitel 4.1 beschrieben, normiert werden. Da die Motorleistung proportional zum Motordrehmoment bei der jeweiligen Motordrehzahl ist, konnten die Werte der relativen Leistung P_{rel} unverändert für das relative Drehmoment M_{rel} übernommen werden.


Bedingt dadurch, dass die Busse mit einem hydrodynamischen Retarder ausgestattet waren, wurden die relativen Schleppmomente von -150 % und mehr gemessen. Für den Fahrzyklus wurden die maximalen, relativen Schleppmomente von Hand auf -100% gesetzt.

Der entstandene repräsentative Motorzyklus wurde analog zum Fahrzeugzyklus in drei Teile aufgeteilt, die die im vorigen Kapitel beschriebenen Straßentypen repräsentieren.

In Abbildung 37 sind die Punkte des relativen Motorzyklus als orange Dreiecke dargestellt (repcycle). Die blaue Punktewolke (veh_2, all journeys) ist die gemessene relative Leistung aus allen Fahrten des Gelenkbusses.

Die zeitlichen Verläufe des relativen Drehmomentes und der relativen Drehzahl des Motorzyklus sind in der Abbildung 76 im Anhang dargestellt.

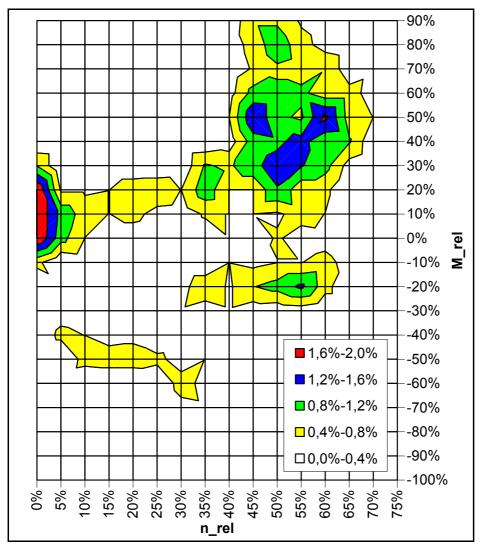

Die kompletten Daten des Düsseldorfer Fahrzyklus (Fahrzeug- und Motorzyklus) sind in der Tabelle 29 im Anhang zu finden.

Abbildung 37: Der Düsseldorfer Fahrzyklus (M_{rel}(n_{rel})-Diagramm)

Die Abbildung 38 stellt das Belastungsschaubild des Düsseldorfer Fahrzyklus als Häufigkeitsverteilung der bestimmten Kombinationen aus relativem Moment M_rel und relativer Drehzahl n_rel dar. Je dunkler die Farbe, desto häufiger kommt eine bestimmte Kombination im Zyklus vor. Wie aus dem Bild ersichtlich, ist der Bereich der niedrigen Drehzahl und Leistung am Häufigsten vertreten. Des Weiteren ist der Teillastbereich oft vertreten, der Volllastbereich hingegen ist so gut wie gar nicht vertreten.

Somit spiegelt die Motorbelastung des Fahrzyklus in etwa die realen Motorbelastungen während des Fahrbetriebs wider (vgl. Abbildung 29).

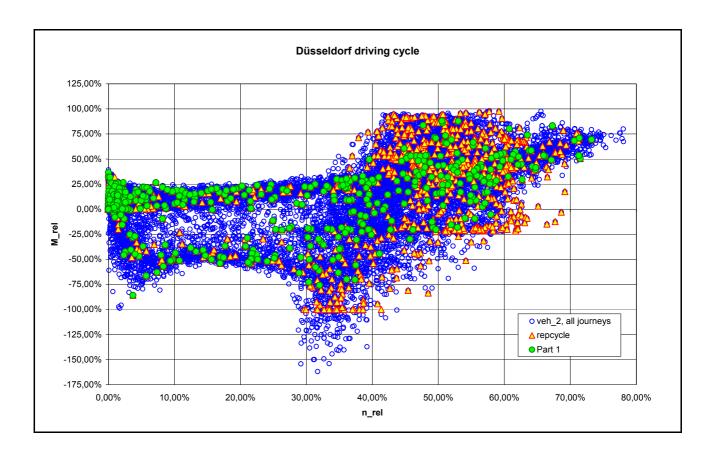


Abbildung 38: Belastungsschaubild des Düsseldorfer Fahrzyklus

4.2.9.1 Repräsentativer Motorzyklus (Teil 1)

Der erste Teil des Motorzyklus repräsentiert das Fahren auf Straßen in Wohngebieten mit niedriger Geschwindigkeit und häufigem Anhalten. Dadurch befindet sich der Motor häufig in dem unteren Drehzahlbereich mit geringer relativer Leistung bzw. geringem relativen Drehmoment. Seltener befindet sich der Motor in mittleren und hohen Lastbereichen. Die relativen Schleppmomente sind verhältnismäßig gering, was durch die geringe Fahrgeschwindigkeit bedingt ist.

In Abbildung 39 sind in einem $M_{rel}(n_{rel})$ -Diagramm zusätzlich zu Abbildung 37 die Punkte des ersten Teils des repräsentativen Motorzyklus als grüne Punkte abgebildet. Die zeitlichen Verläufe des relativen Drehmomentes und der relativen Drehzahl des ersten Teils des Motorzyklus sind in der Abbildung 77 im Anhang dargestellt.

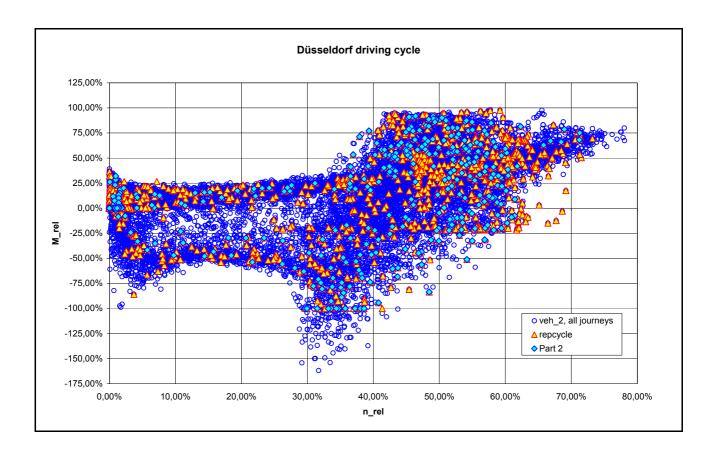


Abbildung 39: Der Düsseldorfer Fahrzyklus (M_{rel}(n_{rel})-Diagramm) Teil 1

4.2.9.2 Repräsentativer Motorzyklus (Teil 2)

Der zweite Teil des Motorzyklus repräsentiert das Fahren auf städtischen Hauptstrassen mit wenigen Halten und größerem Haltestellenabstand, die maximale Fahrgeschwindigkeit beträgt etwa 50 km/h. Der Motor befindet sich nur kurz im unteren Drehzahlbereich und geht relativ schnell in die mittleren und oberen Lastbereiche des Kennfeldes. Durch die höhere Fahrgeschwindigkeit sind die Schleppmomente deutlich höher als im ersten Teil des Motorzyklus.

Das $M_{rel}(n_{rel})$ -Diagramm aus Abbildung 37 wurde in Abbildung 40 um die Punkte des zweiten Teils des repräsentativen Motorzyklus als hellblaue Rauten erweitert. Die zeitlichen Verläufe des relativen Drehmomentes und der relativen Drehzahl sind in der Abbildung 78 im Anhang dargestellt.

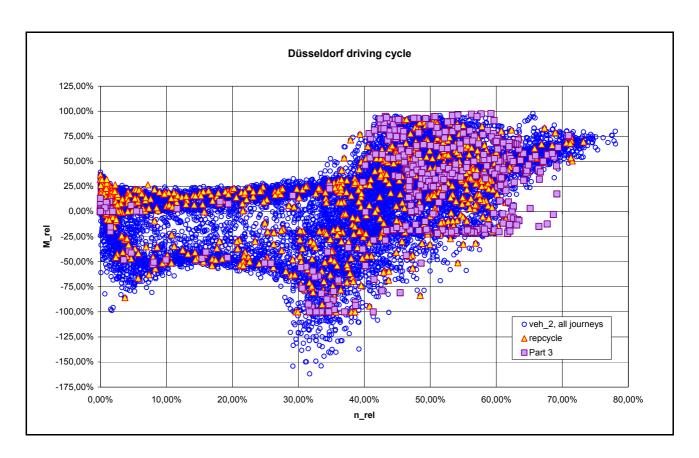


Abbildung 40: Der Düsseldorfer Fahrzyklus (M_{rel}(n_{rel})-Diagramm) Teil 2

4.2.9.3 Repräsentativer Motorzyklus (Teil 3)

Der dritte Teil des Motorzyklus repräsentiert das Fahren auf mehrspurigen, gut ausgebauten innerörtlichen oder außerörtlichen Strassen mit wenigen Halten mit großem Haltestellenabstand und einer maximalen Fahrgeschwindigkeit von etwa 70 km/h. Der Motor befindet sich fast ausschließlich im mittleren und oberen Lastbereich. Entsprechend der Fahrgeschwindigkeit sind die maximalen relativen Schleppmomente hoch.

Das $M_{rel}(n_{rel})$ -Diagramm aus Abbildung 37 wurde in Abbildung 41 um die Punkte des dritten Teils des repräsentativen Motorzyklus als violette Quadrate erweitert. Die zeitlichen Verläufe des relativen Drehmomentes und der relativen Drehzahl sind in der Abbildung 79 im Anhang gezeigt.

Abbildung 41: Der Düsseldorfer Fahrzyklus (M_{rel}(n_{rel})-Diagramm) Teil 3

4.2.10 Abschließende Zyklusbetrachtung

Der statistische Vergleich der Geschwindigkeitsverteilungen des Düsseldorfer Fahrzyklus und aller Fahrten des Messvorhabens zeigt, wie in Abbildung 42 abgebildet, dass der Fahrzyklus dem Durchschnitt der meisten Fahrten entspricht (von einigen Ausreißern abgesehen) und somit als repräsentativ angesehen werden kann.

Auch der statistische Vergleich der Häufigkeitsverteilungen der relativen Drehzahl (Abbildung 43) zeigt, dass der Düsseldorfer Fahrzyklus ungefähr die Drehzahlverteilungen aller Fahrten widerspiegelt, sowie das höhere Drehzahlniveau des Motors des Solobusses berücksichtigt.

Der Düsseldorfer Fahrzyklus wurde in drei Teile aufgeteilt, die drei verschiedene, in Städten häufig vorkommende, Straßentypen repräsentieren. Die drei Teilzyklen können unabhängig von einander gefahren werden und die Abgasemissionen können mittels Wichtungsfaktoren unterschiedlich bewertet werden. Dadurch wird die Anforderung der Übertragbarkeit auf andere Städte mit ähnlichen Bedingungen erfüllt.

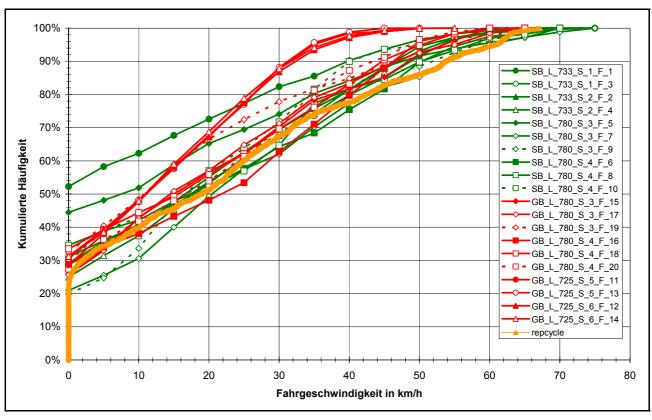
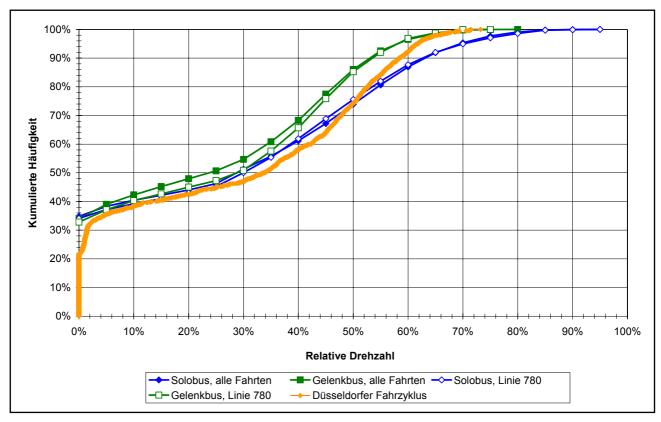
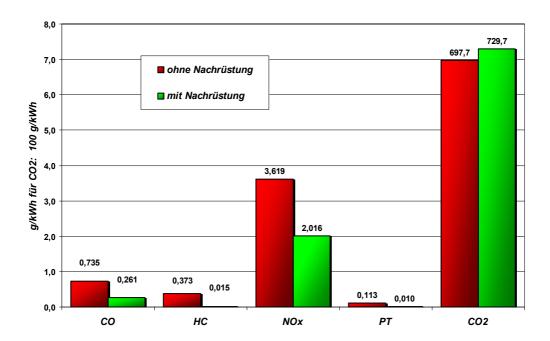



Abbildung 42: Vergleich der Geschwindigkeitsverteilungen

Abbildung 43: Gegenüberstellung der Verteilungen der relativen Drehzahl


Bei den Untersuchungen auf dem Motorenprüfstand hat sich der Düsseldorfer Fahrzyklus als sehr gut nachfahrbar und realitätsnah erwiesen.

Im Vergleich beträgt die Zyklusarbeit des Düsseldorfer Fahrzyklus etwa 50% der Zyklusarbeit des europäischen Zulassungszyklus ETC. Somit kann der Düsseldorfer Fahrzyklus als ein "Schwachlastzyklus" bezeichnet werden.

4.3 Prüfstandsvermessung

Zur Applikation des Niederdruck-Abgasrückführsystems sind beide Motoren auf dem Motorprüfstand der Firma stt emtec in Sundsvall, Schweden, vermessen worden. Nach erfolgter Applikation wurde jeweils eine Abnahmevermessung durchgeführt, um den erreichten Stand zu dokumentieren. Es wurden Vergleiche mit und ohne Abgasrückführsystem gefahren.

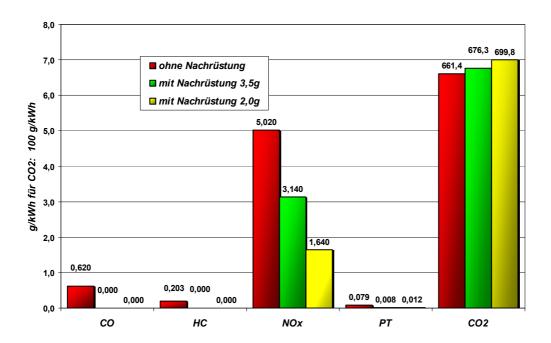

4.3.1 Ergebnisse im ESC (European Stationary Cycle)

Abbildung 44: Ergebnisse im ESC des MAN-Motors

Der stationär gefahrene europäische Zulassungszyklus ESC enthält 12 Messpunkte, die auf drei Drehzahlschnitten im Kennfeld eines Motors verteilt sind. Zusätzlich wird noch der Leerlaufpunkt vermessen. Bei der Berechnung des Ergebnisses werden die einzelnen Messpunkte mit Wichtungsfaktoren versehen, um die Aufenthaltsdauer des Motors in bestimmten Kennfeldbereichen bei realer Fahrt abzubilden. Abbildung 44 zeigt die Ergebnisse im ESC ohne und mit Abgasnachbehandlung. Es ist erkennbar, dass das Ziel von 2 g/kWh erreicht wurde. Die massiven Absenkungen der Komponenten CO, HC, und PT werden durch den Oxidationskatalysator und den nachgeschalteten Partikelfilter erreicht. Die Nachrüstung führt aber auch zu einer Verbrauchserhöhung.

Abbildung 45 zeigt die ESC Ergebnisse für den Mercedes-Motor. Zwar sind Ergebnisse in der Größenordnung von 2 g/kWh grundsätzlich darstellbar (gelbe Balken), aber die AGR-Verträglichkeit des Motors lässt eine solche Einstellung nicht zu, da die Rauchemissionen stark ansteigen und mit Motorschäden gerechnet werden muss. Die zweite Ergebnisdarstellung (grüne Balken) zeigt die Werte mit einer aus Nachrüstersicht vertretbaren AGR-Menge. Die Werte zeigen zwar eine deutliche Reduktion der NO_{x^-} Emission, erreichen aber nicht den Zielwert von 2 g/kWh. Ein Wert von 3,5 g/kWh ist nach Meinung des Nachrüsters realisierbar. Prinzipbedingt verhalten sich die anderen Komponenten ähnlich wie beim MAN-Motor.

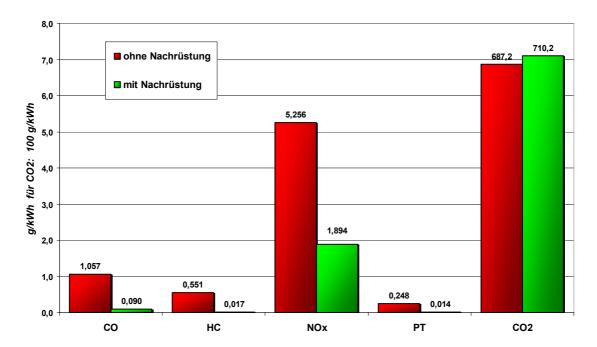
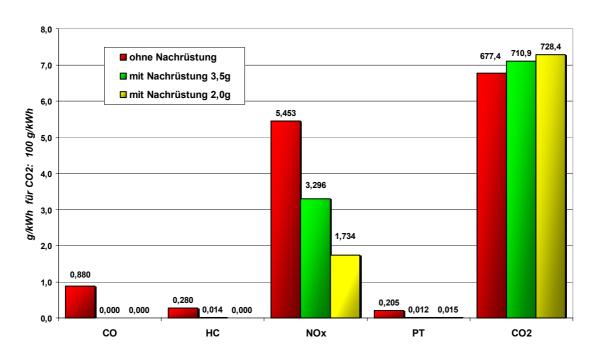


Abbildung 45: Ergebnisse im ESC des Mercedes-Motors

4.3.2 Ergebnisse im ETC (European Transient Cycle)


Der ETC ist ein dynamisch gefahrener Prüfzyklus, der für herkömmliche Dieselmotoren ohne "fortschrittliche" Abgasnachbehandlung der Emissionsstufe Euro III nicht gefahren werden musste. Als fortschrittliche Abgasnachbehandlung zählte hierbei alles, was über einen Oxidationskatalysator hinausging. Eine innermotorische Maßnahme wie AGR zählte nicht dazu. Der ETC ist als relativer Motorzyklus in der Vorschrift hinterlegt und repräsentiert Fahrten eines Nutzfahrzeuges in Stadt, auf Landstraßen und auf Autobahnen.

Die folgenden Bilder zeigen die Ergebnisse für den ETC.

Abbildung 46: Ergebnisse im ETC des MAN-Motors

Die Reduktion der NO_x -Ergebnisse fällt im dynamischen Test beim MAN-Motor noch deutlicher aus als bei der stationären Prüfung, wie Abbildung 46 zeigt. Alle anderen Komponenten verhalten sich erwartungsgemäß.

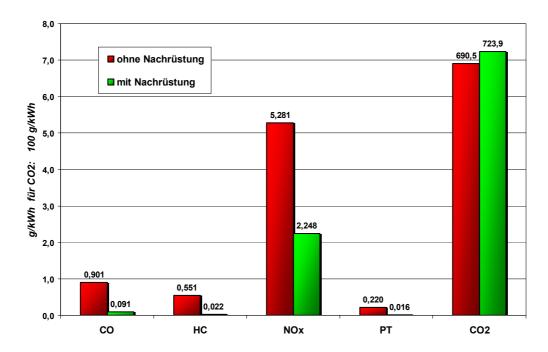
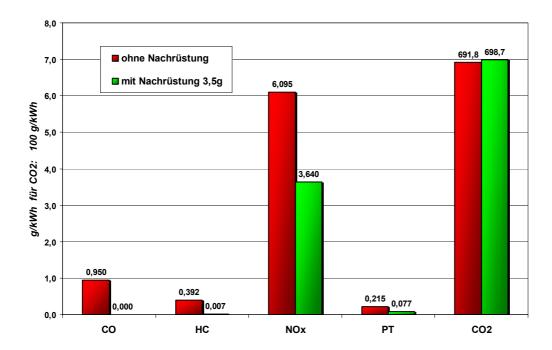


Abbildung 47: Ergebnisse im ETC des Mercedes-Motors

Wie Abbildung 47 zeigt, ist dieser Effekt bei dem Mercedes-Motor nicht zu erkennen. Die Ergebnisse im dynamischen Test verhalten sich ganz ähnlich wie die stationären Ergebnisse. Eine Begründung hierfür ist nicht leicht lieferbar, da es sich um komplexe Zusammenhänge im dynamischen Verhalten der Verbrennung handelt. Es müssten hierfür tiefergehende Untersuchungen durchgeführt werden.


4.3.3 Ergebnisse im Düsseldorfer Zyklus

Neben den für eine Zulassung geforderten Tests wurden auch Versuche im Düsseldorfer Zyklus gefahren. Da dieser Zyklus nur ungefähr die Hälfte der Zyklusarbeit des ETC aufweist, waren durchaus von den ETC Ergebnissen abweichende Ergebnisse möglich.

Abbildung 48: Ergebnisse im Düsseldorfer Zyklus des MAN-Motors

Beim MAN-Motor sind die Ergebnisabweichungen vom ETC nur recht gering, wie Abbildung 48 zeigt. Auch die Niedriglastigkeit des Zyklus scheint auf die grundsätzliche Funktion des Systems keinen Einfluss zu haben.

Abbildung 49: Ergebnisse im Düsseldorfer Zyklus des Mercedes-Motors

Abbildung 49 zeigt, dass der Mercedes-Motor deutlich empfindlicher auf den schwachlastigen Zyklus reagiert. Schon im serienmäßigen Zustand steigen die spezifischen Emissionen deutlich an. Auch hier wäre eine genaue Erläuterung der Effekte auf tiefergehende Untersuchungen angewiesen.

4.4 Ergebnisse im Realbetrieb

Die nachfolgenden Tabellen geben einen Überblick über die Ergebnisse aller Messungen. Es sind jeweils streckenbezogene und leistungsbezogene Werte dargestellt. Für den Solobus fehlen die leistungsbezogenen Werte für die Fahrt ohne Abgasnachbehandlungssystem, da während dieser Fahrt ein Defekt an der Drehmomentmessung aufgetreten ist, so dass die Messwerte nicht belastbar waren. Der direkte Vergleich von leistungsbezogenen Ergebnissen aus Straßenfahrten und Prüfstandsvermessungen ist nur sehr bedingt möglich und mit Unsicherheiten behaftet, da z.B. die vorschriftskonforme Ermittlung der Motorleistung im Fahrzeug nicht möglich ist. Hierfür müssten zeitaufgelöst die Leistungsaufnahmen aller Hilfsantriebe, wie Lüfter, Kompressor, Lenkhilfepumpe usw. bekannt sein. Aus diesen Gründen wird auf die grafische Darstellung eines direkten Vergleiches der Ergebnisse verzichtet, da die Gefahr von Fehlinterpretationen sehr groß ist.

Die späteren Darstellungen beschränken sich auf die NO_x -Emissionen, da die oxidierbaren Komponenten HC und CO sowie die Partikelemission aufgrund des eingesetzten Oxidationskatalysators bzw. des Partikelfilters eine absolut untergeordnete Bedeutung haben.

4.4.1 Streckenbezogene Ergebnisse

Tabelle 20: Ergebnisse Solobus ohne Abgasnachbehandlung [g/km]

Eghrzoug	Fahrt	Strecke	Dauer	mittl. Geschwindigkeit		Emissionen	, [g/km]		NOx/CO2
Fahrzeug	гапп	Strecke	S	km/h	NOx	CO2	HC	CO	g/kg
1	1	1	3226	13,2	18,442	2196,494	2,128	7,885	8,396
1	2	2	2498	21,4	11,529	1449,364	1,309	5,013	7,955
1	3	1	2400	22,0	12,777	1682,492	1,354	5,318	7,594
1	4	2	2328	22,3	9,709	1332,560	1,095	4,181	7,286
1	5	3	1378	17,9	10,123	1290,149	1,130	4,058	7,846
1	6	4	896	23,4	10,342	1252,930	1,182	4,069	8,254
1	7	3	958	25,8	10,032	1264,282	1,078	3,902	7,935
1	8	4	952	22,1	10,365	1201,659	1,191	3,705	8,626
1	9	3	1064	23,3	9,975	1232,660	1,168	4,305	8,092
1	10	4	1064	19,9	11,545	1332,375	1,254	4,455	8,665
				Min	9,709	1201,659	1,078	3,705	7,286
				Max	18,442	2196,494	2,128	7,885	8,665
				Mittelwert	11,484	1423,497	1,289	4,689	8,065
				Standardabweichung	2,625	305,450	0,308	1,227	0,438
				Varianz	6,893	93299,847	0,095	1,505	0,192
				Variationskoeffizient	22,9%	21,5%	23,9%	26,2%	5,4%

Tabelle 21: Ergebnisse Gelenkbus ohne Abgasnachbehandlung [g/km]

Fahrzeug	Fahrt	Strecke	Dauer	mittl. Geschwindigkeit		Emissionen,	, [g/km]		NOx/CO2
i anizeug	i aiiit	Silecke	S	km/h	NOx	CO2	HC	CO	g/kg
2	11	5	2659	15,1	19,623	2192,528	0,801	7,332	8,950
2	12	6	2618	15,2	18,147	2009,549	0,709	8,171	9,030
2	13	5	2709	14,9	18,733	2085,590	0,830	3,729	8,982
2	14	6	2679	14,9	15,126	1510,249	0,790	4,068	10,016
2	15	3	1140	21,3	14,383	1616,760	0,561	2,242	8,896
2	16	4	908	22,9	12,965	1522,564	0,519	2,307	8,515
2	17	3	1159	20,9	14,988	1720,509	0,586	2,642	8,712
2	18	4	1027	20,3	13,950	1621,508	0,565	2,759	8,603
2	19	3	1331	18,2	16,795	1812,722	0,631	2,503	9,265
2	20	4	1014	20,4	15,392	1706,954	0,542	2,397	9,017
•				Min	12,965	1510,249	0,519	2,242	8,515
				Max	19,623	2192,528	0,830	8,171	10,016
				Mittelwert	16,010	1779,893	0,653	3,815	8,999
				Standardabweichung	2,212	239,678	0,118	2,170	0,421
				Varianz	4,891	57445,446	0,014	4,710	0,177
				Variationskoeffizient	13,8%	13,5%	18,1%	56,9%	4,7%

Tabelle 22: Ergebnisse Gasbus [g/km]

Fahrzeug	Fahrt	Strecke	Dauer	mittl. Geschwindigkeit		Emissionen	, [g/km]		NOx/CO2
ranizeug	гапп	Silecke	s	km/h	NOx	CO2	HC	CO	g/kg
3	21	6	2271	17,5	4,617	1903,781	0,763	5,532	2,425
3	22	5	2545	15,8	5,726	2193,604	0,893	9,235	2,610
3	23	6	2627	15,1	5,250	1951,567	0,643	9,065	2,690
3	24	5	2485	16,5	5,965	2088,195	0,749	9,374	2,856
3	25	4	792	25,4	4,645	1532,054	0,742	5,420	3,032
3	26	3	1117	21,7	5,829	1668,314	0,823	5,971	3,494
3	27	4	859	23,4	3,882	1339,395	0,680	5,885	2,899
3	28	3	1187	20,5	5,413	1749,860	0,946	7,400	3,093
				Min	3,882	1339,395	0,643	5,420	2,425
				Max	5,965	2193,604	0,946	9,374	3,494
				Mittelwert	5,166	1803,346	0,780	7,235	2,887
				Standardabweichung	0,725	286,716	0,103	1,755	0,330
				Varianz	0,526	82205,869	0,011	3,080	0,109
				Variationskoeffizient	14,0%	15,9%	13,2%	24,3%	11,4%

Tabelle 23: Ergebnisse Solobus mit Abgasnachbehandlung [g/km]

Fahrzeug	Fahrt	Strecke	Dauer	mittl. Geschwindigkeit		Emissione	en, [g/km]		NOx/CO2
i ailizeug	ı allıt	Silecke	S	km/h	NOx	CO2	HC	CO	g/kg
1	1	1	2910	17,2	7,245	1550,766	0,830	4,411	4,672
1	2	2	2631	18,6	4,125	1273,002	0,047	1,046	3,240
1	3	1	2691	18,5	7,498	1543,745	0,909	1,076	4,857
1	4	2	2523	19,4	4,318	1252,831	0,087	0,936	3,446
1	5	3	969	24,4	3,950	1269,663	0,062	1,157	3,111
1	6	4	933	21,4	7,872	1446,227	1,443	2,100	5,443
1	7	3	916	15,8	6,675	2067,346	0,118	2,312	3,229
1	8	4	883	22,4	3,993	1247,755	0,047	1,479	3,200
1	9	3	1112	12,9	7,406	2207,175	0,080	1,367	3,355
1	10	4	847	24,1	4,007	1259,997	0,028	0,772	3,180
1	11	1	2547	20,4	10,758	1519,291	0,018	0,714	7,081
1	12	2	2573	20,5	9,157	1338,523	0,047	1,473	6,841
1	13	1	2375	21,8	10,490	1558,024	0,580	0,974	6,733
1	14	2	2547	21,7	8,798	1276,364	0,008	0,914	6,893
1	15	3	1088	22,2	9,264	1376,476	0,061	0,961	6,730
1	16	4	688	29,0	7,778	1186,658	0,024	0,686	6,554
1	17	3	1193	21,0	9,372	1399,820	0,060	1,199	6,695
1	18	4	757	26,4	8,218	1222,877	0,034	0,909	6,720
1	19	3	1132	22,1	8,588	1230,515	0,042	1,090	6,979
1	20	4	834	23,8	8,159	1128,811	0,031	1,053	7,228
1	31	1	2667	19,5	4,869	1609,693	0,020	2,575	3,025
1	32	2	2485	21,3	7,361	1530,116	0,275	4,378	4,811
1	33	1	2793	18,6	4,179	1511,195	0,156	1,732	2,765
1	34	2	2416	21,2	7,662	1564,562	0,931	4,844	4,897
1	35	3	908	26,7	3,447	1216,783	0,029	0,653	2,832
1	36	4	866	24,1	3,740	1313,639	0,033	0,767	2,847
1	37	3	1145	19,7	3,711	1297,982	0,015	0,833	2,859
1	38	4	857	23,9	10,107	1727,620	2,458	11,806	5,850
1	39	3	1186	19,7	4,003	1334,946	0,014	0,938	2,998
1	40	4	1061	17,5	4,969	1722,815	0,011	1,132	2,884
				Min	3,447	1128,811	7,74E-03	0,653	2,765
				Max	10,758	2207,175	2,458	11,806	7,228
				Mittelwert	6,724	1439,507	0,283	1,876	4,732
				Standardabweichung	2,368	249,045	0,544	2,187	1,723
				Varianz	5,607	62023,323	0,296	4,781	2,970
				Variationskoeffizient	35,2%	17,3%	192,2%	116,5%	36,4%

Tabelle 24: Ergebnisse Gelenkbus mit Abgasnachbehandlung [g/km]

Fahrzeug	Fahrt	Strecke	Dauer	mittl. Geschwindigkeit		Emissioner			NOx/CO2
i ailizeug	i aiiit	Silecke	s	km/h	NOx	CO2	HC	CO	g/kg
2	21	5	2565	15,7	13,215	2042,144	1,877	3,986	6,471
2	22	6	2467	16,2	8,959	1682,744	0,013	1,674	5,324
2	23	5	2523	16,0	11,425	2114,478	1,300	2,327	5,403
2	24	6	2194	17,1	9,783	1787,730	0,024	1,358	5,472
2	25	3	1184	20,3	11,308	1849,346	3,173	4,468	6,114
2	26	4	812	25,4	10,445	1324,262	0,058	0,959	7,887
2	27	3	1238	19,7	12,412	1465,483	0,061	0,960	8,469
2	28	4	985	21,0	11,529	1438,559	0,074	0,943	8,014
2	29	3	1204	20,2	11,819	1434,235	0,034	1,067	8,241
2	30	4	1160	17,8	13,285	1554,503	0,032	1,188	8,546
2	41	5	2443	16,4	15,574	1887,659	0,029	2,109	8,250
2	42	6	2733	14,4	16,206	1768,880	0,101	1,759	9,162
2	43	5	2495	16,2	16,332	1880,409	0,053	1,407	8,686
2	44	6	2523	15,6	14,845	1752,956	0,067	1,463	8,468
2	45	4	841	23,8	11,255	1381,791	0,011	0,911	8,145
2	46	3	979	24,6	11,780	1448,212	0,014	0,966	8,134
2	47	4	916	22,8	10,844	1361,416	0,018	0,902	7,965
2	48	3	1004	24,0	11,757	1570,718	0,022	1,127	7,485
2	49	4	1278	16,3	13,860	1645,114	0,057	1,266	8,425
2	50	3	1141	21,2	12,519	1562,003	0,064	1,210	8,015
2	51	5	2439	15,9	17,095	1927,644	0,005	2,202	8,868
2	52	6	2418	17,2	15,446	1769,018	0,000	2,517	8,731
2	53	5	2332	17,4	16,685	1914,934	0,000	2,845	8,713
2	54	6	2239	17,7	14,876	1769,686	0,000	3,281	8,406
2	55	4	770	26,5	12,041	1466,512	0,004	0,885	8,211
2	56	3	1182	21,2	12,885	1553,626	0,007	1,090	8,293
2	57	4	753	26,6	10,249	1268,174	0,093	0,680	8,082
2	58	3	1055	23,5	11,782	1422,897	0,027	0,754	8,280
2	59	4	799	25,0	10,963	1285,898	0,019	1,005	8,526
2	60	3	1369	18,0	12,874	1557,400	0,008	1,189	8,266
2	61	6	2639	15,0	15,363	1821,951	0,025	1,432	8,432
2	62	5	2720	14,9	16,883	1991,686	0,016	1,439	8,477
		•	-	Min	8,959	1268,174	4,4E-05	0,680	5,324
				Max	17,095	2114,478	3,173	4,468	9,162
				Mittelwert	13,009	1646,940	0,228	1,605	7,936
				Standardabweichung	2,274	235,370	0,664	0,932	1,019
				Varianz	5,172	55399,108	0,441	0,868	1,038
				Variationskoeffizient	17.5%	14.3%	291.7%		

4.4.2 Leistungsbezogene Ergebnisse

Tabelle 25: Ergebnisse Gelenkbus ohne Abgasnachbehandlung [g/kWh]

Fahrzeug	Fahrt	Strecke	Dauer	mittl. Geschwindigkeit		Emissionen,	[g/kWh]		NOx/CO2
i anizeug	i aiiit	Silecke	S	km/h	NOx	CO2	HC	CO	g/kg
2	11	5	1834	14,041	10,497	1202,465	0,377	3,501	8,729
2	12	6	1534	15,416	10,405	1211,501	0,346	4,062	8,589
2	13	5	1639	15,664	10,640	1212,805	0,394	1,965	8,773
2	14	6	1564	14,787	8,212	875,650	0,333	1,896	9,378
2	15	3	845	18,476	9,301	1055,643	0,320	1,410	8,811
2	16	4	664	20,296	8,787	1044,036	0,307	1,493	8,417
2	17	3	873	18,934	9,221	1069,291	0,321	1,556	8,623
2	18	4	774	17,299	9,364	1100,052	0,331	1,753	8,512
2	19	3	1003	15,901	10,274	1123,734	0,340	1,485	9,142
2	20	4	631	20,273	9,618	1099,773	0,283	1,452	8,745
				Min	8,212	875,650	0,283	1,410	8,417
				Max	10,640	1212,805	0,394	4,062	9,378
				Mittelwert	9,632	1099,495	0,335	2,057	8,772
				Standardabweichung	0,806	101,430	0,032	0,938	0,290
				Varianz	0,650	10288,059	0,001	0,879	0,084
				Variationskoeffizient	8,4%	9,2%	9,6%	45,6%	3,3%

Tabelle 26: Ergebnisse Gasbus [g/kWh]

Fahrzeug	Fahrt	Strecke	Dauer	mittl. Geschwindigkeit		Emissionen	, [g/kWh]	NOx/CO2
ranizeug	ranit	SHECKE	S	km/h	NOx	CO2	HC	CO	g/kg
3	21	6	1181	19,607	2,416	964,722	0,436	2,873	2,505
3	22	5	1452	18,666	2,464	894,761	0,406	3,839	2,754
3	23	6	1252	17,453	3,124	1065,351	0,414	5,108	2,932
3	24	5	1284	19,168	2,960	996,619	0,409	4,510	2,970
3	25	4	438	26,207	2,810	954,207	0,521	3,438	2,945
3	26	3	568	25,531	3,494	939,404	0,516	3,431	3,719
3	27	4	467	24,848	2,129	743,291	0,409	2,895	2,864
3	28	3	584	22,779	3,182	1023,975	0,623	4,349	3,108
		-		Min	2,129	743,291	0,406	2,873	2,505
				Max	3,494	1065,351	0,623	5,108	3,719
				Mittelwert	2,822	947,791	0,467	3,805	2,975
				Standardabweichung	0,457	97,862	0,079	0,798	0,350
				Varianz	0,209	9577,012	0,006	0,638	0,122
				Variationskoeffizient	16,2%	10,3%	17,0%	21,0%	11,8%

Tabelle 27: Ergebnisse Solobus mit Abgasnachbehandlung [g/kWh]

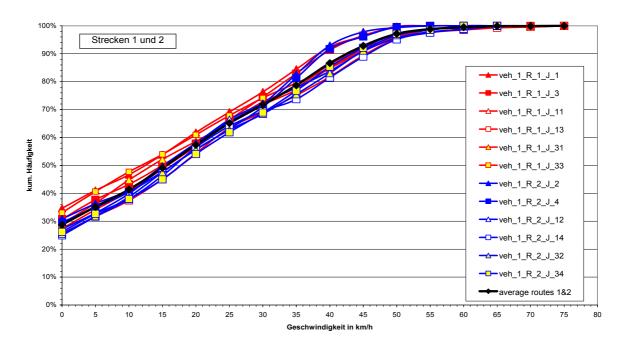
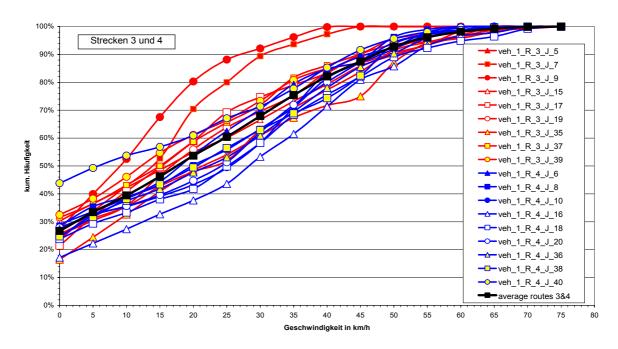
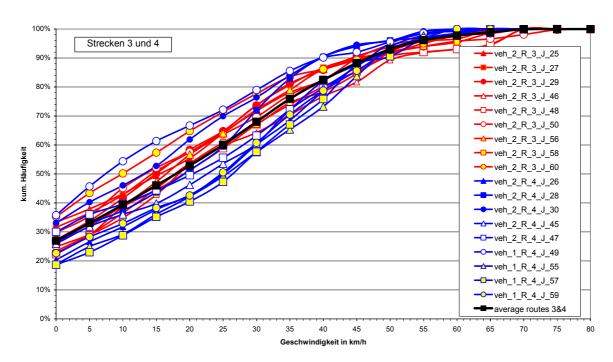

Fahrzeug	Fahrt	Strecke	Dauer	mittl. Geschwindigkeit Emissionen, [g/kWh]					NOx/CO2
			S	km/h	NOx	CO2	HC	CO	g/kg
1	1	1	1374	22,4	5,452	1288,515	0,492	2,934	4,231
1	2	2	1112	21,1	3,948	1360,104	0,042	1,045	2,903
1	3	1	1329	23,4	5,407	1200,502	0,653	0,824	4,504
1	4	2	1125	22,5	3,903	1266,616	0,069	0,909	3,081
1	5	3	459	28,7	3,498	1217,372	0,037	1,016	2,874
1	6	4	438	24,1	6,945	1430,988	1,019	1,668	4,853
1	7	3	513	18,3	6,097	2048,787	0,086	2,066	2,976
1	8	4	437	25,5	3,909	1306,116	0,040	1,390	2,993
1	9	3	592	14,9	6,666	2154,129	0,078	1,334	3,095
1	10	4	433	27,0	3,946	1340,880	0,027	0,825	2,943
1	11	1	1317	24,9	6,901	1037,013	0,010	0,467	6,655
1	12	2	1188	24,0	7,204	1125,322	0,028	0,988	6,401
1	13	1	1280	26,5	6,979	1087,397	0,278	0,610	6,418
1	14	2	1231	24,3	7,310	1125,093	0,005	0,696	6,497
1	15	3	528	28,2	6,974	1104,579	0,038	0,680	6,314
1	16	4	366	32,0	6,455	1033,501	0,016	0,553	6,246
1	17	3	651	22,4	7,179	1130,827	0,028	0,842	6,348
1	18	4	397	30,4	6,769	1067,217	0,022	0,696	6,342
1	19	3	562	26,2	7,176	1090,102	0,028	0,817	6,582
1	20	4	399	30,3	7,043	1048,862	0,021	0,810	6,715
1	31	1	1386	24,6	3,160	1135,919	0,013	1,517	2,782
1	32	2	1223	23,8	5,635	1180,044	0,183	2,320	4,775
1	33	1	1419	24,4	2,646	1029,742	0,086	1,020	2,569
1	34	2	1198	23,9	5,661	1193,903	0,612	2,839	4,742
1	35	3	540	27,3	2,955	1112,485	0,023	0,569	2,657
1	36	4	433	29,7	2,877	1088,997	0,023	0,597	2,642
1	37	3	536	24,6	2,969	1126,940	0,013	0,677	2,635
1	38	4	461	27,5	8,285	1407,335	1,896	7,559	5,887
1	39	3	564	26,3	3,146	1122,935	0,012	0,730	2,801
1	40	4	413	25,7	3,086	1144,346	0,006	0,675	2,697
				Min	2,646	1029,742	5,38E-03	0,467	2,569
				Max	8,285	2154,129	1,896	7,559	6,715
				Mittelwert	5,339	1233,552	0,196	1,322	4,439
				Standardabweichung	1,786	260,977	0,401	1,347	1,659
				Varianz	3,191	68109,220	0,161	1,814	2,752
				Variationskoeffizient	33.5%	21,2%	204,6%	101.8%	37,4%

Tabelle 28: Ergebnisse Gelenkbus mit Abgasnachbehandlung [g/kWh]


F-1	C - l4	04	Dauer	mittl. Geschwindigkeit		Emissionen, [g/kWh]			NOx/CO2
Fahrzeug	Fahrt	Strecke	S	km/h	NOx	CO2	HC	CO	g/kg
2	21	5	1409	18,2	6,673	1038,333	0,896	1,734	6,427
2	22	6	1319	17,9	5,640	1044,970	0,007	0,863	5,397
2	23	5	1335	20,1	5,326	1007,615	0,583	0,909	5,285
2	24	6	1275	18,5	5,318	989,330	0,011	0,657	5,375
2	25	3	569	27,7	6,260	1032,500	1,626	1,920	6,063
2	26	4	441	28,4	6,711	872,524	0,030	0,527	7,692
2	27	3	610	26,9	7,194	915,817	0,031	0,522	7,855
2	28	4	508	24,5	7,141	921,506	0,038	0,535	7,750
2	29	3	638	25,5	7,493	934,927	0,019	0,597	8,015
2	30	4	556	23,2	7,440	938,032	0,017	0,600	7,931
2	41	5	1317	18,8	7,469	952,377	0,013	0,891	7,843
2	42	6	1363	17,1	8,561	1011,614	0,043	0,823	8,462
2	43	5	1281	19,9	7,566	947,109	0,020	0,621	7,988
2	44	6	1217	18,4	7,845	997,671	0,029	0,690	7,863
2	45	4	431	28,8	6,617	865,070	0,006	0,479	7,649
2	46	3	540	30,3	6,659	864,905	0,004	0,489	7,699
2	47	4	451	28,5	6,574	875,554	0,010	0,479	7,508
2	48	3	564	28,3	6,335	881,348	0,009	0,548	7,188
2	49	4	624	20,7	7,397	948,087	0,024	0,604	7,802
2	50	3	584	27,2	6,638	881,554	0,026	0,563	7,530
2	51	5	1242	19,5	8,093	990,875	0,002	0,891	8,167
2	52	6	1353	18,9	8,532	1020,955	0,000	1,139	8,357
2	53	5	1391	18,6	8,226	982,214	0,000	1,181	8,375
2	54	6	1184	19,7	7,952	988,413	0,000	1,391	8,045
2	55	4	426	29,3	7,207	916,077	0,003	0,472	7,868
2	56	3	625	26,8	7,561	950,538	0,005	0,553	7,955
2	57	4	400	30,6	6,976	892,644	0,057	0,421	7,815
2	58	3	554	29,0	7,347	929,584	0,013	0,444	7,904
2	59	4	436	29,7	7,549	920,713	0,012	0,601	8,199
2	60	3	644	24,4	7,419	943,349	0,004	0,581	7,864
2	61	6	1395	17,0	8,469	1041,187	0,011	0,679	8,134
2	62	5	1457	17,9	8,081	991,036	0,007	0,598	8,155
				Min	5,318	864,905	2,7E-05	0,421	5,285
				Max	8,561	1044,970	1,626	1,920	8,462
				Mittelwert	7,196	952,763	0,111	0,750	7,567
				Standardabweichung	0,854	55,956	0,331	0,364	0,872
				Varianz	0,729	3131,025	0,110	0,132	0,760
				Variationskoeffizient	11,9%	5,9%	298,4%	48,5%	11,5%

4.4.3 Streckenbetrachtung


Die nachfolgenden Bilder stellen kumulierte Geschwindigkeitsanteile der unterschiedlichen Strecken für den Solo- und den Gelenkbus dar. Die Strecken 3 und 4 (Jan-Wellem-Platz bis Werstener Dorfstrasse und zurück) sind die von beiden Bussen befahrenen Strecken.

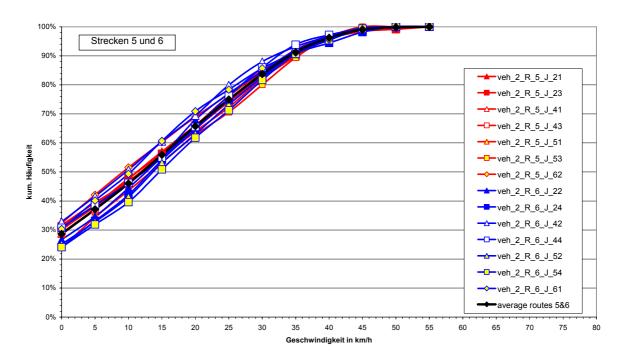

Abbildung 50: Kumulierte Geschwindigkeitsverteilung Strecke 1 und 2 (Solobus)

Abbildung 51: Kumulierte Geschwindigkeitsverteilung Strecke 3 und 4 (Solobus)

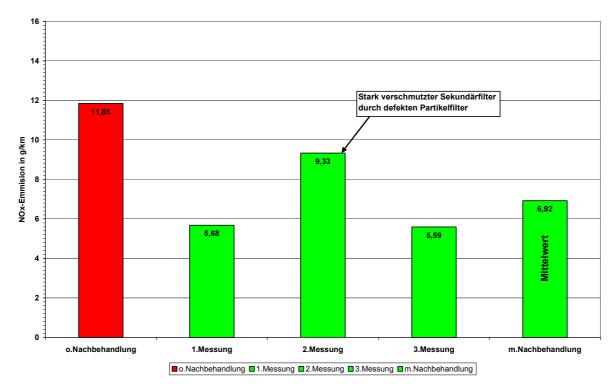

Abbildung 52: Kumulierte Geschwindigkeitsverteilung Strecke 3 und 4 (Gelenkbus)

Abbildung 53: Kumulierte Geschwindigkeitsverteilung Strecke 5 und 6 (Gelenkbus)

Abbildung 50 bis Abbildung 53 machen deutlich, dass die Strecken 3 und 4 mit stark streuenden Geschwindigkeitsverteilungen durchfahren werden. Die Strecken sind sehr stark vom Verkehrsaufkommen beeinflusst und stellen sich je nach Tageszeit und weiteren Umständen sehr unterschiedlich dar. Die jeweils anderen Streckenführungen laufen in einem wesentlich engeren Toleranzband. Diese Unterschiede spiegeln sich auch deutlich in stark oder weniger stark schwankenden Emissionsergebnissen auf den einzelnen Strecken wider.

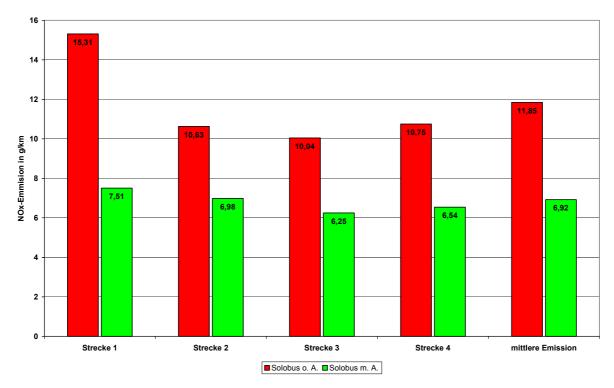

4.4.4 Stickoxidemissionen Solobus

Abbildung 54: Gesamtübersicht der Stickoxidemissionen des Solobusses [g/km]

Abbildung 54 zeigt eine Gesamtdarstellung der Stickoxidemissionen sämtlicher Messkampagnen als streckenbezogene Emissionen in g/km. Die erste und dritte Messung kommen auf sehr ähnliche Ergebnisse, die einer Stickoxidreduktion von ca. 52,5 % entsprechen. Diese Werte liegen in ähnlicher Größenordnung wie sie auf dem Motorprüfstand im Düsseldorfer Zyklus gefunden wurden. Die zweite Messung fiel deutlich aus dem erwarteten Rahmen, so dass nach Ursachen geforscht wurde. Als Grund stellte sich ein stark verschmutztes Sekundärfilter heraus, welches offensichtlich in einem vorangegangenen Partikelfilterschaden begründet war. Mit dem Tausch des Filters vor der dritten Messung konnten die ursprünglichen Werte reproduziert werden.

Betrachtet man die Emissionen der unterschiedlichen Strecken, werden deutliche Unterschiede sichtbar, die in den verschiedenen Streckencharakteristiken begründet sind, wie Abbildung 55 zeigt. Dargestellt sind jeweils die Ergebnisse ohne und mit Abgasnachbehandlung.

Abbildung 55: Emissionen auf den unterschiedlichen Streckenverläufen [g/km]

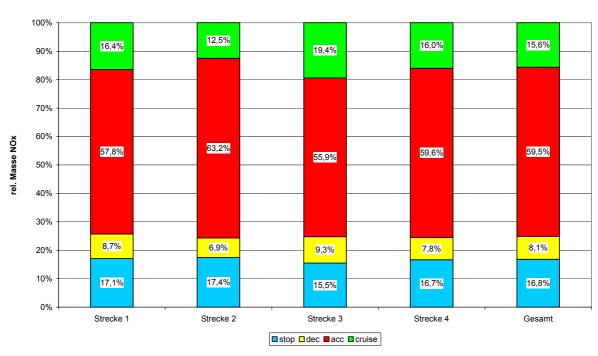
Strecke 1 hat z.B. eine höher gelegene Endhaltestelle und ein erhöhtes Geschwindigkeitsprofil in den Steigungsstrecken, welches zu einer höheren Motorlast führt. Strecke 4 weist zwar keine besonderen Steigungen auf, wird aber schneller durchfahren als Strecke 3, was auch in höheren Motorlasten resultiert.

Bricht man nun die Emissionsergebnisse auf den unterschiedlichen Strecken auf verschiedene Fahrsituationen herab, ergeben sich folgende Bilder. Hierbei haben die Abkürzungen folgende Bedeutung:

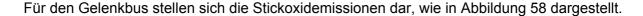

acc: acceleration, Beschleunigungdec: deceleration, Verzögerung

cruise: cruising, Fahrten mit gleichbleibender Geschwindigkeit

stop: stop, Stillstandszeiten (v < 2 km/h)


Abbildung 56 zeigt die zeitlichen Anteile von Stop-(Leerlauf)-Situationen [blau], Verzögerungen [gelb], Beschleunigungen [rot] und gleichmäßiger Fahrt [grün] auf den unterschiedlichen Strecken. Abbildung 57 ordnet den zeitlichen Anteilen der unterschiedlichen Fahrsituationen die entsprechenden Emissionsmassenanteile zu. Deutlich wird der große Anteil der Beschleunigungen an der Gesamtemission, was durch die temporär anliegenden hohen Motorlasten gut erklärbar ist.

Solobus mit Abgasnachbehandlung


Abbildung 56: Zeitanteile verschiedener Fahrsituationen auf unterschiedlichen Strecken

Solobus mit Abgasnachbehandlung

Abbildung 57: Relative NO_x-Emissionen bezogen auf unterschiedliche Strecken

4.4.5 Stickoxidemissionen Gelenkbus

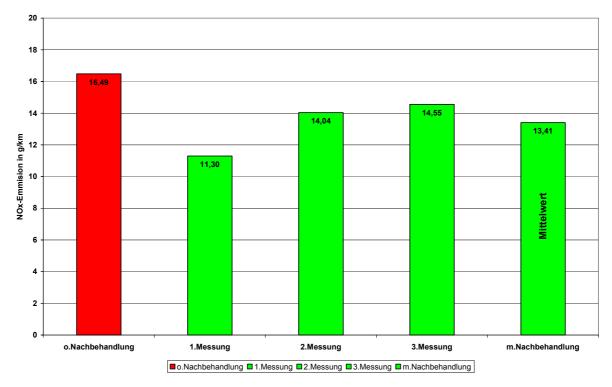
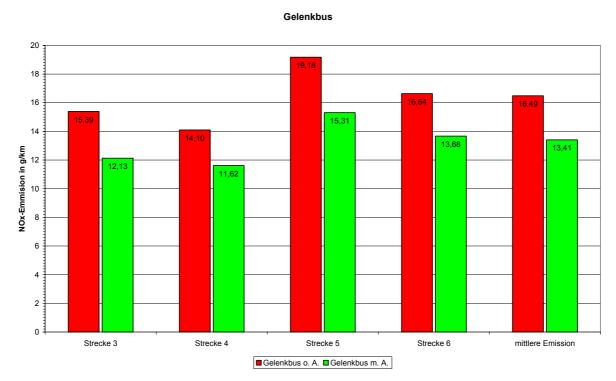
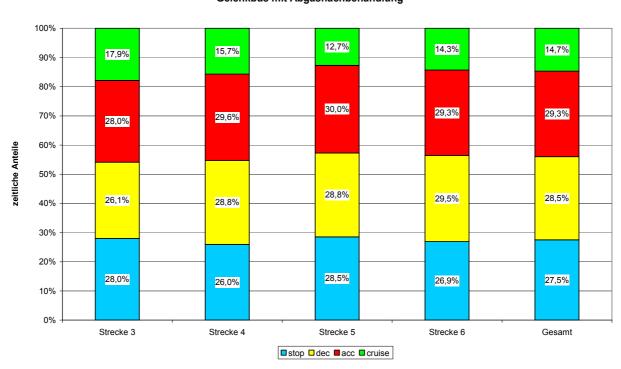
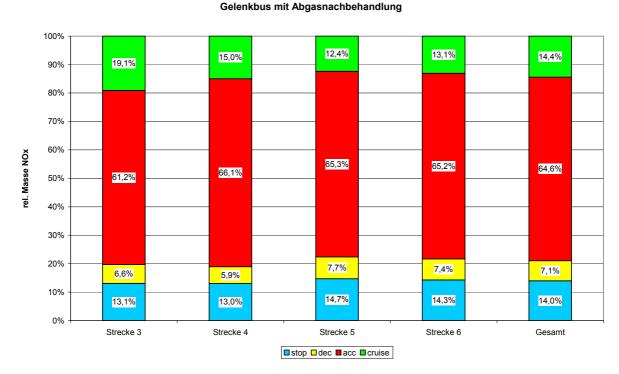


Abbildung 58: Gesamtübersicht der Stickoxidemissionen des Gelenkbusses [g/km]

Man kann eine Verschlechterung der Ergebnisse von Messkampagne zu Messkampagne beobachten, wobei keine offensichtlichen Fehler vorlagen. Rein vorsorglich wurde auch bei diesem Fahrzeug vor der letzten Messung das Sekundärfilter getauscht, was aber nicht zu den gleichen Verbesserungen wie bei dem Solobus geführt hat. Betrachtet man nun die Aufschlüsselung bezogen auf die unterschiedlichen Linienführungen, wie Abbildung 59 zeigt, ist wiederum zu erkennen, dass die Streckenführung und Streckencharakteristik großen Einfluss auf die Emissionen haben. Die Endstelle der Streckenführung 5 (Dreherstrasse) liegt deutlich höher als die Startstelle (Franziusstrasse), was einen höheren Leistungsbedarf und somit eine höhere Stickoxidemission bedingt.


Abbildung 59: Emissionen auf den unterschiedlichen Streckenverläufen [g/km]

Gelenkbus mit Abgasnachbehandlung

Abbildung 60: Zeitanteile verschiedener Fahrsituationen auf unterschiedlichen Strecken

Abbildung 60 zeigt wiederum die zeitlichen Anteile unterschiedlicher Fahrsituationen auf den verschiedenen Strecken. Hier sind kaum Unterschiede zum Solobus zu erkennen.

Abbildung 61: Relative NO_x-Emissionen bezogen auf unterschiedliche Strecken

In Abbildung 61 ist allerdings zu erkennen, dass im Vergleich zum Solobus ein deutlich größerer Teil der Gesamt-NO_x-Emission während der Beschleunigungsphasen emittiert wird. Begründbar dürfte dies durch die höhere Fahrzeugmasse sein, was zu deutlich höheren Motorlasten bei der Beschleunigung im Vergleich zum Solobus führt.

4.4.6 Stickoxidemissionen Gasbus

Abbildung 62 zeigt die streckenbezogenen Stickoxidemissionen des Gasbusses auf den unterschiedlichen Linienführungen. Die Werte liegen auf gleichem Niveau wie die des Solobusses mit funktionierendem Nachbehandlungssystem. Da der Gasbus jedoch ein Gelenkzug ist, ist der direkte streckenbezogene Vergleich nicht korrekt, da mit dem Gasbus eine deutlich höhere Transportleistung erbracht wird. Die Abbildung 63 und die Abbildung 64 stellen die relativen Zeitanteile und die relativen NO_x-Emissionen des Gasbusses dar. Auffällig hierbei ist, dass der Gasmotor den weitaus größten Teil seiner NO_x-Emissionen während der Beschleunigungsphasen emittiert. Erklärbar ist dieses Verhalten mit Abweichungen vom stöchiometrischen Luftverhältnis im dynamischen Betrieb und somit kurzfristigen Umsatzänderungen im Katalysator während der Beschleunigungsphasen.

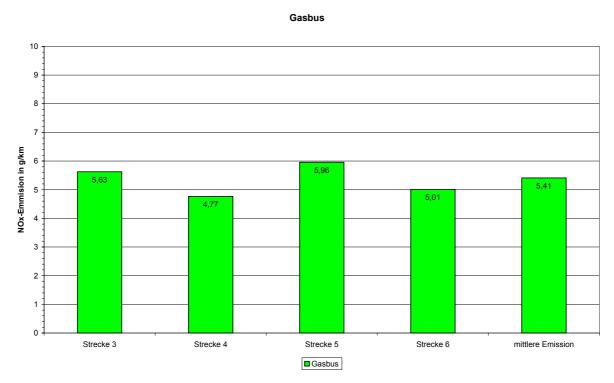
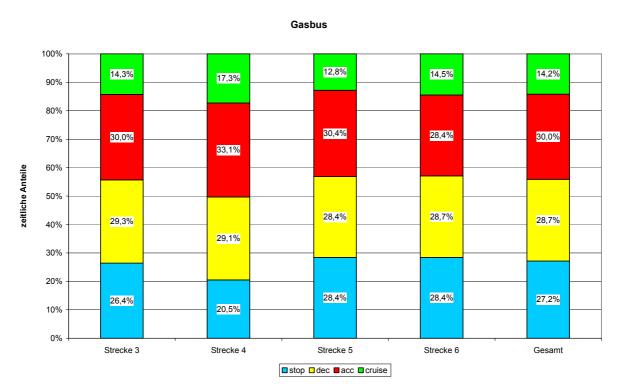
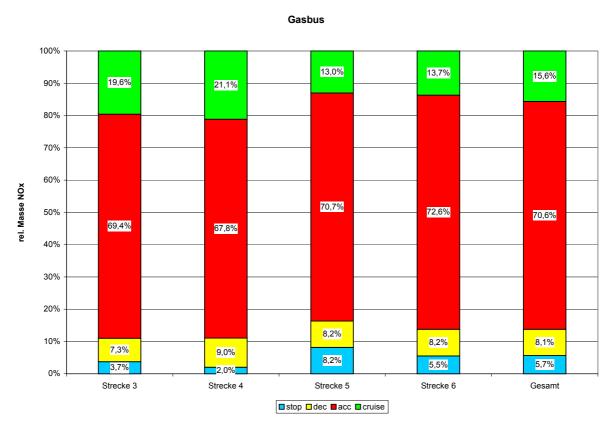
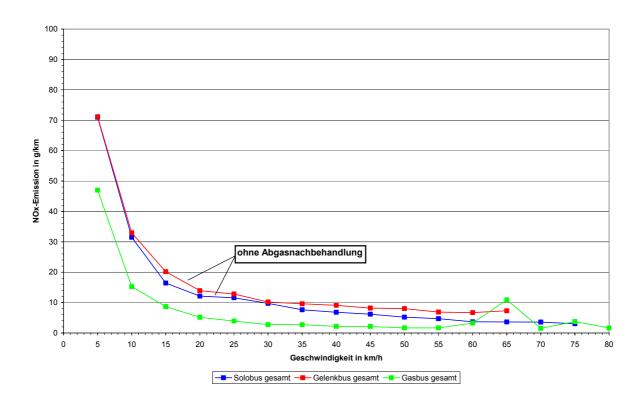
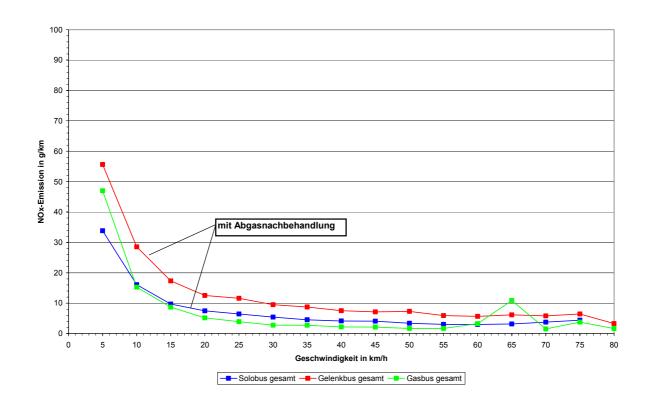



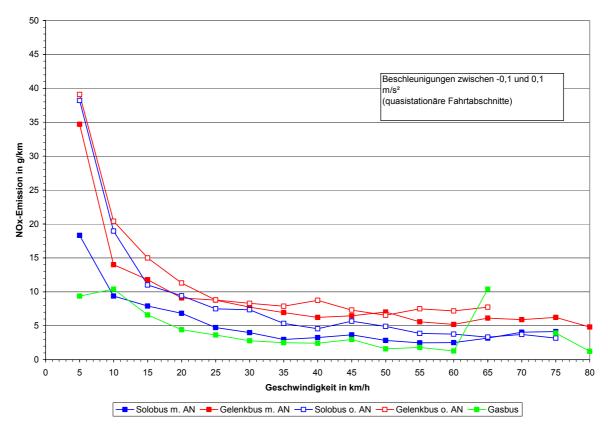
Abbildung 62: Emissionen des Gasbusses auf den unterschiedlichen Strecken

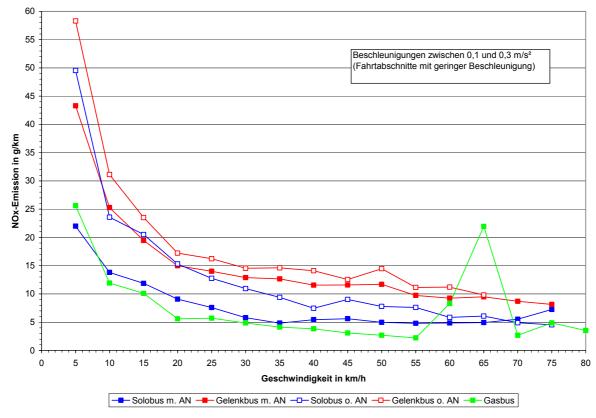
Abbildung 63: Zeitanteile verschiedener Fahrsituationen auf unterschiedlichen Strecken


Abbildung 64: Relative NOx-Emissionen bezogen auf unterschiedliche Strecken

4.4.7 Fahrzeugvergleiche


Im Folgenden sind die streckenbezogenen NO_x-Emissionen des Solo-, des Gelenk- und des Gasbusses über der mittleren Geschwindigkeit dargestellt. Diese Darstellungsform wurde gewählt, da sie in anschaulicher Weise das Emissionsverhalten der Fahrzeuge in unterschiedlichen Fahrsituationen zeigt, welche sich leichter mit den Immissionssituationen in Verbindung bringen lassen. Abbildung 65 zeigt den Ausgangszustand der beiden Dieselbusse und die Auswertung des Gasbusses. Abbildung 66 stellt den Zustand nach der Nachrüstung im Vergleich zum Gasbus dar. Deutlich erkennbar ist die Emissionsabsenkung der beiden Dieselbusse, wobei insbesondere der Solobus an das Niveau des Gasbusses reicht. Es sei allerdings noch einmal auf die geringere Transportleistung des Solobusses hingewiesen. Filtert man nun die dargestellten Gesamtergebnisse für unterschiedliche Fahrsituationen, ergeben sich Abbildung 67 bis Abbildung 69. Dargestellt sind hier Situationen mit quasistationären Fahrzuständen, leichten Beschleunigungen und großen Beschleunigungen. Die nachgerüsteten Fahrzeuge zeigen hier zwar durchweg bessere Werte als im Ausgangszustand, weisen aber nur für den Solobus deutliche Vorteile aus. Mit steigender Dynamik werden für den Solobus auch günstigere Werte als beim Gasbus erreicht. Dieser scheint hier offensichtlich durch kurzfristige Abweichungen vom stöchiometrischen Luftverhältnis deutlich höhere Emissionen zu produzieren. Die Auffälligkeiten beim Gasbus im Geschwindigkeitsbereich um 65 km/h sind anhand der Messergebnisse nicht direkt erklärbar, dürften aber in Applikationsbesonderheiten des Fahrzeuges zu suchen sein.


Abbildung 65: NO_x-Emissionen im Ausgangszustand

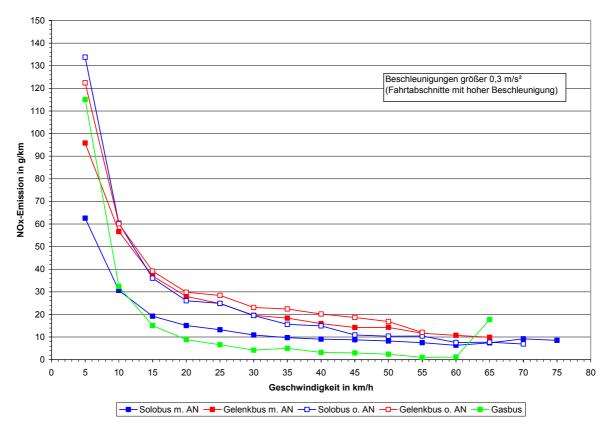

Abbildung 66: NO_x-Emissionen mit Nachrüstung

Abbildung 67: streckenbezogene NO_x-Emissionen für quasistationäre Zustände


Abbildung 68: streckenbezogene NO_x-Emissionen für leichte Beschleunigung

Abbildung 69: streckenbezogene NO_x-Emissionen für große Beschleunigung

4.4.8 NO₂-Emissionen

Die Nachrüstung der Busse mit einer Niederdruck-AGR sollte zu stark abgesenkten NO_x-Emissionen im realen Busverkehr führen. Die bereits vorgestellten Ergebnisse zeigen auch, dass durchaus signifikante Reduzierungen der NO_v-Emissionen erreicht wurden. Die Absenkung der NO_x-Emissionen sollte auch zu einer Reduktion der NO₂-Emissionen führen. Grundsätzlich ist diese Annahme nachvollziehbar, jedoch kann man in Abbildung 70 erkennen, dass in dieser Anwendung einer Niederdruck-AGR der umgekehrte Fall eintritt. Erklärbar wird dieser Effekt bei der Betrachtung des Systemaufbaus. Prinzipbedingt sind bei den hohen Abgasrückführraten bei Euro III Motoren deutlich erhöhte Partikelemissionen vorhanden. Bei den eingesetzten Systemen werden diese hohen Partikelemissionen durch den verwendeten Filter vermieden. Für die Regeneration dieses Filters wurde eine aktive Regenerationsstrategie gewählt, d.h. dass hier über Eindüsung von Kraftstoff in den Abgastrakt und über einen nachgeschalteten Oxidationskatalysator eine Erwärmung des Abgasmassenstromes herbeigeführt wird, der die Regeneration des Partikelfilters sicherstellt. Nebeneffekt dieser Vorgehensweise ist die Oxidation von NO zu NO2. Bei dem hier verwendeten System geschieht dies in so großen Umfang, dass gegenüber dem Ausgangszustand, trotz stark reduzierter NO_x-Gesamtemission, eine erhöhte NO₂-Emission zu verzeichnen ist.

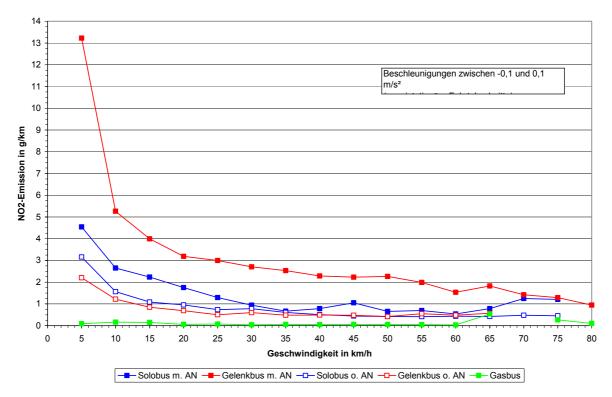
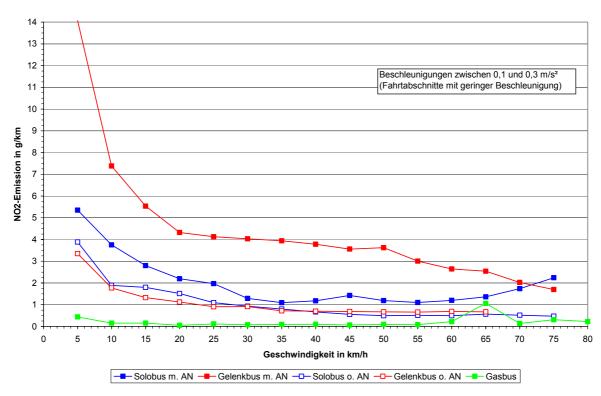
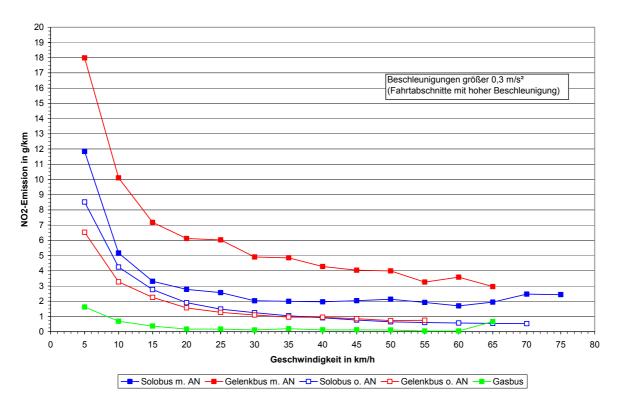


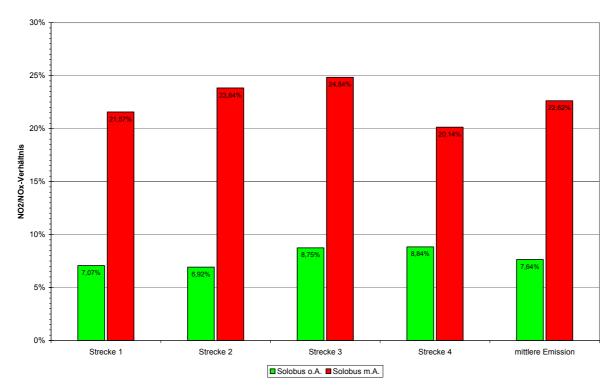
Abbildung 70: NO₂-Emissionen der verschiedenen Fahrzeuge

Da die Verbesserung der NO_2 -Imissions-Situation in der Düsseldorfer Südstadt durch Absenkung der NO_x -Emission der Fahrzeuge des öffentlichen Nahverkehrs eine Grundmotivation des Forschungsvorhabens war, führt die Erkenntnis dieses Sachverhaltes zwangsläufig zu dem Schluss, dass die gewählte Emissionsminderungsstrategie der Niederdruck-AGR in diesem Anwendungsfall nicht geeignet ist, die Projektziele zu stützen.


Die Abbildung 71 bis Abbildung 73 zeigen die NO_2 -Emissionen bei unterschiedlichen Fahrzuständen. Zu erkennen ist, dass mit steigender Beschleunigung die NO_2 -Emissionen bei Fahrten mit Abgasnachbehandlungssystem überproportional ansteigen im Vergleich zu den Fahrten ohne Abgasnachbehandlung. Dies unterstreicht den Schluss, dass bei steigenden Abgastemperaturen und somit aktiverem Oxidationskatalysator auch die Oxidation von NO zu NO_2 ansteigt.


Abbildung 71: NO₂-Emissionen bei quasistationären Fahrzuständen

NO2 - Emissionen


Abbildung 72: NO₂-Emissionen bei Fahrzuständen mit geringer Beschleunigung

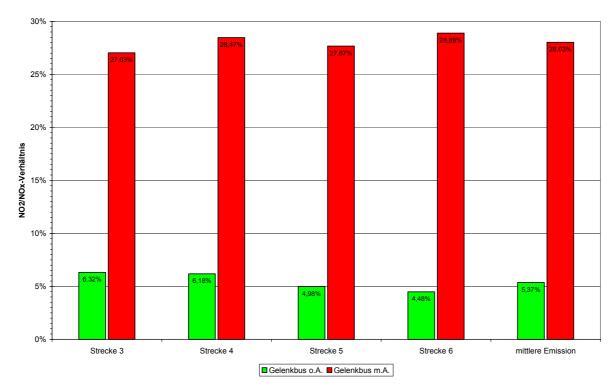


Abbildung 73: NO₂-Emissionen bei Fahrzuständen mit hoher Beschleunigung

Abbildung 74 und Abbildung 75 verdeutlichen anhand des NO₂/NO_x-Verhältnisses noch einmal sehr eindrucksvoll die Effekte durch den Oxidationskatalysator.

Abbildung 74: NO₂/NO_x-Verhältnis Solobus

Abbildung 75: NO₂/NO_x-Verhältnis Gelenkbus

5 Betriebsverhalten

Neben den messtechnischen Ergebnissen ist bei Umrüstung eines Fahrzeuges auf ein Abgasnachbehandlungssystem natürlich auch das Betriebsverhalten von großer Wichtigkeit.

Die nachfolgenden Ereignisskizzen aus den Aufzeichnungen der Rheinbahn zum Projektverlauf geben einen Eindruck über das Betriebsverhalten der nachgerüsteten Fahrzeuge. Es handelt sich hierbei um interne Aufzeichnungen der Rheinbahn, die hier ungeändert wiedergegeben sind. Gewisse Abkürzungen oder Zahlencodes erscheinen zuerst unverständlich, ergeben sich aber aus dem Zusammenhang.

24.10.2005

Messfahrt MAN ohne AGR System in Düsseldorf

08.11.2005

Messfahrt Citaro ohne AGR System in Düsseldorf

28.11.2005

Beginn Mock up 7343 durch stt emtec in Düsseldorf

07.12.2005

Beginn Mock up 6830 durch stt emtec in Düsseldorf

21.02.2006

Messfahrt Gasbus in Düsseldorf

23./24.03.2006

Motorprüfstandsversuch MAN-Motor mit und ohne AGR in Schweden

11.04.2006

Einbau AGR-System in 7343 (374.704 km) und 7342 (378.026 km) abgeschlossen

18.04.2006

An beiden MAN-Fahrzeugen treten starke Diesel- und Abgasgerüche im Fahrzeuginneren auf. Als Ursache stellt sich eine zu hohe Einspritzmenge an Diesel heraus. Beim Fahrzeug 7342 war ein Transistor (Fertigungsmangel) zur Steuerung des AGR-Ventils durchgebrannt. Daher entstand zuviel Russ, der den Filter verstopfte.

12.06.2006 bis 21.06.2006

Umbau 6830 und 6831 durch stt emtec in Düsseldorf

Gleichzeitig Instandsetzung 7342 und 7343 Diesel- und Abgasgeruch im Fahrgastraum durch Reduzierung des eingespritzten Diesels während der Regeneration und Austausch des AGR-Ventils im 7342. Durchgebrannter Transistor führte zur Filterverstopfung.

26.06.2006

Messfahrt MAN Bus 7343 (384.695 km) mit AGR-System in Düsseldorf

27.06.2006

Das Fahrzeug 6831 wurde mit dem Abgasrückführungssystem der Firma stt emtec ausgerüstet. Zum Wechsel des Ölfilters (alle 60.000 km bzw. einmal pro Jahr) bis zu 10 Rohrschellen gelöst werden müssen, da eine Schelle auf der linken Seite so montiert ist, dass sie nicht erreichbar ist. Bei einer Serienlösung wäre darauf zu achten, dass die Schelle so montiert wird, dass sie erreichbar ist. Alternativ ist zu prüfen, ob eine andere Rohrverlegung gewählt werden kann. Sollten weitere Probleme dieser Art bei dem genannten Fahrzeug auftreten, werden diese von der Betriebswerkstatt Herrn Bohn mitgeteilt.

15./16.08.2006

Motorprüfstandsversuch DC-Motor mit und ohne AGR in Schweden

01.09.2006

Am 01.09.2006 wurde am Fahrzeug 7342 (403.630 km) von der Fa. DES der Partikelfilter gewechselt. Anlass war Ruß im Endrohr des Auspuffs. Bei der Demontage wurde festgestellt, dass der Filter an einer Stelle schadhaft war (durchgeschlagen). Es wurde ein neuer Filter eingebaut.

11.09.2006 ca.

Rücksendung der Motoren nach Düsseldorf (MAN) und zum TÜV Nord in Essen (DC).

21.09.2006

Am Fahrzeug 7343 (400.791 km) wurde von der Fa. DES der Rußpartikelfilter ausgebaut. Bei einer Überprüfung des Fahrzeugs hatte sich gezeigt, dass im Endrohr Rußablagerungen vorhanden waren, was auf eine Fehlfunktion des Filtersystems hinweist. Das defekte System wurde von DES zur weiteren Untersuchung mitgenommen. Ein ähnlicher Schaden war am Fahrzeug 7342 aufgetreten. Nach Analyse der Fehler wird ein detaillierter Schadensbericht von DES geliefert.

Bei den Instandsetzungsarbeiten wurde der Gegendrucksensor beschädigt. Dieser wurde behelfsmäßig instand gesetzt. Nach Lieferung eines neuen Sensors, wird dieser von der Rheinbahn in das Fahrzeug eingebaut. (ist erledigt)

18.10.2006

Fahrzeug 7342 (414.256 km) überprüft. Im Abgasendrohr sind wieder Rußablagerungen. Ebenso weist der Partikelfilter im vorderen Bereich undichte Stellen auf, was durch deutliche Rußablagerungen zu erkennen ist. Die Motorklappe ist auf der Innenseite stark mit Rußbedeckt.

19.10.2006

Ein Filter an DES zurückgeschickt. Damit ist kein Filter mehr bei der Rheinbahn. Der Zweite Filter für die Citaros ist entweder in Essen oder noch in Schweden.

31.10.2006

Meldung Lierenfeld 6831 verliert am Abgaskühler Wasser.

08.11.2006

Zweite Messfahrt mit AGR Fahrzeug 7343 (410.449 Km).

22.11.2006

Überprüfung des Fahrzeugs 7342 durch DES ergab einen Abgasgegendruck von 400 mbar. Ursache ist, dass die Regeneration nicht abläuft. Softwareproblem stt emtec. AGR-System wurde abgeschaltet. Freigabe zum weiteren Einsatz des Fahrzeugs von Herrn Hake erteilt.

04.12.2006

Erneute Inbetriebnahme des Systems im Fahrzeug 7342 durch DES.

14.12.2006 bis 20.12.2006

Inbetriebnahme des Systems im Fahrzeug 6830. Kühler AGR ist nicht undicht sondern die Wasserpumpe. Für das Fahrzeug 6831 fehlt der CCT-Filter. Wurde versehentlich in ein anderes Fahrzeug der Rheinbahn eingebaut. Nach Ermittlung des Fahrzeugs wird der Filter ausgebaut und in das Fahrzeug 6831 eingebaut.

Zwischenstand:

Fahrzeug 7342 ist einsatzbereit, am Fahrzeug muss noch der Sekundärfilter erneuert werden. STT schickt zwei Stück nach Düsseldorf. Der Filter hat sich zugesetzt, als die AGR ausgefallen ist und zuviel Russ entstanden ist. Dieser hat sich im Sekundärfilter abgesetzt. Der CRT-Filter wird von DES nochmals gewechselt Warum ?. Filter mit 15 Temperaturfühlern.

Fahrzeug 7343 die ECU ist defekt. System ist abgeschaltet. (Blechplatte in der Rückführungsleitung, Stecker am Ventil abgezogen, Relaisstecker in Heckvoute abgezogen sowie Stecker von ECU abgezogen). I Ersatzteil wird an DES geliefert und von DES eingebaut.

Fahrzeug 6830 ist einsatzbereit.

Fahrzeug 6831 ist vollständig umgebaut. Der CAN-Buskonverter ist defekt. Ersatzteil wird an DES geschickt von STT. DES baut ein.

16.01.2007

Ein SMF System für 7342 mit Temperaturfühlern als Austauschteil geliefert (ohne KAT). Wird vom Lager an Herrn Frerichs geliefert.

17.01.2007

Fahrzeug 7343 wieder in Betrieb genommen von der Firma DES.

23.01.2007

Fahrzeug 7342 beim Einsatz auf der Messe von Polizei auf Rauchentwicklung um ca. 17.00 Uhr hingewiesen worden. Fahrer hat mehrfach Rauchentwicklung wahrgenommen. Über genaue Dauer und Häufigkeit konnten keine Angaben gemacht werden.

25.01.2007

Fahrzeug 7342 Testfahrt ca. 30 Minuten durchgeführt. Um 15.05 Uhr starke Rauchentwicklung transparent bläulich. Beim Gas geben Verstärkung des Austritts. Fahrzeuge hinter dem Bus hupten und haben die Spur gewechselt. Zum Abschluss eine starke weiße Wolke (stoßartiges ausblasen Dauer < 1 Sec aber sehr viel (Fläche der Wolke ca. 2,50 m x 2,50 m). Untersuchung des Problems wurde bei DES veranlasst.

29.01.2007

Citaro 6830 nach Essen überführt zur Aufrüstung für die erste Messfahrt mit AGR-System am 01.02.2007.

Fahrzeug 7342 und 6831 aufgrund von Defekten zz. mit abgeschalteter AGR-Anlage im Einsatz.

01.02.2007

Messfahrt durchgeführt.

05.02.2007

Mitteilung DES. Ursache der Rauchentwicklung ist das CCT-System. Es müssen Schweißnähte dicht geschweißt werden, damit kein Diesel am Katalysator vorbei in den Filterbereich eindringen kann, der den Rauch verursacht. Die Instandsetzung erfolgt am 07. und 08.02.2007. 7343 ebenfalls wegen zu starker Rauchentwicklung ausgewechselt worden.

07.02.2007

7342 (439.247 Km) wieder komplett in Betrieb genommen.

08.02.2007

7343 (428.458 Km) wieder komplett in Betrieb genommen. 6831 immer CAN-Buskonverter fehlt noch. AGR ohne Funktion.

18.02.2007

7342 wieder starke Rauchentwicklung. Mängelkarte des Fahrers sagt, dass eine Rauchwolke entsteht, die alles einnebelt. Zusätzlich riecht es nach verbranntem Diesel. System abgeschaltet. DES informiert.

27.02.2007

CAN-Busconverter für 6831 fehlt immer noch. 7342 noch keine neuen Erkenntnisse zum weiteren Vorgehen.

15.03.2007

Wagen 7342 Motorschaden. Letzter Ölwechsel am 16.01.2007 bei 434.815 Km. Ölprobe wird zur Analyse gegeben, Motor zur Befundung an Micke. Austauchmotor wir eingebaut.

26.03.2007 - 29.03.2007

Überprüfung des Wagens 7343 zeigt Russ im Auspuffendrohr. Nach Ausbau des CCT-Systems (gemeinsam mit DES und stt) ergab sich folgendes. Die Düse zur Einspritzung des Diesels zur Regeneration war verstopft (schwer zu entfernen und von der Druckluft die regelmäßig durchgeblasen wird nicht zu entfernen). Daraus resultierten Russnester im Filter die zum Durchbrennen geführt haben. Filter muss erneut gewechselt werden.

Festgelegt den Wagen 7342 auf 2,45 g/KWh einzustellen um die Systemstabilität für diesen Betriebspunkt zu ermitteln.

Neuen CAN-Busconverter getestet und in 6831 eingebaut. 6830 nach Neueinstellung vom Betrieb wegen Rauchentwicklung ausgewechselt worden. Einstellungen nochmals angepasst am 29.03.2007 und 6831 auf dieselben Werte eingestellt.

18.04.2007

Wagen 7342 wieder ausgewechselt wegen starker Rauchentwicklung. Fahrzeuge hinter dem Bus haben gebremst und sind ausgewichen. Fahrzeug so nicht verkehrssicher. System abgeschaltet.

19.04.2007

Letzte Messfahrt Wagen 7343 mit AGR. Neuen Sekundärfilter eingebaut.

17.04.2007

7342 wegen starker Rauchentwicklung außer Betrieb genommen.

14.06.2007

Russ im Auspuff des Busses 7343. AGR-Ventil der Hochdruck-AGR defekt. Nach Wechsel bleibt die Fehlermeldung erhalten. Nach Abschaltung der Niederdruck-AGR kommt die Störungsmeldung nicht wieder. Fahrzeug fährt ohne AGR.

15.06.2007

Überprüfung des Auspuffrohres 6830 ergab keine Beanstandung.

06.07.2007

Herrn Hake informiert, dass die Systeme in den Fahrzeugen 7342 und 43 abgeschaltet sind. Von ihm wurde mitgeteilt, dass dadurch keine Schäden an den CCT-Systemen entstehen. Diese arbeiten in diesem Betriebsfall als normale CRT-Systeme. Um Klärung mit stt gebeten.

12.07.2007

Zweite Messfahrt 6830 mit AGR durchgeführt.

04.09.2007

Bei DES zwei Sekundärfilter für die Messung nochmals angefordert. DES hat stt bereits deswegen angeschrieben. Bisher ohne Reaktion.

21.09.2007

Zwei Sekundärfilter geliefert.

11.10.2007

Dritte Messfahrt mit 6830 durchgeführt. Sekundärfilter ist vorher erneuert worden.

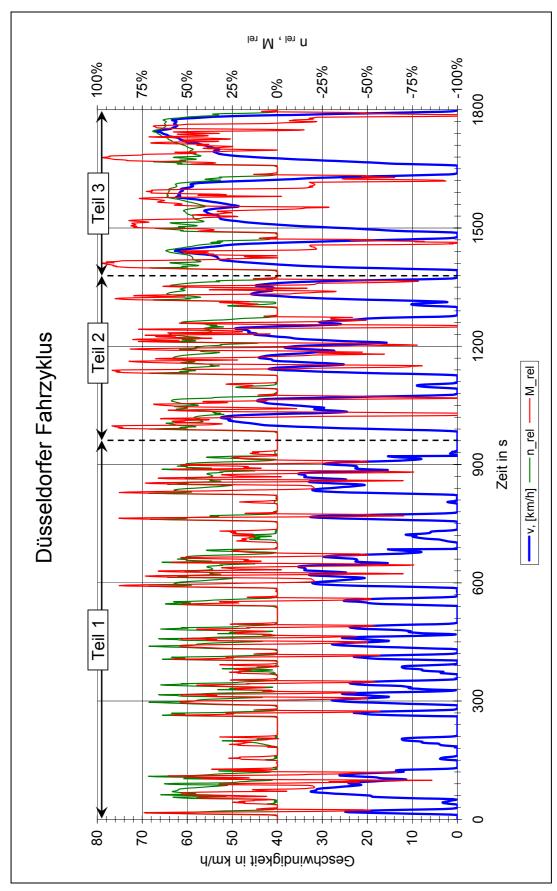
Den Aufzeichnungen ist zu entnehmen, dass die Systeme bis zum Projektende nicht dauerhaft störungsfrei funktionierten. Insbesondere scheint die Regenerationsstrategie nicht ausgereift zu sein.

6 Zusammenfassung

Im vorliegenden Bericht wird die messtechnische, wissenschaftliche Begleitung eines Projektes zur Nachrüstung von in Betrieb befindlichen Bussen des öffentlichen Nahverkehrs Abgasnachbehandlungstechniken beschrieben. fortschrittliche Mit Rahmenrichtlinie über die Beurteilung und die Kontrolle der Luftqualität (RL 96/62/EG) und den zugehörigen Tochterrichtlinien (z.B. 1999/30/EG, 2000/69/EG, 2002/3/EG) werden Luftqualitätsziele zur Vermeidung oder Verringerung schädlicher Auswirkungen auf die menschliche Gesundheit und die Umwelt festgelegt. Im Rahmen der Umsetzung der Richtlinie sind auch in der Düsseldorfer Südstadt Überschreitungen der jetzigen und Imissionsgrenzwerte bei NO_2 festgestellt worden. Analysen unterschiedlichen Emittenten kamen zu dem Ergebnis, dass auch die Busse des öffentlichen Nahverkehrs signifikant zu der Imissionssituation beitragen. Eine Nachrüstung mit einer Niederdruck-Abgasrückführung soll die Fahrzeuge in ihren NO_x-Emissionen auf Euro V Niveau (2 g/kWh) verbessern. Nach Applikation des Systems an einem MAN Euro III Motor für einen Solobus und an einen Mercedes Euro III Motor für einen Gelenkbus wurden Prüfstandsmessungen zur Dokumentation der Emissionssituation durchgeführt. Die 2 g/kWh konnten für den MAN-Motor realisiert werden. Für den Mercedes Motor konnten 3,5 g/kWh dargestellt werden.

Zur Ermittlung der Realemissionen der in Betrieb befindlichen Fahrzeuge wurden diese mit mobiler Messtechnik ausgerüstet und auf repräsentativen Strecken auf ihre Emissionen hin vermessen. Diese Vermessung wurde mit Fahrzeugen im Ausgangszustand und im nachgerüsteten Zustand durchgeführt. Die nachgerüsteten Busse wurden zu Beginn, in der Mitte und am Ende eines Beobachtungszeitraumes vermessen. Zusätzlich wurde ein mit Erdgas betriebener Gelenkbus auf den gleichen Strecken vermessen wie der Diesel-Gelenkbus.

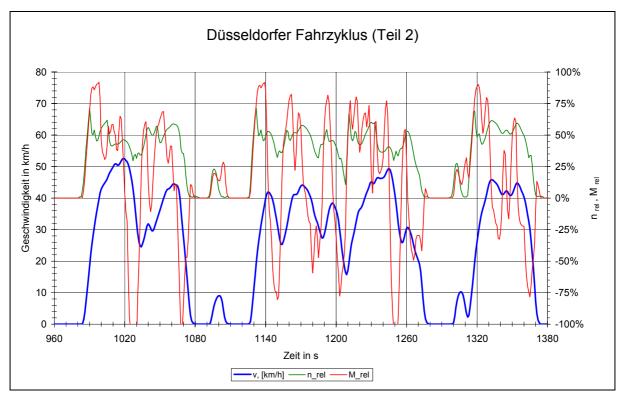
Aus den fahrdynamischen Messdaten der Fahrten wurde ein repräsentativer Fahrzyklus entwickelt, der die Vermessung eines Motors auf dem Motorprüfstand erlaubt. Dieser soll für vergleichende Messungen herangezogen werden.


Die Ergebnisse der Emissionsmessungen zeigen, dass die auf dem Motorprüfstand ermittelten Emissionsverbesserungen bei den Realmessungen bestätigt werden können. Dies gilt insbesondere für den Solobus. Genaue Analysen der Messergebnisse zeigen aber, dass die Absenkung der NO_x -Emissionen nicht zu den erwünschten Reduzierungen der NO_z -Emissionen führen. Durch den Oxidationskatalysator, der Bestandteil des Nachbehandlungssystems ist, wird das NO_z/NO_x -Verhältnis derartig vergrößert, dass die Massenemission NO_2 mit Abgasnachbehandlungssystem über der des Ausgangszustand liegt. Diese Erkenntnis führt zwangsläufig zu dem Schluss, dass das verwendete Nachbehandlungssystem nicht geeignet ist, die Projektziele zu erreichen.

Die Aufzeichnungen des Busbetreibers Rheinbahn lassen erkennen, dass sich das Betriebsverhalten der Nachbehandlungssysteme noch nicht auf einem akzeptablen Stand befindet. Viele Ausfälle und Probleme bei der Regeneration sind die Hauptkritikpunkte.


7 Anhang

Tabelle 29: Zusammensetzung des Düsseldorfer Fahrzyklus


Düsseldorfer Fahrzyklus			Referenzzyklus					
Nr.	t _{start} [s]	t _{end} [s]	Dauer [s]	Strecke	Fahrt Nr.	t _{start} [s]		Dauer [s]
1	1	7	7	4	18	111	117	7
2	8	182	175	5	13	373	547	175
3	183	364	182	5	13	605	786	182
4	365	367	3	5	13	825	827	3
5	368	398	31	5	13	607	637	31
6	399	523	125	5	13	679	803	125
7	524	574	51	4	18	118	168	51
8	575	685	111	4	18	900	1010	111
9	686	689	4	4	16	182	185	4
10	690	800	111	4	18	351	461	111
11	801	921	121	4	18	890	1010	121
12	922	925	4	4	16	182	185	4
13	926	942	17	4	18	462	478	17
14	943	980	38	5	13	787	824	38
15	981	1391	411	4	18	479	889	411
16	1392	1472	81	4	16	186	266	81
17	1473	1481	9	4	16	347	355	9
18	1482	1648	167	3	15	974	1140	167
19	1649	1797	149	3	19	1183	1331	149
20	1798	1800	3	3	15	1137	1139	3
Summe			1800					1800

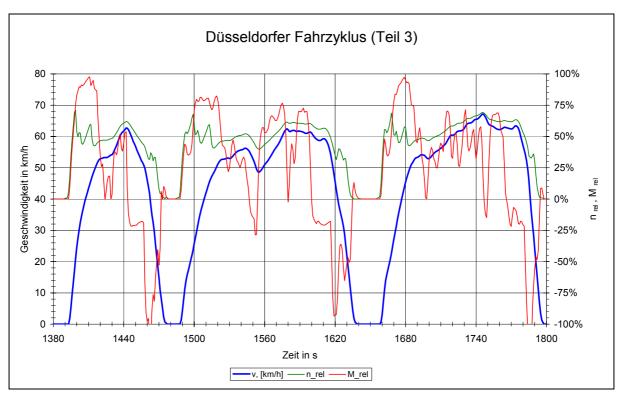

Abbildung 76: Der Düsseldorfer Fahrzyklus (v(t)-, n_{rel}(t)-, M_{rel}(t)-Diagramm)

Abbildung 77: Der Düsseldorfer Fahrzyklus, Teil 1 (v(t)-, n_{rel}(t)-, M_{rel}(t)-Diagramm)

Abbildung 78: Der Düsseldorfer Fahrzyklus, Teil 2 (v(t)-, n_{rel}(t)-, M_{rel}(t)-Diagramm)

Abbildung 79: Der Düsseldorfer Fahrzyklus, Teil 3 (v(t)-, n_{rel}(t)-, M_{rel}(t)-Diagramm)

 Tabelle 30:
 Ablaufplan des Düsseldorfer Fahrzyklus

	t start	t end	V ave	n rel,ave	duration	distance	stop time	stop time
	[sec]	[sec]	[km/h]	[%]	[sec]	[m]	[%]	[sec]
Part 1	1	960	11,0	19,7%	960	2945	37,1%	356
Part 2	961	1380	25,0	32,6%	420	2912	22,4%	94
Part 3	1381	1800	41,8	43,3%	420	4880	12,9%	54
Total	1	1800	21,5	28,2%	1800	10737	28,0%	504,0

t, [sec]	v, [km/h]	n_rel	M_rel
1	0,00	0,0%	0,0%
2	0,00	0,0%	0,0%
3	0,00	0,0%	0,0%
4	0,00	0,0%	0,0%
5	0,00	0,0%	0,0%
6	0,00	0,0%	0,0%
7	0,00	0,0%	0,0%
8	0,00	0,0%	0,0%
9	0,00	0,6%	0,0%
10	0,00	1,6%	0,0%
11	0,13	4,8%	0,8%
12	1,49	21,5%	7,9%
13	5,69	39,0%	28,4%
14	9,80	50,8%	43,8%
15	13,83	61,7%	57,2%
16	17,85	73,2%	69,4%
17	21,63	63,5%	74,0%
18	24,25	47,8%	48,6%
19	24,95	40,8%	6,0%
20	24,49	36,2%	-20,7%
21	22,84	30,6%	-36,7%
22	19,79	21,9%	-40,6%
23	15,85	9,3%	-51,8%
24	11,28	4,6%	-46,9%
25	6,81	2,1%	-15,5%
26	3,12	1,3%	11,5%
27	1,07	1,3%	8,7%
28	0,37	0,0%	4,8%
29	0,00	0,0%	0,7%
30	0,00	0,0%	0,0%
31	0,00	0,0%	0,0%
32	0,00	0,0%	0,0%
33	0,00	0,0%	0,0%
34	0,00	0,0%	0,0%
35	0,00	0,0%	0,0%
36	0,00	0,0%	0,0%
37	0,00	0,0%	0,5%
38	0,50	2,1%	4,0%
39	1,73	5,7%	9,6%

t, [sec]	v, [km/h]	n_rel	M_rel
40	2,47	1,6%	18,2%
41	3,00	2,2%	17,9%
42	3,33	1,1%	21,6%
43	3,29	0,4%	24,6%
44	2,79	1,7%	18,0%
45	2,38	0,5%	21,3%
46	1,97	0,5%	19,1%
47	1,56	1,8%	13,0%
48	1,11	0,3%	13,1%
49	0,62	0,8%	7,0%
50	0,25	1,8%	2,5%
51	1,12	15,5%	7,0%
52	4,29	35,3%	23,2%
53	8,07	47,4%	37,1%
54	11,60	52,6%	43,3%
55	14,68	56,4%	44,7%
56	17,27	57,9%	39,6%
57	18,74	44,0%	18,5%
58	19,07	28,6%	6,0%
59	19,07	34,2%	13,0%
60	19,44	46,5%	23,5%
61	20,39	56,4%	31,9%
62	22,04	64,7%	39,3%
63	23,84	58,1%	50,9%
64	25,65	46,6%	53,2%
65	27,17	45,3%	53,0%
66	28,36	47,3%	52,9%
67	29,64	50,3%	53,0%
68	30,91	53,6%	49,5%
69	31,90	56,5%	42,1%
70	32,59	58,4%	25,6%
71	32,51	58,0%	-5,2%
72	32,02	56,7%	2,6%
73	31,56	55,7%	8,8%
74	31,40	55,1%	12,3%
75	31,32	54,9%	13,9%
76	31,32	54,8%	7,5%
77	31,07	54,0%	-8,9%
78	30,33	52,0%	-15,6%

	v, [km/h]	n_rel	M_rel
79	29,47	49,2%	-18,1%
80	28,40	46,1%	-20,4%
81	27,25	42,9%	-20,7%
82	26,22	39,6%	-20,5%
83	25,15	36,7%	-20,4%
84	24,20	33,8%	-20,0%
85	23,09	30,7%	-19,7%
86	22,03	27,7%	-17,2%
87	21,37	34,2%	9,0%
88	21,58	51,6%	26,1%
89	22,49	60,6%	32,5%
90	23,55	62,7%	29,7%
91	24,21	57,1%	16,5%
92	24,00	38,2%	-5,9%
93	23,18	25,3%	-20,0%
94	21,94	22,4%	-45,4%
95	20,46	21,1%	-28,7%
96	18,98	17,7%	-36,6%
97	17,50	14,3%	-40,7%
98	16,02	7,4%	-62,9%
99	14,01	3,7%	-85,8%
100	12,20	2,6%	-42,4%
101	11,39	16,8%	16,9%
102	12,38	38,5%	33,1%
103	14,56	52,0%	41,9%
104	16,57	51,4%	32,0%
105	17,55	38,0%	15,7%
106	17,84	36,0%	20,5%
107	18,75	56,0%	41,5%
108	20,52	67,1%	49,0%
109	22,57	71,5%	50,4%
110	24,67	57,1%	60,7%
111	26,18	46,9%	33,1%
112	26,22	42,0%	2,6%
113	25,44	38,2%	-13,0%
114	24,61	35,3%	-18,3%
115	23,54	32,2%	-32,4%
116	22,02	27,5%	-38,7%
117	19,92	21,8%	-44,1%
118	17,21	13,3%	-42,2%
119	14,50	5,7%	-66,4%
120	12,70	3,7%	-28,2%
121	11,92	13,1%	11,3%
122	12,42	31,3%	25,0%
123	13,52	32,6%	17,8%
124	13,68	13,0%	7,4%
125	12,77	5,8%	3,3%
126	9,97	2,3%	10,5%
127	6,07	0,0%	36,5%
128	2,30	1,1%	21,1%

129 0,78 0,7% 9,4% 130 0,33 0,7% 3,1% 131 0,12 2,5% 0,3% 132 0,00 1,2% 0,0% 133 0,00 0,0% 0,0% 134 0,00 0,0% 0,0% 135 0,00 0,0% 0,0% 136 0,00 0,0% 0,0% 137 0,00 0,0% 0,0% 138 0,00 0,0% 0,0% 139 0,00 0,0% 0,0% 140 0,00 0,0% 0,0% 141 0,00 0,0% 0,0% 142 0,00 0,0% 0,0% 143 0,00 0,0% 0,0% 144 0,00 0,0% 0,0% 145 0,00 0,0% 0,0% 144 0,00 0,0% 0,0% 144 0,00 0,0% 0,0% 148	t, [sec]	v, [km/h]	n_rel	M_rel
131 0,12 2,5% 0,3% 132 0,00 1,2% 0,0% 133 0,00 0,0% 0,0% 134 0,00 0,0% 0,0% 135 0,00 0,0% 0,0% 136 0,00 0,0% 0,0% 137 0,00 0,0% 0,0% 138 0,00 0,0% 0,0% 140 0,00 0,0% 0,0% 141 0,00 0,0% 0,0% 142 0,00 0,0% 0,0% 143 0,00 0,0% 0,0% 144 0,00 0,0% 0,0% 144 0,00 0,0% 0,0% 144 0,00 0,0% 0,0% 144 0,00 0,0% 0,0% 144 0,00 0,0% 0,0% 144 0,00 0,0% 0,0% 144 0,00 0,0% 0,0% 148	129	0,78	0,7%	9,4%
132 0,00 1,2% 0,0% 133 0,00 0,0% 0,0% 134 0,00 0,0% 0,0% 135 0,00 0,0% 0,0% 136 0,00 0,0% 0,0% 137 0,00 0,0% 0,0% 138 0,00 0,0% 0,0% 139 0,00 0,0% 0,0% 140 0,00 0,0% 0,0% 141 0,00 0,0% 0,0% 142 0,00 0,0% 0,0% 143 0,00 0,0% 0,0% 144 0,00 0,0% 0,0% 144 0,00 0,0% 0,0% 145 0,00 0,0% 0,0% 144 0,00 0,0% 0,0% 144 0,00 0,0% 0,0% 144 0,00 0,0% 0,0% 148 0,00 0,0% 0,0% 150	130	0,33	0,7%	3,1%
133 0,00 0,0% 0,0% 134 0,00 0,0% 0,0% 135 0,00 0,0% 0,0% 136 0,00 0,0% 0,0% 137 0,00 0,0% 0,0% 138 0,00 0,0% 0,0% 139 0,00 0,0% 0,0% 140 0,00 0,0% 0,0% 141 0,00 0,0% 0,0% 142 0,00 0,0% 0,0% 143 0,00 0,0% 0,0% 144 0,00 0,0% 0,0% 144 0,00 0,0% 0,0% 145 0,00 0,0% 0,0% 144 0,00 0,0% 0,0% 145 0,00 0,0% 0,0% 148 0,00 0,0% 0,0% 148 0,00 0,0% 0,0% 150 0,50 5,9% 3,4% 151	131	0,12	2,5%	0,3%
134 0,00 0,0% 0,0% 135 0,00 0,0% 0,0% 136 0,00 0,0% 0,0% 137 0,00 0,0% 0,0% 138 0,00 0,0% 0,0% 139 0,00 0,0% 0,0% 140 0,00 0,0% 0,0% 141 0,00 0,0% 0,0% 142 0,00 0,0% 0,0% 143 0,00 0,0% 0,0% 144 0,00 0,0% 0,0% 145 0,00 0,0% 0,0% 144 0,00 0,0% 0,0% 145 0,00 0,0% 0,0% 144 0,00 0,0% 0,0% 144 0,00 0,0% 0,0% 144 0,00 0,0% 0,0% 148 0,00 0,0% 0,0% 150 0,50 5,9% 3,4% 151	132	0,00	1,2%	0,0%
135 0,00 0,0% 0,0% 136 0,00 0,0% 0,0% 137 0,00 0,0% 0,0% 138 0,00 0,0% 0,0% 139 0,00 0,0% 0,0% 140 0,00 0,0% 0,0% 141 0,00 0,0% 0,0% 142 0,00 0,0% 0,0% 143 0,00 0,0% 0,0% 144 0,00 0,0% 0,0% 145 0,00 0,0% 0,0% 147 0,00 0,0% 0,0% 148 0,00 0,0% 0,0% 149 0,00 0,0% 0,0% 149 0,00 0,0% 0,6% 150 0,50 5,9% 3,4% 151 2,26 6,8% 11,1% 152 3,29 2,3% 19,9% 153 3,90 2,0% 20,5% 154 <td>133</td> <td>0,00</td> <td>0,0%</td> <td>0,0%</td>	133	0,00	0,0%	0,0%
136 0,00 0,0% 0,0% 137 0,00 0,0% 0,0% 138 0,00 0,0% 0,0% 139 0,00 0,0% 0,0% 140 0,00 0,0% 0,0% 141 0,00 0,0% 0,0% 142 0,00 0,0% 0,0% 143 0,00 0,0% 0,0% 144 0,00 0,0% 0,0% 145 0,00 0,0% 0,0% 147 0,00 0,0% 0,0% 148 0,00 0,0% 0,0% 149 0,00 0,0% 0,0% 150 0,50 5,9% 3,4% 151 2,26 6,8% 11,1% 152 3,29 2,3% 19,9% 153 3,90 2,0% 20,5% 154 3,74 1,6% 20,7% 155 3,74 0,3% 27,0% 157<	134	0,00	0,0%	0,0%
137 0,00 0,0% 0,0% 138 0,00 0,0% 0,0% 139 0,00 0,0% 0,0% 140 0,00 0,0% 0,0% 141 0,00 0,0% 0,0% 142 0,00 0,0% 0,0% 143 0,00 0,0% 0,0% 144 0,00 0,0% 0,0% 145 0,00 0,0% 0,0% 146 0,00 0,0% 0,0% 147 0,00 0,0% 0,0% 148 0,00 0,0% 0,0% 149 0,00 0,0% 0,6% 150 0,50 5,9% 3,4% 151 2,26 6,8% 11,1% 152 3,29 2,3% 19,9% 153 3,90 2,0% 20,5% 154 3,74 1,6% 20,7% 155 3,74 0,3% 27,0% 156<	135	0,00	0,0%	0,0%
138 0,00 0,0% 0,0% 139 0,00 0,0% 0,0% 140 0,00 0,0% 0,0% 141 0,00 0,0% 0,0% 142 0,00 0,0% 0,0% 143 0,00 0,0% 0,0% 144 0,00 0,0% 0,0% 145 0,00 0,0% 0,0% 146 0,00 0,0% 0,0% 147 0,00 0,0% 0,0% 148 0,00 0,0% 0,0% 149 0,00 0,0% 0,6% 150 0,50 5,9% 3,4% 151 2,26 6,8% 11,1% 152 3,29 2,3% 19,9% 153 3,90 2,0% 20,5% 154 3,74 1,6% 20,7% 155 3,74 0,3% 27,0% 156 3,33 1,5% 20,7% 157		0,00	0,0%	0,0%
139 0,00 0,0% 0,0% 140 0,00 0,0% 0,0% 141 0,00 0,0% 0,0% 142 0,00 0,0% 0,0% 143 0,00 0,0% 0,0% 144 0,00 0,0% 0,0% 145 0,00 0,0% 0,0% 146 0,00 0,0% 0,0% 147 0,00 0,0% 0,0% 148 0,00 0,0% 0,0% 149 0,00 0,0% 0,6% 150 0,50 5,9% 3,4% 151 2,26 6,8% 11,1% 152 3,29 2,3% 19,9% 153 3,90 2,0% 20,5% 154 3,74 1,6% 20,7% 155 3,74 0,3% 27,0% 156 3,33 1,5% 20,7% 157 2,79 1,0% 21,1% 15		0,00	0,0%	0,0%
140 0,00 0,0% 0,0% 141 0,00 0,0% 0,0% 142 0,00 0,0% 0,0% 143 0,00 0,0% 0,0% 144 0,00 0,0% 0,0% 145 0,00 0,0% 0,0% 146 0,00 0,0% 0,0% 147 0,00 0,0% 0,0% 148 0,00 0,0% 0,0% 149 0,00 0,0% 0,6% 150 0,50 5,9% 3,4% 151 2,26 6,8% 11,1% 152 3,29 2,3% 19,9% 153 3,90 2,0% 20,5% 154 3,74 1,6% 20,7% 155 3,74 0,3% 27,0% 156 3,33 1,5% 20,7% 157 2,79 1,0% 21,1% 158 1,93 0,1% 21,0%		0,00		,
141 0,00 0,0% 0,0% 142 0,00 0,0% 0,0% 143 0,00 0,0% 0,0% 144 0,00 0,0% 0,0% 145 0,00 0,0% 0,0% 146 0,00 0,0% 0,0% 147 0,00 0,0% 0,0% 148 0,00 0,0% 0,6% 150 0,50 5,9% 3,4% 151 2,26 6,8% 11,1% 152 3,29 2,3% 19,9% 153 3,90 2,0% 20,5% 154 3,74 1,6% 20,7% 155 3,74 0,3% 27,0% 156 3,33 1,5% 20,7% 157 2,79 1,0% 21,1% 158 1,93 0,1% 21,0%		0,00		
142 0,00 0,0% 0,0% 143 0,00 0,0% 0,0% 144 0,00 0,0% 0,0% 145 0,00 0,0% 0,0% 146 0,00 0,0% 0,0% 147 0,00 0,0% 0,0% 148 0,00 0,0% 0,0% 149 0,00 0,0% 0,6% 150 0,50 5,9% 3,4% 151 2,26 6,8% 11,1% 152 3,29 2,3% 19,9% 153 3,90 2,0% 20,5% 154 3,74 1,6% 20,7% 155 3,74 0,3% 27,0% 156 3,33 1,5% 20,7% 157 2,79 1,0% 21,1% 158 1,93 0,1% 21,0%	140	0,00		
143 0,00 0,0% 0,0% 144 0,00 0,0% 0,0% 145 0,00 0,0% 0,0% 146 0,00 0,0% 0,0% 147 0,00 0,0% 0,0% 148 0,00 0,0% 0,0% 149 0,00 0,0% 0,6% 150 0,50 5,9% 3,4% 151 2,26 6,8% 11,1% 152 3,29 2,3% 19,9% 153 3,90 2,0% 20,5% 154 3,74 1,6% 20,7% 155 3,74 0,3% 27,0% 156 3,33 1,5% 20,7% 157 2,79 1,0% 21,1% 158 1,93 0,1% 21,0%		0,00		
144 0,00 0,0% 0,0% 145 0,00 0,0% 0,0% 146 0,00 0,0% 0,0% 147 0,00 0,0% 0,0% 148 0,00 0,0% 0,0% 149 0,00 0,0% 0,6% 150 0,50 5,9% 3,4% 151 2,26 6,8% 11,1% 152 3,29 2,3% 19,9% 153 3,90 2,0% 20,5% 154 3,74 1,6% 20,7% 155 3,74 0,3% 27,0% 156 3,33 1,5% 20,7% 157 2,79 1,0% 21,1% 158 1,93 0,1% 21,0%		1		-
145 0,00 0,0% 0,0% 146 0,00 0,0% 0,0% 147 0,00 0,0% 0,0% 148 0,00 0,0% 0,6% 149 0,00 0,0% 0,6% 150 0,50 5,9% 3,4% 151 2,26 6,8% 11,1% 152 3,29 2,3% 19,9% 153 3,90 2,0% 20,5% 154 3,74 1,6% 20,7% 155 3,74 0,3% 27,0% 156 3,33 1,5% 20,7% 157 2,79 1,0% 21,1% 158 1,93 0,1% 21,0%		1		
146 0,00 0,0% 0,0% 147 0,00 0,0% 0,0% 148 0,00 0,0% 0,0% 149 0,00 0,0% 0,6% 150 0,50 5,9% 3,4% 151 2,26 6,8% 11,1% 152 3,29 2,3% 19,9% 153 3,90 2,0% 20,5% 154 3,74 1,6% 20,7% 155 3,74 0,3% 27,0% 156 3,33 1,5% 20,7% 157 2,79 1,0% 21,1% 158 1,93 0,1% 21,0%		1		
147 0,00 0,0% 0,0% 148 0,00 0,0% 0,0% 149 0,00 0,0% 0,6% 150 0,50 5,9% 3,4% 151 2,26 6,8% 11,1% 152 3,29 2,3% 19,9% 153 3,90 2,0% 20,5% 154 3,74 1,6% 20,7% 155 3,74 0,3% 27,0% 156 3,33 1,5% 20,7% 157 2,79 1,0% 21,1% 158 1,93 0,1% 21,0%		1		
148 0,00 0,0% 0,0% 149 0,00 0,0% 0,6% 150 0,50 5,9% 3,4% 151 2,26 6,8% 11,1% 152 3,29 2,3% 19,9% 153 3,90 2,0% 20,5% 154 3,74 1,6% 20,7% 155 3,74 0,3% 27,0% 156 3,33 1,5% 20,7% 157 2,79 1,0% 21,1% 158 1,93 0,1% 21,0%				
149 0,00 0,0% 0,6% 150 0,50 5,9% 3,4% 151 2,26 6,8% 11,1% 152 3,29 2,3% 19,9% 153 3,90 2,0% 20,5% 154 3,74 1,6% 20,7% 155 3,74 0,3% 27,0% 156 3,33 1,5% 20,7% 157 2,79 1,0% 21,1% 158 1,93 0,1% 21,0%		1		
150 0,50 5,9% 3,4% 151 2,26 6,8% 11,1% 152 3,29 2,3% 19,9% 153 3,90 2,0% 20,5% 154 3,74 1,6% 20,7% 155 3,74 0,3% 27,0% 156 3,33 1,5% 20,7% 157 2,79 1,0% 21,1% 158 1,93 0,1% 21,0%		1		
151 2,26 6,8% 11,1% 152 3,29 2,3% 19,9% 153 3,90 2,0% 20,5% 154 3,74 1,6% 20,7% 155 3,74 0,3% 27,0% 156 3,33 1,5% 20,7% 157 2,79 1,0% 21,1% 158 1,93 0,1% 21,0%				
152 3,29 2,3% 19,9% 153 3,90 2,0% 20,5% 154 3,74 1,6% 20,7% 155 3,74 0,3% 27,0% 156 3,33 1,5% 20,7% 157 2,79 1,0% 21,1% 158 1,93 0,1% 21,0%		1		
153 3,90 2,0% 20,5% 154 3,74 1,6% 20,7% 155 3,74 0,3% 27,0% 156 3,33 1,5% 20,7% 157 2,79 1,0% 21,1% 158 1,93 0,1% 21,0%				
154 3,74 1,6% 20,7% 155 3,74 0,3% 27,0% 156 3,33 1,5% 20,7% 157 2,79 1,0% 21,1% 158 1,93 0,1% 21,0%				
155 3,74 0,3% 27,0% 156 3,33 1,5% 20,7% 157 2,79 1,0% 21,1% 158 1,93 0,1% 21,0%		1		
156 3,33 1,5% 20,7% 157 2,79 1,0% 21,1% 158 1,93 0,1% 21,0%		1		
157 2,79 1,0% 21,1% 158 1,93 0,1% 21,0%				
158 1,93 0,1% 21,0%				
		1	_	
	159	0,90	1,6%	8,6%
160 0,37 0,8% 4,6%				
161 0,16 0,3% 2,3% 162 0,00 0,0% 0,0%				
163 0,00 0,0% 0,0% 164 0,00 0,0% 0,0%				
165 0,00 0,0% 0,0%				
165 0,00 0,0% 0,0% 166 0,00 0,0% 0,0%		1		-
167 0,00 0,0% 0,0% 167 0,0%				
167 0,00 0,0% 0,0% 168 0,00 0,0% 0,0%			_	
169 0,00 0,0% 0,0% 169 0,00 0,0% 0,0%				
170 0,00 0,0% 0,0%				
171 0,00 0,0% 0,0%				-
172 0,00 0,0% 0,0%				
173 0,00 0,0% 0,0%		1		
174 0,00 0,0% 0,0%				
175 0,00 0,0% 0,0%				
176 0,00 0,0% 0,0%				-
177 0,00 0,0% 0,0%				
178 0,00 0,0% 0,0%				

t, [sec]	v, [km/h]	n_rel	M_rel
179	0,00	0,0%	0,0%
180	0,00	0,0%	0,0%
181	0,00	0,0%	0,0%
182	0,00	0,0%	0,0%
183	0,62	0,0%	5,4%
184	0,29	0,0%	3,9%
185	0,17	2,4%	1,5%
186	1,48	3,2%	8,6%
187	2,80	4,2%	19,4%
188	3,70	5,2%	22,1%
189	3,78	6,2%	20,5%
190	3,99	7,2%	26,6%
191	4,09	8,2%	21,9%
192	4,20	9,9%	18,7%
193	6,17	10,3%	19,0%
194	7,56	11,6%	17,3%
195	7,93	14,1%	16,0%
196	7,77	17,6%	14,6%
197	7,81	19,8%	21,5%
198	8,76	22,5%	23,9%
199	10,53	30,6%	21,9%
200	11,63	20,6%	14,2%
201	12,08	11,5%	9,3%
202	12,29	10,0%	5,6%
203	12,33	11,3%	4,5%
204	12,37	4,8%	0,9%
205	12,20	3,3%	-0,7%
206	11,09	1,1%	3,4%
207	8,87	0,1%	17,9%
208	5,99	1,0%	25,8%
209	3,28	0,0%	32,0%
210	1,15	0,2%	14,3%
211	0,45	1,6%	4,8%
212	0,00	0,9%	1,4%
213	0,00	0,0%	0,0%
214	0,00	0,0%	0,0%
215	0,00	0,0%	0,0%
216	0,00	0,0%	0,0%
217	0,00	0,0%	0,0%
218	0,00	0,0%	0,0%
219	0,00	0,0%	0,0%
220	0,00	0,0%	0,0%
221	0,00	0,0%	0,0%
222	0,00	0,0%	0,0%
223	0,00	0,0%	0,0%
224	0,00	0,0%	0,0%
225	0,00	0,0%	0,0%
226	0,00	0,0%	0,0%
227	0,00	0,0%	0,0%
228	0,00	0,0%	0,0%

t, [sec]	v, [km/h]	n_rel	M_rel
229	0,00	0,0%	0,0%
230	0,00	0,0%	0,0%
231	0,00	0,0%	0,0%
232	0,00	0,0%	0,0%
233	0,00	0,0%	0,0%
234	0,00	0,0%	0,0%
235	0,00	0,0%	0,0%
236	0,00	0,0%	0,0%
237	0,00	0,0%	0,0%
238	0,00	0,0%	0,0%
239	0,00	0,0%	0,0%
240	0,00	0,0%	0,0%
241	0,00	0,0%	0,0%
242	0,00	0,0%	0,0%
243	0,00	0,0%	0,0%
244	0,00	0,0%	0,0%
245	0,00	0,0%	0,0%
246	0,00	0,0%	0,0%
247	0,00	0,0%	0,0%
248	0,00	0,0%	0,0%
249	0,00	0,0%	0,0%
250	0,00	0,0%	0,0%
251	0,00	0,0%	0,0%
252	0,00	0,0%	0,0%
253	0,00	0,0%	0,0%
254	0,00	0,0%	0,0%
255	0,00	0,0%	0,0%
256	0,00	0,0%	0,0%
257	0,00	0,0%	0,0%
258	0,00	0,0%	0,0%
259	0,00	0,0%	0,0%
260	0,00	3,0%	0,4%
261	0,00	21,6%	0,8%
262	5,12	40,2%	26,9%
263	9,96	53,0%	46,2%
264	14,27	63,8%	58,5%
265	17,43	59,3%	42,4%
266	19,16	54,8%	33,1%
267	20,22	51,4%	24,3%
268	21,01	53,3%	25,7%
269	21,99	58,8%	28,5%
270	23,02	48,4%	8,6%
271	22,85	30,2%	-28,0%
272	21,20	25,3%	-46,0%
273	18,48	17,0%	-47,2%
274	14,74	8,3%	-56,9%
275	9,93	2,3%	-45,7%
276	5,82	0,8%	-3,1%
277	2,46	1,2%	13,1%
278	0,90	0,0%	11,2%

t, [sec]	v, [km/h]	n_rel	M_rel
279	0,37	1,1%	3,9%
280	0,00	0,0%	0,0%
281	0,00	0,0%	0,0%
282	0,00	0,0%	0,0%
283	0,00	0,0%	0,0%
284	0,00	0,0%	0,0%
285	0,00	0,0%	0,0%
286	0,00	0,0%	0,0%
287	0,00	0,0%	0,0%
288	0,00	1,2%	0,0%
289	0,00	4,8%	0,6%
290	1,45	18,1%	8,1%
291	4,45	33,3%	21,8%
292	7,66	41,0%	32,0%
293	10,45	46,6%	37,3%
294	13,16	52,7%	42,7%
295	16,04	59,8%	48,4%
296	18,92	66,1%	52,9%
297	21,67	71,3%	53,6%
298	23,84	61,3%	54,4%
299	25,49	48,3%	53,7%
300	26,72	45,2%	50,7%
301	27,66	45,3%	30,9%
302	27,90	44,8%	5,4%
303	27,25	42,9%	-11,6%
304	26,13	39,8%	-25,4%
305	24,57	35,2%	-38,9%
306	22,51	29,1%	-48,0%
307	20,34	22,6%	-50,0%
308	18,12	15,6%	-50,1%
309	16,39	8,6%	-35,5%
310	15,33	8,2%	-9,5%
311	15,21	34,6%	29,8%
312	16,73	52,3%	39,1%
313	18,38	54,7%	34,1%
314	19,49	55,8%	33,5%
315	20,93	64,3%	42,6%
316	22,94	66,0%	53,7%
317	24,79	48,8%	46,3%
318	25,65	42,3%	14,5%
319	25,43	38,6%	-15,0%
320	23,37	31,9%	-29,7%
321	19,83	20,8%	-37,0%
322	15,43	10,1%	-43,8%
323	10,38	3,4%	-40,5%
324	6,15	1,0%	-7,9%
325	3,12	1,4%	8,0%
326	1,15	3,1%	8,0%
327	0,38	7,3%	3,5%
328	1,95	18,6%	10,9%

t, [sec]	v, [km/h]	n_rel	M_rel
329	5,39	33,1%	23,3%
330	7,73	19,3%	20,3%
331	8,88	20,2%	23,1%
332	10,28	26,4%	19,9%
333	10,89	11,3%	13,2%
334	10,77	5,0%	8,6%
335	10,36	2,6%	6,9%
336	10,99	16,4%	20,8%
337	11,73	35,4%	28,7%
338	12,46	47,1%	33,8%
339	15,05	55,9%	40,5%
340	17,97	62,6%	44,8%
341	20,47	64,8%	41,6%
342	22,20	57,8%	25,2%
343	22,98	49,7%	15,6%
344	23,63	53,4%	17,0%
345	23,92	40,3%	-3,8%
346	23,42	26,3%	-20,7%
347	22,48	21,7%	-49,4%
348	20,87	21,4%	-54,2%
349	18,89	16,9%	-53,9%
350	16,10	9,7%	-50,5%
351	12,85	3,3%	-25,1%
352	8,74	1,4%	9,8%
353	4,80	1,4%	26,2%
354	2,05	1,0%	24,8%
355	0,78	0,0%	8,6%
356	0,29	0,0%	3,3%
357	0,00	0,0%	0,0%
358	0,00	0,0%	0,0%
359	0,00	0,0%	0,0%
360	0,00	0,0%	0,0%
361	0,00	0,0%	0,0%
362	0,00	0,0%	0,0%
363	0,00	0,0%	0,0%
364	0,00	0,0%	0,0%
365	0,00	0,0%	0,0%
366	0,00	0,0%	0,0%
367	0,00	1,4%	0,0%
368	0,17	2,4%	1,5%
369	1,48	4,2%	8,6%
370	2,80	1,2%	19,4%
371	3,70	1,2%	22,1%
372	3,78	1,7%	20,5%
373	3,29	2,2%	26,6%
374	3,09	5,4%	21,9%
375	4,20	17,9%	18,7%
376	6,17	21,3%	19,0%
377	7,56	9,6%	17,3%
378	7,93	4,1%	16,0%

t, [sec]	v, [km/h]	n_rel	M_rel
379	7,77	2,6%	14,6%
380	7,81	5,8%	21,5%
381	8,76	22,5%	23,9%
382	10,53	30,6%	21,9%
383	11,63	20,6%	14,2%
384	12,08	11,5%	9,3%
385	12,29	10,0%	5,6%
386	12,33	11,3%	4,5%
387	12,37	4,8%	0,9%
388	12,20	3,3%	-0,7%
389	11,09	1,1%	3,4%
390	8,87	1,1%	17,9%
391	5,99	1,0%	25,8%
392	3,28	0,0%	32,0%
393	1,15	0,0%	14,3%
394	0,45	0,0%	4,8%
395	0,00	0,0%	1,4%
396	0,00	0,0%	0,0%
397	0,00	0,0%	0,0%
398	0,00	0,0%	0,0%
399	0,00	0,0%	0,0%
400	0,00	0,0%	0,0%
401	0,00	0,0%	0,0%
402	0,00	3,0%	0,4%
403	0,00	21,6%	0,8%
404	5,12	40,2%	26,9%
405	9,96	53,0%	46,2%
406	14,27	63,8%	58,5%
407	17,43	59,3%	42,4%
408	19,16	54,8%	33,1%
409	20,22	51,4%	24,3%
410	21,01	53,3%	25,7%
411	21,99	58,8%	28,5%
412	23,02	48,4%	8,6%
413	22,85	30,2%	-28,0%
414	21,20	25,3%	-46,0%
415	18,48	17,0%	-47,2%
416	14,74	8,3%	-56,9%
417	9,93	2,3%	-45,7%
418	5,82	0,8%	-3,1%
419	2,46	1,2%	13,1%
420	0,90	0,0%	11,2%
421	0,37	1,1%	3,9%
422	0,00	0,0%	0,5%
423	0,00	0,0%	0,0%
424	0,00	0,0%	0,0%
425	0,00	0,0%	0,0%
426	0,00	0,0%	0,0%
427	0,00	0,0%	0,0%
428	0,00	0,0%	0,0%

t, [sec]	v, [km/h]	n_rel	M_rel
429	0,00	0,0%	0,0%
430	0,00	1,2%	0,0%
431	0,00	4,8%	0,6%
432	1,45	18,1%	8,1%
433	4,45	33,3%	21,8%
434	7,66	41,0%	32,0%
435	10,45	46,6%	37,3%
436	13,16	52,7%	42,7%
437	16,04	59,8%	48,4%
438	18,92	66,1%	52,9%
439	21,67	71,3%	53,6%
440	23,84	61,3%	54,4%
441	25,49	48,3%	53,7%
442	26,72	45,2%	50,7%
443	27,66	45,3%	30,9%
444	27,90	44,8%	5,4%
445	27,25	42,9%	-11,6%
446	26,13	39,8%	-25,4%
447	24,57	35,2%	-38,9%
448	22,51	29,1%	-48,0%
449	20,34	22,6%	-50,0%
450	18,12	15,6%	-50,1%
451	16,39	8,6%	-35,5%
452	15,33	8,2%	-9,5%
453	15,21	34,6%	29,8%
454	16,73	52,3%	39,1%
455	18,38	54,7%	34,1%
456	19,49	55,8%	33,5%
457	20,93	64,3%	42,6%
458	22,94	66,0%	53,7%
459	24,79	48,8%	46,3%
460	25,65	42,3%	14,5%
461	25,43	38,6%	-15,0%
462	23,37	31,9%	-29,7%
463	19,83	20,8%	-37,0%
464	15,43	10,1%	-43,8%
465	10,38	3,4%	-40,5%
466	6,15	1,0%	-7,9%
467	3,12	1,4%	8,0%
468	1,15	3,1%	8,0%
469	0,38	7,3%	3,5%
470	1,95	18,6%	10,9%
471	5,39	33,1%	23,3%
472	7,73	19,3%	20,3%
473	8,88	20,2%	23,1%
474	10,28	26,4%	19,9%
475	10,89	11,3%	13,2%
476	10,77	5,0%	8,6%
477	10,36	2,6%	6,9%
478	10,99	16,4%	20,8%

t, [sec]	v, [km/h]	n_rel	M_rel
479	11,73	35,4%	28,7%
480	12,46	47,1%	33,8%
481	15,05	55,9%	40,5%
482	17,97	62,6%	44,8%
483	20,47	64,8%	41,6%
484	22,20	57,8%	25,2%
485	22,98	49,7%	15,6%
486	23,63	53,4%	17,0%
487	23,92	40,3%	-3,8%
488	23,42	26,3%	-20,7%
489	22,48	21,7%	-49,4%
490	20,87	21,4%	-54,2%
491	18,89	16,9%	-53,9%
492	16,10	9,7%	-50,5%
493	12,85	3,3%	-25,1%
494	8,74	1,4%	9,8%
495	4,80	1,4%	26,2%
496	2,05	1,0%	24,8%
497	0,78	0,0%	8,6%
498	0,29	0,0%	3,3%
499	0,00	0,0%	0,4%
500	0,00	0,0%	0,0%
501	0,00	0,0%	0,0%
502	0,00	0,0%	0,0%
503	0,00	0,0%	0,0%
504	0,00	0,0%	0,0%
505	0,00	0,0%	0,0%
506	0,00	0,0%	0,0%
507	0,00	0,0%	0,0%
508	0,00	0,0%	0,0%
509	0,00	0,0%	0,0%
510	0,00	0,0%	0,0%
511	0,00	0,0%	0,0%
512	0,00	0,0%	0,0%
513	0,00	0,0%	0,0%
514	0,00	0,0%	0,0%
515	0,00	0,0%	0,0%
516	0,00	0,0%	0,0%
517	0,00	0,0%	0,0%
518	0,00	0,0%	0,0%
519	0,00	0,0%	0,0%
520	0,00	0,0%	0,0%
521	0,00	0,0%	0,0%
522	0,00	0,0%	0,0%
523	0,00	0,0%	0,0%
524	0,00	0,0%	0,0%
525	0,00	0,0%	0,0%
526	0,00	0,0%	0,0%
527	0,00	0,0%	0,0%
528	0,00	0,0%	0,0%

t, [sec]	v, [km/h]	n_rel	M_rel
529	0,00	0,0%	0,0%
530	0,00	0,0%	0,0%
531	0,00	0,0%	0,0%
532	0,00	0,0%	0,0%
533	0,00	0,0%	0,0%
534	0,00	0,0%	0,0%
535	0,00	0,0%	0,0%
536	0,00	0,0%	0,0%
537	0,00	0,0%	0,0%
538	0,00	0,0%	0,0%
539	0,00	1,2%	0,0%
540	0,00	2,6%	0,0%
541	0,17	8,7%	0,9%
542	2,17	25,2%	12,1%
543	5,84	40,0%	29,5%
544	9,63	50,0%	43,3%
545	13,18	59,2%	53,3%
546	16,19	62,2%	52,3%
547	18,34	62,0%	44,5%
548	19,52	54,8%	30,4%
549	19,92	48,1%	21,5%
550	20,21	50,6%	24,4%
551	21,05	57,0%	28,8%
552	22,40	57,7%	32,1%
553	24,09	48,2%	21,1%
554	25,23	41,6%	-0,5%
555	25,30	38,4%	-22,5%
556	24,61	35,0%	-39,8%
557	23,18	30,5%	-50,0%
558	21,03	24,0%	-52,0%
559	18,54	17,4%	-48,2%
560	15,54	9,4%	-51,5%
561	11,45	4,0%	-44,7%
562	7,22	2,4%	-9,5%
563	3,34	0,8%	16,8%
564	1,20	0,3%	13,5%
565	0,45	0,0%	4,2%
566	0,21	0,0%	1,0%
567	0,00	0,0%	0,0%
568	0,00	0,0%	0,0%
569	0,00	0,0%	0,0%
570	0,00	0,0%	0,0%
571	0,00	0,0%	0,0%
572	0,00	0,0%	0,0%
573	0,00	0,0%	0,0%
574	0,00	0,0%	0,0%
575	0,00	0,0%	0,0%
576	0,00	0,0%	0,0%
577	0,00	0,0%	0,0%
578	0,00	0,0%	0,0%

t, [sec]	v, [km/h]	n_rel	M_rel
579	0,00	0,0%	0,0%
580	0,00	0,0%	0,0%
581	0,00	0,0%	0,0%
582	0,00	0,0%	0,0%
583	0,00	0,0%	0,0%
584	0,00	0,5%	0,0%
585	0,06	1,3%	0,6%
586	0,02	1,5%	0,2%
587	1,04	10,4%	6,6%
588	3,49	27,1%	18,3%
589	6,93	44,6%	35,3%
590	11,18	59,4%	55,0%
591	15,75	71,4%	70,9%
592	20,11	67,3%	83,2%
593	23,79	53,0%	87,8%
594	26,71	47,7%	83,6%
595	28,89	49,4%	71,6%
596	30,50	52,9%	55,9%
597	31,47	55,4%	38,0%
598	31,47	56,9%	27,7%
599	32,25	57,4%	17,2%
600	32,23	57,1%	6,0%
601	-	55,5%	-9,4%
602	31,70 30,81		
		52,9%	-18,0%
603	29,67	49,6% 46,1%	-20,3% -20,5%
604	28,42 27,24		-20,3%
605		42,7%	
606	26,21	39,4%	-20,2%
607	25,13	36,2%	-19,8%
608	23,99	33,2%	-19,4%
609	22,96	30,3%	-19,0%
610	22,00	27,4%	-18,9%
611	21,15	24,9%	-11,3%
612	20,62	29,3%	4,6%
613	20,96	46,5%	27,5%
614	22,44	61,0%	49,6%
615	24,60	55,3%	63,5%
616	26,90	49,6%	70,7%
617	29,15	51,1%	73,3%
618	31,19	55,3%	66,6%
619	32,65	47,8%	36,0%
620	33,00	39,5%	4,6%
621	32,56	34,8%	-27,7%
622	31,40	31,4%	-57,8%
623	29,36	36,1%	-69,9%
624	26,94	37,5%	-55,7%
625	25,13	35,9%	-23,5%
626	24,73	36,3%	21,6%
627	25,67	39,5%	49,6%
628	27,45	44,8%	60,7%

t, [sec]	v, [km/h]	n_rel	M_rel
629	29,63	51,0%	66,2%
630	31,71	51,3%	65,6%
631	33,31	44,4%	47,9%
632	34,03	39,5%	14,7%
633	34,01	37,2%	-2,2%
634	33,80	36,1%	9,3%
635	33,71	35,9%	21,6%
636	33,73	36,1%	25,6%
637	33,92	36,6%	28,1%
638	34,23	37,3%	31,1%
639	34,77	38,4%	27,5%
640	35,32	39,2%	9,9%
641	35,38	39,0%	-7,1%
642	34,78	37,6%	-30,5%
643	33,55	34,9%	-47,6%
644	31,59	30,4%	-72,8%
645	28,37	32,0%	-75,8%
646	24,42	28,9%	-63,5%
647	20,74	21,2%	-53,0%
648	17,50	12,5%	-38,5%
649	15,57	15,7%	-0,4%
650	15,46	36,1%	30,3%
651	17,33	58,8%	53,4%
652	20,29	64,1%	58,6%
653	22,33	49,0%	32,1%
654	22,71	36,9%	9,7%
655	22,42	36,5%	9,0%
656	22,23	45,4%	17,2%
657	22,34	50,6%	18,6%
658	22,40	50,2%	16,2%
659	22,34	50,6%	16,1%
660	22,53	55,5%	21,9%
661	23,32	52,9%	36,7%
662	24,69	46,9%	48,2%
663	26,36	45,8%	53,2%
664	28,06	48,1%	53,6%
665	29,39	50,4%	33,3%
666	29,72	50,7%	3,7%
667	29,21	49,0%	-12,6%
668	28,15	45,7%	-29,7%
669	26,54	41,1%	-44,4%
670	24,15	34,0%	-50,4%
671	21,13	25,1%	-48,7%
672	17,91	14,7%	-46,2%
673	14,66	8,0%	-45,7%
674	12,46	4,0%	-26,9%
675	11,01	1,9%	-5,7%
676	9,51	1,6%	6,8%
677	8,49	0,8%	14,6%
678	7,99	6,3%	17,9%

t, [sec]	v, [km/h]	n_rel	M_rel
679	8,19	18,9%	19,9%
680	9,26	29,8%	22,6%
681	10,84	35,5%	23,8%
682	12,52	39,4%	25,2%
683	14,09	39,1%	21,4%
684	15,04	30,1%	13,8%
685	15,43	24,8%	9,8%
686	0,13	2,1%	0,3%
687	0,05	1,0%	0,0%
688	0,00	1,0%	0,0%
689	0,00	0,0%	0,0%
690	0,00	0,0%	0,0%
691	0,00	0,0%	0,0%
692	0,00	0,0%	0,0%
693	0,00	0,0%	0,0%
694	0,00	0,0%	0,0%
695	0,00	0,0%	0,0%
696	0,00	0,0%	0,0%
697	0,00	0,0%	0,0%
698	0,00	0,0%	0,0%
699	0,00	0,0%	0,0%
700	0,00	0,0%	0,0%
701	0,00	0,4%	0,3%
702	0,05	0,5%	0,4%
703	0,64	0,6%	6,5%
704	1,52	0,7%	14,0%
705	2,10	0,8%	17,0%
706	2,49	0,9%	22,6%
707	2,87	1,1%	20,6%
708	3,31	1,4%	18,4%
709	3,74	4,5%	17,1%
710	4,11	15,1%	18,3%
711	5,90	15,6%	19,9%
712	7,10	11,1%	18,8%
713	7,83	9,7%	17,6%
714	8,52	11,7%	15,9%
715	9,10	13,1%	15,4%
716	9,63	10,7%	13,2%
717	9,99	5,6%	12,4%
718	9,53	3,3%	12,6%
719	9,15	8,9%	19,4%
720	9,92	24,6%	24,6%
721	11,22	24,4%	20,4%
722	11,53	12,3%	14,5%
723	10,49	5,2%	13,4%
724	8,59	2,6%	17,0%
725	7,15	0,7%	24,2%
726	6,29	0,9%	24,5%
727	6,02	1,3%	23,0%
728	6,03	0,5%	26,0%

t, [sec]	v, [km/h]	n_rel	M_rel
729	6,01	1,1%	23,3%
730	5,61	1,1%	25,0%
731	4,39	0,2%	31,9%
732	2,59	1,0%	22,9%
733	1,10	1,0%	12,3%
734	0,41	0,3%	5,9%
735	0,00	0,0%	1,1%
736	0,00	0,0%	0,0%
737	0,00	0,0%	0,0%
738	0,00	0,0%	0,0%
739	0,00	0,0%	0,0%
740	0,00	0,0%	0,0%
741	0,00	0,0%	0,0%
742	0,00	0,0%	0,0%
743	0,00	0,0%	0,0%
744	0,00	0,0%	0,0%
745	0,00	0,0%	0,0%
746	0,00	0,0%	0,0%
747	0,00	0,0%	0,0%
748	0,00	0,0%	0,0%
749	0,00	0,0%	0,0%
750	0,00	0,0%	0,0%
751	0,00	0,0%	0,0%
752	0,00	0,0%	0,0%
753	0,00	0,0%	0,0%
754	0,00	1,0%	0,0%
755	0,08	1,2%	0,3%
756	0,71	8,5%	3,8%
757	2,94	23,2%	14,8%
758	6,35	36,4%	28,6%
759	10,01	48,0%	41,9%
760	13,85	59,9%	55,7%
761	17,81	70,6%	68,4%
762	21,68	60,8%	80,2%
763	25,11	50,6%	86,0%
764	28,04	50,5%	87,9%
765	30,75	52,0%	69,3%
766	32,38	43,7%	28,1%
767	32,69	36,8%	-2,9%
768	32,11	32,6%	-35,6%
769	30,64	34,8%	-63,3%
770	28,08	37,4%	-70,3%
771	24,34	31,9%	-61,2%
772	20,18	21,6%	-49,6%
773	16,05	10,8%	-51,2%
774	11,28	5,2%	-37,1%
775	6,54	1,8%	-3,0%
776	2,88	0,6%	18,0%
777	1,05	1,3%	9,9%
778	0,40	1,0%	4,0%

t, [sec]	v, [km/h]	n_rel	M_rel
779	0,00	1,5%	0,8%
780	0,00	0,0%	0,0%
781	0,00	0,0%	0,0%
782	0,00	0,0%	0,0%
783	0,00	0,0%	0,0%
784	0,00	0,0%	0,0%
785	0,00	0,0%	0,0%
786	0,00	0,0%	0,0%
787	0,00	0,0%	0,0%
788	0,00	0,0%	0,0%
789	0,00	0,0%	0,0%
790	0,00	0,0%	0,0%
791	0,00	0,0%	0,0%
792	0,00	0,0%	0,0%
793	0,00	0,0%	0,0%
794	0,00	0,0%	0,0%
795	0,00	0,0%	0,0%
796	0,00	0,0%	0,0%
797	0,00	0,0%	0,0%
798	0,00	0,0%	0,0%
799	0,05	0,0%	0,3%
800	0,07	0,0%	0,6%
801	0,00	1,7%	0,5%
802	0,50	1,7%	5,0%
803	1,34	1,7%	13,1%
804	2,05	1,7%	16,3%
805	2,22	1,7%	20,9%
806	1,74	1,7%	17,0%
807	0,85	1,5%	8,5%
808	0,31	0,8%	4,1%
809	0,00	0,0%	1,1%
810	0,00	0,0%	0,0%
811	0,00	0,0%	0,0%
812	0,00	0,0%	0,0%
813	0,00	0,0%	0,0%
814	0,00	0,0%	0,0%
815	0,00	0,0%	0,0%
816	0,00	0,0%	0,0%
817	0,00	0,0%	0,0%
818	0,00	0,0%	0,0%
819	0,00	0,0%	0,0%
820	0,00	0,0%	0,0%
821	0,00	1,3%	0,6%
822	0,00	1,5%	0,2%
823	1,04	10,4%	6,6%
824	3,49	27,1%	18,3%
825	6,93	44,6%	35,3%
826	11,18	59,4%	55,0%
827	15,75	71,4%	70,9%
828	20,11	67,3%	83,2%

t, [sec]	v, [km/h]	n_rel	M_rel
829	23,79	53,0%	87,8%
830	26,71	47,7%	83,6%
831	28,89	49,4%	71,6%
832	30,50	52,9%	55,9%
833	31,47	55,4%	38,0%
834	31,99	56,9%	27,7%
835	32,25	57,4%	17,2%
836	32,22	57,1%	6,0%
837	31,70	55,5%	-9,4%
838	30,81	52,9%	-18,0%
839	29,67	49,6%	-20,3%
840	28,42	46,1%	-20,5%
841	27,24	42,7%	-20,4%
842	26,21	39,4%	-20,2%
843	25,13	36,2%	-19,8%
844	23,99	33,2%	-19,4%
845	22,96	30,3%	-19,0%
846	22,00	27,4%	-18,9%
847	21,15	24,9%	-11,3%
848	20,62	29,3%	4,6%
849	20,96	46,5%	27,5%
850	22,44	61,0%	49,6%
851	24,60	55,3%	63,5%
852	26,90	49,6%	70,7%
853	29,15	51,1%	73,3%
854	31,19	55,3%	66,6%
855	32,65	47,8%	36,0%
856	33,00	39,5%	4,6%
857	32,56	34,8%	-27,7%
858	31,40	31,4%	-57,8%
859	29,36	36,1%	-69,9%
860	26,94	37,5%	-55,7%
861	25,13	35,9%	-23,5%
862	24,73	36,3%	21,6%
863	25,67	39,5%	49,6%
864	27,45	44,8%	60,7%
865	29,63	51,0%	66,2%
866	31,71	51,3%	65,6%
867	33,31	44,4%	47,9%
868	34,03	39,5%	14,7%
869	34,01	37,2%	-2,2%
870	33,80	36,1%	9,3%
871	33,71	35,9%	21,6%
872	33,73	36,1%	25,6%
873	33,92	36,6%	28,1%
874	34,23	37,3%	31,1%
875	34,77	38,4%	27,5%
876	35,32	39,2%	9,9%
877	35,38	39,0%	-7,1%
878	34,78	37,6%	-30,5%

t, [sec]	v, [km/h]	n_rel	M_rel
879	33,55	34,9%	-47,6%
880	31,59	30,4%	-72,8%
881	28,37	32,0%	-75,8%
882	24,42	28,9%	-63,5%
883	20,74	21,2%	-53,0%
884	17,50	12,5%	-38,5%
885	15,57	15,7%	-0,4%
886	15,46	36,1%	30,3%
887	17,33	58,8%	53,4%
888	20,29	64,1%	58,6%
889	22,33	49,0%	32,1%
890	22,71	36,9%	9,7%
891	22,42	36,5%	9,0%
892	22,23	45,4%	17,2%
893	22,34	50,6%	18,6%
894	22,40	50,2%	16,2%
895	22,34	50,6%	16,1%
896	22,53	55,5%	21,9%
897	23,32	52,9%	36,7%
898	24,69	46,9%	48,2%
899	26,36	45,8%	53,2%
900	28,06	48,1%	53,6%
901	29,39	50,4%	33,3%
902	29,72	50,7%	3,7%
903	29,21	49,0%	-12,6%
904	28,15	45,7%	-29,7%
905	26,54	41,1%	-44,4%
906	24,15	34,0%	-50,4%
907	21,13	25,1%	-48,7%
908	17,91	14,7%	-46,2%
909	14,66	8,0%	-45,7%
910	12,46	4,0%	-26,9%
911	11,01	1,9%	-5,7%
912	9,51	1,6%	6,8%
913	8,49	0,8%	14,6%
914	7,99	6,3%	17,9%
915	8,19	18,9%	19,9%
916	9,26	29,8%	22,6%
917	10,84	35,5%	23,8%
918	12,52	39,4%	25,2%
919	14,09	39,1%	21,4%
920	15,04	30,1%	13,8%
921	15,43	24,8%	9,8%
922	0,13	2,1%	0,3%
923	0,05	1,0%	0,1%
924	0,00	1,0%	0,0%
925	0,00	1,0%	0,0%
926	0,98	0,2%	9,7%
927	1,64	1,3%	13,9%
928	1,65	1,3%	15,0%

t, [sec]	v, [km/h]	n_rel	M_rel
929	1,16	1,3%	13,3%
930	1,25	1,4%	10,3%
931	1,29	1,4%	11,9%
932	1,17	1,4%	13,8%
933	0,70	1,4%	7,6%
934	0,30	1,2%	3,6%
935	0,15	0,8%	1,6%
936	0,00	0,0%	0,0%
937	0,00	0,0%	0,0%
938	0,00	0,0%	0,0%
939	0,00	0,0%	0,0%
940	0,00	0,0%	0,0%
941	0,00	0,0%	0,0%
942	0,00	0,0%	0,0%
943	0,00	0,0%	0,0%
944	0,00	0,0%	0,0%
945	0,00	0,0%	0,0%
946	0,00	0,0%	0,0%
947	0,00	0,0%	0,0%
948	0,00	0,0%	0,0%
949	0,00	0,0%	0,0%
950	0,00	0,0%	0,0%
951	0,00	0,0%	0,0%
952	0,00	0,0%	0,0%
953	0,00	0,0%	0,0%
954	0,00	0,0%	0,0%
955	0,00	0,0%	0,0%
956	0,00	0,0%	0,0%
957	0,00	0,0%	0,0%
958	0,00	0,0%	0,0%
959	0,00	0,0%	0,0%
960	0,00	0,0%	0,0%
961	0,00	0,0%	0,0%
962	0,00	0,0%	0,0%
963	0,00	0,0%	0,0%
964	0,00	0,0%	0,0%
965	0,00	0,0%	0,0%
966	0,00	0,0%	0,0%
967	0,00	0,0%	0,0%
968	0,00	0,0%	0,0%
969	0,00	0,0%	0,0%
970	0,00	0,0%	0,0%
971	0,00	0,0%	0,0%
972	0,00	0,0%	0,0%
973	0,00	0,0%	0,0%
974	0,00	0,0%	0,0%
975	0,00	0,0%	0,0%
976	0,00	0,0%	0,0%
977	0,00	0,0%	0,0%
978	0,00	0,0%	0,0%

t, [sec]	v, [km/h]	n_rel	M_rel
979	0,00	0,0%	0,0%
980	0,00	0,0%	0,0%
981	0,00	0,0%	0,0%
982	0,00	1,2%	0,0%
983	0,00	1,2%	0,0%
984	0,13	6,8%	0,6%
985	1,48	14,2%	6,7%
986	3,79	26,5%	16,7%
987	6,89	38,6%	29,2%
988	10,46	49,1%	41,7%
989	14,24	60,2%	55,2%
990	18,12	71,2%	68,1%
991	21,91	62,3%	81,3%
992	25,20	51,2%	87,0%
993	28,02	50,1%	88,4%
994	30,68	54,0%	85,8%
995	33,10	49,5%	88,0%
996	35,44	45,2%	90,2%
997	37,58	45,9%	90,7%
998	39,66	49,1%	91,9%
999	41,61	52,7%	80,0%
1000	42,87	55,3%	46,0%
1001	43,63	56,9%	36,5%
1002	44,29	58,2%	34,0%
1003	44,83	59,3%	30,6%
1004	45,38	60,4%	32,5%
1005	46,10	61,8%	41,8%
1006	47,09	54,4%	56,9%
1007	47,95	45,6%	51,0%
1008	48,59	41,8%	52,9%
1009	49,25	41,2%	58,4%
1010	49,92	41,7%	58,3%
1011	50,55	42,5%	52,8%
1012	50,87	43,0%	50,2%
1013	50,74	43,0%	38,4%
1014	50,41	42,8%	37,8%
1015	50,51	43,1%	52,2%
1016	51,10	44,0%	64,9%
1017	51,83	45,2%	63,0%
1018	52,45	46,1%	44,3%
1019	52,58	46,4%	26,4%
1020	52,42	46,1%	3,4%
1021	51,91	45,3%	-11,2%
1022	51,48	44,5%	-18,3%
1023	50,75	43,0%	-59,5%
1024	49,44	40,8%	-94,3%
1025	47,60	38,0%	-100,0%
1026	45,60	35,0%	-100,0%
1027	43,17	29,6%	-100,0%
1028	40,01	33,6%	-100,0%

t, [sec]	v, [km/h]	n_rel	M_rel
1029	36,14	34,7%	-100,0%
1030	32,25	31,5%	-100,0%
1031	28,93	35,1%	-79,0%
1032	26,37	35,9%	-54,0%
1033	24,81	34,1%	-20,2%
1034	24,51	34,1%	19,0%
1035	25,25	36,6%	41,2%
1036	26,48	40,3%	53,2%
1037	27,94	44,8%	58,5%
1038	29,73	49,9%	60,6%
1039	31,23	54,5%	44,9%
1040	31,84	56,2%	13,1%
1041	31,34	54,6%	-3,3%
1042	30,49	52,0%	-10,8%
1043	29,65	50,0%	-4,7%
1044	29,61	49,8%	13,4%
1045	30,42	51,4%	30,0%
1046	31,60	54,1%	43,1%
1047	32,71	57,1%	52,2%
1048	33,84	55,9%	56,7%
1049	35,05	47,9%	58,9%
1050	36,19	43,8%	62,8%
1051	37,39	44,2%	65,5%
1052	38,65	46,3%	68,2%
1053	39,87	49,0%	68,7%
1054	40,97	51,4%	55,2%
1055	41,95	53,4%	45,0%
1056	42,66	54,6%	31,8%
1057	42,92	55,4%	27,7%
1058	43,04	56,1%	33,4%
1059	43,40	57,1%	41,4%
1060	43,91	58,2%	41,1%
1061	44,45	58,8%	22,6%
1062	44,53	58,8%	5,8%
1063	44,27	58,4%	10,9%
1064	44,18	58,0%	10,3%
1065	43,82	57,0%	-19,8%
1066	42,65	54,2%	-51,2%
1067	39,99	48,5%	-83,6%
1068	35,88	38,6%	-100,0%
1069	31,58	35,7%	-100,0%
1070	27,70	35,5%	-84,4%
1071	23,69	29,5%	-63,0%
1072	19,41	18,5%	-47,1%
1073	15,05	9,8%	-47,0%
1074	10,45	4,3%	-33,2%
1075	6,04	1,3%	-8,5%
1076	2,73	1,3%	10,7%
1077	1,07	0,7%	10,0%
1078	0,41	0,7%	4,1%

t, [sec]	v, [km/h]	n rel	M rel
		_	_
1079	0,17	1,9%	0,7%
1080	0,09	1,4%	0,2%
1081	0,00	1,4%	0,0%
1082	0,00	0,8%	0,0%
1083	0,00	0,5%	0,0%
1084	0,00	0,0%	0,0%
1085	0,00	0,0%	0,0%
1086	0,00	0,0%	0,0%
1087	0,00	0,0%	0,0%
1088	0,00	0,0%	0,0%
1089	0,00	0,0%	0,0%
1090	0,00	0,0%	0,0%
1091 1092	0,00	0,7%	0,0%
	0,00	1,9%	0,1%
1093	0,49	6,4%	3,0%
1094	2,09	17,0% 21,8%	17,3%
1095	4,09		
1096	5,75	23,1%	19,9%
1097	7,06	21,9%	19,5%
1098	8,08	19,4%	17,4%
1099	8,70	13,0%	15,2%
1100	9,02	6,9%	14,0%
1101	9,02	4,1%	13,6%
1102	8,46	1,6%	18,6%
1103	6,98	1,0%	26,4%
1104	4,71	1,1%	28,6%
1105	2,30	0,1%	26,2%
1106	0,93	0,6%	11,7%
1107	0,36	1,5%	3,8%
1108	0,16	1,4%	0,9%
11109	0,00	0,0%	0,0%
1111	0,00	0,0%	0,0%
1111	0,00	0,0%	0,0%
1113	0,00	0,0%	0,0%
1113			0,0%
1114	0,00	0,0%	0,0%
1116	0,00	0,0%	0,0%
1117	0,00	0,0%	0,0%
1117	0,00	0,0%	0,0%
1118	0,00	0,0%	0,0%
1119	0,00	0,0%	0,0%
1120	0,00	0,0%	0,0%
1121	0,00	0,0%	0,0%
1122	0,00	0,0%	0,0%
1123	0,00	0,0%	0,0%
1124	0,00	0,6%	0,0%
1123	0,00	1,1%	0,0%
1120	0,11	10,9%	4,7%
1127	3,36	27,3%	17,3%
1120	3,30	41,370	1/,570

t, [sec]	v, [km/h]	n_rel	M_rel
1129	7,23	42,4%	34,6%
1130	11,33	54,4%	49,8%
1131	15,31	65,8%	62,9%
1132	19,35	71,3%	75,0%
1133	23,03	57,8%	84,8%
1134	26,12	49,5%	88,7%
1135	28,83	50,8%	89,5%
1136	31,34	54,1%	87,4%
1137	33,66	49,1%	89,2%
1138	35,83	45,4%	91,0%
1139	37,93	46,4%	91,8%
1140	39,88	49,3%	85,9%
1141	41,35	52,0%	55,7%
1142	41,95	53,1%	13,8%
1143	41,78	52,7%	-9,6%
1144	41,23	51,6%	-17,8%
1145	40,55	49,9%	-32,8%
1146	39,41	47,3%	-56,3%
1147	37,67	43,7%	-68,4%
1148	35,75	39,5%	-73,7%
1149	33,70	35,2%	-74,3%
1150	31,64	32,2%	-80,4%
1151	29,22	36,4%	-78,1%
1152	26,97	37,4%	-53,1%
1153	25,37	35,9%	-16,9%
1154	25,26	36,3%	18,9%
1155	26,19	39,2%	41,8%
1156	27,55	43,6%	49,0%
1157	29,14	48,5%	53,9%
1158	30,96	53,8%	61,2%
1159	33,00	52,7%	70,8%
1160	35,13	47,0%	77,6%
1161	37,06	45,7%	81,1%
1162	38,94	48,0%	82,4%
1163	40,47	50,6%	66,9%
1164	41,12	51,9%	37,7%
1165	41,13	51,9%	22,1%
1166	41,13	51,7%	35,5%
1167 1168	41,41 42,23	52,3%	57,0% 67,7%
1169	43,15	53,8%	65,5%
1170	43,13	55,7% 57,2%	54,6%
1170	44,14	57,8%	30,3%
1172	44,03	57,5%	12,1%
1173	43,71	56,8%	6,7%
1174	43,71	56,0%	3,2%
1174	42,86	54,9%	-5,3%
1176	42,27	53,5%	-14,3%
1177	41,40	51,9%	-18,7%
1178	40,52	49,9%	-20,1%
11/0	10,52	12,270	20,1/0

t, [sec]	v, [km/h]	n rel	M rel
		_	_
1179	39,35	47,3%	-43,5%
1180	37,72	43,7%	-59,4%
1181	35,78	39,7%	-46,4%
1182	34,21	36,5%	-29,9%
1183	33,11	34,2%	-22,1%
1184	32,18	32,3%	-31,2%
1185	31,01	32,1%	-47,2%
1186	29,65	38,9%	-35,8%
1187	28,37	42,5%	-25,5%
1188	27,34	42,4%	-6,9%
1189	27,44	43,2%	31,7%
1190	28,59	46,7%	58,3%
1191	30,32	51,8%	72,3%
1192	32,34	54,4%	77,3%
1193	34,38	48,4%	81,7%
1194	36,25	45,0%	75,8%
1195	37,49	45,0%	55,4%
1196	38,19	45,7%	35,4%
1197	38,44	45,8%	8,9%
1198	38,02	44,9%	-8,8%
1199	37,08	42,9%	-18,3%
1200	36,22	40,8%	-31,2%
1201	34,96	38,0%	-46,5%
1202	33,02	33,5%	-59,5%
1203	29,95	30,9%	-77,7%
1204	26,81	31,7%	-70,9%
1205	23,50	28,1%	-59,7%
1206	20,66	21,7%	-53,8%
1207	18,15	15,8%	-43,4%
1208	16,36	10,8%	-23,2%
1209	15,74	27,4%	22,0%
1210	16,94	52,2%	47,2%
1211	19,60	66,9%	67,1%
1211	22,72		77,2%
	-	56,9%	
1213	25,29	47,4%	61,5%
1214	27,07	45,5%	54,6%
1215	28,66	47,9%	63,9%
1216	30,47	52,9%	73,9%
1217	32,33	52,0%	80,3%
1218	34,21	46,0%	76,9%
1219	35,71	43,1%	52,9%
1220	36,44	42,5%	36,4%
1221	36,73	42,4%	41,7%
1222	37,35	43,4%	54,9%
1223	38,37	45,6%	62,1%
1224	39,57	48,3%	66,8%
1225	40,65	50,7%	67,7%
1226	41,71	52,7%	56,5%
1227	42,57	54,7%	63,0%
1228	43,62	57,2%	73,5%

t, [sec]	v, [km/h]	n_rel	M_rel
1229	44,77	59,4%	52,5%
1230	45,24	60,1%	17,4%
1231	44,79	59,3%	4,0%
1232	44,53	59,0%	32,4%
1233	45,05	60,0%	59,2%
1234	45,91	52,0%	60,8%
1235	46,45	43,3%	36,9%
1236	46,51	39,1%	21,5%
1237	46,28	37,3%	19,3%
1238	46,20	36,5%	21,3%
1239	46,32	36,4%	24,5%
1240	46,45	36,5%	31,8%
1241	46,78	36,9%	53,3%
1242	47,49	37,9%	71,3%
1243	48,34	39,3%	77,1%
1244	49,09	40,5%	64,8%
1245	49,40	40,8%	26,3%
1246	49,00	40,2%	-22,0%
1247	47,78	38,2%	-65,5%
1248	45,90	35,2%	-88,7%
1249	43,76	29,9%	-100,0%
1250	41,25	33,2%	-100,0%
1251	38,35	37,2%	-100,0%
1252	34,93	34,4%	-100,0%
1253	31,80	33,6%	-92,6%
1254	29,08	37,8%	-61,6%
1255	26,87	39,2%	-19,8%
1256	25,83	39,6%	17,9%
1257	26,09	41,6%	40,3%
1258	27,40	45,2%	53,1%
1259	29,08	49,4%	54,5%
1260	30,42	52,7%	28,6%
1261	30,74	53,2%	-1,3%
1262	30,30	51,6%	-15,8%
1263	29,44	48,7%	-31,8%
1264	28,26	44,8%	-40,8%
1265	26,87	40,4%	-44,2%
1266	25,25	35,4%	-49,2%
1267	23,56	30,3%	-44,5%
1268	22,26	26,3%	-32,5%
1269	21,29	23,4%	-29,7%
1270	20,24	20,7%	-29,8%
1271	19,04	18,0%	-29,6%
1272	16,67	11,2%	-34,6%
1273	12,78	5,7%	-41,7%
1274	8,13	3,2%	-24,2%
1275	4,23	0,9%	-1,9%
1276	1,76	0,8%	7,5%
1277	0,66	1,2%	4,5%
1278	0,24	1,1%	1,1%

	v, [km/h]	n_rel	M_rel
1279	0,00	0,0%	0,0%
1280	0,00	0,0%	0,0%
1281	0,00	0,0%	0,0%
1282	0,00	0,0%	0,0%
1283	0,00	0,0%	0,0%
1284	0,00	0,0%	0,0%
1285	0,00	0,0%	0,0%
1286	0,00	0,0%	0,0%
1287	0,00	0,0%	0,0%
1288	0,00	0,0%	0,0%
1289	0,00	0,0%	0,0%
1290	0,00	0,0%	0,0%
1291	0,00	0,0%	0,0%
1292	0,00	0,0%	0,0%
1293	0,00	0,0%	0,0%
1294	0,00	0,0%	0,0%
1295	0,00	0,0%	0,0%
1296	0,00	0,0%	0,0%
1297	0,00	0,0%	0,0%
1298	0,03	0,9%	0,0%
1299	0,03	4,2%	0,0%
1300	0,53	11,5%	2,6%
1301	2,55	22,1%	12,0%
1302	5,24	27,0%	20,5%
1303	7,43	27,6%	22,8%
1304	9,02	24,2%	20,2%
1305	9,95	15,2%	15,9%
1306	10,27	7,6%	12,6%
1307	10,17	4,2%	10,7%
1308	9,34	1,6%	15,0%
1309	7,64	0,9%	23,2%
1310	5,56	0,9%	28,3%
1311	3,36	0,9%	32,0%
1312	2,25	2,2%	20,1%
1313	2,83	14,4%	15,7%
1314	5,12	31,2%	24,9%
1315	8,41	43,4%	37,1%
1316	11,96	55,6%	50,8%
1317	15,81	68,5%	65,9%
1318	19,72	68,9%	78,7%
1319	23,27	55,0%	85,9%
1320	26,23	48,4%	88,6%
1321	28,88	50,4%	90,1%
1322	31,29	51,0%	87,5%
1323	33,57	45,4%	78,9%
1324	35,45	42,7%	61,6%
1325	36,76	43,2%	51,3%
1326	37,94	45,0%	57,4%
1327	39,34	47,8%	69,7%
1328	40,97	51,3%	79,7%

t, [sec]	v, [km/h]	n_rel	M_rel
1329	42,74	55,0%	78,1%
1330	44,28	58,2%	66,2%
1331	45,36	60,4%	38,5%
1332	45,86	61,4%	8,8%
1333	45,80	61,4%	-7,5%
1334	45,54	60,9%	-9,0%
1335	45,19	60,3%	-14,8%
1336	44,85	59,4%	-19,9%
1337	44,37	58,3%	-21,8%
1338	43,72	56,9%	-31,5%
1339	42,78	55,0%	-32,6%
1340	41,87	53,0%	-27,1%
1341	41,19	51,6%	-11,1%
1342	41,11	51,3%	19,2%
1343	41,44	52,2%	37,8%
1344	42,00	53,4%	35,1%
1345	42,35	53,9%	10,2%
1346	42,06	53,4%	-9,2%
1347	41,36	51,9%	-16,5%
1348	40,84	50,7%	0,5%
1349	40,82	50,8%	28,2%
1350	41,30	52,1%	48,5%
1351	42,27	54,0%	59,2%
1352	43,32	56,2%	63,6%
1353	44,35	58,5%	61,1%
1354	44,87	59,5%	21,8%
1355	44,61	58,9%	-6,8%
1356	43,99	57,3%	-16,9%
1357	43,13	55,4%	-20,2%
1358	42,21	53,4%	-21,5%
1359	41,40	51,5%	-22,1%
1360	40,38	49,6%	-22,4%
1361	38,97	46,8%	-44,8%
1362	37,12	42,9%	-60,5%
1363	34,91	38,3%	-69,6%
1364	32,79	32,0%	-74,4%
1365	30,26	33,8%	-78,3%
1366	26,62	33,9%	-69,6%
1367	22,28	26,2%	-55,8%
1368	17,59	14,4%	-47,9%
1369	12,19	6,9%	-35,2%
1370	7,10	2,4%	-7,8%
1371	3,28	1,4%	13,3%
1372	1,27	1,4%	10,1%
1373	0,48	1,4%	5,4%
1374	0,00	1,4%	1,0%
1375	0,00	1,4%	0,0%
1376	0,00	1,2%	0,0%
1377	0,00	0,0%	0,0%
1378	0,00	0,0%	0,0%

t, [sec]	v, [km/h]	n_rel	M_rel
1379	0,00	0,0%	0,0%
1380	0,00	0,0%	0,0%
1381	0,00	0,0%	0,0%
1382	0,00	0,0%	0,0%
1383	0,00	0,0%	0,0%
1384	0,00	0,0%	0,0%
1385	0,00	0,0%	0,0%
1386	0,00	0,0%	0,0%
1387	0,00	0,0%	0,0%
1388	0,00	0,0%	0,0%
1389	0,00	0,0%	0,0%
1390	0,00	0,0%	0,0%
1391	0,00	0,0%	0,0%
1392	0,00	1,0%	0,0%
1393	0,00	6,0%	0,0%
1394	1,91	18,1%	9,8%
1395	5,29	34,7%	25,4%
1396	9,24	47,1%	40,0%
1397	13,08	58,0%	51,8%
1398	16,98	69,4%	63,9%
1399	20,92	71,0%	75,6%
1400	24,55	53,8%	83,0%
1401	27,55	49,8%	86,6%
1402	30,20	53,1%	89,8%
1403	32,51	52,6%	89,2%
1404	34,46	44,7%	91,2%
1405	36,28	43,7%	90,6%
1406	37,93	45,4%	91,6%
1407	39,38	47,8%	92,9%
1408	40,74	50,5%	94,5%
1409	42,02	53,3%	95,7%
1410	43,41	56,2%	97,0%
1411	44,57	59,2%	97,7%
1412	45,88	59,7%	90,7%
1413	47,16	48,1%	92,9%
1414	48,28	43,2%	94,8%
1415	49,23	42,4%	88,6%
1416	50,25	43,0%	87,3%
1417	51,16	44,4%	86,6%
1418	52,03	45,4%	64,0%
1419	52,54	46,2%	50,5%
1420	52,92	46,6%	34,8%
1421	52,94	46,8%	26,0%
1422	53,09	47,0%	28,0%
1423	53,26	47,1%	14,3%
1424	53,27	47,1%	-0,3%
1425	53,23	47,1%	6,0%
1426	53,30	47,1%	14,7%
1427	53,54	47,4%	18,3%
1428	53,83	47,9%	18,4%

t, [sec]	v, [km/h]	n_rel	M_rel
1429	54,11	48,1%	0,0%
1430	54,17	48,5%	3,6%
1431	54,72	49,1%	24,5%
1432	55,52	50,3%	38,2%
1433	56,39	51,8%	37,1%
1434	57,33	53,2%	35,3%
1435	58,23	54,9%	40,8%
1436	59,29	56,6%	50,0%
1437	60,24	58,2%	52,0%
1438	61,03	59,4%	40,0%
1439	61,43	60,1%	38,4%
1440	61,76	60,7%	44,9%
1441	62,20	61,3%	53,3%
1442	62,73	62,0%	53,7%
1443	62,64	61,8%	9,6%
1444	62,21	61,0%	-11,6%
1445	61,44	59,7%	-18,3%
1446	60,47	58,3%	-21,6%
1447	59,60	56,8%	-21,7%
1448	58,50	55,4%	-21,0%
1449	57,70	53,9%	-21,1%
1450	56,84	52,5%	-20,9%
1451	55,87	51,0%	-20,8%
1452	54,92	49,6%	-19,5%
1453	54,09	48,2%	-18,8%
1454	53,19	46,9%	-18,4%
1455	52,32	45,7%	-18,0%
1456	51,69	44,4%	-18,0%
1457	50,92	43,3%	-19,1%
1458	49,83	41,5%	-67,5%
1459	48,14	38,6%	-90,6%
1460	46,06	35,4%	-97,8%
1461	43,96	32,0%	-95,5%
1462	41,63	31,7%	-100,0%
1463	38,12	37,0%	-100,0%
1464	34,90	35,3%	-88,3%
1465	32,43	30,6%	-76,4%
1466	29,42	33,5%	-81,6%
1467	25,80	33,0%	-64,3%
1468	22,10	25,9%	-51,6%
1469	18,40	16,0%	-40,5%
1470	14,78	7,9%	-52,8%
1470	10,85	4,3%	-32,8%
1471	8,00	4,5%	6,1%
1472	5,17	1,6%	-0,3%
1473	2,13	1,4%	10,1%
1474		0,0%	7,8%
1475	0,73	1,5%	2,4%
1476	0,35		0,4%
1477	0,00	1,0%	
14/8	0,00	0,070	0,0%

t, [sec]	v, [km/h]	n_rel	M_rel
1479	0,00	0,0%	0,0%
1480	0,00	0,0%	0,0%
1481	0,00	0,0%	0,0%
1482	0,00	0,0%	0,0%
1483	0,00	0,0%	0,0%
1484	0,00	0,0%	0,0%
1485	0,00	0,0%	0,0%
1486	0,00	1,0%	0,0%
1487	0,04	1,1%	0,0%
1488	0,08	5,5%	0,4%
1489	1,37	19,4%	7,6%
1490	4,40	34,7%	22,6%
1491	7,95	44,6%	36,0%
1492	11,20	51,9%	44,0%
1493	13,85	53,8%	42,3%
1494	15,75	52,2%	36,1%
1495	17,21	53,8%	35,0%
1496	18,72	56,9%	35,6%
1497	20,38	59,8%	37,3%
1498	22,00	64,6%	43,5%
1499	23,72	67,7%	57,2%
1500	25,68	59,7%	70,3%
1501	27,60	51,4%	76,8%
1502	29,52	52,2%	79,8%
1503	31,53	55,0%	78,1%
1504	33,43	51,1%	78,0%
1505	35,16	45,4%	81,3%
1506	36,71	44,5%	81,3%
1507	38,10	46,0%	79,7%
1508	39,40	48,2%	78,5%
1509	40,69	50,8%	79,1%
1510	41,99	53,4%	79,8%
1511	43,15	56,0%	80,5%
1512	44,33	58,7%	80,8%
1513	45,49	59,6%	77,7%
1514	46,47	52,1%	73,3%
1515	47,27	43,5%	71,3%
			-
-			
			The state of the s
-			
-		-	
-			
1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528	47,97 48,64 49,45 50,31 51,05 51,73 52,30 52,64 52,71 52,78 52,95 53,10	40,9% 40,7% 41,5% 42,6% 43,7% 44,8% 45,6% 46,1% 46,2% 46,4% 46,5% 46,7% 46,8%	73,1% 77,8% 81,1% 82,5% 80,0% 72,8% 61,4% 48,9% 43,2% 41,1% 36,5% 27,3%

t, [sec]	v, [km/h]	n_rel	M_rel
1529	53,08	46,8%	21,9%
1530	52,95	46,8%	24,7%
1531	53,01	47,0%	33,6%
1532	53,32	47,5%	42,8%
1533	53,75	48,2%	47,1%
1534	54,25	49,0%	43,4%
1535	54,65	49,6%	36,5%
1536	55,01	50,0%	31,6%
1537	55,31	50,4%	30,0%
1538	55,45	50,6%	27,7%
1539	55,59	50,8%	25,3%
1540	55,71	51,0%	28,0%
1541	55,75	51,3%	31,4%
1542	55,97	51,7%	33,5%
1543	56,23	52,0%	31,8%
1544	56,24	52,1%	23,5%
1545	56,01	51,8%	15,6%
1546	55,66	51,3%	9,1%
1547	55,16	50,4%	-2,3%
1548	54,47	49,2%	-9,9%
1549	53,71	47,8%	-12,9%
1550	52,84	46,3%	-14,4%
1551	51,96	44,9%	-15,9%
1552	50,88	43,2%	-28,6%
1553	49,69	41,4%	-28,5%
1554	48,82	40,2%	-0,4%
1555	48,52	39,8%	29,5%
1556	48,80	40,1%	46,2%
1557	49,23	40,9%	53,5%
1558	49,80	41,7%	57,2%
1559	50,45	42,7%	57,0%
1560	50,96	43,6%	53,1%
1561	51,43	44,4%	53,0%
1562	51,90	45,2%	54,3%
1563	52,42	46,0%	56,4%
1564	53,00	46,9%	61,4%
1565	53,59	47,9%	65,6%
1566	54,26	49,0%	66,6%
1567	54,91	50,0%	65,8%
1568	55,53	51,0%	64,6%
1569	56,10	51,8%	62,8%
1570	56,61	52,6%	62,7%
1571	57,17	53,5%	64,3%
1572	57,74	54,5%	67,3%
1573	58,47	55,5%	71,6%
1574	59,31	56,7%	75,1%
1575	60,07	58,0%	76,7%
1576	60,92	59,3%	74,4%
1577	61,69	60,5%	68,2%
1578	62,24	61,3%	52,5%

t, [sec]	v, [km/h]	n_rel	M_rel
1579	62,45	61,5%	20,8%
1580	62,12	61,0%	-2,3%
1581	61,64	60,5%	10,6%
1582	61,58	60,5%	34,2%
1583	61,82	60,9%	44,1%
1584	61,98	61,3%	40,2%
1585	61,98	61,3%	28,3%
1586	61,81	60,9%	32,6%
1587	61,60	60,6%	50,3%
1588	61,64	60,6%	64,6%
1589	61,78	60,6%	70,1%
1590	61,68	60,6%	69,9%
1591	61,59	60,5%	69,7%
1592	61,50	60,4%	71,2%
1593	61,36	60,2%	72,7%
1594	61,15	60,0%	69,3%
1595	60,95	59,9%	69,9%
1596	61,02	60,0%	69,9%
1597	61,23	60,2%	62,3%
1598	61,39	60,4%	50,2%
1599	61,44	60,2%	24,6%
1600	61,09	59,6%	-1,8%
1601	60,50	58,7%	-13,6%
1602	59,99	57,8%	-16,4%
1603	59,50	57,1%	-18,1%
1604	59,16	56,5%	-19,7%
1605	58,93	56,0%	-17,9%
1606	58,77	55,8%	-17,7%
1607	58,73	55,8%	-19,2%
1608	58,82	56,0%	-20,0%
1609	59,07	56,3%	-20,7%
1610	59,31	56,6%	-20,7%
1611	59,26	56,6%	-20,8%
1612	58,92	56,2%	-20,4%
1613	58,31	55,3%	-19,6%
1614	57,40	53,8%	-19,0%
1615	56,16	51,8%	-18,3%
1616	54,56	49,4%	-17,7%
1617	52,66	46,3%	-43,7%
1618	50,43	42,7%	-79,0%
1619	48,00	38,7%	-93,6%
1620	45,49	34,6%	-92,8%
1621	43,03	31,5%	-92,3%
1622	40,61	35,4%	-79,6%
1623	38,29	40,2%	-54,0%
1624	36,49	39,8%	-37,5%
1625	34,92	37,6%	-35,9%
1626	33,25	34,4%	-40,4%
1627	31,33	31,1%	-55,1%
1628	28,75	32,5%	-65,1%

t, [sec]	v, [km/h]	n_rel	M_rel
1629	25,44	32,2%	-59,5%
1630	21,89	24,9%	-51,3%
1631	18,37	15,4%	-46,9%
1632	14,86	8,1%	-50,5%
1633	11,32	3,5%	-48,1%
1634	7,77	1,5%	-19,9%
1635	4,32	1,0%	6,6%
1636	1,81	0,0%	13,1%
1637	0,66	0,0%	6,8%
1638	0,28	0,0%	3,1%
1639	0,00	0,0%	1,6%
1640	0,00	0,0%	0,0%
1641	0,00	0,0%	0,0%
1642	0,00	0,0%	0,0%
1643	0,00	0,0%	0,0%
1644	0,00	0,0%	0,0%
1645	0,00	0,0%	0,0%
1646	0,00	0,0%	0,0%
1647	0,00	0,0%	0,0%
1648	0,00	0,0%	0,0%
1649	0,00	0,0%	0,0%
1650	0,00	0,0%	0,0%
1651	0,00	0,0%	0,0%
1652	0,00	0,0%	0,0%
1653	0,00	0,0%	0,0%
1654	0,00	0,0%	0,0%
1655	0,00	0,0%	0,0%
1656	0,00	0,0%	0,0%
1657	0,00	1,2%	0,0%
1658	0,00	1,9%	0,1%
1659	0,56	11,6%	2,9%
1660	2,95	29,1%	15,9%
1661	6,81	45,2%	35,0%
1662	10,79	55,6%	47,9%
1663	13,86	55,5%	43,8%
1664	15,82	53,0%	35,5%
1665	17,40	54,6%	34,3%
1666	19,08	58,2%	36,5%
1667	20,83	63,0%	41,9%
1668	22,77	68,7%	54,4%
1669	24,97	61,1%	68,4%
1670	27,15	51,3%	78,2%
1671	29,17	51,0%	83,7%
1672	31,20	54,2%	83,6%
1673	33,20	50,1%	86,2%
1674	35,18	45,1%	90,3%
1675	37,02	45,1%	91,6%
1676	38,79	47,5%	93,0%
1677	40,51	50,7%	94,7%
1678	42,19	54,2%	96,3%

t, [sec]	v, [km/h]	n_rel	M_rel
1679	43,86	57,7%	97,4%
1680	45,45	57,1%	94,7%
1681	46,76	49,3%	92,8%
1682	47,96	43,4%	93,5%
1683	49,17	42,4%	92,2%
1684	50,27	43,0%	82,5%
1685	51,07	43,9%	75,4%
1686	51,65	44,9%	74,7%
1687	52,31	45,9%	74,2%
1688	52,93	46,7%	59,7%
1689	53,22	47,2%	46,5%
1690	53,29	47,4%	45,0%
1691	53,53	47,7%	52,4%
1692	53,82	48,2%	57,0%
1693	54,12	48,6%	48,1%
1694	54,15	48,7%	32,3%
1695	54,11	48,5%	26,6%
1696	53,96	48,3%	15,4%
1697	53,57	47,7%	1,0%
1698	53,17	47,1%	0,1%
1699	52,90	46,7%	14,0%
1700	52,94	46,8%	30,7%
1701	53,19	47,3%	37,7%
1702	53,58	48,0%	41,3%
1703	54,13	48,7%	38,9%
1704	54,57	49,3%	32,2%
1705	54,93	49,8%	29,9%
1706	55,22	50,2%	25,4%
1707	55,39	50,5%	24,7%
1708	55,64	50,8%	32,2%
1709	55,97	51,3%	41,6%
1710	56,23	52,0%	44,7%
1711	56,53	52,7%	42,8%
1712	56,97	53,3%	38,0%
1713	57,22	53,9%	47,2%
1714	57,60	54,6%	62,1%
1715	58,25	55,5%	70,1%
1716	58,97	56,4%	70,2%
1717	59,61	57,3%	67,4%
1718	60,21	58,1%	56,8%
1719	60,43	58,4%	34,1%
1720	60,42	58,4%	32,6%
1721	60,47	58,6%	45,5%
1722	60,72	59,0%	52,0%
1723	61,17	59,7%	52,7%
1724	61,58	60,3%	43,3%
1725	61,73	60,6%	27,0%
1726	61,78	60,7%	26,0%
1727	61,79	60,8%	33,6%
1728	61,92	61,0%	41,6%

t, [sec]	v, [km/h]	n_rel	M_rel
1729	62,19	61,5%	54,3%
1730	62,63	62,3%	66,5%
1731	63,29	63,3%	71,3%
1732	63,90	64,1%	57,9%
1733	64,19	64,5%	41,5%
1734	64,29	64,5%	38,4%
1735	64,32	64,6%	40,7%
1736	64,42	64,9%	46,3%
1737	64,68	65,4%	53,5%
1738	65,11	65,9%	55,6%
1739	65,41	66,4%	42,4%
1740	65,47	66,5%	32,2%
1741	65,55	66,7%	39,5%
1742	65,79	67,1%	50,1%
1743	66,20	67,8%	56,4%
1744	66,65	68,5%	57,7%
1745	67,05	69,1%	45,5%
1746	67,20	69,2%	17,6%
1747	66,83	68,6%	-3,0%
1748	66,19	67,7%	-12,3%
1749	65,38	66,5%	-14,8%
1750	64,53	65,1%	3,1%
1751	63,85	64,1%	31,1%
1752	63,60	63,7%	51,0%
1753	63,46	63,4%	62,3%
1754	63,28	63,2%	66,7%
1755	63,11	62,9%	67,4%
1756	62,80	62,6%	67,5%
1757	62,54	62,3%	67,9%
1758	62,37	62,1%	68,9%
1759	62,23	61,9%	68,7%
1760	62,21	61,9%	64,7%
1761	62,30	62,0%	55,2%
1762	62,45	62,2%	52,7%
1763	62,69	62,5%	49,7%
1764	62,95	62,7%	29,2%
1765	62,92	62,6%	5,2%
1766	62,77	62,4%	-0,5%
1767	62,72	62,2%	-5,5%
1768	62,57	61,9%	-13,9%
1769	62,45	61,8%	-20,3%
1770	62,41	61,7%	-21,8%
1771	62,49	62,0%	-13,0%
1772	62,85	62,6%	-6,6%
1773	63,29	63,2%	-7,9%
1774	63,41	63,4%	-9,1%
1775	63,20	63,1%	-13,5%
1776	62,64	62,1%	-19,5%
1777	61,56	60,4%	-20,1%
1778	60,17	58,2%	-17,6%
1770	00,17	20,270	17,070

t, [sec]	v, [km/h]	n_rel	M_rel
1779	58,66	55,6%	-18,5%
1780	57,09	53,2%	-20,5%
1781	55,71	51,1%	-21,8%
1782	54,26	48,6%	-51,4%
1783	52,30	45,4%	-80,9%
1784	49,69	41,3%	-100,0%
1785	45,95	34,6%	-100,0%
1786	41,06	33,5%	-100,0%
1787	36,07	32,7%	-100,0%
1788	32,10	34,3%	-87,5%
1789	28,32	36,0%	-68,3%
1790	24,12	30,4%	-55,8%
1791	19,83	19,3%	-46,1%
1792	15,51	9,9%	-48,3%
1793	11,10	4,7%	-41,3%
1794	6,98	1,5%	-15,3%
1795	3,40	1,0%	8,6%
1796	1,29	0,9%	8,9%
1797	0,48	0,7%	3,7%
1798	0,00	0,0%	0,0%
1799	0,00	0,0%	0,0%
1800	0,00	0,0%	0,0%

Emissionsverhalten von Linienbussen – Teil 1: Dieselbus mit Nachrüstung Abgasrückführung, Erdgasbus