Universität Paderborn

Mathematik

Veranstaltungs-Kommentar

Für

Mathematik ⊳ Bachelor/Master

⊳ Lehramt GyGe

▶ Lehramt GHRGe

Technomathematik Bachelor/Master

Fir das sose 2012

Inhaltsverzeichnis

Impressum

Herausgeber: Fachschaft Mathematik/Informatik

Universität Paderborn, Raum E1.311

Warburger Starße 100 33098 Paderborn

E-Mail: fsmi@uni-paderborn.de

Telefon: 05251 60-3260 Fax: 05251 60-3978

V.i.S.d.P: Daniela Strotmann

ISSN: 1868-0690

Redaktion: Arne Bockhorn & Daniela Strotmann

Mitarbeitende: die Fachschaft (Korrekturlesen),

die Dozentinnen und Dozenten der Mathematik und der Informatik (Kommentare)

Auflage: 2^6 Exemplare

1 Wichtige Informationen

1.1 Benutzerhinweise

zum Kopf:

Name der Veranstaltung

Dozent: Name des Dozenten

Büro: Raum

Sprechstunde: Zeit

1.2 Literaturangaben

Die Bücher in diesem Abschnitt sind Empfehlungen der Dozenten. Einige davon hat die Fachschaft in ihrem Semesterapparat in der Bibliothek stehen, andere werdet ihr dort aber auch finden. Daher könnt Ihr Euch zuerst informieren und dann das viele Geld ausgeben (nicht gleich alle kaufen, aber es lohnt vielleicht mal hinein zu sehen).

1.3 Sprechstunden

Ein Großteil der Dozentinnen und Dozenten gibt keine feste Sprechstunde mehr an, sondern ist nach Vereinbarung zu sprechen, sowie vor und nach den Veranstaltungen. Daher findet Ihr nicht überall die Angabe einer Sprechstunde.

1.4 Vollständigkeit

Da nicht alle Lehrenden einen Veranstaltungskommentar abgegeben haben, ist das Verzeichnis der Veranstaltungen nicht vollständig!

1.5 Internet

Elektronische Informationen zum Vorlesungsangebot gibt es unter folgenden Adressen:

- http://www.cs.upb.de/studierende/lehrangebot.html offizielle Webseite zum Lehrangebot der Informatik
- http://www2.math.upb.de/informationen-fuer-studierende.html offizielle Studiumsseiten für Mathematik
- http://www.uni-paderborn.de/eim/plan/ aktuellster Stand der Vorlesungsplanung
- http://paul.uni-paderborn.de/ offizielles Vorlesungsverzeichnisses der Uni

Die Seiten der Fachschaft findet Ihr hier: http://www.die-fachschaft.de/

Alex Wiens, Arne Bockhorn und Daniela Strotmann V-Kom-Redaktion für das SoSe 2012

2 Mitarbeitende der Mathematik

Name	E-Mail	Telefon	Raum
Alzaareer, Hamza	Hamza. alzaare er@math. upb. de	2645	D2.326
Amelunxen, Dennis	damelunx@math.upb.de	2641	D3.328
Backe-Neuwald, Dorothea, Dr.	backe-n@math.uni-paderborn.de	2613	D1.236
Bender, Peter, Prof, Dr.	bender@math.upb.de	2661	D2.247
Biehler, Rolf, Prof. Dr.	Rolf. Biehler@math.upb.de	2654	D3.238
Borchert, Britta	Britta. Borchert@math.upb.de	2635	D2.320
Bornhorst, Kathrin	${\it kathrinb@math.upb.de}$	3223	D2.332
Böttinger, Claudia, Prof. Dr.	Claudia. Boettinger@math.upb.de	D1.239	60 - 2614
Brune, Maria	${ m brunem@mail.upb.de}$	5015	A3.339
Brune, Peter	${\it brune@math.upb.de}$	5248	D3.323
Bruns, Martin, Prof. Dr.	${\it bruns@math.upb.de}$	2615	D1.243
Büchle, Bernd, Dr.	bbuechle@math.upb.de	2648	D3.224
Bürgisser, Peter, Prof. Dr.	${ m pbuerg@math.upb.de}$	2643	D3.227
Cochran, Sandra	Sandra. Cochran@math. upb. de	3223	D2.332
Dahmen, Rafael	${\it Rafael.Dahmen@math.upb.de}$	2645	D2.326
Dellnitz, Michael, Prof. Dr.	$\operatorname{dellnitz}@\operatorname{math.upb.de}$	2649	D3.210
Dietz, Hans-Michael, Prof. Dr.	${ m dietz}@{ m math.upb.de}$	2652	D3.247
Dobbelstein, Maike	${\it Maike.} Dobbelstein@math.upb.de$	2633	D2.348
Duddeck-Buijs, Birgit	${\rm duddeck@math.upb.de}$	2635	D2.320
Emonds, Jan	Emonds@math.upb.de	3067	D2.201
Ernst, Bruno, Dr.	${ m bernst@math.upb.de}$	2616	D1.241
Fiege, Sabrina	${\bf Sabrina. Fiege@math. upb. de}$	A3.329	60-5017
Filehr, Sybille	${\bf Sybille. Filehr@math. upb. de}$	2634	D2.308
Flaßkamp, Kathrin	Kathrin. Flass kamp@math.upb.de	2642	D3.204
Fleischhack, Christian, Dr.	Christian. Fleischhack@math.upb.de	2628	D1.201
Frischemeier, Daniel	${\bf Daniel. Frischemeier@math. upb. de}$	3069	D3.244
Glöckner, Helge, Prof. Dr.	${ m glockner@math.upb.de}$	2600	D2.228
Haase, Jürgen	jhaase@math.upb.de	2638	D2.335
Hage-Packhäuser, Sebastian	${\bf shage@math.upb.de}$	3774	D3.207
Hansen, Sönke, Dr.	${\rm soenke@math.upb.de}$	2604	D1.211
Hanusch, Maximilian	mhanusch@math.upb.de	2607	D1.220
Hartung, Tim	${ m Tim. Hartung@math. upb. de}$	D2.301	60-3494
Hennig, Markus			
Hessel-von Molo, Mirko Dr.	${\it mirkoh}@{\it mail.upb.de}$	3774	D3.207
Hilgert, Joachim Prof. Dr.	${ m hilgert@math.upb.de}$	2630	D2.234
Hoppenbrock, Axel	axel.hoppenbrock@math.upb.de	2648	D3.224
Horenkamp, Christian	Christian. Horenkamp@math.upb.de	4209	D3.314
Huang, Boqiang, Dr.	bhuang@math.upb.de	A3.213	60-2614
Husert, David	${\bf David. Husert@math. upb. de}$	3440	D3.215
Ikenmeyer, Christian	Christian. Iken meyer@campus. upb. de	2641	D3.328
Indlekofer, Karl-Heinz, Prof. Dr.	$\hbox{k-heinz@math.upb.de}$	2128	J2.319
Jungermann, Jörg	${\it Joerg. Jungermann@math. upb. de}$	D2.301	60-3494
Kaiser, Cornelia, Dr.	${\it ckaiser@math.upb.de}$	2622	D2.210

Name	E-Mail	Telefon	Raum
Kalle, Marianne	mkalle@math.upb.de	2658	D3.213
Kaniuth, Eberhard, Prof. Dr.	${ m kaniuth@math.upb.de}$	2609	D1.225
Kasprowitz, Ralf, Dr.	Ralf. Kas prowitz@math.upb.de	2636	D2.323
Kempen, Leander	Leander. Kempen@math.upb.de	D2.239	60-3229
Kiyek, Karl-Heinz, Prof. Dr.	${ m karlh@math.upb.de}$	2241	D1.243
Klemm, Juliane	jklemm@math.uni-paderborn.de	2653	D3.241
Klüners, Jürgen, Prof. Dr.	${ m Juergen. Klueners@math.upb.de}$	2646	D3.218
Köckler, Norbert, Prof. Dr.	${ m Norbert.} Koeckler@math.upb.de$	2615	D1.243
Kortemeyer, Jörg	${\it Joerg.} Kortemeyer@math.upb.de$	2659	D3.318
Kossak, Beate	Beate. Kossak@math.upb.de	D1.209	60-2603
Krüger, Katja Prof. Dr.	${ m kakruege@math.upb.de}$	2632	D2.244
Kulshreshtha, Kshitij	${\it kshitij}@{ m math.upb.de}$	2723	A3.235
Kunoth, Angela, Prof. Dr.	${\it kunoth@math.upb.de}$	2711	A3.215
Lagemann, Thorsten	Thorsten. Lagemann@math.upb.de	2659	D3.318
Lau, Eike, Prof. Dr.	${\it elau@math.upb.de}$	2610	D1.227
Lenzing, Helmut, Prof. Dr.	${ m helmut@math.upb.de}$	2241	D1.243
Lusky, Wolfgang, Prof. Dr.	${ m lusky@math.upb.de}$	2605	D1.217
Machuletz, Karina	kmachule@math.upb.de	2626	D2.222
Mengel, Stefan	${\bf Stefan. Mengel@math. upb. de}$	2640	D3.312
Meyer, Anna-Lena	ameyer@math.upb.de	5021	A3.332
Meyerhöfer, Wolfram, Prof. Dr.	Wolfram. Meyerhoe fer@math.upb.de	2631	D2.241
Michalke, Christian	${ m michalke@math.upb.de}$	2613	D1.236
Mollet, Christian	${ m mollet}@{ m math.upb.de}$	2712	A3.208
Nelius, Christian-Frieder, Dr.	${ m chris@math.upb.de}$	2622	D2.210
Ober-Blöbaum, Sina, JP. Dr.	Sin a. Ober-Bloebaum@math.upb.de	2657	D3.201
Oberthür, Mareike	${\it mareikeo@math.upb.de}$	3069	D3.244
Ostsieker, Laura	lost siek@math.upb.de		
Oesterhaus, Janina	${\tt Janina. Oesterhaus@math. upb. de}$	D3.241	60-2653
Pabel, Roland	Roland. Pabel@math. upb. de	2712	A3.208
Panitz, Friedrich	Friedrich. Panitz@math. upb. de	3440	D3.215
Panse, Anja	Anja. Panse@math.upb.de	D2.239	60-3223
Pecher, Tobias, Dr.	To bias. Pecher@math.upb.de	D2.216	60-2624
Pelster, Sandra	Sandra. Pelster@math.upb.de	3068	D3.233
Rautmann, Reimund, Prof. Dr.	rautmann@math.upb.de	2615	D1.243
Ringkamp, Maik	${\rm ringkamp@math.upb.de}$	2640	D3.312
Rinkens, Hans-Dieter, Prof. Dr.	${ m rinkens@math.upb.de}$	2629	D2.231
Rohde, Janna	Janna. Rohde@math.upb.de	2601	D1.204
Schmalfuß, Björn, Prof. Dr.	schmalfuss@math.upb.de	2647	D3.221
Schmeding, Alexander	${\it alsch@mail.upb.de}$	2606	D1.214
Schukajlow-Wasjutinski,	Stanislaw.Schukajlow-Wasjutinski	D1.236	60-2613
Stanislaw, Jun-Prof. Dr.	@math.upb.de	2624	D2 216
Schwarz, Benjamin	bschwarz@math.upb.de	$\frac{2624}{2724}$	D2.216
Senske, Karin	senske@math.upb.de	2724	A3.238
Seppänen, Henrik	henriksp@math.upb.de	2621	D2.207

Name	E-Mail	Telefon	Raum
Sohr, Hermann, Prof. Dr.	hsohr@math.upb.de	2615	D1.243
Sonntag, Julia	${ m sonntagj@mail.upb.de}$	2651	D3.235
Spiegel, Hartmut, Prof. Dr.	Hartmut. Spiegel@math. upb. de	2241	D1.243
Steinle, Tobias	${ m steinle@math.upb.de}$	2723	A3.235
Sulak-Klute, Nurhan	${\it nurhan@math.upb.de}$	2713	A3.211
Thiere, Bianca	thiere@math.upb.de	2656	D3.310
Timmermann, Robert	Robert. Timmer mann@math.upb.de	4209	D3.314
Walter, Boris	Bor is. Walter@math.upb. de	2645	D2.326
Walther, Andrea, Prof. Dr.	and rea. walther @upb. de	2721	A3.232
Wassong, Thomas	Thomas. Was song@math.upb.de	2651	D3.235
Wedhorn, Torsten, Prof. Dr.	We dhorn@math.upb.de	2619	D2.213
Wermann, Marc	Marc. Wermann@math.upb.de	2638	D2.335
Werth, Gerda	${\it gerdaw@math.upb.de}$	3759	D2.335
Wilhelm, Maximilian	Maximilian. Wilhelm@math.upb.de	D2.308	60-6847
Winkler, Michael, Prof. Dr.	winklerg@math.upb.de	2612	D1.230
Witting, Katrin	Katrin. Witting@math.upb.de	2642	D3.204
Wolf, Elke, Dr.	${\it lichte@math.upb.de}$	2606	D1.214
Wortmann, Daniel	${\rm dwort@math.upb.de}$	2620	D2.204
Yatsyshyn, Yaroslav	yatsyshy@math.upb.de	2636	D2.323

3 Weitere wichtige Adressen

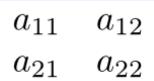
Name	E-Mail	Telefon	Raum
Fachschaft Mathematik/Informatik	fsmi@upb.de	3260	E1.311
Lernzentrum:			
Mathe-Treff (LA GHRG)	${\it mtreff@math.upb.de}$	3775	D3.331
${\rm Mathe~Ba/Ma}$	To bias. Pecher@math.upb.de		
Lehramt GyGe	${\it Anja. Panse@math. upb. de}$		
Prüfungssekretariat Mathematik und	d Informatik :		
Carla Osterholz	osterholz@zv.uni-paderborn.de	2500	C2.222
Manuel Leßmann	${\rm lessmann@zv.uni\text{-}paderborn.de}$	5207	C2.222
Rechnerbetreuung Didaktik	${\it intermax}@{\it upb.de}$	3758	D2.339
Rechnerbetrieb Mathematik	${ m pem@math.upb.de}$	3494	D2.301
Rechnerbetreuung Informatik	IRB-Support@upb.de	3318	E1.303

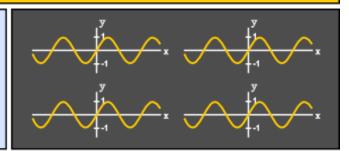
4 Veranstaltungen

4.1 Übersicht

Vorlesungen, für die uns bis Redaktionsschluss keine Kommentare erreicht haben, sind in der folgenden Übersicht mit ?? gekennzeichnet.

Mathematik für die integrierten Studiengänge Mathematik und Technomathematik und für das Lehramt SII Mathematik

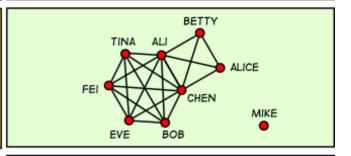

Basis- und Aufbaumodule des Bachelorstudiengangs

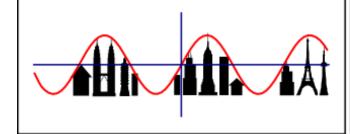

Dasis alla riars	damo dale des Bacherors dans la	
Wedhorn	Analysis II	??
Lau	Lineare Algebra II	11
Lau	Praktikum Lineare Algebra	??
Hilgert	Elementare algebraische Geometrie	12
${\rm Winkler}$	Funktionentheorie (Komplexe Analysis)	??
$\operatorname{Schmalfuß}$	Grundlagen der Stochastik	??
Ober-Blöbaum, Dellnitz, Walther	Mathematisches Praktikum	13
Vertiefungsmod	ule des Bachelorstudiengangs	
Kaniuth	Algebraische Topologie	14
Bürgisser	Algorithmische diskrete Mathematik 2 (Kombinatorik)	15
Fleischhack	Höhere Analysis	??
Kaiser	Mannigfaltigkeiten	16
$\operatorname{Gl\"{o}ckner}$	Lie - Algebren und ihre Darstellungen	17
Walther	Optimierung im Funktionenraum	18
Masterstudienga	\mathbf{ang}	
Lau, Wedhorn	Adische Räume	??
Steffen	Graph Theorie II	??
$\operatorname{Gl\"{o}ckner}$	Lie - Algebren und ihre Darstellungen	17
Walther	Optimierung im Funktionenraum	18
Hansen	Spektraltheorie von Differentialoperatoren (DGL II)	19
$\operatorname{Schmalfuß}$	Stochastik 1 (Ito Kalkül)	??
Kunoth	Wissenschaftliches Rechnen II	20

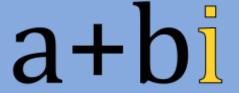
Seminare		
Klüners	Seminar: Zahlentheorie	21
Bürgisser	Seminar: Algorithmische Mathematik	??
Hansen	Seminar: Gewöhnliche Differentialgleichungen	22
Kunoth	Seminar: Wissenschaftliches Rechnen	??
Oberseminare		
Wedhorn	Arithmetische Geometrie (Bielefeld, Hannover, Paderborn)	??
Klüners	Algorithmische Algebra und Zahlentheorie	??
Bürgisser	Algebraische Komplexitätstheorie	??
$\operatorname{Gl\"{o}ckner}$	Analysis und Geometrie	??
Dellnitz	Angewandte Mathematik	??
Hilgert	Lie-Theorie	??
Fleischhack	Mathematische Physik	??
Mathematik für	andere Studiengänge	
Klüners	Lineare Algebra für Informatiker	??
Lusky	Höhere Mathematik B für Elektrotechniker	??
Ernst	Höhere Mathematik D für Elektrotechniker	??
$\operatorname{Winkler}$	Mathematik für Chemiker	??
Dellnitz	Mathematik für Maschinenbauer II	??
Fleischhack	Mathematik für Physiker B	??
Walther	Mathematik für Wirtschaftswissenschaftler II	??
	das Lehramt GHRGe und das ndlagenstudium (DGS)	
Bender	Elemente der Arithmetik (ehemals Grundwissen Arithmetik)	??
Biehler	Elemente der Stochastik	??
Meyerhöfer	Elemente der Arithmetik für HRG (ehemals Arithmetik und Zahlentheorie)	??
Bender	Grundwissen Geometrie	??
Hessel von Molo	Lineare Algebra	??
N.N.	Schulmathematik	??
Nelius	Zahlentheorie	27

Büchler, Vogel, Schu- kajlow, Biehler / Pod- warny	Ausgewählte Kapitel aus der Mathematik (Fachseminar)	??
Meyerhöfer	Big Tests - Lektüreseminar zu mathematischen Large- Scale-Tests	28
Meyerhöfer	Der Jenaer Rechentest (JRT) für Klasse 1 in der diagnostischen Anwendung (Projektseminar)	29
Didaktik der Matl	hematik für alle Lehrämter	
Meyerhöfer	Didaktik der Arithmetik in Klasse 1-3	??
Schukajlow	Didaktik der Arithmetik in Klasse 7-10	??
Biehler	Didaktik der Stochastik (GyG)	??
Krüger	Didaktik der Stochastik (DGS)	??
N.N.	Didaktik der Geometrie in Frühförderung und Klasse 1-6	??
Krüger	Didaktik der Geometrie in Klasse 7 -10	??
Krüger, Ringel, Bender, Meyerhöfer	Didaktikseminar	??
Veranstaltungen n	ur für Studierende im	
Lehramtsstudienga	${ m ang} { m GyGe/BK}$	
Hilgert	Geometrie	30
N.N.	Mathematik am Computer	??
Remus	Seminar: Geometrie	31

CAN YOU FIGURE OUT THESE MOVIE TITLES?







Fe X Fe

$$\frac{\partial u}{\partial t} - \alpha \nabla^2 u = 0$$

$$e^{i\pi} + 1 = 0$$
and
$$6 6 6$$

CREATED BY SPIKEDMATH.COM

spikedmath.com © 2011

Mathematik 4.2

Lineare Algebra 2

Dozent: Lau

Büro: D1.227

Inhaltsangabe

Die Vorlesung setzt die Lineare Algebra 1 fort.

Behandelt werden unter anderem Normalformen von Endomorphismen, Bilinear- und Sesquilinearformen.

Literaturangaben

Siehe Homepage

Verschiedenes

vorausgesetzte Kenntnisse: Hörerkreis:

Bachelor Mathematik, Bachelor Technoma-

thematik, Bachelor Informatik

Homepage:

Lineare Algebra 1

nächster Wiederholungstermin:

nächstes Jahr

http://www2.math.uni-paderborn.de/ people/~eike-lau

Elementare algebraische Geometrie

Dozent: Hilgert

Büro: D2.234

Sprechstunde: nach Vereinbarung

Inhaltsangabe

Es handelt sich um eine Veranstaltung des Moduls Geometrie 2.1.2.

Inhalt: Nullstellengebilde von Polynomen, Hilbertscher Nullstellensatz, Affine Varietäten, Graduierte Ringe, Projektie Varietäten, Reguläre Abbildungen, Rationale Abbildungen, Schnittmultiplizitäten mit Geraden.

Literaturangaben

• Miles Reid: Undergraduate Algebraic Geometry, London Mathematical Society Student Texts, Cambridge UP, 1989

Weitere Literaturangaben werden auf der Hompage der Vorlesung bekannt gegeben.

Verschiedenes

Scheinerwerb:

Klausur

vorausgesetzte Kenntnisse:

Lineare Algebra (incl. Polynome und Determinanten), Analysis 1+2.

Nützlich, aber nicht zwingend erforderlich, sind Kenntnisse der elementaren Ringtheorie, wie sie z.B. in der Vorlesung meiner Vorlesung "Algebra" vom WS 2011/2012 vermittelt wurden (ein Skript dazu findet man unter http://www2.math.uni-paderborn.de/ags/ag-hilgert/

 ${\tt lehre/winter-20112012/algebra.html}).$

qualifizierender Studiennachweis:

Klausur

Homepage:

http://www2.math.uni-paderborn.de/ags/ag-hilgert/lehre/sommer-2012/geometrie-212.html

Mathematisches Praktikum

Dozent: Dellnitz, Ober-Blöbaum, Walther

Büro: D3.210, D3.201, A3.232

Sprechstunde: nach Vereinbarung

Inhaltsangabe

In dieser Veranstaltung sollen die Studierenden mathematische Lösungsstrategien und Verfahren (insbesondere die in Numerik 1 erlernten Methoden und Werkzeuge) auf praxisbezogene Problemstellungen anwenden.

In mehreren Kleingruppen werden zuvor definierte Projekte selbstständig bearbeitet. Für die jeweiligen Problemstellungen sollen Lösungsstrategien entworfen, implementiert und angewendet werden. Zum Teil werden die Problemstellungen in Kooperation mit Industriepartnern formuliert, so dass ein wechselseitiger Informationsaustausch während der Projektdauer stattfinden wird. Die erfolgreiche Teilnahme am Mathematischen Praktikum wird anhand der aktiven Mitarbeit in den Projekten, einer Abschlusspräsentation (am Ende der Vorlesungszeit oder zu Beginn der vorlesungsfreien Zeit) der erzielten Ergebnisse sowie einer schriftlichen Ausarbeitung beurteilt.

Literaturangaben

wird noch bekannt gegeben.

Verschiedenes

Hörerkreis:

Bachelor Mathematik, Bachelor Technomathematik

vorausgesetzte Kenntnisse:

Mathematische Pflichtmodule der ersten zwei Semester, Numerik 1, insbesondere Programmierkenntnisse

Homepage:

http://www2.math.uni-paderborn.de/people/sinaob/teaching.html

Prüfungsgebiet:

Aufbaumodul

nächster Wiederholungstermin:

SS 2013

Algebraische Topologie

Dozent: Kaniuth

Büro: D 1.225

Inhaltsangabe

Mengentheoretische Topologie:

Kompakte und lokalkompakte Räume, Kompaktifizierung, Sätze von Urysohn und Tietze, Stone-Weierstrass-Sätze.

Algebraische Topologie:

Homotopie und Fundamentalgruppe, Fundamentalgruppen der Sphären, Anwendungen auf die Ebene, Satz von Seifert und van Kampen, Überlagerungen, Satz von Mayer-Vietoris

Literaturangaben

Literatur wird zu Semesterbeginn angegeben

Verschiedenes

Hörerkreis:

Bachelor, Master, GyGe

Scheinerwerb:

Klausur oder mündliche Prüfung

vorausgesetzte Kenntnisse:

Grundvorlesungen in der Mathematik (Analysis, Lineare Algebra, etwas Gruppentheorie)

Prüfungsgebiet:

Reine Mathematik, 6./8. Semester

qualifizierender Studiennachweis:

wie Scheinerwerb

nächster Wiederholungstermin:

SS 2013

Algorithmische Diskrete Mathematik 2: Kombinatorik

Dozent: Bürgisser

Büro: D3.227

Sprechstunde: nach Vereinbarung

Inhaltsangabe

In der Kombinatorik beschäftigt man sich systematisch mit dem Studium endlicher diskreter Strukturen.

Kombinatorische Probleme treten in vielen Bereichen der Mathematik auf, z.B. in der Algebra und

Wahrscheinlichkeitstheorie, und es besteht eine enge Wechselwirkung zur kombinatorischen Optimierung

und zur theoretischen Informatik.

Stichworte zum Inhalt sind: Der Heiratssatz und seine Verwandten, Flüsse und Zusammenhang, Extremalprobleme, Zufallsgraphen, Irrfahrten, Eigenwerte, Expandergraphen

Literaturangaben

- K. Jacobs: Einführung in die Kombinatorik, de Gruyter 1983
- N. Alon, J.H. Spencer, P. Erdös: The probabilistic method, Wiley 1992
- B. Bollobas: Modern Graph Theory, Springer 1998
- R. Diestel: Graphentheorie, Springer 1996
- S. Hoory, N. Linial, A. Wigderson: Expander graphs and their applications, Bull. Amer. Math. Soc. (N.S.) 43 (2006), no. 4, 439-561

Verschiedenes

Hörerkreis:

Bachelor Mathematik: Modul 3.3.1

qualifizierender Studiennachweis:

Mündliche Prüfung oder Klausur

Scheinerwerb:

Mündliche Prüfung oder Klausur

vorausgesetzte Kenntnisse:

Lineare Algebra und Analysis. Grundkenntnisse der Wahrscheinlichkeitstheorie sind nützlich für gewisse Teile der Vorlesung.

Homepage:

http://math-www.uni-paderborn.de/
agpb/

Mannigfaltigkeiten

Dozent: Kaiser

Büro: D2.210

Sprechstunde: Di, 13-14 Uhr

Inhaltsangabe

Aus dem Inhalt:

- Mannigfaltigkeiten
- Tangentialbündel
- Vektorfelder
- Lie-Gruppen und Lie-Algebren

Literaturangaben

- do Carmo : Riemannian geometry , Birkhäuser 1992
- Hilgert, Neeb : Lie-Gruppen und Lie-Algebren , Vieweg 1991
- Kühnel: Matrizen und Lie-Gruppen, Vieweg + Teubner 2011

Verschiedenes

Hörerkreis:

Bachelor Mathematik

vorausgesetzte Kenntnisse:

Lineare Algebra 1,2

Analysis 1,2

Reelle Analysis (empfohlen)

nützliche Parallelveranstaltungen:

Lie-Algebren und ihre Darstellungen

Liealgebren und ihre Darstellungen

Dozent: Glöckner

Büro: D2.228

Inhaltsangabe

Eine Liealgebra ist ein endlichdimensionaler Vektorraum L, zusammen mit einer bilinearen Abbildung $L \times L \to L$, $(x,y) \mapsto [x,y]$ derart, dass [x,x] = 0 und [x,[y,z]] + [y,[z,x]] + [z,[x,y]] = 0. Ein typisches Beispiel ist die Algebra $M_n(C)$ der komplexen $(n \times n)$ -Matrizen, mit der Kommutatorklammer [A,B] := AB - BA von Matrizen.

In der Vorlesung wird eine allgemeine Einführung in die Theorie der Liealgebren gegeben. Wir werden sehen, dass sich allgemeine Liealgebren stets in zwei Bestandteile zerlegen lassen: Eine "auflösbare" Liealgebra und eine "halbeinfache" (direkte Summe von einfachen). Die Klassifikation der einfachen komplexen Liealgebren vorgestellt und Grundzüge der Darstellungstheorie von Liealgebren.

Literaturangaben

bookHumphreysIntroduction to Lie algebras and representation theorySpringer-Verlag, 1980

Verschiedenes

Hörerkreis:

Master Mathematik, Anerkennung für Bachelor möglich

Prüfungsgebiet:

4.1.1 für Master; Anerkennung als 3.1.3 für Bachelor möglich

Optimierung im Funktionenraum

Dozent: Walther

Büro: A3.232

Sprechstunde: einfach vorbeischauen

Inhaltsangabe

In fast allen technischen Anwendungsproblemen ist nach der Modellierung und Simulation der zugrundeliegenden Aufgabenstellung deren Optimierung das eigentliche und aus Sicht der Anwender häufig das wichtigste Ziel. Erlaubt man in der Zielfunktion und in den ggf. vorhandenen Nebenbedingungen Nichtlinearitäten, so wird typischerweise keine Konvexität, aber Differenzierbarkeit aller vorkommenden Funktionen vorausgesetzt. Dies hat zur Folge, dass man bei der Anwendung von Lösungsalgorithmen nur erwarten kann, lokale Optimalstellen zu erhalten, eventuell auch nur stationäre Punkte.

Bei der Entwicklung und Analyse entsprechender Optimierungsalgorithmen kann man entweder eine endlich-dimensionale Formulierung oder eine Formulierung in einem Funktionenraum wählen. In dieser Vorlesung werden Optimalitätsbedingungen und Optimierungsverfahren im Funktionenraum für unbeschränkte und beschränkte Optimierungsaufgaben vorgestellt und diskutiert. Es wird ebenfalls auf die daraus resultierenden Konsequenzen für die endlich-dimensionale Formulierung eingegangen.

Literaturangaben

• Johannes Jahn: Introduction to the Theory of Nonlinear Optimization

Verschiedenes

Hörerkreis:

Mathematiker und Technomathematiker im Master, kann auch als Modul im Bachelor anerkannt werden

vorausgesetzte Kenntnisse:

Lineare Algebra I + II, Analysis I+II

Scheinerwerb:

aktive Übungsteilnahme und mündliche Prüfung

Homepage:

http://www2.math.uni-paderborn. de/people/andrea-walther/ lehrveranstaltungen.html

Spektraltheorie von Differentialoperatoren

Dozent: Hansen

Büro: D1.211

Sprechstunde: siehe Webseite

Inhaltsangabe

Selbstadjungierte Rand- und Eigenwertprobleme für gewöhnliche und partielle Differentialgleichungen; Spektralsatz für unbeschränkte, selbstadjungierte Operatoren; Sturm-Liouville-Probleme; Spektraldarstellungen bei kontinuierlichen Spektrum (Elemente der Streutheorie); Dirichletproblem für den Helmholtzoperator; Schrödinger-Operator

Verschiedenes

Hörerkreis:

Master (Techno-)Mathematik

vorausgesetzte Kenntnisse:

Funktionalanalysis I; Spektralsatz für kompakte, selbstadjungierte Operatoren; Lebesgueintegral; Grundkenntnisse über (gewöhnliche) Differentialgleichungen; Funktionentheorie

nächster Wiederholungstermin:

k.A.

Homepage:

http://www.math.upb.de/~soenke/2012s/SpekDiffOp/index.html

Prüfungsgebiet:

Analysis

weiterführende Veranstaltungen:

Seminar im Winter 2012/13

Vorbesprechung:

In der ersten Vorlesung

Wissenschaftliches Rechnen II

Dozent: Kunoth

Büro: A3.215

Sprechstunde: Mo, 13-14 Uhr

Inhaltsangabe

Wissenschaftliches Rechnen II: Einführung in die Numerik partieller Differentialgleichungen Wissenschaftliches Rechnen ist ein modernes Gebiet der Angewandten Mathematik, das sich mit der effizienten numerischen Lösung komplexer, meist durch partielle Differentialgleichungen beschriebener Prozesse auf Hochleistungsrechnern befasst.

Im Wissenschaftlichen Rechnen wird sukzessive wie folgt vorgegangen: nach I. mathematischphysikalischer Modellierung eines dynamischen Prozesses und II.

theoretische Untersuchungen folgt als Punkt III die Numerische Simulation. Diese beinhaltet die Numerische Analysis einer Lösungsmethode und die Visualisierung der Lösung; dabei wird besonders auf die Berechnung einer angenäherten Lösung mittels effizienter Algorithmen Wert gelegt. Die numerischen Ergebnisse sollten schliesslich durch Realdaten validiert werden, und es wird gegebenenfalls mit einer Verbesserung der Modellierung in I. fortgefahren.

In diesem Semester werden nach diesem Programm dynamische Prozesse betrachtet, die durch partielle Differentialgleichungen (PDEs) beschrieben werden, speziell Elastizitäts- und Strömungsprobleme. Nach einer Einführung und einer Klassifikation der Problemklassen werden wir speziell auf die schwache Formulierung stationärer PDEs, deren Diskretisierung durch Finite Elemente und die anschliessende effiziente Lösung der entstehenden linearen Gleichungssysteme hinarbeiten. Ersteres erfordert u.a. eine Einführung in Sobolevräume und eine Anwendung moderner Funktionalanalysis.

Literatur wird in der Vorlesung bekanntgegeben.

Termin: Mo, Do 11-13 in A3.301

Verschiedenes

Hörerkreis:

Masterstudenten der Mathematik, Informatik und verwandter Fachrichtungen

Scheinerwerb:

Werden in der Vorlesung bekanntgegeben

weiterführende Veranstaltungen:

Wissenschaftliches Rechnen III-IV

Prüfungsgebiet:

Numerik/Wissenschaftliches Rechnen

vorausgesetzte Kenntnisse:

Abgeschlossenes Grundstudium; Numerik I Der Besuch der Vorlesung Numerik II/Wissenschaftliches Rechnen I wird nicht notwendig vorausgesetzt.

Homepage:

http://www2.math.uni-paderborn.de/ags/kunoth/lehre.html

Seminar Zahlentheorie

Dozent: Klüners

Büro: D3.218

Sprechstunde: n.V.

Inhaltsangabe

Vorträge von Studierenden über ausgewählte Themen aus der Zahlentheorie.

Verschiedenes

Hörerkreis:

Bachelor Mathematik und Technomathematik.

vorausgesetzte Kenntnisse:

Algebra und / oder Algebraische Zahlentheorie.

Homepage:

http://www2.math.uni-paderborn.de/people/juergen-klueners.html

Scheinerwerb:

Vortrag mit schriftlicher Ausarbeitung.

Vorbesprechung:

Es findet eine Vorbesprechung Ende Januar / Anf. Februar 2012 statt. Nähere Infos folgen auf der Homepage.

Seminar über gewöhnliche Differentialgleichungen

Dozent: Hansen

Büro: D1.211

Sprechstunde: siehe Webseite

Inhaltsangabe

Vorträge über ausgewählte Themen aus der Theorie gewöhnlicher Differentialgleichungen

Verschiedenes

Hörerkreis:

Bachelor (Techno-)Mathematik

Scheinerwerb:

Vortrag mit schriftlicher Ausarbeitung

nächster Wiederholungstermin:

k.A.

Homepage:

http://www.math.upb.de/~soenke/

2012s/SemDgl/index.html

Prüfungsgebiet:

ab dem 4. Studiensemester

vorausgesetzte Kenntnisse:

Grundkenntnisse über gewöhnliche Differentialgleichungen: Existenz und Eindeutigkeit

für das Anfangswertproblem

Vorbesprechung:

siehe Webseite

Lineare Algebra für Informatiker

Dozent: Klüners

Büro: D3.218

Sprechstunde: n.V.

Inhaltsangabe

Diese Vorlesung ist eine Einführung in elementare Konzepte der Mathematik, die in verschiedensten Bereichen der Informatik benötigt werden. Es ist die Weiterführung der Vorlesung Analysis für Informatiker I aus dem Wintersemester.

Schwerpunkt der Vorlesung im Sommersemester ist die Lineare Algebra.

Detaillierte Inhalte der Vorlesung werden auf der Homepage bekannt gegeben.

Die angegebene Literatur dient als erste Richtschnur. Genaue Angaben folgen in der Vorlesung.

Literaturangaben

- D. Hachenberger: Mathematik für Informatiker, Pearson Studium 2005
- D. Hauck, W. Küchlin, M. Wolff: Mathematik für Informatik und Bioinformatik, Springer 2005

Verschiedenes

Hörerkreis:

InformatikstudentInnen im 2. Semester

vorausgesetzte Kenntnisse:

Analysis für Informatiker I

nächster Wiederholungstermin:

SoSe 2013

Scheinerwerb:

Wird in der Vorlesung bekannt gegeben.

weiterführende Veranstaltungen:

Stochastik für Informatiker III im WiSe 2012/13

Homepage:

http://www2.math.uni-paderborn.de/people/juergen-klueners.html

Mathematik für Maschinenbauer II

Dozent: Dellnitz

Büro: D3.210

Inhaltsangabe

Lineare Algebra, Differential- und Integralrechnung mehrerer reeller Variablen

Literaturangaben

Burg, Haf, Wille. Höhere Mathematik für Ingenieure, Band I und II

Verschiedenes

Hörerkreis: vorausgesetzte Kenntnisse:

Bachelor Mathematik für Maschinenbauer I

nächster Wiederholungstermin:

Sommersemester 2013

Elemente der Arithmetik (für das Lehramt "Grundschule")

Dozent: Prof. Dr. Peter Bender

Büro: D2.247

Sprechstunde: Dienstag, 18.15 - 19.00Uhr

Inhaltsangabe

 $V2+\ddot{U}2$, Pflicht im Bachelor-Studiengang "Mathematik für die Grundschule", geöffnet auch für das DGS in Mathematik gemäß LPO 2003 für den Studiengang GHRG, und zwar für beide Schwerpunkte "G" und "HRG"

Vorlesung: Mittwoch, 16-18 Uhr

Übung: donnerstags mehrere Termine **Beginn:** Mittwoch, 04.04.2011, 16.15 Uhr

Diese Veranstaltung gehört in das Modul "Arithmetik" des Bachelor-Studiengangs "Mathematik für die Grundschule". Es ist eine Studienleistung in Form einer Klausur zu erbringen, voraussichtlich kurz nach Ende der Vorlesungszeit. Die DGS-Studierenden können in dieser Klausur einen Übungsschein oder einen Qualifizierten Teilnahmeschein als eine von drei Leistungen für den Leistungsnachweis erwerben. Wer an dieser Klausur teilgenommen hat und die Studienleistung nicht erbracht hat bzw. keinen ÜS oder QTS erreicht hat, kann an einer Wiederholungsklausur teilnehmen, voraussichtlich Ende September.

Literaturangaben

Es wird ein Skript ausgegeben.

Verschiedenes

Prüfungsgebiet: Scheinerwerb: GHRG Mathematik im Grundstudium Klausur

Vorausgesetzte Kenntnisse: nächster Wiederholungstermin:

Abitur voraussichtlich SoSe 2013

Grundwissen Geometrie

Dozent: Prof. Dr. Peter Bender

Büro: D2.247

Sprechstunde: Dienstag, 18.15-19.00Uhr

Inhaltsangabe

V2+Ü1, Pflicht für das Didaktische Grundlagenstudium Mathematik LPO 2003

Vorlesung: Donnerstag, 16 Uhr

Übung: mittwochs mehrere Termine Beginn: 12.04.2012, 16.15 Uhr

Diese Veranstaltung gehört in das fachwissenschaftliche Modul des Didaktischen Grundlagenstudiums Mathematik, und es kann ein Übungsschein oder ein Qualifizierter Teilnahmeschein als eine von drei Leistungen für den Leistungsnachweis durch eine Klausur erworben werden, voraussichtlich kurz nach Ende der Vorlesungszeit. Wer an dieser Klausur teilgenommen hat und keinen ÜS oder QTS erreicht hat, kann an einer Wiederholungsklausur teilnehmen, voraussichtlich Ende September.

Literaturangaben

Es wird ein Skript ausgegeben.

Verschiedenes

Prüfungsgebiet: Scheinerwerb:

Didaktisches Grundlagenstudium Klausur

Mathematik

Vorausgesetzte Kenntnisse: nächster Wiederholungstermin:

Abitur voraussichtlich SoSe 2013

Zahlentheorie

Dozent: Nelius Büro: D2.210

Sprechstunde: Do, 13.15-13.45 Uhr

Inhaltsangabe

Diese Veranstaltung gehört zum Haupstudium und baut auf der Vorlesung "Arithmetik und Zahlentheorie" aus dem Grundstudium auf.

Zu Beginn der Vorlesung werden jedoch die grundlegenden Begriffsbildungen und Ergebnisse noch einmal kurz wiederholt.

Themen dieser Veranstaltung werden sein:

- 1. Das Rechnen mit Kongruenzen
- 2. Die Euler´sche Funktion
- 3. Die Sätze von Fermat und Euler
- 4. Testverfahren für die Primzahleigenschaft
- 5. Pseudo-Primzahlen
- 6. Mersenne sche Primzahlen, vollkommene Zahlen
- 7. Fermat´sche Primzahlen
- 8. Befreundete Zahlen
- 9. Diophantische Gleichungen
- 10. Ewiger Kalender
- 11. Magische Quadrate
- 12. Kryptographie

Literaturangaben

- Freund, Helmut : Elemente der Zahlentheorie
- Glatfeld, Martin: Teilbarkeit
- Padberg, Friedhelm: Elementare Zahlentheorie
- Scheid, Harald : Elemente der Arithmetik und Algebra

Verschiedenes

Hörerkreis:

Hauptstudium GHRGe

Scheinerwerb:

Aktive Mitarbeit in der Übungsgruppe, Bearbeitung von Übungsaufgaben, Klausur

vorausgesetzte Kenntnisse:

Vorlesung "Arithmetik und Zahlentheorie"

nächster Wiederholungstermin:

Homepage:

math-www.uni-paderborn.de/~chris

Big Tests - Lektüreseminar zu mathematischen Large-Scale-Tests

Dozent: Meyerhöfer

Büro: D2.241

Sprechstunde: jederzeit

Inhaltsangabe

In diesem Seminar wollen wir uns in die Theorie und Praxis von "Großtests" wie PISA, TIMSS, VERA oder IGLU einlesen: Ich bin gebeten worden, für die Reihe "Praxiswissen Bildung" ein Buch über solche "Big Tests" zu schreiben. In diesem Lektüreseminar werden wir Texte lesen, die uns das Thema erschließen, und wir werden erste Entwürfe von Kapiteln für das Buch diskutieren. Themen werden sein:

- Geschichte des Testens
- Testitem als Ort der Geltungserzeugung der Testaussage
- PISA, TIMSS, VERA, Test zu den Bildungsstandards
- Operationalisierung von Bildungskonstrukten, Von Kompetenzen zur Kompetenzorientierung
- Statistik: Was macht man mit hunderttausend Daten?
- Großtests als Industriezweig
- Folgen von Großtests im Bildungswesen

Bitte nehmen Sie nur teil, wenn Sie bereit sind, große Mengen an Texten zu lesen und zu diskutieren. Das Seminar wird als Blockseminar mit fünf bis sechs Terminen stattfinden. Die ersten Termine sind im September und Anfang Oktober 2012, die anderen Termine finden in der Vorlesungszeit des Wintersemesters statt. Die genaue Terminabspache erfolgt nach Ihrer Anmeldung per Mailliste.

Literaturangaben

Thomas Jahnke, Wolfram Meyerhöfer (Hrsg.): PISA & Co. - Kritik eines Programms. 2., veränderte Auflage, Franzbecker Verlag, Hildesheim 2007

Wolfram Meyerhöfer: Tests im Test. Das Beispiel PISA. Verlag Barbara Budrich, Opladen 2005.

Verschiedenes

qualifizierender Studiennachweis:

Moderation einer Textdiskussion, Seminararbeit

Der Jenaer Rechentest (JRT) für Klasse 1 in der diagnostischen Anwendung (Projektseminar)

Dozent: Meyerhöfer

Büro: D2.241

Sprechstunde: jederzeit

Inhaltsangabe

Kern dieses Projektseminars ist es, in den ersten Klassen einer Schule (wahrscheinlich in Elsen) einen qualitativen Test (Jenaer Rechentest Klasse 1/2) durchzuführen und auszuwerten. Sie erhalten eine Einführung in die Testkonstruktion und in die dem Test zugrunde liegende Auffassung vom mathematischen Lernprozess.

Sie hospitieren zunächst bei der Testdurchführung, Schritt für Schritt führen Sie den Test dann selbständiger durch. Im Anschluss an die Testdurchführung analysieren wir das mathematische Verständnis des Schülers bzw. der Schülerin und erarbeiten im Bedarfsfall Zielstellung und möglichst auch praktische Optionen für die Förderung.

Achtung: Es gibt weniger als 15 Seminarsitzungen, aber dafür müssen Sie mehrmals zum Testen an die Schule (jeweils den ganzen Vormittag).

Literaturangaben

Michael Gaidoschik: Rechenschwäche vorbeugen. 1. Schuljahr: Vom Zählen zum Rechnen: Das Handbuch für LehrerInnen und Eltern von Michael Gaidoschik (Broschiert &# 8208; April 2007)

Verschiedenes

Scheinerwerb:

vorausgesetzte Kenntnisse:

Didaktik der Arithmetik 1 - 3

Teilnahme; Projektbericht über einen Schü-

ler

Geometrie

Dozent: Hilgert

Büro: D2.234

Sprechstunde: nach Vereinbarung

Inhaltsangabe

Es handelt sich um eine Veranstaltung zum Basismodul Geometrie (Ba3) im Lehramtsstudium LGG.

Inhalt: Symmetrische Bilinearformen und Skalarprodukte, axiomatische euklidische Geometrie, Spiegelungsgeometrie, Kegelschnitte

Literaturangaben

Literatur wird auf der homepage bekannt gegeben

Verschiedenes

Scheinerwerb: qualifizierender Studiennachweis:

Klausur Klausur

vorausgesetzte Kenntnisse: nützliche Parallelveranstaltungen:

Lineare Algebra 1 Lineare Algebra 2

Homepage:

http://www2.math.uni-paderborn.de/ags/ag-hilgert/lehre/sommer-2012/

basismodul-geometrie.html

Seminar "Geometrie" für Lehramtskandidaten

Dozent: Remus

Büro: D1.243

Sprechstunde: Mi, 13-13.30 Uhr

 ${\bf Inhalts angabe}$

Erfolgt in der Vorbesprechung

Verschiedenes

Hörerkreis: Prüfungsgebiet:
Gy/Ge/BK Reine Mathematik

Scheinerwerb: qualifizierender Studiennachweis:
Seminarvortrag mit Ausarbeitung
Seminarvortrag mit Ausarbeitung

vorausgesetzte Kenntnisse: Vorbesprechung:

Pflichtvorlesungen bis zum Zwischenexamen Mi, 1. Februar 2012, 16.15 Uhr vor D1.243

5 Raum für Notizen

6 Ergebnisse der Veranstaltungskritik

Hallo,

üblicherweise findet Ihr hier an dieser Stelle eine Übersicht über die Ergebnisse der Veranstaltungskritik.

Diese werden, aus datenschutzrechtlichen Gründen, nur in der gedruckten Fassung des V-Koms veröffentlich, diese könnt Ihr euch jeder Zeit bei uns im Fachschaftsbüro E1.311 ansehen.

Stundenplan

Uhrzeit	Montag	Dienstag	Mittwoch	Donnerstag	Freitag
7 - 8					
S - S					
9 - 10					
10 - 11					
11 - 12					
12 - 13					
13 - 14					
14 - 15					
15 - 16					
16 - 17					
17 - 18					
18 - 19					
19 - 20					