Department of Mathematics

@ FernUniversitat in Hagen and Computer Science

Extending a shared workspace environment
with context-based adaptations

Dirk Veiel, Jorg M. Haake, Stephan Lukosch 2009

Research Report 3/2009
ISSN 1865-3944

© 2009 Dirk Veiel, J6rg M. Haake, Stephan Lukosch

Editor: Dean of the Department of Mathematics and Computer Science

Type and Print: | FernUniversitat in Hagen

Distribution: http://deposit.fernuni-hagen.de/view/departments/miresearchreports.html

Extending a shared workspace environment with context-

based adaptations
Dirk Veiel, Jorg M. Haake®, Stephan Lukosch?

1Department of Mathematics and Computer Science, FernUniversitat in Hagen,

58084 Hagen, Germany
{dirk.veiel, joerg.haake}@fernuni-hagen.de

’Faculty of Technology, Policy, and Management, Delft University of Technology,
PO box 5015, 2600 GA Delft, The Netherlands
s.g-lukosch@tudelft.nl

Abstract. Nowadays, many teams collaborate via shared workspace environment which
offer a suite of services supporting the group interaction. The needs for an effective
group interaction vary over time and are dependent of the current problem and group
goal. An ideal shared workspace environment has to take this into account and offer
means for tailoring the offered the services to meet the current needs of the
collaborating team. Current approaches barely offer means for manual tailoring which is
difficult. Context-based adaptation mechanisms can be used to support teams with
shared workspace environments best meeting their needs. In this article, we propose a
service-oriented architecture of shared workspaces, analyze this architecture to identify
adaptation possibilities, introduce the Context and Adaptation Framework (CAF) as a
means to extend shared workspace environment for context-based adaptations and
validate our approach by reporting on our prototype implementation.

Keywords: Shared workspaces, adaptation, group context

1 Introduction

In today’s global economy, many teams use shared workspace environments providing problem-
specific and team-specific tools and artifacts. However, the types of artifacts and tools currently
needed may vary over time, task, and phase of collaboration. Thus, shared workspace environments
must deal with changing tool sets consisting of single user and cooperative tools, and provide an
appropriate integration approach. Team work often leads to changing requirements on the
collaboration environment, which must be reflected in its configuration (e.g., available artifacts,
sessions, tools).

In order to accommodate such changing needs, the shared workspace environment needs to be
adapted. However, such adaptations may be difficult (What is a meaningful adaptation in the current
situation? How can | perform such adaptation in the current configuration of the shared workspace?)
and cause overhead. Thus, the collaboration environment should make adaptations as easy as
possible. Furthermore, changing collaboration situations may require adaptations of multiple tools

and artifacts. E.g., if authors begin to share a document, the editor should be augmented with
awareness and communication functionality to support emerging collaboration.

Current approaches support manual tailoring of shared workspaces (e.g. in CURE [12, 13], BSCW [3])
either in terms of artifacts and workspace structure or they focus on adaptation of single tools to the
needs of the individual user or, in some cases, to the needs of a group. However, there is no support
for adapting a shared workspace environment to the needs of a team in terms of, firstly, a changing
set of collaboratively used tools and artifacts, and, secondly, supporting complex adaptations across
several tools and artifacts.

We propose an extended shared workspace environment supporting context-based adaptation,
which helps to minimize adaptation overhead, and which supports adaptations affecting multiple
tools to better match the users’ current needs. At the core of our approach is the Context and
Adaptation Framework (CAF), which facilitates the conversion of tools into context-adaptive tools
providing the necessary interfaces to our run-time adaptation environment, and a run-time
environment executing adaptation rules, which lead to modified workspace configuration and tool
behavior.

In the next section, we briefly examine related work. In section 3, we propose a service-oriented
architecture of shared workspaces and analyze possible points of adaptation. Section 4 presents our
approach of specifying adaptation behavior as rules, introduces our run-time adaptation engine, and
presents the Context and Adaptation Framework (CAF) as a means to make tools ready for context-
based adaptation. Section 5 briefly presents our prototype implementation, which is the basis for the
validation results discussed in section 6.

2 Related Work

We start this section by reviewing relevant shared work environments and discuss how these
systems deal with possible adaptations. After that, we take a look at context-adaptive systems in
general. We review whether the taken approaches are suitable to support context-adaptive
collaboration in shared work environments.

BSCW [3] and CURE [12, 13] are web-based shared work environments that offer a variety of
collaboration services, e.g. communication and document sharing. CHIPS [24] is a cooperative
hypermedia system with integrated process support. TeamSpace [10] offers support for virtual
meetings and integrates synchronous and asynchronous team interaction into a task-oriented
collaboration space. BRIDGE [8] is a collaboratory that focuses on supporting creative processes and
as such integrates a variety of collaboration services. All of the above examples focus on a specific
application domain and only offer a fixed set of services to the user. Some of them, e.g. CHIPS or
CURE are highly tailorable, but they do not automatically adapt their offered functionality to improve
the collaboration within a team.

The most prominent examples for context-based adaptation focus on single users and consider
location as most relevant context information (e.g., [1, 14, 21]) or focus on learner profiles (cf. ITS).
Compared to single-user ITS, COLER [6] provides a software coach for improving collaboration. CoBrA

[4, 5] is an agent-based architecture that uses shared context knowledge represented as a ontology
to adapt service agents according to a user’s context. Gross and Prinz [11] introduce a context model
and a collaborative system that supports context-adaptive awareness. The context model consists of
events, artifacts, locations, etc. The main restrictions of their approach are that the context
representation is only used to update and visualize awareness information and that only one
cooperative application can be used. Edwards [7] explores the space between two different context
understandings: in CSCW research, people are assumed to be the consumer of context information;
the ubiquitous computing community has the opinion that systems are the consumers of context
information. Intermezzo [7] tries to fill this gap through the creation of new high-level services.
However, Intermezzo does not offer an approach to integrate and use these services within a shared
workspace. Rittenbruch describes an approach to the representation of context of awareness
information but real world examples are missing [20]. Fuchs [9] describes an integrated synchronous
and asynchronous notification service for awareness information called AREA, but again AREA uses
the context representation only for awareness information. Ahn et al. [2] introduce a knowledge
context model. Based on this context model they implement the virtual workgroup support system
(VWSS). However, VWSS does not focus on improving the interaction of the users by adapting the
workspace functionalitiy. One drawback of their solution is that their knowledge context model has
to be extended for other application domains. The Semantic Workspace Organizer (SWO) [19] is an
extension of BSCW. It analyzes user activities and textual documents inside the shared workspace to
suggest appropriate locations for new document upload and for document search. The ECOSPACE
project aims at providing an integrated collaborative work environment [17, 18]. For that purpose,
ECOSPACE uses a service-oriented architecture and provides a series of collaboration services for
orchestration and choreography. The orchestration and choreography is based on an ontology which
still has to be described [17, 23].

The above approaches focus on adaptations which are used in specific domains, e.g., single-user
systems or ITS, or on sub-domains in the field of CSCW, e.g. awareness or knowledge management.
Adaptation based on group context and for multiple users of a cooperative system is intended only
by ECOSPACE, but the required context model is still an open issue. Similarly, only ECOSPACE
supports the integration of different collaboration services within the same shared work
environment. In summary, current approaches do not provide a sufficient context model for adapting
the collaboration in shared workspaces and do not use the context information to adapt the
interaction of the users.

3 Possible adaptations in service-oriented shared workspaces

A collaborative application typically uses the model-view-controller paradigm [15] and can be based
on a client-server architecture. Nowadays, service-oriented client-server architectures are used to
create collaborative services to be consumed by collaborative applications (i.e. clients). In Figure 1
we address these kinds of architectures and split them up into four layers: Ul Layer, Logic Layer,
Services Layer, and the Model Layer. The view and controller parts of the tools (Application; Ul,
Application, Ul) are usually running on the client side (addressed by the Ul Layer). The Logic Layer
consists of the application specific business logic (Application; Logic, Application, Logic) that can be
built by using different services from the underlying Services Layer. The Services Layer contains

3

Application Services as well as Collaboration Services and is used by the above layer to accesses the
artifacts (Artifact;, Artifact, and Artifact;) represented in the Model Layer. If more than one
application (consisting of Application Ul and Application Logic) is present, we talk about a shared
workspace environment.

Application Ul

‘ Application Ul \ ‘ Application, Ul \

Ul Layer

© — ;

= | Application Logic

—

% ‘ Application, Logic \ ‘ Application, Logic \
S

o

>‘ .

@ | Services

(0

g ‘ Application Services \ ‘ Collaboration Services \
o)

w

Shared Model

| Artifact, \ ‘ Artifacts I ‘ Artifacts \

Figure 1 Service-oriented architecture of a shared workspace environment

Model Layer

We use this architecture of service-oriented shared workspaces to examine possible points for
adaptation, which may be used to adapt the behavior of such workspaces at run-time. Following the
layers one can distinguish four areas of adaptation in this architecture:

1. Modification of the application user interface: Usually, the Ul can be modeled as a hierarchy
of visual components (views and controllers). Thus, the following manipulations can be used
for adaptation purposes: (i) add, remove, or replace entire visual components in the
hierarchy (e.g., replace a simple user list widget by a more sophisticated radar view), and (ii)
replace individual views or controllers (e.g., change the supported interaction style by
replacing the controller of a visual component).

2. Modlification of application logic: Here, we may change the internal structure of the
application logic by adding, removing, or replacing application services used by the
application, or by changing the execution structure of the application services. In addition,
entire new applications (i.e. application logic) could be added or removed in this layer.

3. Moadification of services: In this layer, application services as well as collaboration services
can be added or removed (e.g., by adding an audio-based communication channel or
removing instant messaging functionality from the current workspace). This impacts the way
users may communicate, coordinate and share objects. In addition, running services could be
replaced (e.g., replacing an audio-based communication channel by a text-based one).

4. Modification of shared model: Finally, the shared model layer could be adapted by
manipulating artifacts and sessions. Artifacts respectively documents could be created or
deleted and their attributes could be manipulated. Sessions could be created or closed, and
members, tools, or artifacts could be added to or removed from a session. In addition,
attributes of sessions may be manipulated.

In the following, we use the adaptation possibilities identified above to firstly define an architecture
for specifying and implementing such adaptations of shared workspaces and secondly a framework
supporting developers in extending applications with adaptation functionality (i.e. providing the
necessary interfaces for interaction with our proposed adaptation architecture).

4 Adaptation in service-oriented collaborative applications

4.1 Specification of adaptation behavior

In the following, we briefly introduce a context model for defining conditions for adaptation in our
Context and Adaptation Framework (CAF) [16]. This context model addresses scenarios in which
several actors collaborate to achieve a shared goal and thereby captures basic concepts of co-located
and distributed collaboration. Still, the context model is completely open for extensions that cover
further collaboration aspects.

Figure 2 summarizes our context model and shows the basic context classes! and their relations. An
Application implements the model-view-controller (MVC) paradigm [15] and consists of Views and
Controllers components. Views and Controllers use Services to access the Artifacts. Artifacts use
Services to notify Views and Controllers about changes. Each Application is part of a User Workspace
and is created by an Application Factory which specifies what Applications are available within a
workspace and how these can be initialized. Each Actor has a User Workspace and belongs to at least
one Team. The User Workspace defines the Roles of an Actor within this Team. Each Role allows an
Actor to perform specific Actions within an Application. The available Actions within an Application
are defined by its Application Functionality. Actors then interact with the Application by performing
Actions allowed by their Roles. These Actions are received by the corresponding Controller
components of the Application.

1 Please note, in the following context classes are set in italics.
5

-——
- -

: N
Service
"In- ——f
accesses notifies
uses
uses
uses
-.— -l——'-

notifies Artifact View ¢ Application = §
-.. ii._)z,-—" — "’:;::;:Eg%iépi_-— ’
references consistsOf creates contains
’ i Iz ser ~
COntroIIer consistsOf ,-(Appllcatlon J |5Par‘LOf—>’ Workspace _ #
S - supports N emam m - S
- -i - - - .
, Appllcatlon N Vé N
vtrggers Functlonallty 7/ N\ Team 7/ defines
‘"’ — - - —— - -
receives I ‘ has
ECapaMeOf mPaﬂOf
- - —— -
Action xecute Actor Role)
= P — - —-— . — -
allows

Figure 2 Collaboration context model

The Application Functionality class has several subclasses not shown in Figure 2, e.g., Communication,
Shared Editing, Awareness, Management or Workflow Management. All of these classes are
specialized into further subclasses. The Communication concept, e.g., distinguishes between
Synchronous and Asynchronous Communication. The class Synchronous Communication then
distinguishes between Audio, Video, or Chat. Similarly, the Awareness class distinguishes between
Synchronous and Asynchronous Awareness. The class Synchronous Awareness then distinguishes
between e.g., Active Neighbors, Activity Indicator, Remote Field of Vision, Remote Cursor, Telepointer,
or User List. The Management class, e.g., distinguishes functionality for Access Right, Session, User, or
Concurrency Control Management. The Shared Editing class distinguishes different kinds of editors
for, e.g., Text, Rich Text, Image or Calendar. Most of these classes are derived from patterns for
computer-mediated interaction [22] which describe best practices for designing tools for
collaboration. Figure 3 shows an excerpt of the above class hierarchy and highlights the Chat
application functionality. Thus, each application which supports chat application functionality has to
offer at least two action types: OpenChat and SendMsg.

All above classes are necessary to model the configuration of shared workspaces and tools and to
capture the current context at runtime. As a sample scenario consider that a team consisting of Alice
and Bob synchronously collaborates on a shared text document. We assume, that Alice and Bob
created user workspaces sharing the design artifacts (i.e. documents). Alice then created a shared
text document and opened a shared text editor to work on a design document. While Alice has the
role of an author, Bob has the role of a reviewer. Bob later opened the same shared text document

6

to review the current state of the design. Both team members have different roles highlighting their
tasks within the team.

- =
¢~ Application ~ N
\ _Functionality_, #

h | =
asSubclass hasSubclass hasSubclass hasSubclass hasSubclass

I Y < S N

¢~ Workflow ~N o Shared N o N 7 N 7 RN
" Communication Awareness Management
S Menagemert 4 N _gatng_ o NITTF O/ NUTTD - NITTTL

hasSubclass hasSubclass

o -, -
V4 ’Synchronous" N 7 "Asynchronous‘ ~
\ Communication, # \ Communication, #

- ey

hasSubclass hasSubclass hasSubclass

’-- - ’—--hﬁ - --ﬁ

’ ; N 7 N 7) ~
\ Audio 7\ Chat 7\ Video P

“--ﬂ‘ ‘h " ~ -

isCapableOf isCapableOf
- e b T N - S S
(OpenChat J SendMsg

“‘--ﬂ’ “--ﬂ‘

N

hasSubclass hasSubclass

- -

, N
\ Action 7

h‘-—-ﬂ’

Figure 3 Application functionality concepts and relations

Figure 4 shows the current context state for the above scenario. For space reasons we omit view and
controller instances (which can be reached via the respective application instances) as well as the
relations between the different actions and the corresponding application functionality. Different
adaptation possibilities exist to improve the interaction between Bob and Alice, e.g., to provide
additional awareness information, to enable concurrency control mechanisms, or to establish a
communication possibility. Choosing a good adaptation in such a situation is difficult and is highly
dependent on the context and interaction history of the team.

Given the context state described in Figure 4, establishing a communication possibility among the
two actors seems a good adaptation possibility. The workspaces of both actors offer an application
factory for a chat tool. Thus, we propose that a corresponding adaptation rule checks the available
applications within each user's workspace and whether the current roles allow the actors to
communicate with each other. The following pseudo code shows an adaptation rule which makes use
of the current context state and adapts the users’ workspaces:

rule “open communication channel”
when
artifacts: getArtifactsInContext(“OpenText:bob™)
actors: getActorsinContext(artifacts)
communication: getApplicationsinContext(actors,
“Synchronous Communication™)

selectedApplication: selectOneFrom(communication)
then
openForAll (selectedApplication, actors)
end

- EditText

allow: OpenText
allows

OpenChat
Role:Author SendMsg @
allow: has
has
execute has Role:Participant as Actor:bob execule
5

has ha
. Application Factory:) User _
onlamnla.ns Workspace:UWoeg OpenText:bob

_—
-

triggers isPartOf Rpplication Factory: isPartOf triggers
Application: Text Text Editor Application: Text
Editoraice Editor.,

' notifies
notifies

Service:Motifier Service:SetContent Service:GetContent

Service:Notifier

ACCesses accesses
uses uses

Artifact:Text
Document

Figure 4 Sample context state before adaptation

The above adaptation rule consists of a condition part and an action block. The action block may
contain several adaptation actions in order to facilitate cross-application adaptations. By, e.g., adding
a service to the current application configuration the adaptation action may change the current
context state. In the above example, the condition is triggered by Actor:bob opening the Artifact:Text
Document. The action part of the above adaptation rule is executed if all conditions are valid, i.e. in
our example none of the retrieved result sets are empty. In this adaptation rule,
getArtifactsInContext returns a set of artifacts which are in the context of the action
OpenText:bob. The function getActorsInContext then calculates all actors which access the
artifacts in the context of OpenText:bob, i.e. in Figure 4 Actor:alice. The function
getApplicationsInContext then determines in this case all applications which support the
application functionality Communication and are connected to all actors accessing the same artifacts,
i.e. in Figure 4 Application Factory:Chat. The function se lectOneFrom selects from a set of context
elements the one which has been used most by the collaborating actors. The corresponding
information is stored as preference value with the different edges of the context graph and is updated
via a special learning algorithm. Figure 5 shows the context state after applying the adaption rule.

Annotate =
allows - /";.R-:"""\ =
\-_._._--/ allows

|

Role:Reviewer

Role:Author

has

triggers

Application Factory?

Text Editor Application: Text
Editorsa:
uses: aes i
A notifies

accesses

uses
Service:OpenChat

uses

Artifact:Chat
Content

Figure 5 Sample context state after adaptation (previously existing instances and relations
are shown in light grey)

The above adaptation rule is only one example for a possible adaptation for the given context. There
exist further adaptation possibilities to improve the interaction within a team, e.g., to provide
additional awareness information or to enable concurrency control mechanisms. Choosing a good
adaptation in such a situation is difficult and is highly dependent on the context and interaction
history of the team. The following adaptation rule shows how awareness could be improved by
enabling an synchronous awareness widget when at least one additional actor accesses an artifact in
the context of OpenText:bob:

rule “open synchronous awareness widget”
when
artifacts: getArtifactsInContext(“OpenText:bob™)
actors: getActorsinContext(artifacts)
applications: getApplicationsInContext(actors, artifacts)
awareness: getFunctionalitylnContext(application,
“Synchronous Awareness™)
selectedApplication: selectOneFrom(awareness)
then
openForAll (selectedApplication, actors)
end

e

Finally, let us consider the adaptation which would enable a concurrency control mechanism. In this
case, the Application:Text Editor would have to support the corresponding application functionalities
concerning concurrency control management, e.g. Optimistic Concurrency Control, Pessimistic
Concurrency Control, or Operational Transformation. An adaptation rule, triggered by OpenText:bob,
would again first check, whether other actors access the artifacts in the context of OpenText:bob and
in the positive case look for available concurrency control mechanisms. From the available
mechanisms, one would be chosen according to the preferences of the collaborating actors.

As the above examples show, we use the current context information to recognize specific situations,
which show potential for improvements as expressed in the rule’s condition, and perform the
adaptation described in the action part of the rule. In the above example we consider the situation
where at least two users share the same artifact at the same time and assume that a communication
channel would help to coordinate the users’” work. Automated rule execution minimizes the users’
adaptation efforts. Obviously, more generic rules (i.e. independent from specific users) are applicable
in more cases and thus express general policies, while more specific rules can be used to express user
or team specific preferences.

4.2 Making tools ready for adaptation

Next we address the question of how to make either existing or new tools in a shared workspace
environment ready for adaptation. From a developer’s point of view, integrating an application into
our Context and Adaptation Framework (CAF) should be as simple as possible as well as minimize the
implementation effort. These are the two requirements we have considered while designing the
framework.

We propose an approach that extends usual client-server applications following the architecture as
described in Section 3 by adding components of our CAF shown in Figure 6 in grey. Thus, our
approach also distinguishes the four layers: Ul Layer, Logic Layer, Service Layer and Model Layer.

The Ul Layer contains the Application Uls and the Adaptation Component of CAF. We use the
Adaptation Component to start and stop Application Uls, or to use a specific interface an application
offers to apply adaptation actions to the Application Ul. Currently, this interface contains methods to
show or hide a certain GUI component, to set the focus to a specific GUI component, to modify the
content of a GUI component (e.g. text of a label, button), to highlight a specific GUI component (e.g.
by enlarging the font, changing the sort order or filtering option of a list, marking a text, playing a
sound, changing the color), to maximize or minimize the view, to set the read-only mode, to scroll to
a certain position, or to lock the scrollbars (e.g. in case of a tightly coupled shared editing session).
We are going to extend this interface while proceeding with our work.

Within the Logic Layer you will find the Application Logic as well as the Adaptation Server. Our CAF
adds the components Basic Services and Notifier to the Application Logic. The Application Logic can
use Basic Services to integrate the application into the CAF or use the Notifier to send notifications to
the client side. The developer can use Basic Services to integrate support for, e.g., sensing
functionality, access right and user management, multiple service provider support, login and logout
functionality, access to a database service, or action-based configuration management into existing
services and thus, build a bridge to the Adaptation Server. Furthermore, the Basic Services can call
10

the Application Logic of specific applications to call services (e.g. to change the configuration of the
service). The Adaptation Server is based on a service-oriented architecture and hosts components
like Sensing, and the Adaptation Engine. The Sensing component uses the information about service
calls and user interactions (given by the Basic Services) to update the current context representation.
The Adaptation Engine uses the current context representation to find corresponding adaption rules
and to execute them. Adaptation actions can affect Application Ul, Application Logic, Services, and
the Shared Model.

Application Ul ‘ Adaptation .Runtlmei
= . Environment
2 ' :
© : Ad '
— —— I H aptation '
= Application; Ul Application; Ul : Component | |

]
- ’
s L]
e m e e e e o= ---
: '
' ¢ '
. | Application Logic + | Adaptation Server E
(O [
=]
i]u ‘ Application; Logic Basic Services : Adaptation .
© < :’ Sensing e E
L}
8) Application, Logic Notifier] :
]
A : A :
5 5
5 y : y 5
. L} .
© | Services ¢ | Context Services :
' L]
8 Application Services Collaboration Services : CAF Services :
-2 | | | | ' | I .
O g '
%, ‘ '
. ;]
() ' ’
> ' '
S Shared Model g Context Model .
— ' ‘e
% Artifact, Artifact, Artifact; : CAF Model E
E -]

Figure 6 Extended usual client-server application by Context and Adaptation Framework (CAF)

The next layer is the Service Layer. It is used by the Logic Layer to access the Model Layer and
contains Services (on the left hand side) and Context Services (on the right hand side). The Services
include Application and Collaboration Services (cf. Section 2).

The bottom layer is the Model Layer. It contains the Shared Model (on the left hand side) and the
Context Model (on the right hand side). The Context Model contains the current context
representation and the adaptation knowledge (e.g., adaptation rules, list of currently applied
adaptation rules).

11

Our Adaptation Runtime Environment, shown on the right hand side of Figure 5, allows the execution
of adaptation rules, which adapt the configuration of shared workspace environments and the
behavior of applications offering our adaptation interface. It can be split up into the layers
Adaptation Server, Context Services and Context Model.

Runtime adaptations of an application require that the developer implements an adaptation and a
service interface (usually this interface exists) and registers the service interface of the application at
CAF by using Basic Services. The adaptation interface (Application Uls) is used by the Adaptation
Component for adaptation of the Ul parts. The implementation of this interface has to map the
corresponding method calls to changes at the Ul (e.g. show or hide a given GUI component). The
service interface usually exists because it is the service interface of the application logic. This
interface has to be registered at CAF by using Basic Services. This is necessary to get sensing
information from the service calls of an application (within the Application Logic layer). This
information is used to update the context representation that is used to find possible adaptation
rules and execute them. Furthermore, the last mentioned interface is used in case of service
configuration adaptations (e.g. changing the concurrency control algorithm).

Our approach supports, firstly, context-based adaptation across multiple tools, since all tools provide
the required standard interfaces, and secondly, a rule syntax to express multiple adaptation actions
on multiple tools and artifacts.

4.3 Executing the rules at run-time

A flexible adaptive system executes a cycle of
1. User interaction
2. Sensing user activities
3. Adapting system behavior
4. Modifying adaptation knowledge (e.g., if users want to change adaptation rules)

The user interacts with the tools of the shared workspace environment. Usually, these interactions
imply service calls that can be sensed (e.g. by using our Basic Services) to update the context
representation of the current situation. The current context representation is used by the Adaptation
Engine to find corresponding adaption rules and execute them. An adaptation rule can modify or
change the configuration of components of the following layers: Ul Layer, Logic Layer, Service Layer
and Model Layer. Furthermore, the current context representation itself can be modified by applying
adaption rules.

Typical adaptations of which a user is aware effect the Ul and, e.g., show or hide a certain GUI
component, set the focus to a specific GUI component, modify the content of a GUlI component,
highlight a specific GUI component, minimize or maximize the view, set the read-only mode, scroll to
a certain position, or lock the scrollbars. Adaptations that affect the Logic Layer may change the
service composition (e.g. the used concurrency control algorithm). Starting or stopping a service (e.g.
the chat service in the above example) can be a possible adaptation at the Service Layer. At the

12

Model Layer the adaptations can reach from changing attributes of an artifact to creating or deleting
artifacts to, .e.g., provide scaffolding structures for improving group interaction. All of the
aforementioned adaptations are supported by CAF and can be part of the action part of an
adaptation rule.

4.4 Implementation

We implemented the conceptual architecture shown in Figure 6 to support context-based
adaptations within a shared work environment. In the current prototype, the Application Logic and
the Adaptation Server are based on Equinox? and realize all components as so-called bundles in
OSGJ/3. In the prototype of the Application Logic, we integrated two Applications. Firstly, we adapted
CURE [12, 13] to provide Application Functionality for Document, User, and Workspace Management
as well as Asynchronous Awareness and Communication. Secondly, we used R-OSGi* to develop and
integrate Application Functionality for Synchronous Awareness and Communication. The Ul-parts for
these service classes are implemented as plug-ins for Eclipse®. We use Drools® as an adaptation
engine and the corresponding rule syntax to define adaptation rules.

As mentioned in Section 4, a developer has to register the service interface of an application by using
the Basic Services, e.g., to integrate sensing functionality into the application. We use the Java
Reflection API for dynamic proxy creation of the registered service interface to get the service calls,
and Java annotations to get the corresponding information that the context should reflect. We are
using Java annotations because they are easy to integrate into existing interface definitions and the
integration effort is low. An example of an annotated method that needs read rights on the specified
workspace looks like this:

@Operation(type=READ)

void openWorkspace(
@SessionKey() String sessionKey,
@Artifact(type=WORKSPACE, src=URI) String wsURI);

The proxy performs the following steps: 1) Receive the service calls from the client side. 2) Interpret
specific Java annotations (e.g. @0peration, @SessionKey, @Artifact) that CAF supports of
the corresponding method at runtime and use it to retrieve the necessary arguments from the list of
arguments (needed by the following steps). 3) Check the validity of the session key (the session key is
specified by the annotation @SessionKey). 4) Check the access rights (arguments are specified by
the annotations @Operation, @SessionKey and @Artifact). 5) Send the context information
to the Sensing component of the Adaptation Server (i.e. the user specified by the given session key
opens the workspace specified by the given workspace URI). 6) Call the implementation of the
method and return the results. We minimize the integration effort for developers (i.e. lines of code
and learning curve) by moving the steps 2) to 5) into our proxy implementation, i.e. the developer
does not has to write the code for these steps.

2 http://www.eclipse.org/equinox/
3 http://www.0sgi.org

4 http://r-osgi.sourceforge.net/

5 http://www.eclipse.org/

6 http://www.jboss.org/drools

13

5 Validation

In order to support automatic adaptation of shared workspaces to the changing needs of
collaborating users we developed (1) the conceptual architecture of adaptive shared workspace
systems, (2) a context model for shared workspace systems and a matching adaptation rule syntax,
(3) the CAF framework supporting the conversion of service-oriented applications into adaptive
collaborative applications, and (4) the adaptation runtime environment for executing adaptation
rules.

We validated our context model and rule syntax by modeling typical collaboration situations and by
modeling adaptation rules that seem useful in these situations (cf. Section 4.1).

We prototypically implemented CAF and our conceptual architecture (cf. section 5) and used it to
integrate a number of collaborative service-oriented tools. Examples include CURE [12, 13] which
was integrated to provide Application Functionality for Document, User, and Workspace
Management as well as Asynchronous Awareness and Communication, and R-OSGi” which was used
to develop and integrate Application Functionality for Synchronous Awareness and Communication.
The Ul-parts for these service classes were implemented as plug-ins for Eclipse®. These experiences
show that our approach can be successfully used to convert standard tools into context-adaptive
tools. Experiences from the conversion process show that the approach is simple and developers can
apply it with small effort.

Functional tests demonstrated that adaptation rules for typical collaboration situations can in fact be
implemented and executed in our prototype, leading to meaningful adaptations at the Ul, application
logic and shared model layers.

By testing adaptation rules affecting two applications (such as changing the displayed awareness
information in an editor or establishing communication channels between users) we tested that our
approach supports cross-application adaptation.

Together, these experiences show that our approach provides a context model sufficient for adapting
collaboration among users of a shared workspace and can exploit this context information to adapt
the interaction among users and between users and their tools.

6 Conclusions

In this paper we proposed a service-oriented architecture of shared workspaces and analyzed
possible points of adaptation on four layers (Ul Layer, Logic Layer, Service Layer, Model Layer). We
introduced a context model and an adaptation rule syntax for expressing context-based adaptations
of shared workspaces. Using CAF, we support the integration of service-oriented applications into
our adaptation runtime environment. We introduced our prototypical implementation and
presented our validation results.

7 http://r-osgi.sourceforge.net/
8 http://www.eclipse.org/

14

Our approach exceeds the state of the art (cf. Section 2) in several ways: firstly, we provide a context
model sufficient for adapting collaboration among users of a shared workspace and, secondly, our
approach can exploit this context information to adapt the interaction among users and between
users and their tools. Finally, our approach is open for inclusion of new services, applications, and
adaptation rules. By extending the context model, new rules can be introduced and address new
collaboration aspects and situations without rendering old rules meaningless.

Currently, our prototype implementation is used for functional testing and evaluation in pilot test
cases. For the near future, we plan to include applications for adaptation rule tracing, editing and
negotiation; testing of adaptation rules in real work situations with the goal of identifying good
adaptation practice; and performance tuning of rule execution.

7 References

1. Gregory D. Abowd, Christopher G. Atkeson, Jason Hong, Sue Long, Rob Kooper, and Mike
Pinkerton. Cyberguide: a mobile context-aware tour guide. Wireless Networks, 3(5):421-433, 1997.

2. Hyung Jun Ahn, Hong Joo Lee, Kyehyun Cho, and Sung Joo Park. Utilizing knowledge context
in virtual collaborative work. Decision Support Systems, 39(4):563-582, 2005.

3. W. Appelt and P. Mambrey. Experiences with the BSCW shared workspace system as the
backbone of a virtual learning environment for students. In Proceedings of ED-MEDIA99, 1999.

4. Harry Chen, Timothy W. Finin, and Anupam Joshi. Using owl in a pervasive computing broker.
In Stephen Cranefield, Timothy W. Finin, Valentina A. M. Tamma, and Steven Willmott, editors,
Proceedings of the Workshop on Ontologies in Agent Systems (OAS 2003), pages 9—16, 2003.

5. Harry Chen, Timothy W. Finin, and Anupam Joshi. Semantic web in the context broker
architecture. In Proceedings of the Second IEEE International Conference on Pervasive Computing and
Communications (PerCom 2004), pages 277-286. IEEE Computer Society, 2004.

6. Mara de los Angeles Constantino-Gonzalez and Daniel D. Suthers. Automated coaching of
collaboration based on workspace analysis: Evaluation and implications for future learning
environments. In Proceedings of the 36th Hawai'i International Conference on the System Sciences
(HICSS-36). |EEE Press, 2003.

7. W. Keith Edwards. Putting computing in context: An infrastructure to support extensible
context-enhanced collaborative applications. ACM Trans. Comput.-Hum. Interact., 12(4):446-474,
2005.

8. Umer Farooq, John M. Carroll, and Craig H. Ganoe. Supporting creativity in distributed
scientific communities. In GROUP '05: Proceedings of the 2005 international ACM SIGGROUP
conference on Supporting group work, pages 217-226, New York, NY, USA, 2005. ACM.

9. Ludwin Fuchs. AREA: a cross-application notification service for groupware. In ECSCW'99:
Proceedings of the sixth conference on European Conference on Computer Supported Cooperative
Work, pages 61-80. Kluwer Academic Publishers, 1999.

15

10. Werner Geyer, Heather Richter, Ludwin Fuchs, Tom Frauenhofer, Shahrokh Daijavad, and
Steven Poltrock. A team collaboration space supporting capture and access of virtual meetings. pages
188-196, Boulder, Colorado, USA, 2001. ACM Press, New York, NY, USA.

11. Tom Gross and Wolfgang Prinz. Modelling shared contexts in cooperative environments:
Concept, implementation, and evaluation. Computer Supported Cooperative Work (CSCW),
13(3):283-303, August 2004.

12. J. M. Haake, A. Haake, T. Schiimmer, M. Bourimi, and B. Landgraf. End-user controlled group
formation and access rights management in a shared workspace system. In CSCW '04: Proceedings of
the 2004 ACM conference on Computer supported cooperative work, pages 554-563. ACM Press,
New York, NY, USA, November 2004.

13. J. M. Haake, T.Schimmer, A.Haake, M. Bourimi, and B. Landgraf. Supporting flexible
collaborative distance learning in the CURE platform. In Proceedings of the Hawaii International
Conference On System Sciences (HICSS-37). IEEE Press, January 2004.

14. Tim Kindberg, John Barton, Jeff Morgan, Gene Becker, Debbie Caswell, Philippe Debaty, Gita
Gopal, Marcos Frid, Venky Krishnan, Howard Morris, John Schettino, Bill Serra, and Mirjana
Spasojevic. People, places, things: web presence for the real world. Mobile Network Applications,
7(5):365-376, 2002.

15. Glenn E. Krasner and Stephen T. Pope. A cookbook for using the model-view-controller user
interface paradigm in Smalltalk-80. Journal of Object-Oriented Programming, 1(3):26—49, August
1988.

16. Stephan Lukosch, Dirk Veiel, and Jorg M. Haake. Enabling context-adaptive collaboration for
knowledge-intense processes. In José Cordeiro and Joaquim Filipe, editors, Proceedings of the 11th
International Conference on Enterprise Information Systems (ICEIS 2009), volume HCI, pages 34-41.
INSTICC — Institute for Systems and Technologies of Information, Control and Communication,
Portugal, 2009.

17. M. A. Martinez-Carreras, A.Ruiz-Martinez, F. Gdmez-Skarmeta, and W. Prinz. Designing a
generic collaborative working environment. In IEEE International Conference on Web Services (ICWS
2007), pages 1080-1087, 2007.

18. W. Prinz, H. Loh, M. Pallot, H. Schaffers, A. Skarmeta, and S. Decker. ECOSPACE — towards an
integrated collaboration space for eprofessionals. In International Conference on Collaborative
Computing: Networking, Applications and Worksharing, pages 39—45, 2006.

19. Wolfgang Prinz and Baber Zaman. Proactive support for the organization of shared
workspaces using activity patterns and content analysis. In GROUP '05: Proceedings of the 2005
international ACM SIGGROUP conference on Supporting group work, pages 246—255. ACM, New York,
NY, USA, 2005.

20. Markus Rittenbruch. Atmosphere: towards context-selective awareness mechanisms. In HC/
(2), pages 328—-332, 1999.

16

21. Bill Schilit, Norman Adams, and Roy Want. Context-aware computing applications. In First
Annual Workshop on Mobile Computing Systems and Applications (WMCSA), December 1994.

22. Till Schimmer and Stephan Lukosch. Patterns for Computer-Mediated Interaction. John Wiley
& Sons, Ltd., 2007.

23. Michael Vonrueden and Wolfgang Prinz. Distributed document contexts in cooperation
systems. In Boicho N. Kokinov, Daniel C. Richardson, Thomas Roth-Berghofer, and Laure Vieu,
editors, Modeling and Using Context, 6th International and Interdisciplinary Conference, CONTEXT
2007, LNCS 4635, pages 507-516. Springer-Verlag Berlin Heidelberg, 2007.

24. Weigang Wang and Jorg M. Haake. Tailoring groupware: The cooperative hypermedia
approach. Computer Supported Cooperative Work, 9(1):123-146, 2000.

17

	1 Introduction
	2 Related Work
	3 Possible adaptations in service-oriented shared workspaces
	4 Adaptation in service-oriented collaborative applications
	4.1 Specification of adaptation behavior
	4.2 Making tools ready for adaptation
	4.3 Executing the rules at run-time
	4.4 Implementation

	5 Validation
	6 Conclusions
	7 References

