Department of Mathematics

@ FernUniversitat in Hagen and Computer Science

Development and Evaluation of a Graphical
Notation for Modelling Resource-Oriented
Applications

Oliver van Porten 2012

Research Report 1/2012
ISSN 1865-3944

© 2012 Oliver van Porten

Editor: Dean of the Department of Mathematics and Computer Science

Type and Print: | FernUniversitéat in Hagen

Distribution: http://deposit.fernuni-hagen.de/view/departments/miresearchreports.htmi

Development and Evaluation of a
Graphical Notation for Modelling
Resource-Oriented Applications

Masterarbeit
im Studiengang
Master of Science im Fach Informatik

von

Dipl.-Inf. (FH) Oliver van Porten

(Matrikelnummer: 7694849)

vorgelegt der
Fakultét fiir Mathematik und Informatik
der FernUniversitit in Hagen

Erster Priifer: Prof. Dr. Bernd Kréamer
Lehrgebiet Datenverarbeitungstechnik
Fakultét fiir Mathematik und Informatik
Beginn der Arbeit: 26. September 2011
Abgabe der Arbeit: 26. Méirz 2012

Ich erklére hiermit, die folgende Masterarbeit selbstandig verfasst zu haben. Andere als die
angegebenen Quellen und Hilfsmittel habe ich nicht benutzt. Wortliche und sinngeméfle
Zitate sind kenntlich gemacht.

Roetgen, den 26. Mérz 2012

Oliver van Porten

Zusammenfassung

Die Modellierung von Anwendungen mit Hilfe von grafischen und textuellen doménen-
spezifischen Sprachen (DSL) ist fortwihrend Gegenstand von Forschung und Entwicklung
im Bereich des Software Engineering. DSLs steigern die Produktivitiat der Entwickler und
erleichtern die Kommunkation mit den Domé&nenexperten.

Zur modellgetriebenen Entwicklung ressourcenorientierter Anwendungen exisitert noch
keine hinreichende Unterstiitzung durch spezialisierte Werkzeuge. Der Einsatz von gene-
rischen Modellierungssprachen wie UML ist méglich, bildet aber die speziellen Bediirfnisse
des ressourcenorientierten Ansatzes nicht hinreichend ab. Spezielle Unterstiitzung fiir die
grafische Modellierung von ressourcenorientierten Anwendungen ist hier wiinschenswert.

Gerade bei der Entwicklung grafischer Notationen wird aber selten Wert auf eine kognitiv
effiziente Syntax gelegt. Der semantischen Modellierung wird eine weit grofiere Bedeu-
tung zugemessen. In seiner Arbeit “The physics of notations” stellt Daniel Moody daher
neun Prinzipen vor, die es erlauben, schon beim Entwurf einer neuen grafischen Notation
das Augenmerk stirker auf gute Syntax zu legen. Diese neun Kriterien bilden dabei ein
modulares Rahmenwerk.

Die vorliegende Arbeit entwickelt unter Zuhilfenahme dieser neun Kriterien eine grafi-
sche Notation zur Modellierung von ressourcenorientierten Anwendungen. Die Notation
basiert auf einem gegebenen Metamodell und bietet verschiedene Sichten auf das Meta-
Modell an. Diese Sichten stellen dabei verschiedene Teilbereiche der konkreten Modells
der modellierten Anwendung dar.

Die Giite der Umsetzung der neun Kriterien in der entwickelten Sprache wird anschlie-
Bend in Form eines Fragebogens iiberpriift und die Ergebnisse der Evaluation werden
diskutiert.

Weiterhin wird eine auf Eclipse basierende prototypische Implementierung eines Editors
zur Modellierung ressourcenorientierter Anwendungen mit Hilfe der neu entwickelten gra-
fischen Notation vorgestellt.

Abstract

Modeling applications using graphical or textual domain-specific languages (DSL)) is a
constant subject of research and development in modern software engineering. DSLs
improve productivity of the developers and aid in bridging the gap to domain experts.

However, model-driven development of resource-oriented applications is not well sup-
ported through specialized tools yet. Using generic modeling languages like UML is
possible. Regrettably, this does not reflect the special needs of the resource-oriented ap-
proach to application design. Dedicated support for the development of such applications
is desirable.

Especially, the development of graphical languages suffers from a lack of focus on cognitive
effective syntax. Modeling semantics is regarded with far more importance than modeling
syntax. In his work “The physics of notations”, Daniel Moody therefore proposes nine
principles that aid in the development of proper graphical syntax. These nine principles
form a modular framework for the development of a cognitive effective visual language.

The work at hand presents a new graphical notation for the development of resource-
oriented applications, built on the nine principles postulated by Daniel Moody. The
notation is based on a given meta-model and offers distinct views on distinct parts of that
meta-model. The views together form a consistent representation of the concrete model
instance of the modeled application.

To assess how well the design principles were incorporated in the design of the new
notation, an evaluation using a questionnaire is performed. The results of the survey are

presented and discussed.

Finally, the prototypical implementation of an Eclipse-based editor for modeling resource-
oriented applications based on the new notation is presented.

iii

Contents

1 Introduction

2.1
2.2
2.3
24
2.5
2.6

3.1
3.2
3.3
3.4

3.5

3.6

3.7

3.8

Related Work

Model-Driven Development

REST
The REST Meta-Model
Visual Language Design

Questionnaire Development and Evaluation

Implementation Aspects

The Graphical Language Visual REST

Criteria for Proper Visual Syntax
Deriving the Notation from the Meta-Model
Diagram Types of Visual REST
Elements of the Structural View
3.4.1 Resource Types e
3.4.2 Attributes
3.4.3 Identifiers
3.4.4 Internal Link
3.4.5 Contalnment
Elements of the Resource States View
3.5.1 States
3.5.2 Transition
Elements of the Method Behaviour View
3.6.1 Method
3.6.2 Actions
3.6.3 Action Sequence
Elements without graphical representation
3.7.1 Creator e
3.7.2 Guard Conditions
3.7.3 Internal Link Collections
3.74 External Links
3.7.5 External Link Collections

Navigating the Notation

[y

© 00 O =W w W

11
14
16
20
20
24
26
26
26
27
27
28
29
29
31
34
35
35
35
35
36
36
36

vi

3.9 Moody’s Criteria applied o0
3.10 Examples
3.10.1 Modeling a Photo Album Application
3.10.2 Modeling a Mind Map Application
3.10.3 Modeling a Bookshop Application

Evaluation of Visual REST

4.1 The Research Idea
4.2 Design of the Questionnaire
4.3 Questionnaire Results L.
4.3.1 User Background L.
4.3.2 Perceptual Discriminability
4.3.3 Semantic Transparency
4.3.4 Complexity Management
4.3.5 Cognitive Integration
4.3.6 Dual Coding
4.3.7 Graphic Economy L.
4.3.8 Cognitive Fit oo
4.4 Discussiono e

The Visual REST Eclipse Plugin

5.1 Development Environment o0
5.2 Supporting Infrastructure
5.3 Development Process
5.4 Testing the Graphical Editor
5.5 Architecture of the Visual REST Plugin
55.1 CoreFeature
5.5.2 Ul Feature e
5.5.3 Help Feature o
5.5.4 Product Feature o Lo
5.5.5 Test Feature
5.5.6 Additional Packages o oL
5.6 Beyond Visual Rest

Final Remarks

Visual Language Questionnaire
Comments given in the questionnaire
Source Code Statistics

Graphiti Code Samples

55
95
56
o8
58
59
64
68
68
69
69
70
71

75
75
78
79
80
81
82
83
87
89
89
90
91

95

99

119

123

125

Bibliography 131

vii

List

2.1
2.2
2.3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24
3.25
3.26
3.27
3.28
3.29
3.30

of Figures

The resource types of the meta-model [6]
The core of the structural model [6]
The core of the behavioural model [6]

An example of dual

coding [8]

Overview of the process to derive a new graphical notation

The structure view

The structure overview view e
The resource methods viewo

The resource states view Lo
The primary resource type Lo
The list resource type
The paging resource type e
The activity resource type L oo
The aggregation resource type L.
The projection resource type
The filter resource type e
The subresource type
Attributes of resource typeso Lo
Identifiers of resource types o
The subresource type
The subresource type e

The State
The Initial State .
The Transition . .
The Method

Consumed Media Types of a Method
Produced Media Types of a Method
Generic Layout of Actions
The List Add Action
The List Remove Action

The Create Action
The Return Action
The Update Action

ix

3.31
3.32
3.33
3.34
3.35
3.36
3.37
3.38
3.39
3.40
3.41
3.42
3.43
3.44
3.45
3.46
3.47
3.48
3.49
3.50

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

4.10
4.11
4.12
4.13
4.14
4.15
4.16

4.17
4.18

The Message Action o e
The Conditional Action
The Action Sequence e
The navigation layers of the model
Signposting on the diagrams oL oL
Visual Expressiveness Lo o
The structural view of a photo album
The states of a suggestion,
The addReview method of the pictureData subresource type.
The update method of the pictureData subresource type
The states of the pictureData subresource type
The get method of the pictureData subresource type
The structure of a resource-oriented mind map application
States of the A11Topics, TopicMap and ChildTopics resource types . . .
Behaviour of TopicMap::get
States of StartTopics
Behaviour of StartTopics::addTopic
States of Topic
Behaviour of Topic::updateTopic
The structure overview diagram for a bookshop application

A question to evaluate semantic transparency
A question to evaluate perceptual discriminability
A question to evaluate dual coding
How would you rate your knowledge of REST?

Does adding a box around the resource types have an effect on discrim-
inability?
Are the connectors easily distinguishable?
Are the state diagram elements easily distinguishable?
Rating of the discriminability of critical action pairs
Distribution of associations for the semantically least clear resource types
Distribution of associations for the resource type connections
Distribution of associations for the resource states
Distribution of associations for Conditional Action, Create Action and Up-
date Action e e
Distribution of associations for List Add Action and List Remove Action .
Do you think the ability to partition the diagrams helps in managing ap-

4.19

4.20
4.21

4.22
4.23
4.24
4.25

5.1
5.2
2.3
5.4
9.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17

6.1

Does the marker at the top help in identifying the resource type the

state/method belongs to? L o 69
Does displaying all possible method types in the states help? 69
Does adding a textual representation help you grasp the meaning of the

displayed symbol?o 70
Does using UML stereotypes appeal toyou? 70
Are there too many different graphical symbols? 71
Are there too many different graphical symbols on the resource state diagram? 71
Judgement of the cognitive fit criterion 72
The editor palette 76
Direct editing feature o o 77
A rich properties view 77
Steps in a continuous integration build 0oL 79
Structure of the plugins and features 81
The editor provided by the core.editor plugin 83
Overview of the packages in the de.van_porten.vrest.ui plugin 84
New Visual REST project 85
New structure diagramo 85
The outline view L L e 87
The application tree 88
The help system of the Visual REST editor 89
Contextual menus of resource types 91
Outline of a bookshop application 92
Miniature view of a bookshop application 92
Drag and Drop operation from the application tree 93
The collapse button L 93
Possible alternative representations of an activity resource type 97

xi

List of Tables

4.1 Do you think the symbols are easily distinguishable?
4.2 Do you think the symbols are easily distinguishable?
4.3 Association of symbols with actual semantic types

4.4 Association of symbols with actual semantic actions

C.1 Source lines of code of the Visual REST plugins . . .
C.2 Source lines of code of the Visual REST tests

xiii

Listings

D.1 Graphiti FeatureProvider, 125
D.2 Graphiti DiagramTypeProvider 126
D.3 Graphiti AddFeature 127
D.4 Graphiti CreateFeature 129

XV

1 Introduction

Today, Software Engineering is often concerned with the development of domain-specific
solutions in the form of textual and graphical domain-specific languages (DSL) [1, 2] to
provide domain users with tools tailored towards their specific needs. Those tools are
generally meant to help bridge the gap between domain specialists and developers.

Representational State Transfer (REST) [3] is the basic architectural style behind the
Hypertext Transfer Protocol (HTTP). In the context of application development for the
World Wide Web (WWW), applying REST to an application’s architecture can help
reduce coupling and improve overall application performance [4]. However, there is little
support for modeling resource-oriented (or RESTful) applications. While there are many
tools and models to support the development of object-oriented applications, such as
the Unified Modeling Language (UML) [5], there are little to no tools to provide the
same level of support for resource-oriented applications. UML could be used to model
resource-oriented applications as well, but it is not specifically tailored towards it.

To improve support for modeling resource-oriented applications, specialized notations and
tools need to be developed. The meta-model for resource-oriented applications [6] forms
the semantic basis for building the required graphical or textual languages in the domain
of resource-oriented applications. Generally, a meta-model defines the semantic constructs
of a problem domain. In this case, these are the different types of resources and their
various properties such as attributes, links and also their states and behavior.

An initial approach to define the syntax of a new graphical language could try to use
UML as the basis and then redefine it to some extent to enable modeling of resource-
oriented applications. However, UML has been criticized for its lack of good perceptual
properties [7]. Therefore, a completely new graphical language needs to be developed that
is not constrained by any of UML’s undesirable properties. To improve the quality of
visual languages, Daniel Moody [8] defines some key principles that establish a prescriptive
theory which provides the needed guideline in such development efforts.

The objective of this thesis is to define and evaluate such a visual language that allows
modeling resource-oriented applications. The notation adheres to the visual guidelines
defined by Daniel Moody [8] and is based on the REST meta-model [6]. An evaluation
is performed to assess how well the principles are applied to the new visual language.

1 Introduction

Finally, a prototypical editor based on Eclipse [9] is developed that implements the new
graphical notation.

The context of this thesis is provided in chapter 2 by highlighting related work from
various fields of research and practice.

Chapter 3 focuses on the graphical language “Visual REST” which is developed as part of
this thesis. The notational elements of the Visual REST modeling language are introduced
and the different views the language uses for modeling resource-oriented applications are
outlined. Additionally, a discussion of the visual properties of the notation is provided
and a rationale for the design decision made is given. The chapter concludes with some
examples of applications modeled using Visual REST.

Subsequently, chapter 4 presents the details of the language evaluation that was con-
ducted. An insight into the way the questionnaire was developed, the questions that were
asked and into the targeted audience is provided. A discussion of the survey results is also
presented there, as are conclusions drawn from them. Appendix A contains the complete
questionnaire for reference. Appendix B contains the comments that were provided by
probands.

The prototypical implementation of the Eclipse-based editor and details of its design and
development are covered by chapter 5. All aspects ranging from the chosen frameworks,
general architecture and plug-in organization to testing and build aspects are covered
there. The chapter also highlights the features of the editor that help working with Visual
REST. Appendix C contains some source code statistics extracted from the editor and
appendix D contains some source code examples, demonstrating various implementation
aspects.

Finally, chapter 6 provides a short summary of the work presented here and sums up
findings and observations made in the course of this thesis. Some ideas for future work
are also presented in that chapter.

2 Related Work

This chapter presents an overview of related work and puts the work done here into
context. Related work ranges from model-driven development aspects and REST to visual
language design and questionnaire development. Also an important part is work related
to the implementation of the graphical editor that is developed as part of this thesis.

2.1 Model-Driven Development

Model-Driven Development (MDD) [2, 10-12] is an important area in the field of software
engineering where DSLs are applied. The goal of any model-driven software development
project is the definition of a formal model that allows abstraction of implementation
specific aspects. A model is usually not tailored towards a specific execution environment
but can be used to generate runnable software using model transformations [2].

Every DSL [1] is backed by a meta-model that describes the problem domain. The DSL
provides the syntax to enable practitioners to use the meta-model in one way or another. A
DSL can either be textual or graphical [1, 13]. This thesis focuses on graphical notations.

2.2 REST

Representational State Transfer (REST) is the architectural style driving the World Wide
Web (WWW) and was defined by Roy Fielding in his dissertation [3]. It defines resources
and their relation to one another using links. It uses "hypermedia as the engine of ap-
plication state” (HATEOAS) [3]. Resources offer a set of standard methods, have differ-
ent representations and use stateless communication. The Hypertext Transfer Protocol
(HTTP) [14] together with Uniform Resource Identifiers (URI) [15] and the different
media types [16, 17] are a concrete manifestation of the REST architectural style [4].

Every REST resource is identified by a unique identifier, its Uniform Resource Identifier
(URI) [15]. In terms of the World Wide Web this is, for instance, a Uniform Resource Loca-

2 Related Work

tor (URL) [18] identifying a resource on a server. A URL is a sub-type of the generic URI.
For example, http://www.examples.com/article/20 identifies one particular article on
the server example.com. Compared to object-oriented software development or classic
web service approaches based on SOAP [19], the resource interfaces differ from those ap-
proaches in that they use a uniform interface. While SOAP and object-oriented software
development use a method centric interface—every object defines a set of methods that
can be invoked on it—REST defines a fixed set of operations that can be performed. For
HTTP this includes all standard verbs like POST, GET, PUT, DELETE, HEAD and
OPTIONS. There are RESTful protocols that extend those verbs with additional ones;
Subversion [20] is an example [4].

While Roy Fielding’s dissertation offers a rather abstract view on REST, Stefan Tilkov
defines a set of certain resource types that need to be identified in a problem domain [4].
Those resource types form the fundamental elements of every RESTful or resource-
oriented application.

2.3 The REST Meta-Model

Modeling the semantics of a certain problem domain is the first step in enabling the
development of domain specific languages. The meta-model forms the semantic basis for
model-driven development [21]. For REST, Schreier [6] defines the meta-model that is the
basis for this work. The REST meta-model is split into two parts, the structural model
and the behavioural model.

The structural model defines the overall structure of the system with its main concept
being different resource types as identified by [4] (except “conceptual resources”). Figure
2.1 provides an overview of the different types.

The structural model also defines properties of the resource types. Every resource type
has a unique ResourceIldentifierPattern that can either be a SimpleIdentifier or
a ComplexIdentifierPattern containing attributes and parameters. A resource type
has a defined set of Methods of certain MethodTypes which have produced and consumed
MediaTypes. A ResourceType also has ResourceElements which can either be Links,
LinkCollections or Attributes. Figure 2.2 gives an overview of the different relations
and concepts.

As shown in figure 2.1 there are eight distinct concrete resource types (sub-types of the
abstract ResourceType) available in the meta-model.

Primary Resource Types typically represent one of the main business objects of the ap-

2.3 The REST Meta-Model

Generalization

—> EReference

containingType [. listElementType
| ResourceType I
elementTypes
projectedType pagedType
| AggregationResourceType | |ActivityResourceType| | PagingResourceType| |ListResourceType|

SubresourceType | PrimaryResourceType| | ProjectionResourceType| FilterResourceType

Figure 2.1: The resource types of the meta-model [6]

plication. For example, a book would be a primary resource in a book-store appli-
cation.

Paging Resource Types provide paged access to other resources. Paged access means
that it is possible to browse through a resource page by page, for example a list of
all books in a book store could be the paged type of such a resource.

List Resource Types represent a list of other resources. As opposed to the paging re-
source, the list resource type does not offer paged access. The elements in such a
list are of a certain resource type.

Filter Resource Types provide a partial view on a list of items. For instance, a filter
resource could be the list of books published after 1999 in a book-store application.
Filter resource is hence a subtype of list resource.

Subresource Types represent part of a larger whole. A subresource type is part of another
resource represented as an entity on its own. For example, in a book-shop, one could
have an abstract for each book on sale. That abstract can either be represented as
an attribute of the book itself or as a subresource of a book.

Activity Resource Types are resource types representing a process or a part of it [4].
For example, when ordering books in a book-shop application, an activity resource
could be entering the billing address during checkout.

Aggregation Resource Types aggregate properties of other resource types into a single
resource type, effectively reducing the number of necessary client/server interac-
tions [4]. An example for an aggregation resource could be the details page of a
book that also shows full information of the author, thus aggregating information

2 Related Work

MethodType

methodType

consumed
methods

target parameters produced

type

identifier MediaType Representation

| ResourceldentifierPattern

MediaTypeElement

|
| Simpleldentifier | |Comp|ex|dentiﬁerPattern|— ResourceElement
dataType
parameters

Relationtype j«—2P° LinkCollection values Attribute

‘ dataType dataType

_| InternalLink | | ExternalLink | |ExternaILinkCoIIection||InternaILinkCoIIection|

elements |

ResourceType containedElements containedElements

elements correspondingElement

RepresentationElement

dataType

elementType

T elements

| PrimitiveDataType | | CollectionType

Figure 2.2: The core of the structural model [6]

about a book resource and the corresponding author resource into a single view.

Projection Resource Types are used to create a reduced view on another resource type,
removing superfluous attributes. This reduces the amount of data that needs to be
transferred [4]. For instance, a reduced view on a book could only show the title and
author and omit all other information. There could then be also a list showing all
books in the book-store with only their title and author instead of all information
available for each single book.

The other part of the meta-model—the behavioural model—constitutes the specification
of what actually happens when a request is processed. It models the States and the
behaviour of a resource types Methods by means of Actions executed. That is, every
Method has a certain Action or a number of actions contained inside an ActionSequence.
Also, there are different types of actions such as ReturnAction or ConditionalAction.
Figure 2.3 gives an overview of the different relations and concepts.

2.4 Visual Language Design

The goal of the development of a visual language should always be cognitive effective-
ness which “determines the ability of visual notations to both communicate with business
stakeholders and support design and problem solving by software engineers” [8, p. 757].

2.4 Visual Language Design

MediaType

consumed

behavior

parameter states

ResourceType

parameter | Method supportedMethods
behavior transitions
leaving X target
enlerlng

-])
BehaviorSpecification [[Transition —19ger
effect

creator

Creator

initialState

Trigger

InternalMessage

creator

action condition

actionlfTrue

Action |

elements actionlfFalse Condition

|ListAddAction |ActionSequence| | UpdateAction ||MessageAction

‘ condition

|ReturnAction| | ConditionalAction |

element status | metadata data

|CreateAction| | ListRemoveAction | -
| ResourceElement | | StatusCode ||Metadata| |Representat|on|

Figure 2.3: The core of the behavioural model [6]

However, the design of visual syntax is a neglected yet important issue in modeling lan-
guage development [8]. A good modeling language is not only defined by proper semantics
but also to a large extent by good and reasonable syntax. It would be short-sighted so
assume that only because a language is semantically complete it will be easily usable
by practitioners. Most visual language designers rely on their intuition when defining
graphical elements of a language or simply put the issue aside completely [8, 22].

It is important to consider and to document the reasons for the design decisions made
to provide traceability and justification for them [23]. Moody [8] therefore tries to put
designing a visual notation onto a more scientific level by defining visual properties a good
notation should have. Those criteria can be evaluated in the process of designing the
notation and not only after the fact. That way a prescriptive theory for visual notations
is established.

There are nine criteria which can be used in a modular fashion. Not all of them have to
be applied for any notation newly designed and some can be stressed more in the design
process than others. A detailed description of the criteria used in developing the graphical
notation that is part of this thesis is given in chapter 3.

Besides Daniel Moody’s article [8] and his work on improving existing notations such as
i* [24] and UML [7] there has been work done on the subject of evaluating graphical
notations before. One approach is the cognitive dimensions framework (CDs framework)
[25-28]. The CDs framework however only offers a descriptive theory—it can only be used
to evaluate existing notations and not to create new ones. But also other work done to
provide the tools to analyze visual notations [28-31] suffers from the same fundamental

2 Related Work

shortcomings as the CDs framework: They are merely descriptive and offer no foundation
to build new notations upon.

2.5 Questionnaire Development and Evaluation

The development of a questionnaire is more than just asking questions [32, p. 19]. There
are numerous books and articles published on the theory and practice of questionnaires
development [33-37]. They provide general advice for different purposes ranging from
psychological evaluation (for example, performance and intelligence tests) to opinion re-
search.

Evaluation of data gathered through questionnaires is another aspect - although highly
connected to the design phase of any questionnaire [33]. The data analysis is usually done
using SPSS [33, 38, 39], but there are free alternatives to that [40, 41] which also allow
statistical evaluation of the data gathered in much the same way as the commercial SPSS
tool does.

There has also been work done already on the topic of graphical language evaluation.
Based on the cognitive dimensions framework, Blackwell et al. developed a questionnaire
they used to evaluate properties of certain visual notations [42]. Bobkowska refined and
tailored that questionnaire towards her needs [43] after studying its usability [44]. She
also developed a framework to support visual language evaluation [45]. Both Blackwell
and Bobkowska require the user to be familiar with the system that is being evaluated
to work effectively and both use mostly open questions when trying to gather a probands
opinion. While this is a perfectly reasonable course of action, it does not match the
scenario envisioned for the questionnaire developed here. In this case, the assumption is
that probands will likely not have had the chance to work with the language yet.

Other studies on visual languages have been done as well. Johansson et al. [46] evaluate
the different diagram forms, focusing on process oriented modelling languages such as
Flowcharts, BMPN, EPC and UML activity diagrams using Moody’s criteria. However,
their evaluation is limited to a small set of researchers who were familiar with Daniel
Moody’s criteria and who formed a common understanding of the scales used to judge
the criteria before starting the actual evaluation. Also, they directly asked the opinion
of the probands on a scale of 41 to -1 for every criterion for every language. So they
had a rather coarse grained scale with a rather simplified questionnaire. The basic idea
is similar to the study that is done in this work in that probands are also asked to give
their opinion on certain aspects of the modeling language. However, the questions used
in the questionnaire presented in this thesis are more fine grained and try to mitigate the
fact that probands might not have any experience with visual language design.

2.6 Implementation Aspects

2.6 Implementation Aspects

The prototypical editor implementation is based on the Eclipse Rich Client Platform
(RCP) [47] in concert with some additional components from the Eclipse [9, 48, 49] ecosys-
tem.

The core meta-model bases on the Eclipse Modeling Framework (EMF) [50, 51]. EMF
enables meta-modeling based on Ecore models and offers facilities for persistence and
XMI serialization as well as a reflective Java Application Programming Interface (API).
EMF.Edit supports the creation of editors from EMF models and EMF.Codegen is used
for generating new editors from EMF Ecore models.

While out of the box this more or less only covers the semantic part of the model, the EMF
tooling (and the Eclipse SDK, for that matter) allows pulling in additional components
to facilitate the development of graphical editors for any EMF model.

The basis for developing any graphical editor with Eclipse is the Graphical Editing Frame-
work (GEF) [52]. On top of that, there are currently basically two more or less mature
frameworks that support the development of graphical editors in a more straight for-
ward fashion than basic GEF: The Graphical Modeling Framework (GMF) [53, 54] and
the Eclipse Graphiti Project [55, 56]. Both are part of the Graphical Modeling Project
(GMP) [57].

The Graphical Modeling Framework uses a model-driven approach to developing graphical
editors. Additional models that define the available tools, the available graphical symbols
and the mapping between all these and the domain meta-model are needed in this case.

The Graphiti Project on the other hand uses a code-centric approach to developing graph-
ical editors for the EMF models. The project offers an API tailored towards efficient and
easy development of the required classes to implement an editor. It does not rely on code
generation at all and also supports non-EMF models.

The editor implementation uses Graphiti instead of GMF because it seemed to be the
approach that would be easier to use for a prototypical implementation. Although GMF
seems to be more mature, it has a much steeper learning curve and also in the end might
require modifying generated code, breaking to some extent the benefit of generating code
in the first place and possibly adding additional sources for problems to the mix.

The Enhanced Editing Framework (EEF) [58] is used to generate the property sheets for
the semantic elements that are used to display the elements attributes in the graphical
editor. EEF offers a model-driven approach. It uses two additional models, namely the
components and eefgen model, to derive rich property editors from an EMF genmodel.

2 Related Work

On a more pragmatic level, there is always the need to build and test virtually any
application or library, also when developing a prototype. Experience shows that it is
always favourable to have a working ecosystem before any version of a product needs to
be released. The editor implementation is tested on unit level by using JUnit [59] and
on User Interface (UI) level by using SWTBot [60] and Google WindowTester Pro [61].
To provide a reliable and repeatable automated build, Maven [62] is used together with
Tycho [63]. To catch errors in the build and failures in the tests early and regularly,
Continuous Integration (CI) [64] is facilitated. The continuous integration environment
is provided by the Jenkins Continuous Integration server [65] (a fork of the popular
Hudson CI server [66]). Together with automated unit and UI tests and the repeatable
builds provided through Maven/Tycho, this accounts for a robust build environment that
catches problems early.

10

3 The Graphical Language Visual REST

In this chapter the graphical notation, called Visual REST, that is developed as part of
this thesis is presented. First, criteria for a proper visual syntax are presented followed
by a description of the process used to derive the new notation from the meta-model.
Subsequently, Visual REST is illustrated in detail afterwards. The views and graphical
symbols that are part of the language are shown and a motivation and rational for the
design decisions is given, partially based on the graphical properties presented before.
Afterwards, the properties of the new visual language are discussed in detail, using the
criteria presented at the beginning of this chapter as focus points. Finally, examples of
applications modeled using Visual REST are shown, providing an overview of the different
views and usage of the different symbols in real application scenarios.

3.1 Criteria for Proper Visual Syntax

Visual syntax is often considered secondary when developing a new modeling language. It
is a mere afterthought in the development process and not much conscious effort is put in
coming up with a perceptually effective notation [8, 22]. The development of a cognitive
effective visual syntax needs to become a conscious process and not only be based on
intuition of the developers [8]. Criteria need to be developed to judge notations upon, so
that good graphical notations become distinguishable from bad ones.

Daniel Moody [8] provides a solution to these challenges. He provides nine principles in
the form of a prescriptive theory that can be used during the development of a notation.

The principle of Semiotic Clarity says that there should be a one to one correspondence
between syntactic and semantic features. The principle is concerned with minimizing
symbol redundancy and symbol overload as well as symbol excess. However, Moody
states that symbol deficit is “desirable in most SE contexts” [8, p. 762]. This means that,
in most notations developed for a software engineering purpose, it does not make sense
to create a graphical representation for all semantic constructs, because that would lead
to notations with too many different graphical symbols.

The principle of Perceptual Discriminability states that “different symbols should be

11

3 The Graphical Language Visual REST

clearly distinguishable from each other” [8, p. 762]. Discriminability is primarily a function
of the visual distance between symbols and visual distance is defined by the number of
visual variables the symbols differ in. Visual variables are, for example, color, shape,
brightness, texture and position. To be able to distinguish between symbols even easier,
it is helpful to add redundancy: a different shape with a different color helps discriminate
symbols. Ideally, each symbol should have at least one unique visual variable to pop
out. They can then be detected without conscious effort according to feature integration
theory [67, 68].

This is emphasized by the principle of Visual Expressiveness which states that the full
range of visual variables and their full capacity should be used to represent the notational
elements. For example, UML only uses shape to distinguish between the elements of the
notation, so it only uses a single variable. A visually expressive notation should however
do more. Especially color is one of the most effective visual variables [69, 70] and thus
should be used in any visual notation. However, due to problems with, for instance,
color blindness and black-and-white printers it should not be used as the sole criterion [8,
p. 768]. A robust design of a notation adds redundancy to the information encoding to
make it easier to distinguish between different notational elements based on different
visual variables [8].

The principle of Dual Coding postulates that textual encoding ought to be used in a
supportive form. Diagrams should be augmented with additional textual information.
This textual information can either be an annotation that is used to explain the contents
of a diagram, or it can be a hybrid representation of a symbol’s meaning. An example of
a hybrid representation is a multiplicity relation that is represented by different graphical
symbols representing different cardinality types (for example *, 0..1, etc.). These repre-
sentations then get augmented with their actual meaning in form of text, as is shown by
the rightmost part of figure 3.1. An example of annotations are the annotations provided
by UML—they enable UML users to add explanation directly inside a diagram so that
no additional document is needed.

Dual coding
Graphical encoding Textual encoding (graphics+ text)
0.1 3..15 0..1 3..15

Figure 3.1: An example of dual coding [§]

The principle of Semantic Transparency demands that it should be possible to infer
the meaning of a symbol from its appearance. The benefit is “reduced cognitive load
because they have built-in mnemonics” [71] which leads to improved speed and accuracy
of understanding the information contained in a diagram [72, 73]. The use of iconic rep-

12

3.1 Criteria for Proper Visual Syntax

resentations additionally improves the speed of recognition and recall [74], yet they are
rarely used in most software engineering contexts [71].

Graphical notations should also provide a way for modularisation and hierarchically struc-
turing to effectively represent complex situations [8]. The principle of Complexity Man-
agement states that these mechanisms should be supported inside the notation to man-
age complex use cases. Both modularisation and hierarchically structuring need to be
backed by semantic constructs. An example for modularisation is the UML package since
it provides the semantic construct of a module. The syntactical solution provided by
UML packages however is not sufficient—more than just a representation of the semantic
construct is needed to solve the problem of complexity management [8]. A hierarchical
breakdown could include summary diagrams that allow navigating to lower abstraction
levels or even a recursive decomposition [75] as for example is the case with Data Flow
Diagrams (DFD) [76].

The principle of Cognitive Integration is applicable where multiple diagrams are used
to represent the complete system. It can be distinguished between homogeneous inte-
gration and heterogeneous integration where the former is the use of multiple diagrams
of the same type while the latter uses multiple diagrams of different types to describe
a system [8]. However, using any multiple diagram approach puts additional cognitive
demands on the user [77]. To mitigate this problem, cognitive integration theory [78, 79]
uses conceptual integration and perceptual integration. Conceptual integration helps the
user to build a coherent mental image of the system. An important mechanism is the
use of summary diagrams. Another technique is contextualisation where the context of
the current diagram (the current part of the system) is included in a diagram. Foreign
elements can be included in the diagram to show which other parts of the system relate to
the part shown in the current diagram. Perceptual integration, on the other hand, adds
perceptual cues to allow easier navigation between diagrams. There are basically four
questions that need to be answered. “Where am I?” (Orientation), “Where can I go?”
(Route choice), “Am I on the right path?” (Route monitoring) and “Am I there yet?”
(Destination recognition) [80]. Clear labeling of diagrams supports orientation and desti-
nation recognition. Level numbering helps with orientation as well. Using navigational
cues on diagrams (Signposting) supports route choice. A navigational map (a map of all
diagrams and the paths between them) helps with route choice and route monitoring.

The principle of Graphic Economy says that there should be only a limited number of
notational elements since the number of different symbols that can be effectively recog-
nized is limited [81]. When using only one visual variable, this limit is around 6 different
symbols [82]. When increasing visual expressiveness, this limit increases almost addi-
tively [82] so that more symbols can be recognized effectively. Another way to improve
graphic economy is to reduce or partition semantic complexity. Explicitly introducing
symbol deficit is also an option to improve graphic economy, since some information can
be more effectively encoded textually than graphically any way [27].

13

3 The Graphical Language Visual REST

Different audiences or different tasks might require different views on a model. An ex-
pert and a novice practitioner might find different views on a model useful. Also, the
representational medium plays an important role. Using a language on a white board,
for example, might call for a different notation than using a computer program to do the
modeling. The principle of Cognitive Fit reflects this fact in the design of modeling
languages. The intended audience should be clearly defined when developing the notation.
If there are distinct audiences targeted, it should be clear if there needs to be a distinct
language dialect to better support them and their medium.

3.2 Deriving the Notation from the Meta-Model

Although Daniel Moody offers a prescriptive theory for the development of visual syntax,
defining a new visual language is still not a guided process. There currently is no prede-
fined way to follow that would allow for the structured and constructive creation of new
notations. The process devised and used for the development of Visual REST given an
existing meta-model is thus presented subsequently.

The development of the new syntax has to be iterative. Starting from an initial idea, that
initial idea is refined and tailored using the criteria defined by Moody. The process used
for the design of Visual REST is following that broad schema. Figure 3.2 provides an
overview of the steps in the development process.

Identify primary
and subordinate
concepts

Identify related
concepts

A 4

h 4

More
Refinement
Needed?

Create new version
) 4
of diagram < YES
elements

h 4

Create mockup
examples

Check against
criteria

Figure 3.2: Overview of the process to derive a new graphical notation

To derive the notation, the first step is the identification of semantically related concepts.
This was for a large part already done in the meta-model [6] which already defines a
structural and a behavioural part, but, as section 3.3 shows, there was some refinement

14

3.2 Deriving the Notation from the Meta-Model

needed which lead to a more fine-grained grouping, in the end.

With the semantic groups established, the second step of the process is the identification
of container concepts in the groups. The resource type for example is a container concept.
Resource types form the major item of concern in modeling the structure of an application.
Other concepts such as attributes are subordinate to them. Connections between the
container concepts were easily identifiable as well and need special treatment. The internal
link for example is an attribute by nature and thus subordinate to a resource type but
still receives a special representation. It is represented by a connection arrow between
two resource types because it connects the resource types semantically in the model as
well.

The third step is the definition of iconic representations for the primary concepts in the
groups. The iconic representations are chosen by starting from the primary concepts and
trying to find a representation that matches the semantic meaning of the concept while
still being visually discriminable from the other symbols already used. This follows the
principles of visual discriminability and semantic transparency.

After defining the icons for the major concepts, a way to include subordinate concepts in
the representations needs to be found. For semantic connections this is obvious; directed
connections like internal links—as mentioned before—or transitions can easily be repre-
sented by arrows. Similarly, action sequences are represented by arrows because using
arrows is a semantically transparent spatial relationship between objects [8, p. 765]. A
rationale for all design decisions is given when the various representations are presented
later on.

Following the initial definition of all representations, the process is repeated and the rep-
resentations are refined. This is done by evaluating the representations against Moody’s
criteria and changing or adapting things where it is needed. Representations can also
be changed because of new ideas that only occurred after the previous iteration, such as
a new icon for a certain resource type, for example. Besides changing representations,
also other notational elements to support the various criteria are added or removed as
needed. For example, in the first iteration in the definition of Visual REST there were
no markers on the diagrams to support cognitive integration. They were only added in a
later iteration’s refinement step.

To get an idea of how well the notation created in one iteration of the process actually is
regarding Moody’s criteria, mockups of the notation were created using a simple drawing
tool. First, generic mockups for each individual element of the notation were created to
be used as blueprints. These blueprints were then utilized to manually draw—since there
was no actual editor at that point—different application models. Through the actual use
of these mockups in modeling a direct feedback is provided that helps to identify potential
issues and problems with the new notation in relation to some of Daniel Moody’s criteria

15

3 The Graphical Language Visual REST

such as Cognitive Fit and Graphic Economy. This step also provides feedback beyond the
mere evaluation of Moody’s criteria. Through the use of the notation in a real example, a
feeling for the usability of the notation is established. Although this is neither qualifiable
nor quantifiable, it still helps to improve the notation.

The process stops once there is a suitable and visually sound representation for the domain
concepts. The feedback loop presented earlier can also be extended with the results of
the questionnaire presented in chapter 4. That way, feedback on the different notational
elements can be gathered from an external source which can then be used to improve the
notation even further.

3.3 Diagram Types of Visual REST

The REST meta-model [6] is divided into a structural and a behavioural model. While
that seems a reasonable choice for the meta-model, it does not exactly match the visual
language view on the model. For the sake of complexity management Visual REST offers
a four different kinds of diagrams (or views) on the model.

The Structure View is manifested in a Structure Diagram which covers most aspects
of the structural meta-model. It is used to display the different resource types in an
application. However, a single application is not limited to having a single structural
diagram. The different resources types of an application can be distributed across multiple
resource structure diagrams. A single resource type can also appear on multiple diagrams
to put the other resource types shown there into context. That way, the structure view
offers Complexity Management by partitioning and Cognitive Integration by enabling
the display of contextual information. Figure 3.3 gives an example of a simple resource
structure diagram.

There is also an alternative representation of the structural view that omits many details of
the resource types in favor of a clearer view on the resource structure and the connections
between resource types. This view can be used as a Structure Overview Diagram
when only those aspects are of interest, for example, to present an overview of the overall
architecture of a resource-oriented application (see figure 3.4). Similarly to the structure
diagram, the structure overview diagram also allows partitioning.

The behaviour of the methods supported by a resource type in a certain state needs to
be defined as well. This is done using the Resource Method Behaviour View (Re-
source Method Behaviour Diagram). A single resource method behaviour diagram
can display one or more methods of a single resource type. Methods of different resource
types cannot be combined into a single method diagram. However, there can be multiple

16

3.3 Diagram Types of Visual REST

<<Primary==

o

Book

<<Primary==

Author

Ibookiid}

+ title : string
+izbn ; string
+ abstract : string

=<InternalLlink=>

book

<=containment==
ligtType

<=containment=>
listType

<=List==

Books

/books

=<Internallink==

lauthorHid}

author

+ name : string

=<InternalLlink=>
booksOfAuthor

z=Filter==

BooksOfAuthor

<<containment=>

fbookssauthorsfauthorid}

fiteredType

Figure 3.3: The structure view

o

' P
=<Primary== =<InternalLink=>
author
Book
<<Internallink>=
book
<<Ligt>= <<containment==
fiteredType
Books

Figure 3.4: The structure overview view

"y

<<Primary>=
Author

=<InternalLink=>
booksOfAuthor

<<Filter>=

BooksOfAuthor

17

3 The Graphical Language Visual REST

method diagrams per resource type. This allows for partitioning of complex resource
types to some extent in that it allows putting, for example, very complex methods on a
single diagram while grouping other simple ones together into another one. Hierarchical
structuring is not possible by design because it seemed to make matters overcomplicated
for practitioners. Cognitive Integration is provided through the use of indicators that
identify the resource type a particular method behaviour diagram belongs to. Figure 3.5
gives an example of a resource method behaviour diagram showing multiple methods.

Methods of: Book

==flethog==
POST : myFirstMethod()

SUGTESTION e D ==Crestedotion==

v

==MeszageAction>>

L—D img/png

Trigger

==Returndction==
200
atom+entry

==lgthod==
PUT : update()

atom+entry S—i ‘—} atom+entry
=<Updatedctions=
Q Book = fitle

T

==Returndctions=
200
atom=entry

Figure 3.5: The resource methods view

The states of a single resource type are depicted inside the Resource States View
(Resource States Diagram). This view shows the states of a single resource type and
their respective transition from and to one another. Also, the supported methods in the
different states are displayed. Complexity Management on the same semantic level is not

18

3.3 Diagram Types of Visual REST

possible; states of a single resource type cannot be distributed onto several diagram but
all have to be on a single one. Complexity Management for the complete application is
provided by the hierarchical structure going from resource type through resource states
to method behaviour. Cognitive Integration in terms of navigation support and location
awareness is provided by the indication of the resource type the state diagram belongs to.
The Resource States View is the connection between the resource structure as defined
in the Resource Structure View and the behaviour of individual resource methods as
defined by the Resource Method Behaviour View. Figure 3.6 gives an example of a
resource state diagram.

States of: Book

==8iale>>

working

POST : myFirstMethod
GET : get
PUT: -
DELETE: -

POST: -
GET : get

v

trigger
PUT : update

DELETE : -

=<States>
finished

anotherTrigger

POST: -

GET @ -

PUT:-

DELETE : delete

Figure 3.6: The resource states view

The visual elements of the four views of the notation and their mapping to their semantic
meaning is outlined by sections 3.4, 3.5 and 3.6, respectively. Some items only received a
textual representation rather than their own graphical symbols—this is also explained in
those sections.

Even with all the views and their contained elements defined, there are still some items
of the meta-model that are not reflected in the visual syntax—section 3.7 provides an
overview. Leaving out elements is done on purpose. Adding all elements just for com-
pleteness’ sake would for all intents and purposes make the notation less usable (and break
with the principle of Graphic Economy). Leaving out parts of the meta-model concepts
is common in a software engineering context and does not break with the principle of
Semiotic Clarity [8, p. 762].

19

3 The Graphical Language Visual REST

3.4 Elements of the Structural View

The structural view contains all elements relevant to the structure of an application. In
particular, it contains all kinds of resource types, internal links, attributes and identifiers.
In the following sections the different representations of the individual concepts are pre-
sented. A description of and motivation for the choice of representations is given for each
symbol as well.

3.4.1 Resource Types

The resource types are similar in their semantics and thus are also similar in their syntax.
For every resource type there is a distinct icon, though, that is used to convey the actual
type. There is a collapsed and expanded version for each resource type. The collapsed
version only shows the iconic representation alongside the textual type annotation (in
form of a UML-like stereotype) and the resource types name. It is used on the structure
overview diagram or for contextualisation on resource structure diagrams. The expanded
representation additionally shows attributes and identifiers for the resource type in a
UML-class like box. The iconic representation is then placed into that box. It is used on
the resource structure diagram. Examples are shown when the individual resource types
are discussed.

Primary Resource Type

The primary resource type is symbolized using a yellow star as shown in figure 3.7. In
computer programs, the star is commonly used to represent favourites (e.g. in browsers).
A favourite is something that is often used. The idea is that the star symbol provides
a hint to that meaning. From there, the link can easily be made to a primary resource
type since that as well is something that stands out of the mass—it is one of the primary
concepts used in an application. The yellow star symbol differs in shape and color from
all other resource types.

List Resource Type

The list resource type is symbolized by a pink sheet of paper with lines on it as shown in
figure 3.8. The link should be easy to make—a list in real life often looks similar. The
list differs from all other symbols in shape and color. The paging resource type is closely

20

3.4 Elements of the Structural View

<<Primary==

7 Book

{bookiid}

+title : string
+izbn : string
+ abstract : string

(a) Expanded

-

<<Primary>=
Book

(b) Collapsed

Figure 3.7: The primary resource type

related in terms of shape, though, but a trade-off was made here in favour of semantic

transparency versus perceptual discriminability.

<< igt=>

PicturesOfAlbum

fpictures OfAlbum/{id}

(a) Expanded

=] stz
PicturesOfAlbum

(b) Collapsed

Figure 3.8: The list resource type

Paging Resource Type

The paging resource type is symbolized using two light blue sheets of paper with the
front sheet having an edge already folded away, revealing the next page. This is shown
in figure 3.9. The basic idea is that this should symbolize a page being turned over.
Although related in shape to the list resource type it is still somewhat different. It also
differs from all other resource types in shape and color.

Activity Resource Type

The activity resource type is symbolized using a dark grey cogwheel as shown in fig-
ure 3.10. A cogwheel was chosen because it seems to transport the meaning of an activity

21

3 The Graphical Language Visual REST

<=Paging==
Authors
fauthors
<<Paging>>
Authors
(a) Expanded (b) Collapsed

Figure 3.9: The paging resource type

quite well. It can regularly be found on “go” buttons in computer programs to start
actions, so out of common convention it should be easy to understand its meaning. It
differs from the other resource types in shape and from all but the filter resource type in
color.

m << Activity==

=1
i(___}f Suggestion

/suggestion/{id} r§u

+ positiveReviews : int l:)-zlert‘

+ negativeReviews : int

+ statement ; string <=Activity=>
+ =tatusz ; =tring Suggestinn
(a) Expanded (b) Collapsed

Figure 3.10: The activity resource type

Aggregation Resource Type

The aggregation resource type is symbolized using an accumulation of green blocks as
shown in figure 3.11. This is meant to symbolize something being assembled from different
parts which is basically what is happening with aggregation resource types. The green
building blocks are also different from the other resource types in both shape and color.

22

3.4 Elements of the Structural View

s =<Aggregation==

r
| BooksWithAuthor

/books/authors :| \lf

<<Aggregation=>
BooksWithAuthor

(a) Expanded (b) Collapsed

Figure 3.11: The aggregation resource type

Projection Resource Type

The projection resource type is represented by an orange light cone as shown in figure
3.12. The light cone is probably one of the least obvious symbol selections compared to
the others. The basic idea is that a video projector throws some sort of light cone to
“project” something to a surface. This is the semantic meaning that should be conveyed.
The true semantics of a projection—a partial view on a resource type—are not directly
conveyed by this representation but should be obvious for users that are familiar with
database terms. The cone differs from the other resource types in shape and color. A
semantically more transparent representation for this resource type could probably have
been found, but at the cost of a likely more complex symbol. Since the notation as a
whole should still be usable on a white board without the need for a dedicated editor, a
decision was made to chose a simple representation at the cost of slightly reduced semantic

<<Projection==
BooksTitleOnly

transparency.

fbooksfitles
<<Projection==
BooksTitleOnly
(a) Expanded (b) Collapsed

Figure 3.12: The projection resource type

23

3 The Graphical Language Visual REST

Filter Resource Type

The filter resource type is symbolized using a light grey stylized filter as shown in fig-
ure 3.13. The filter symbol used can often be found in other application such as database
front-ends. In those applications it is commonly used to support filter operations on data
tables. Since this is pretty much exactly the semantics of the filter resource type, the link
seems very easy to make for users. The filter differs in shape from all other symbols and
in color from all but the activity resource types’ cogwheel, which is colored in dark grey.
Using yet an additional color seemed to reduce graphic economy to an extent where the
diagram became too colorful.

<<Filter=»>
BooksOfAuthor

Ibooks/authors/{authorid}

<<Filtars»

BooksOfAuthor

(a) Expanded (b) Collapsed

Figure 3.13: The filter resource type

Subresource Type

The subresource type is symbolized using a purple puzzle piece as shown in figure 3.14.
The puzzle piece represents the fact that a subresource type is to another resource type
what the puzzle piece is to a puzzle. It is part of something bigger. The representation
of the subresource differs in both color and shape from the other resource types.

3.4.2 Attributes

Attributes are shown in the lower area of the expanded resource type box as shown in
figure 3.15. The notation for attributes is somewhat borrowed from UML class diagrams.
Attributes start with a “plus” (+) sign followed by the name of the attribute and its type.
A colon separates the name from the type.

24

3.4 Elements of the Structural View

<<Subresources=x

PictureData

Ipicture/{id}/data

+ binaryData : file

JI'

<=Subresource=>
PictureData

(a) Expanded (b) Collapsed

Figure 3.14: The subresource type

<<Activity==
@ Suggestion

{suggestion/{id}

+ positiveReviews : int
+ negativeReviews : int
+ statement : string

+ ztatuz ; =tring

Figure 3.15: Attributes of resource types

25

3 The Graphical Language Visual REST

3.4.3 Identifiers

Identifiers are placed in a special area inside the resource type box. They are situated
right between the resource types name and its attributes. Identifiers show the resource
types URL, possibly including placeholders. Placeholders are represented using curly
braces. For example, to access a specific book resource by its id, the URL /book/{id} is
used as shown in figure 3.16.

<<Primary==

3 “ Book

/bookHid}

+ title : string
+ izbn : string
+ abstract : string

Figure 3.16: Identifiers of resource types

3.4.4 Internal Link

The internal link is represented using a solid black line that ends in an arrow head as
shown in figure 3.17. A link is directed, so the arrow is as well, indicated by the arrow
head.

P

<<InternalLink==
linkMame

Figure 3.17: The subresource type

The name of the link is used as decoration of the arrow that represents the link. The
link name is again decorated with a stereotype that indicates the type of the graphical
symbol. The relation type is currently not shown in the representation.

3.4.5 Containment

The containment connection is special. It does not directly map to a primary semantic
concept, but rather represents a semantic relation between two resource types. For ex-

26

3.5 Elements of the Resource States View

ample, a filter resource type has a certain type of elements. This element type is in this
sense “contained” by the filter.

A syntactically better way to represented such relations is to encode it spatially instead
of by using arrows [8]. However, since many different resource types can contain a single
other one, this was not feasible here. For example, a list, filter and paging resource type
can all contain the same primary resource type as their element type. This makes it nearly
impossible to encode the information in a form different from arrows. Only subresource
types could have been represented as a contained “object” inside another resource type in
a sensible way. However, since being able to separate subresource types from their parent
resource types as well and for reasons of syntactic consistency also here the containment
representation using an arrow was chosen.

The arrow used to show containment differs from the internal links arrow in brightness
and color as well as in form. It is represented using a dashed line that starts with a solid
white arrow and also ends with one as shown in figure 3.18.

<=containment=»=
filteredType

Figure 3.18: The subresource type

3.5 Elements of the Resource States View

The states diagram is a simple view in the sense that it contains the least number of dif-
ferent elements. Two types of states and a transition relation between them are supported
in this diagram type.

3.5.1 States

A state as well as an initial state has a list of supported methods and a number of
transitions to other states. There can only be one initial state per resource type. The
initial state is a special case of state. It receives its own representation because it is an
important part of a model. States list their supported methods and their types inside
their body. Unsupported method types are also listed to allow the identification of the
supported and unsupported methods at a glance; the information is encoded by spatial
position rather than by text only. The position of the methods inside the body is the same

27

3 The Graphical Language Visual REST

for all states, which makes their identification easy. The header of a state is annotated
with the type of the state in the form of a UML stereotype followed by the name of the
state.

State

A normal state is represented by a simple rectangle with a light orange header as shown
in figure 3.19. The state differs from the initial state in that it has a sharp edge while
the initial state uses rounded corners. Initial and normal state also differ in color. A box
is used as representation for a state following the UML state diagram where boxes with
rounded corners are used. To provide perceptual discriminability, the rounded version
is used for the initial state and a version with sharp edges for the normal one. The
representation should therefore work well for users familiar with UML.

==State==

available

POST : addReview
GET : -

PUT : update
DELETE : -

Figure 3.19: The State

Initial State

The initial state is represented by a rounded rectangle with a blue header as shown in
figure 3.20. Again, the choice was inspired by UML and the figure differs from the normal
state in color and shape. Also here, a different representation is thinkable for future
versions of the notation.

3.5.2 Transition

A transition is represented by a simple arrow. Transitions are also directed relations as
shown in figure 3.21. The semantics of a transition through the use of an arrow seem
quite clear. The transition is augmented with a trigger. Currently only message triggers
are supported.

28

3.6 Elements of the Method Behaviour View

POST : -

GET : get
PUT : update
DELETE : -

Figure 3.20: The Initial State

>

meszdge

Figure 3.21: The Transition

Trigger

As was indicated before, triggers are properties of transitions. They are placed in as text
as a decorator on the transition arrow as already shown in figure 3.21.

3.6 Elements of the Method Behaviour View

The method behaviour view is the most experimental view used in the notation. The meta-
model itself is also still experimental and partially incomplete with regard to behaviour
modeling. It is questionable if using a graphical notation to model behaviour of methods
is favourable over a textual one. This is probably very much dependant on the user.
The best way to model behaviour in general is also still an item of active research [83].
However, the method behaviour view presented here offers a graphical way to defining
the behaviour of a resource types methods.

3.6.1 Method

As was already mentioned, there can be multiple methods per method behaviour diagram.
Therefore, a method is the container for the actions contained within it. A method is
represented by a tabbed box. The tab at the top contains a stereotype that indicates

29

3 The Graphical Language Visual REST

the type represented by the graphical symbol (a method), the method name as well as
its type and parameters. Figure 3.22 provides an example of such a method shape. The
actions of a method are then placed inside the body of the box.

==Method=>
POST : processFile(file)

IMOENG el L—) imoinng

Figure 3.22: The Method

Consumed Media Types

The consumed media type is represented by an open arrow that goes from the left to the
right. It is connected to the method box via a line and a dot as shown in figure 3.23.
This is meant to represent that something is moving into the method. The name of the
consumed media type is written to the left of the arrow. Multiple consumed media types
are placed below each other on the same side of the method.

img/ong)—;

Figure 3.23: Consumed Media Types of a Method

Produced Media Type

Similar to consumed media types, the representation should hint at the fact that some-
thing is going out of the method. As shown in figure 3.24, the produced media type is

30

3.6 Elements of the Method Behaviour View

represented by a dot followed by a line that goes into an arrow head. The dot is the
connection point to the method and the produced media types name is written to the

right of the arrow head.
+—D imgipng

Figure 3.24: Produced Media Types of a Method

3.6.2 Actions

All actions except the conditional action follow the same pattern in their layout. An icon
representing the action is shown to the left. To the right the textual representation is given
and below that additional textual information unique to a particular action are shown.
Figure 3.25 illustrates this layout. As opposed to the resource types, however, there is no
additional box around the action representations in an effort to fight “boxitis” [84-86].

==Stereotype==

[CON
additional Attributes

Figure 3.25: Generic Layout of Actions

List Add Action

The list add action is represented by a stylized list symbol augmented with a large green
plus sign as shown in figure 3.26. This hints at the actual meaning of the action—it
adds something to a list. A plus is commonly used as a symbol when something is
added to something else. The list add action has no additional attributes that need to
be displayed. It is similar in shape to the list remove and create action but not to an
extent where confusion should occur, normally. It differs in color from the other actions
as well.

31

3 The Graphical Language Visual REST

— ==| iztdddAction==

Figure 3.26: The List Add Action

List Remove Action

Similar to the list add action, the list remove action is represented by a stylized list
augmented with a red minus sign as shown in figure 3.27. A minus sign is commonly
used to represent removal of something from something. The symbol is similar to the list
add and create actions—it however differs enough to be easily distinguishable from the
others.

:- ==| jistRemovedction==

Figure 3.27: The List Remove Action

Create Action

The create action is represented by a blank page with a stylized star as shown in fig-
ure 3.28. The representation is borrowed from the Windows XP save file dialog commonly
used in many different applications. There, new folders can be created through the use
of a similar symbol: a folder that has a star in its upper right corner. Also, in other
applications, creating new files is often represented by a blank page that has an orange
star in its upper right corner. A similar representation was chosen here because—with all
those commonly used applications around—the meaning of the representation does hint
at the semantics of the action quite nicely. For create actions the current version of the
meta-model foresees a Creator. However, since the creator is not identifiable by a name
at the moment, it is not noted in the textual attributes section of the create action.

Return Action

The return action is represented by a backwards bending arrow as depicted by figure 3.29.
The representation is similar to what is commonly found on any standard keyboard—the

32

3.6 Elements of the Method Behaviour View

D ==iZreatedction==

Figure 3.28: The Create Action

return key has a similar iconic representation there. The return action has a return code
and a returned representation that is listed in the attribute section below the stereotype.

==ReturnAction=>

review

Figure 3.29: The Return Action

Update Action

The update action is represented by two arrows that circle around a center point as
shown in figure 3.30. This representation is commonly found in many applications on the
market the allow reloading documents or updating software, for example. The icon seems
common enough to convey the intended meaning. Below the stereotype the target of the
update is shown.

==UpdateAction=>
Q Resource - atfribute

A Y

Figure 3.30: The Update Action

Message Action

The message action is illustrated by a sealed envelope as shown in figure 3.31. The
envelope is probably the prototype of a message since many years—starting in earliest
years of any written communication. Even today’s email and instant messaging systems
still use an envelope to represent the act of sending messages. The message that is sent
is shown in the attribute area of the action representation.

33

3 The Graphical Language Visual REST

==ldezsagedctions==

message

Figure 3.31: The Message Action

Conditional Action

The conditional action uses a special representation that is different from the other actions.
For each conditional action there is a true and false path action execution can follow. Both
are shown in the representation of a conditional action as shown in figure 3.32. As opposed
to the other actions, the conditional action is—similarly to the method itself—a container
for other actions. Instead of using arrows (from the action sequence representation) to
display the different paths that can get executed this information is encoded through
containment to make it easier to comprehend.

<=Conditional&ction==
TRUE FALSE

Figure 3.32: The Conditional Action

3.6.3 Action Sequence

The action sequence is modeled using arrows to connect the different actions in a se-
quence. As was mentioned before, the use of arrows to connect sequences is semantically
transparent [8, p. 765]. The representation of such a sequence connection is shown in
figure 3.33.

34

3.7 Elements without graphical representation

>

Figure 3.33: The Action Sequence

3.7 Elements without graphical representation

There are no graphical editors for data types, method types, relation types and bin op
types because these structural components of the model cannot be meaningfully repre-
sented using symbols. That is, using graphics would only have added visual clutter and
additional symbols while providing no benefit to the notation as a whole. A data type,
for example, can much easier be written using structured text than using any kind of
symbolic representation.

3.7.1 Creator

Modeling creators is currently not supported by the notation, although it is thinkable
that, in a later iteration of the language, modeling of creators can follow the same scheme
used for methods. Internally, a creator also has a sequence of actions that are executed.
The creator was left out for the time being because it is unclear if the concept will survive
a second iteration of the meta-model and also because of the experimental nature of the
method behaviour view which the creator strongly relates to.

3.7.2 Guard Conditions

Guard conditions are currently not supported by the notation. Modeling conditions using
a graphical language seems overcomplicated. Using a simple textual language to describe
conditions used for conditional actions and transitions seems easier.

3.7.3 Internal Link Collections

Internal link collections are currently not represented in the notation through individual
symbols. Similar to attributes, they could be added to the attribute list, for example.
Alternatively, a representation matching that of internal links could be used, augmented
with additional annotations to indicate a link collection. Perceptual Discriminability and
Semantic Transparency need to be maintained, though.

35

3 The Graphical Language Visual REST

3.7.4 External Links

External links are also currently not represented by graphical symbols in the notation.
While internal links have a distinct target in a single diagram, external links do not.
This means that additional target symbols are needed if an external link is also to be
represented by a connection with an arrow. Also using an arrow would make sense since
semantically an internal link is equivalent to an external one. It’s just the target that
differs. However, that would lead to a deficit in semiotic clarity because it would introduce
elements that are not part of the model to the diagram (the target of the external link).
An alternative would be to find a different representation for the external links arrow
representation. However, that would increase graphic complexity and possibly break with
semiotic clarity again since it would introduce symbol overload on some level. A last way
out would be to simply add external links to the attribute list as well.

3.7.5 External Link Collections

Similar to internal link collections—and because external links are not represented either—
the external link collection did not receive its own graphical representation.

3.8 Navigating the Notation

By convention, there is at least one—but possibly more—structure diagrams for a single
resource-oriented application. The resource types shown in the structure diagram are
linked to the state diagrams. There is exactly one state diagram for each resource type
in the application. The behaviour of the supported methods of the resource type’s state
as shown in the states diagram can be found in a method behaviour diagrams. There
can be multiple method behaviour diagrams per resource type and in each method be-
haviour diagram there can be multiple methods. Methods from distinct resource types
cannot appear on the same method behaviour diagram, though. Figure 3.34 visualizes
this relation.

Navigating this network of diagrams is mainly supported through sign posting. Sign
posting means the addition of visual cues that direct the user and tell him where he
currently is inside the complete network of diagrams and which related diagrams are
available to him. The states as well as the method behaviour diagram contain an indicator
that highlights which resource type they belong to, as shown in figure 3.35.

Navigating from a resource type to its methods is only implicitly supported. As per

36

3.8 Navigating the Notation

Structure Diagrams State Diagrams Method Diagrams

Figure 3.34: The navigation layers of the model

States of: Book

Methods of: Book

==Msthod==
POST : myFirstMethod()

POST . myFirstMethod

GET : get

B trigger suggestion >—T ,— I ==Createdctions=
(a) States (b) Methods

Figure 3.35: Signposting on the diagrams

37

3 The Graphical Language Visual REST

convention, there has to be exactly one state diagram for each resource type. Hence there
was no need to add an additional indication in the resource structure diagram that would
provide cues for that fact. Navigating from the states to the methods of a resource type
is done through the display of the method names in the states. There is no direct way
to navigate from the resource types to their methods. The states diagram is the link
between resource types and methods.

3.9 Moody’s Criteria applied

The notation was designed to comply with Daniel Moody’s criteria as presented in sec-
tion 3.1 as much as possible.

Semiotic Clarity is given. Every semantic construct is represented by exactly one
syntactical element. There is no symbol redundancy, symbol overload or symbol excess.
Symbol deficit, however, was introduced intentionally, following the principle of Cognitive
Fit in an effort to make the notation less overloaded. Not everything can or should be
represented using graphical symbols.

Perceptual Discriminability is supported through the use of distinct shapes for the
representation of the different semantic constructs. This is supported by using additional
visual variables to create a greater visual distance between the syntax elements. The
focus was on finding differing shapes inside each diagram type—the resemblance across
different diagram types might partially be a bit greater.

Visual Expressiveness is implemented by using distinct shapes, colors and brightness.
For example, the internal link connection differs from the containment connection on its
shape and brightness as shown in figure 3.36(a). The primary resource types differs from,
for example, the aggregation resource type on its shape and color as shown in 3.36(b).

o

R — > 0 EN

(a) Internal Link and Containment (b) Primary vs. Aggrega-
tion Type

Figure 3.36: Visual Expressiveness

Complexity Management is supported on two levels. There is a hierarchical structure

38

3.9 Moody’s Criteria applied

such that the complete application is broken down into distinct diagrams. The hierar-
chy starts at the resource structure diagram and goes down to the method behaviour
diagram through the resource states diagram. Additionally, modularisation is supported
through the use of more than a single diagram for modeling resource structure and method
behaviour. This allows users to group syntactic elements as they please.

Graphic Economy is kept through the partitioning into different diagram types on the
one hand and through the explicit introduction of symbol deficit on the other. In addition,
the symbols chosen as representation are designed to be visually expressive, which also
helps in managing graphics complexity and thus increasing economy.

Dual Coding is implemented in the form of hybrid symbols for resource types, actions
and states. For all of these elements, the symbol used to represent the semantic construct
is augmented by a textual annotation in the form of a UML-like stereotype that helps
interpreting the representation.

Semantic Transparency is achieved by designing the symbols used as representation
for the semantic concepts such that they carry meaning. Although there are hardly
any semantic constructs in the meta-model that have a direct representation in the real
world, care was taken to choose symbols that convey semantics similar to the meta-model
elements. The rationale for the selection of the different symbols is given in sections
3.4, 3.5 and 3.6 respectively.

Cognitive Fit can be achieved for professional users of the notation by leaving out
redundant information. This includes the use of color for the symbols and the use of
textual annotations. Novice users are expected to benefit from that information. They
are also expected to profit by the use of overview diagrams as a reduced and less complex
form to represent their applications. The notation was also designed to be usable on, for
example, a whiteboard. The symbols used as representation were chosen such that, while
being perceptually discriminable, they are still drawable by hand and using an editor on
a computer is optional. Color will probably be left out on that medium as well and the
the stereotypes used as redundant information to the iconic representations can also be
omitted if professional users of the notation no longer need them.

Cognitive Integration is provided by visual cues on resource state and method be-
haviour diagrams and by contextualisation on resource structure diagrams. Visual cues
are the markers on states and method diagrams that indicate which resource type the
diagram (and its elements) belongs to. Contextualisation is supported for structure di-
agrams through the ability to add existing resource types to new diagrams to put the
other resources shown on such a diagram into context. Overview diagrams can be cre-
ated using the alternative resource type representations to provide additional conceptual
integration.

39

3 The Graphical Language Visual REST

3.10 Examples

In the following sections some examples for applications modeled using Visual REST
are given. Not all diagrams are provided for every application because it would serve
no purpose but to bloat up this thesis. The different diagram types supported by the
notation are used in at least one of the examples, though, and it should be possible to get
a general idea of how modeling using Visual REST works.

3.10.1 Modeling a Photo Album Application

The photo album example is used as an example in the definition of the meta-model [6],
so it makes sense to present a version modeled using the new notation as well.

The photo album is rather simple. A single album consists of many different pictures.
An album has a title and a description. A picture has a title, a description and a flag
indicating if the picture was rated as excellent or not. A picture also contains binary data
for the actual raw image. Suggestions can be made for excellent pictures. A suggestion
has a number of positive and negative reviews, a statement and a status. The status
indicates the state the suggestion is in (created, under review or done). Additionally,
there is a list of all albums and a list of all suggestions as well a list of suggestions under
review in the application. For sake of simplicity, media and data types are assumed to be
already defined unless stated otherwise. They are part of the final application model in
any case and need to be created in the modeling process.

The structural model of the application is shown in figure 3.37. The primary resource
types in the application are Picture and Album. The Album resource types is connected to
the Pictures0fAlbum resource type through an internal link (pictures). The Picture ele-
ments of that list are also reachable via an internal link (elements). The Picture resource
type has a subresource type PictureData that stores the raw image data and is reachable
via an internal link (data). The Picture links to the next and previous picture as well as
to the album it is contained in (album). The list resource type A11Albums has an internal
link to the Album (elements). The Suggestion is modeled as an activity resource type.
It links to the picture under review (picture). A list resource type Al11Suggestions links
to the Suggestion (elements) as does the filter resource type SuggestionsUnderReview
(elements).

With the resource types of the application defined, the next step is the definition of the
states of the different resource types as well as the behaviour of the methods supported
by individual types in their respective states. For the former, resource state diagrams are
used while for the latter method behaviour diagrams are utilized.

40

3.10 Examples

wngre 030Yyd e JO MOIA [RINJONIIS 9T, :LE ¢ 9IS

adAps)

wnae/

swnqiviy

<<E==

mamauapun=adAy; juoisysabbing

Gus : vonduosap +
Buys ;o +

IEJU0D=
||||||||v anInosagmap Ay

ainynd
<<YUIBUISIU|=>

wnge
<<y U BB

{plhwngyiosaniad;

w

nqiy

zofipwngs=

A

wnge

wnq|y30saIniaid

“<E==

adfys)
=2JUBWILIBIUOD >

==y Ur|BUIBIU|=>

2 BjegAIeg +

eyep/{pil/ainioidy

<J---

elegainiald *

<<32IN053IgNG=>

EjE
<=yUITBUISIU|=>

UES|00] : JUS|SIXIS +

Buins ;o +

{pilyainidy

mainaylapupnsuonsabbng

<=la)ld=>

uonsabbns;

adAl pasayy
<<]UBWILIBIUOD=>

adiys)
<<JUSLILIEJI0D >

suonsabbng ||y

<<)E==

Juls : sniels +

Sulls | JUSWSIEIS +

W samalnayaaieiau +
W sMmalaayaapsod

a1l

zofipwngs=

aingd

<=y UI|ELIBIL|=>

{pi}yuonsabbns;

uonsabbng n\?_.CNm
0.

<<hyngoy=s b

<=JUBWUIBJUOD ==

————

SUIBUOD

AU
< UIBUISIU|=>

snowrald
=< UIBUISIU|>

41

3 The Graphical Language Visual REST

The states of the suggestion resource type are depicted by figure 3.38. The initial state of
the resource type is created and PUT, DELETE and GET are supported. PUT is used to update
the statement, status or picture while GET can be used to receive that data. DELETE can
be used to put the suggestion into deleted state in which the status code 410 is returned.
The resource moves from the created state to the under review state when PUT is called
to set the resource’s state attribute to “under review”. In the under review state, only
GET and POST are supported. GET returns the current state of the resource. POST allows
adding a positive or negative review. Once there have been sufficient positive or negative
reviews to mark the picture as excellent or not excellent the resource transitions into the
done state where only GET is supported.

States of: Suggestion

<=<States>

under review

HTTP-POST . addReview
HTTP-GET : get
HTTP-PUT : -
HTTP-DELETE : -

HTTP-POST . -
HTTP-GET : get
HTTP-PUT : update
HTTP-DELETE : delete

A4

start review

Y

delets

deleted

==Statess

HTTP-POST : -
HTTP-GET : -
HTTP-PUT : -
HTTP-DELETE : -

finishReview

Y

<=States>

done

HTTP-POST : -
HTTP-GET : get
HTTP-PUT : -
HTTP-DELETE : -

Figure 3.38: The states of a suggestion

Figure 3.39 shows the behaviour of the suggestion resource types addReview method. The
first conditional action checks if the field accepted of the consumed media type review
is true. If so, it updates the suggestions positiveReviews, otherwise the negativeRe-
views are updated. If after that operation the number of positive reviews is greater than
two, the linked picture (suggestedPicture internal link) is marked as excellent and the
finishReview internal message is sent to move the resource into the finished state. If the
number of negative reviews is greater than two, the picture is not marked excellent and
the resource is also moved to the finished state through the finishReview message. Finally,
the representation of the suggestion is returned with status code 200.

Figure 3.40 shows the behaviour of the suggestion resource types update method. The
update is available while the resource is in state created. Through the update operation,
the statement and status can be update. The status is update if the consumed sugges-
tion representation has it status set to “under review”. This causes the conditional action

42

3.10 Examples

od Ay eoanoseiqns eje(oInjord

9} JO POYIOWL MOIAYPPR 9T, :6€°¢ I3

wouse8ing f—=e

uoljsabins
o0z
<<UBIOYLIN S>>
MANFHYSIUY B
<atopoyebessa>
MANEHYSIUY B %,
==UoNoyelEss A==
wi2lEangs| - andplsaiins @
ISV InHL <=woyayaEndn==
<UD Y|EUDYPUDD s>
3577 andL
==UDOYIBUOIPUOD >

smalaganieabu - uonsabbng »\.W

<<UOIYHIEpa==

35774

smalayganysod - uoysabbng »\W

<<Uoayejepdn=>

ML

<<UORDIBUORPUOD ==

o— vans

()mamayppe : 150d

<<poyjay==

uonsaBibng yo spoyrp

43

3 The Graphical Language Visual REST

to be executed in its true path and set the status as well as send the internal message
start review which transitions the resource to the under review state. On return, the
suggestions representation is returned with status code 200.

Methods of: Suggestion

<=Method=>
PUT : update()

SUGEEETION Yl @—) suggestion
==Updatedction==
9 Suggestion ;- statement
==Conditional&ction>=
TRUE FALSE

==Updatedction=>
L& Suggestion :: status
==Mezzagedction==

=<ReturnAction==
200
suggestion

Figure 3.40: The update method of the pictureData subresource type

start review

The states of the pictureData subresource type are shown in figure 3.41. The pictureData
subresource type only has the initial state created which supports the method get.

The behaviour of the PictureData resource type’s get method is depicted in figure 3.42.
The get method returns the binary representation of the PictureData attribute bina-
ryData.

Definition of the states and methods of the other resource types in the application follows

the same schema presented here. There is a state diagram for every resource type and a
behaviour specification for every method supported in the individual states.

44

3.10 Examples

States of: PictureData

Figure 3.41: The states of the pictureData subresource type

Methods of: PictureData

==fsthod==
GET : get()

==Returndctions:=
200
pictureData

‘—D fmg/feng

Figure 3.42: The get method of the pictureData subresource type

45

3 The Graphical Language Visual REST

3.10.2 Modeling a Mind Map Application

A mind map is used to represent thoughts around a certain key topic. The purpose of
a mind map is to organize and visualize ideas and structure information around them.
Gronback [54] uses a mind map as an example for an application based on the Graphical
Modeling Framework that allows creating mind maps. Such an application for creating
mind maps is created here based on a resource-oriented architecture.

A resource-oriented mind map application consists of only a few resource types. Fig-
ure 3.43 shows the structure of such an application.

The only primary resource type in the application is the Topic. A Topic has a name
and a description. It also has children which are found in the ChildTopics filter resource
type. The entry point into the application is the filter resource type StartTopics. It
lists all topics that are the root of a mind map. The Al1Topics list resource type lists
all topics, also non-root elements. The TopicMap aggregation resource type aggregates
Topic and its ChildTopics into a single resource type.

The media types used by the application are topic and application/json. A topic
has a name and a description, a isRoot flag and a list of links to its children. It also
contains a flag to indicate if the topic can still be worked with or not (isClosed). The
application/json media type is used to provide a JavaScript Object Notation (json)
representation of a topic with all its children.

All resource types have an initial state created. The AllTopics, TopicMap and Child-
Topics only support get operations in that state as shown in figure 3.44.

The behaviour of the TopicMaps get method is shown in figure 3.45. AllTopics and
ChildTopics are similar and not shown here. TopicMap::get returns the aggregated
topic and its subtopics using the application/json media type as representation.

To create new root topics, the StartTopics resource type supports POST requests using
its addTopic method. The states and supported methods of StartTopics are shown in
figure 3.46. The addTopic method is shown in figure 3.47.

The method consumes the topic media type. To create the actual topic a creator is
used. The representation of the topic is returned afterwards. Similarly, to create a new
subtopic, the Topic resource type supports POST requests through its addChildTopic
method that behaves in the same way as that of the addTopic method of the StartTopics
resource type. When a Topic resource is updated via PUT and the updateTopic method,
the resource attributes are updated and if the isClosed flag of the consumed media type
topic is true, an internal message is sent that transitions the Topic into the closed

46

3.10 Examples

Il

:-F:-:-:-.Hv

1uated
YU BUIBIU|=>

uorjeordde dewr purtn pojuoLIO-9dINO0SOI © JO 9INIONIYS oY [, :€F ¢ 9In31q

aido}

<Y UIBLIBIU >

—

uaippyapdoy

v <<jusiuu

sadol piyd

==ajid=>

<<y UITBUIBU =

adA]palajuy

adoy

<<y UITBUIBIU >

saidopers

=<iajl 4=

<<y UIBLIBIU=>

saidoye

usdpiy

==yUI[EUIEE

1
1Y
zrnnaAu

dewpunuypridoy _,\/\vllllllllllllllllll||||||||...

adf)peiebaibbe
<<JUBWUIEILOI>>

depymdoy

==U0Neha 66y =

F

aday

'
1
1
1 [———
“ - - adA1pal
“ ' <<]UBLWLIBIU0D =
P
1 'y
.ﬂw “_HV.\
Suys vonduasap +
Suys : sweu + adfpys)
<<JUSWLIBILOI>> sadoy
{piyaiday Jmmm ===}
; [] sadoly f—
odol -, aiday - ==
ES S = —
cekIBL> <<y U BLIAU=> i

adA) pajebaibie
<<JUSWLIBILOI>>

dew
==y U ELIRU>

AN

o TP

__lilr.rl

47

3 The Graphical Language Visual REST

48

States of: AllTopics

States of: TopicMap

States of: ChildTopics

(a) AllTopics

(b) TopicMap

(c) ChildTopics

Figure 3.44: States of the A11Topics, TopicMap and ChildTopics resource types

Methods of: TopicMap

==z dethod=>
GET : get()

==Returndction==
200

application/jsen

L—' applicationjson

Figure 3.45: Behaviour of TopicMap: :get

3.10 Examples

States of: StartTopics

POST : addTopic

GET : get
PUT:-
DELETE : -

Figure 3.46: States of StartTopics

Methods of: StartTopics

<zMethod=>
POST : addTopic()

1OpIC Yl ‘—P topic

D ==Createdction=»

==ReturnAction==
200
topic

Figure 3.47: Behaviour of StartTopics::addTopic

49

3 The Graphical Language Visual REST

state. In that state, only GET and DELETE are supported, but the resource cannot be
modified any longer and no additional subtopics can be added to it. The states of the
Topic resource are depicted by figure 3.48. The behaviour of the updateTopic method
is shown in figure 3.49.

States of: Topic

<<State=>
closed

POST : -
close GET : get

POST : addChildTopic
GET : get

PUT : updateTopic
DELETE : deleteTopic

DELETE : deleteTopic

Figure 3.48: States of Topic

50

3.10 Examples

otdogeaepdn: :otdo], Jo Inolaryey 6§ ¢ 9INSI]

2ydoy ‘|4

ado)
nog
<UL S ==
FE02
<<UalIyefessap=>
3579 IndL
<« U0JIBUOIPUO ==

uonduasap oo @ P aweu aido)

=zUIdyajepdn== ==l Iy ajepdn==

$

&o—(2dy

[yodogajepdn @ 1nd
0O

aido) o spoyiagy

51

3 The Graphical Language Visual REST

3.10.3 Modeling a Bookshop Application

The book shop example has been used already when explaining the different resource
types in section 2.3. A bookshop contains three primary resource types: Book, Author
and ShoppingCart. There is a list resource types containing Books and a paging resource
type containing Authors. The Checkout activity resource type is connected to the Shop-
pingCart via an internal link. An Author has a subresource Biographie, holding the
author’s biographie. There is also a projection resource type that only lists the book titles
contained in the book list resource type and an aggregation resource type that aggregates
books and their authors into a single resource type. Finally, a filter resource type is
available to provide a list of that aggregation, filtered by author. Figure 3.50 shows the
structure overview diagram for this example. The other views are omitted here. By and
large, they follow what was presented in the examples before.

52

3.10 Examples

UED <=fU|BWISIUI=>

uoryeoridde doysyooq ® I0J WRISRIP MIIAIOAO INJONIIS OY T, :0G ¢ 2INS3L

noyosyay

ey

=

10UING10SY00q <<4U[ELIS|U[>>

adA)pajefaibie
e

’

adApasayy
< S

AV

mnoxaayld

EEZN Ty 558

weabuiddoys

EEAN=TTIR PSS

WaY <<YU[BLISIUI>

olq{piieyney

SUEUOD

Jx

aydeiBoig *

==30UN0SAUINS=>

alydelfolg <<yureulai=>

adApabed

sioune;

sioyiny

==Oufeg>>

Bus @ sweu +

< abss

{piuouiney

Joyny L

==dlBLg==

L

SJoyIne/sy00q;

=zuopefalbbiys=

somnyuumssioos [

N

adA1paiebaibfe
<<JUSWUIEIUOD>>

{puoyne}sioyne/syoog)

Joynyiosyoog
<<lald=s
adf1paaloid
< 12|U09>>
S3sy00q;

Suus : Joensge +

Buus ©vast+ H00q ==UlT[eUSUfEx
Bulys - apy +
{plnooay
soog [
ESTNL-TTIRESY ———————

J

10UINE <<UIELIRIU=>

Kugamisyoog

==<U0ljoal0id==

s

0007

—

s¥00g

==je

Augsam «yjurBLRU=>

<<JUSWUIEILOD>>

N

adAnsy

93

4 Evaluation of Visual REST

The definition of a graphical notation is just one aspect in creating a new language for
resource-oriented applications. It is also necessary to evaluate the language through em-
pirical studies to assess if Daniel Moody’s criteria have been successfully applied. This
chapter presents the evaluation that was performed with regard to Visual REST. It out-
lines the basic idea behind the questionnaire and its design. Subsequently, the results of
the evaluation are presented and discussed.

4.1 The Research ldea

Different methods for the evaluation of graphical systems, in general [42], and visual
languages, in particular [43], also with a focus on the criteria defined by Moody [46], have
been published. The idea of all these previous studies is different from the study presented
here, though. All of them are looking at existing languages. They are not developing new
ones. They also expect users to be familiar with the system and to provide judgement
based on that past experience. Blackwell et al. [42] as well as Bobkowska [43] use open
questions in their evaluations which makes result analysis harder [33, p. 48]. Johansson
et al. [46] use closed questions but expect probands to be familiar with Daniel Moody’s
work [8].

The focus of the questionnaire presented here is different on various levels. Familiarity
with the system as a precondition to the actual evaluation is not an option because there
is no system to be familiar with yet. The probands also cannot be expected to be familiar
with Moody’s work. Furthermore, the use of open questions has to be limited due to the
limited amount of time available for the evaluation. Additionally, the questionnaire needs
to be usable by probands without the need for monitoring by a supervisor.

The question answered by the questionnaire presented here is: “Have Moody’s criteria
been applied well in the development of the language?” The target audience of the
questionnaire is clearly the potential users of the new language.

95

4 FEvaluation of Visual REST

4.2 Design of the Questionnaire

The design of a questionnaire with all constraints mentioned in section 4.1 is not a task
to be taken lightly. Using closed questions allows for a more straight-forward evaluation
in the end, yet the questions need to be carefully designed and validated through trial
runs. The limited previous knowledge of probands as well as the unsupervised execution
of the survey also need to be taken into account. LimeSurvey [87] is used to provide the
questionnaire to users via an online tool that can be used without supervision.

The questionnaire is divided into 7 4+ 2 categories. One category for each of Moody’s
criteria [8] except Visual Expressiveness and Semiotic Clarity. One to gather information
on the proband, specifically on his or her previous knowledge in relevant fields; and another
category for generic questions at the end. A question on the probands background is, for
example, if the proband has any knowledge of REST and to what extent. There is only
one generic question at the end; it allows entering an open comment as feedback to the
language as well as to the questionnaire.

Visual expressiveness is left out of the questionnaire because there has already been plenty
research done on the effect of using multiple visual variables [88-90] and it is not the
intention nor goal of this questionnaire to try and repeat or even re-validate that work.
Semiotic clarity is not evaluated because it is a rather binary decision. The notation
either fulfills the semiotic clarity criteria or it does not. There is not much to evaluate
based on user opinion.

The iconic representations of the different resource types are designed to be semantically
transparent. To validate this, the proband is asked to associate the correct resource type
with a symbol presented as shown in figure 4.1.

20 [QMST_0001f]Please choose the resource type you think is represented by the symbol displayed. *

Please choose the appropriate response for each item:

Primary Paging Projection Activity List Aggregation Filter
Resource Resource Resource Resource Resource Resource Resource Subresource I'm not
Type Type Type Type Type Type Type Type sure
o o @ O @ O @] O O

Figure 4.1: A question to evaluate semantic transparency

To decide if symbols are perceptually discriminable, the proband is asked to compare
every icon against all others and judge if they can easily be discriminated or not. Icons
are shown pairwise to make judging easier as shown in figure 4.2.

56

4.2 Design of the Questionnaire

5 [QMPD_0000a]
Please compare the following symbols graphically. For each pair, state if you find them easy to distinguish or not.

*

Please choose the appropriate response for each item:

Yes, they are easy to distinguish No, they are not easy to distinguish I'm not sure

@? q-ll? o) o) o

Figure 4.2: A question to evaluate perceptual discriminability

To evaluate complexity management, the proband is asked to provide an opinion on the
complexity management mechanisms provided as part of the notation. This is done by
presenting examples of diagrams and asking the proband to select if there is agreement
with certain statements. For example, the proband is presented with a complete structural
view and the same structure broken down into two distinct diagrams. The proband then
has to decide if the method of breaking down the diagrams seems suitable to manage
application complexity.

Dual coding is evaluated by presenting the user with representations of certain concepts
with and without textual information as shown in figure 4.3. The proband is then asked
to state if adding the textual representation helps or not. The proband is also asked if
the UML stereotype-like representation of the textual annotation is appealing.

38 [QMDC_0001]

Does adding a textual representation help you to grasp the meaning of the resource types?

-

<<PrimaryResource>>

Please choose only one of the fallowing:

O Yes
O Mo

Figure 4.3: A question to evaluate dual coding

The evaluation of graphic economy is performed by presenting the proband with example
diagrams that contain all possible graphical elements of any of the views available in
Visual REST. The proband then has to indicate if there seem to be too many different
graphical symbols in the notation.

o7

4 FEvaluation of Visual REST

During the evaluation of cognitive fit the proband is asked if the diagrammatic complexity
seems to high for a rather complex example of an application and if the notation seems
suitable for the envisioned media; whiteboard and computer.

The basic idea behind all questions is the validation of the design decisions made in the
process of developing the Visual REST notation. Appendix A contains the complete
questionnaire for reference.

4.3 Questionnaire Results

This section presents the results of the questionnaire grouped by the principle that is
covered by the questions. In total, 30 opinions could be gathered through the use of the
LimeSurvey [87] online survey tool.

4.3.1 User Background

The target audience for the questionnaire were potential users of a visual modeling lan-
guage for resource-oriented applications. Thus, users are expected to have some knowledge
of REST. About 93% of the probands said that they have a least heard about REST.
Only two probands stated that they do not know what REST is. Figure 4.4 shows the
distribution of the answers to this question.

m/| did research on REST and
related areas

u/| have developed
applications using REST

| have heard about REST

m/| have never heard of REST

Figure 4.4: How would you rate your knowledge of REST?

When asked about their knowledge of graphical modeling languages such as UML 2 [5],
BPMN [91] or state charts, 87% of the probands were familiar with at least one of these
languages. The UML 2 diagram types Activity Diagram and Class Diagram had been

o8

4.3 Questionnaire Results

used or were at least known by 100% of those who were familiar with graphical modeling
languages. Only 8% had neither used nor knew the State Machine Diagram. Figures 4.5
and 4.6 give an overview of the distribution.

N No

HYes

Figure 4.5: Are you familiar with graphical notations?

100%

B80%

0%

40%

20%

0%

Activity

Class State

Diagram Diagram Machine

Diagram

mDon't know

W Enow (but have not
used)

W Uszed

Figure 4.6: Knowledge of different UML 2 diagram types

Judgement of graphical languages can depend on the knowledge of graphical languages.
Only 20% of the probands have never used a graphical editor before, the vast majority
however has used them before (43%), use them regularly (30%) or even do research in the

field of visual notations (7%), as shown in figure 4.7.

4.3.2 Perceptual Discriminability

As was stated before, the evaluation of perceptual discriminability is done through the
pair-wise comparison of the graphical symbols chosen as representation for the various
For each diagram type in the Visual REST notation, there is

meta-model concepts.

99

4 FEvaluation of Visual REST

B | have never used a
graphical editor

u | have used a graphical
editor before

w I'ma regular user of
graphical editors

u |'maresearcherin the
field

Figure 4.7: How would you rate your knowledge of visual notations?

a distinct set of visual elements. Therefore, the evaluation of the survey results also
happens per diagram type instead of for the complete notation.

The resource structure diagram is the diagram type of the Visual REST notation that
has the highest number of different graphical symbols. Table 4.1 provides an overview
of the comparison matrix as produced by the pair-wise comparison of the symbols. The
numbers given for each pair is the percentage of answers that found the two symbols in
that matrix easily distinguishable.

5 s S
21 & | s s & g
SV E &5 s 5|8 £
T | & S| F S 5|8
< < N &, R, 2 ~ R,
Activity - 100 | 96,7 | 80 80 70 100 90
Aggregation - - 83,3 | 86,7 | 90 56,7 80 76,7
Paging - - - 76,7 | 93,3 | 86,7 | 13,3 | 90
Filter - - - - 83,3 | 86,7 | 83,3 80
Primary - - - - - 83,3 90 73,3
Subresource - - - - - - 93,3 80
List - - - - - - - 93,3
Projection - - - - - - - -

Table 4.1: Do you think the symbols are easily distinguishable?

Notably, most of the representations of the different resource types seem to differ enough
to be easily distinguishable. Only Subresource and Aggregation as well as List and Paging

60

4.3 Questionnaire Results

resource type are not well discriminable. Figure 4.8 gives an overview of the distribution
of opinions on those two critical resource type pairs.

= Mo, they are not = No, they are not
easyto easy to
distinguish distinguish

H|I'm not sure HI'm not sure

mYes, they are m Yes, they are

easyto . easy to
distinguish i distinguish
(a) Subresource vs. Aggregation (b) List vs. Paging

Figure 4.8: Rating of the discriminability of critical resource type pair

When asked to compare expanded and collapsed version of the resource type representa-
tion, the majority of the probands (57%) stated that the version without an added box
(collapsed) is easier to distinguish from the other resource symbols. Only 23% found that
the box made it easier to discrminiate resource types. 20% were indifferent and did not
see any effect, as shown by figure 4.9.

B The are equally hard /
easy

® The boxed representations
are easier

» The representations
without boxes are easier

Figure 4.9: Does adding a box around the resource types have an effect on
discriminability?

The two types of connectors in the resource structure diagram - internal link and con-
tainment - were also easily distinguishable as shown in figure 4.10.
The resource states diagram is the diagram type that contains the least different graphical

symbols. State and Initial State differ in shape and color and are thus easily distinguish-
able by probands, as figure 4.11 shows.

61

4 FEvaluation of Visual REST

B I'm not sure

m| Mo, they are not
easy to
distinguish

wYes, they are

easy to
distinguish

Figure 4.10: Are the connectors easily distinguishable?

H/|'m not sure

u| Mo, they are
not easy to
distinguish

mYes, they are

. \“““--._ easy to

distinguish

Figure 4.11: Are the state diagram elements easily distinguishable?

The resource method behaviour diagram again contains more elements and is by nature
a bit more experimental. Again, probands were asked to do a pair-wise comparison of
the different symbols used in that diagram type. The results are shown by table 4.2. The
numbers given are again the percentage of probands who said that symbols were easily
discriminable.

Especially the Create Action seems to be easily confused with both List Add Action and
List Remove Action, as shown in figure 4.12. List Add Action and List Remove Action
are also more easily confusable, but not to the extent they are confusable with the Create
Action (see figure 4.12(c)).

62

4.3 Questionnaire Results

g
Q ~
~ ‘é') . g S § g
S o &] g §
> 5 N < | % <
° < & IS] L o
< e & 5 5 >
5 5 g 5 g g
)) = I S) O
List Add Action - 46,7 83,3 90 90 20
List Remove Action - - 93,3 93,3 90 23,3
Message Action - - - 90 93,3 53,3
Return Action - - - 36,7 90
Update Action - - - - 93,3
Create Action - - - - -

Table 4.2: Do you think the symbols are easily distinguishable?

m/MNo, they are not
easyto
distinguizh

H|'m not sure

mYes, they are
easyto
distinguish

= No, they are not
easyto
distinguizh

H|'m not sure

mYes, they are
easyto
distinguish

(a) Create Action vs. List Add Action (b) Create Action vs. List Remove Ac-

tion

m Mo, they are not
easy o
distinguish

H/I'm not sure

mYes, they are
easyto
distinguizh

(c) List Add Action vs. List Remove Ac-

tion

Figure 4.12: Rating of the discriminability of critical action pairs

63

4 FEvaluation of Visual REST

4.3.3 Semantic Transparency

The evaluation of semantic transparency is achieved through an association task. Probands
were asked to identify semantic concepts behind syntactic elements. The results of that
association task for the resource structure diagrams resource types are listed in table 4.3.
The numbers of correct associations are marked bold. Figure 4.13 provides an overview
of the association distribution of the semantically least clear symbols.

2
= &
o = o >
£ 8 2.) = =
= b > & | K o 8
) 8 = g‘ © o & =
Sl 2| 8 = B & 3
= o= e s = & ?
Q jm} — @) &) O
3 g 5 s | & © & A~ v
~ 2 S 2| = g 2 = 2
el | S =gl g 82| <
=) 0 < N Qﬁ Q o
= & g g | g & £, =
- o0 a0 = B) g7 o
S| 2| £ g £ 728 &£
Activity 76,7 3,3 20
Aggregation 56,7 | 3,3 10 3,3 | 26,7
Paging 3,3 3,3 | 63,3 6,7 3,3 6,7 13,3
Filter 6,7 80 3,3 10
Primary 3,3 50 46,7
Subresource 3,3 46,7 3,3 | 46,7
List 10 20 56,7 13,3
Projection 3,3 16,7 26,7 | 53,3

Table 4.3: Association of symbols with actual semantic types
The semantic transparency of the connection arrows is not that good, as shown in fig-

ure 4.14. For both internal links and containment connections more than half of the
probands were unable to make the connection from syntax to semantics.

64

4.3 Questionnaire Results

Primary Resource Type

Filter Resource Type |
Paging Resource Type
Aggregation Resource Type

Activity Resource Type

Primary Resource Type

Filter Resource Type
Paging Resource Type
Aggregation Resource Type I

Activity Resource Type

Aggregation List Primary
I'mnotsure —— I'mnotsure I'm not sure
Projection Resource Type i Projection Resource Type Projection Resource Type
ListResource Type ListResource Type ListResource Type
Subresource Type [l Subresource Type Subresource Type
Primary Resource Type Primary Resource Type N Primary Resource Type
Filter Resource Type Filter Resource Type Filter Resource Type
Paging Resource Type [Paging Resource Type [l Paging Resource Type
Aggregation Resource Type | S— Aggregation Resource Type Aggregation Resource Type
Activity Resource Type Activity Resource Type Activity Resource Type Il
o 5 10 15 20 25 30 o 5 10 15 20 25 30 a 10 15 20 25 30
Projection Subresource
I'm not sure I'm not sure.
Projection Resource Type Projection Resource Type B
ListResource Type ListResource Type
Subresource Type I Subresource Type -

Figure 4.13: Distribution of associations for the semantically least clear resource types

Figure 4.14: Distribution of associations for the resource type connections

Containment

I'm not sure

Containment (e.g. Alist
“contains” a list element type)

Internal Link

0 5 10 15 20 25 30

Internal Link

I'm not sure

Containment (e.g. Alist
"contains” a list element type)

Internal Link

0 5 10 15 20 25 30

65

4 FEvaluation of Visual REST

Similarly, the semantics of the states as presented by the resource states diagram are not
clear to probands either. It can be seen that about half are undecided, as depicted in

figure 4.15.

Initial State State

I'mnaotsure I'm not sure

Initial State Initial State

Figure 4.15: Distribution of associations for the resource states

The evaluation of the resource method behaviour diagram and its different types of actions
is shown by table 4.4. Again bold values indicate correct associations made. Numbers
are in percent correctly associated. As figure 4.16 shows, there is quite some uncertainty
about the Conditional Action, Create Action and Update Action. As shown in figure 4.17,
the List Add Action seems to be semantically less clear than the List Remove Action.

=

g 2

+ o) 9] =

Sl 2T el 2 BB,

= = > e > £ s H

g | = = 2T 2] <]z

pE e D ° &0 <] g ks

5 < ~ = S 5 < =

g - - 3 9] 5 el

S Rz Rz A g Q A =

O NS NS O = o= o =
Conditional Action | 56,7 43,3
List Add Action 63,3 26,7 3,3 6,7
List Remove Action 83,3 3,3 | 13,3
Create Action 46,7 | 6,7 10 | 36,7
Message Action 83,3 16,7
Return Action 86,7 13,3
Update Action 46,7 | 53,3

Table 4.4: Association of symbols with actual semantic actions

66

4.3 Questionnaire Results

Conditional Action Create Action Update Action

I'mnot sure [I'mnot sure NN I'mnotsure N ———

Update Action NS

Update Action Update Action Il

Return Action Return Action

Return Action
Message Action Message Action [l Message Action
Create Action Create Action NN Create Action

ListRemove Action ListRemove Action ListRemove Action
ListAdd Action List Add Action

Conditional Action |IEEEEEEEEE——— Conditional Action

ListAdd Action

Conditional Action

Figure 4.16: Distribution of associations for Conditional Action, Create Action and Update
Action

List Add Action List Remove Action

I'mnotsure 'mnotsure [N

Update Action I Update Action i

Return Action Return Action

Message Action Message Action

Create Action I Create Action

List Remove Action ListRemove Action

ListAdd Action IR ListAdd Action
Conditional Action

Conditional Action

Figure 4.17: Distribution of associations for List Add Action and List Remove Action

67

4 FEvaluation of Visual REST

4.3.4 Complexity Management

In the evaluation of complexity management, probands are asked to state if they think
the complexity management mechanisms offered by Visual REST are usable. Since Visual
REST offers complexity management by means of partitioning structure and method
behaviour diagrams, the probands were asked to provide their opinion on those diagram
types. Asfigure 4.18 shows, probands generally think that partitioning will help. However,
this is more clear for structure diagrams, where 77% stated that partitioning will be
helpful. Partitioning of method diagrams as offered by Visual REST only seems useful to

57% of the probands.
I

uYes

H No

uYes

(a) Structure Diagram (b) Method Behaviour Dia-
gram

Figure 4.18: Do you think the ability to partition the diagrams helps in managing appli-
cation complexity?

4.3.5 Cognitive Integration

Cognitive integration is achieved by adding markers (i.e. signposting) at the top of subor-
dinate diagrams such as the resource method behaviour and the resource states diagram.
Probands were asked to state if those markers help in identifying the resource type a
method or state diagram belongs to. As figure 4.19 shows, this is generally the case.

Furthermore, the resource states always present all possible method types, not only those
supported by the actual state. Probands where asked to indicate if they think this is
helpful or not, which is generally not the case, as shown in figure 4.20.

68

4.3 Questionnaire Results

| No

uYes
o3
%

%

(a) Resource State Diagram

(b) Method Behaviour Dia-

gram

Figure 4.19: Does the marker at the top help in identifying the resource type the

state/method belongs to?

H No

uYes

Figure 4.20: Does displaying all possible method types in the states help?

4.3.6 Dual Coding

When asked if dual coding helped in grasping the meaning of the iconic representations,
probands generally agreed, as shown in figure 4.21.

When asked if the textual representation in the form of an UML stereotype appealed to
them, probands were undecided. About half said yes, about half said no or were not sure,

as shown in figure 4.22.

4.3.7 Graphic Economy

To identify if graphic economy is still given for the individual diagram types, probands
were asked to state if they thought that there were too many graphical symbols in the
different diagrams. As shown in figure 4.23, for a resource structure diagram, half of the
probands thought that there were too many graphical symbols and for method behaviour

diagrams more than half thought so.

69

4 FEvaluation of Visual REST

13 27
* mNo m No .% m No
87 B Yes B Yes B Yes
o _ T3 _
H
(a) Resource Structure (b) Resource States (¢) Method Behaviour

Figure 4.21: Does adding a textual representation help you grasp the meaning of the
displayed symbol?

u/|don't
know

B Mo

-%

uYes

Figure 4.22: Does using UML stereotypes appeal to you?

However, for the resource state diagram, all probands except one thought that there the
number of distinct graphical symbols is not too high, as shown in figure 4.24.

4.3.8 Cognitive Fit

When asked if they felt overwhelmed by the mass of information presented on a resource
structure diagram showing a rather simple book shop application, 67% of the probands
felt that way. Also 67% thought that the notation will not be usable on a whiteboard
when having to draw the symbols manually. However, 77% thought that the notation
will be usable if a dedicated editor was available. Figure 4.25 provides an overview of the
distribution.

70

4.4 Discussion

HNo H|No
HYes HYes
(a) Resource Structure (b) Method Behaviour

Figure 4.23: Are there too many different graphical symbols?

H Mo

HYes

Figure 4.24: Are there too many different graphical symbols on the resource state
diagram?

4.4 Discussion

The results presented in this chapter show that there is still a lot of room for improvement
in the design of the notation. They also allow for some interpretation and speculation.
Additional evaluations with a refined version of the questionnaire might prove to be
valuable as the Visual REST notation evolves.

A major problem, also judging from the comments that were collected as part of the
questionnaire (see appendix B), is a lack of initial understanding of the resource types as
defined by Tilkov [4]. Moreover, without supervision, probands seem to drift from judging
the pure syntax and also tend to judge semantics as well. Some comments indicated that
probands generally thought that the distinction between the different resource types is
not necessary to the extent it was done in the meta-model and thus in Visual REST. The
following comment is an example:

i think there are some fundamental flaws in the design here. for example,
”sub-resource” is not a needed representation; just "resource” will do just
fine [...]

71

4 FEvaluation of Visual REST

H/Mo H/No H/No

HYes mYes HYes

a) Do you feel overwhelmed? s the notation usable on a (c) Is it usable with an editor?
D feel helmed? (b) Is th i bl Is i ble with ditor?
whiteboard?

Figure 4.25: Judgement of the cognitive fit criterion

Furthermore, probands did in at least two cases mistake the notation presented to them
as a client-server contract rather than as a mere server-side application model, as the
following comment shows:

[...] Don’t take me to mean what you have is not useful. I only think it
exclusively focuses on the server, and helps in server implementation | ...]

As the proband correctly states, the server implementation is the focal point of the nota-
tion. However, this was apparently not clear when taking the questionnaire. The proband
expected Visual REST to be more than just that. Another comment goes into the same
direction:

Sorry, I don’t see the point. REST has a uniform interface, so every GET
PUT etc will be the same. The resources will be different, as will their media
types. How do these diagrams help in any way? What are they for? What
problem are they solving?

Also here, the proband did not seem to grasp that Visual REST intends to build the
model of a server rather than of a client-server contract. Furthermore, the proband does
not seem understand the intention behind modeling the states and behaviour of resources.
Lastly, some probands found the notation limiting REST to HTTP:

[...] modeling REST using a single protocol (HTTP) is needlessly limit-
ing [...]

In fact, Visual REST actually allows the use of arbitrary verbs. In the example presented
in the questionnaire, only HT'TP verbs were presented to probands, though.

Setting aside the comments, the method behaviour diagram does not work well for most

72

4.4 Discussion

probands. It should possibly be replaced by a textual language that also integrates con-
dition modeling in the future. This will also likely make the notation as a whole more
manageable for users. Generally, the notation seems to be too complex at some points.
More than 60% percent of the probands felt overwhelmed by the bookshop examples
structure diagram. This goes to show that partitioning (as supported by the notation
today already) or by further reduction of visual elements. Furthermore, the iconic rep-
resentations need improvement. Especially the projection and subresource type but also
primary, aggregation, list and paging resource type need to be revised.

However, some of the icons carry their meaning well and are perceptually easy to dis-
criminate from the others. Filter and activity resource types are an example of excellence
with regard to semantic transparency. Activity versus aggregation resource type are an
example of excellence in perceptual discriminability. Moreover, probands generally found
the possibility to partition the structure diagram useful and found the parent resource
type indicators on the resource states and methods diagrams useful.

All in all, there seem to be some good approaches in the notation and it is generally usable,
but more refinement is needed. It is interesting to see how different probands associations
with certain symbols can be. These insights need to be taken into account during the
refinement of the next version of the notation. The process presented for deriving the
notation already accounts for such a feedback loop.

73

5 The Visual REST Eclipse Plugin

Developing an editor for the Visual REST graphical modeling language is another part
of this thesis. This chapter first describes the development environment that was used
in the development of the Visual REST editor. It then continues to explain the process
which the development followed. The architecture and general structure of the editor is
covered as well as the build and test environment used.

5.1 Development Environment

Development of the Visual REST editor is based on the Eclipse Rich Client Platform
(RCP) [47]. RCP provides the the generic application framework all other Eclipse appli-
cations build on.

The Eclipse Modeling Framework (EMF) [50] is used to provide basic support for meta-
models through ecore. EMF provides a model-driven approach to generating simple tex-
tual editors for ecore based models. Using a so called genmodel plus the ecore meta-model
for resource-oriented applications [6] results in said editor which is already usable for sim-
ple textual editing of application models. EMF is also responsible for providing transac-
tion support and persistence for application models through an Application Programming
Interface (API).

To allow building graphical editors, the Graphical Editing Framework (GEF) [52] is avail-
able as an Eclipse project. It provides the API that is the basis for any other higher-level
APIT such as Graphiti [55]. It is also the target of the code generation done by the Graphical
Modeling Framework (GMF) [53].

Due to GMFs steep learning curve, the prototypical editor is based on Graphiti [55].
Graphiti offers a feature-based API to implement graphical modeling editors. Feature-
based means that every action supported by an editor implemented upon Graphiti is repre-
sented by a feature class. Such a feature class is instantiated through a FeatureProvider.
The FeatureProvider in turn is instantiated through a DiagramTypeProvider that is
registered with a Graphiti specific extension point inside Eclipse. Examples can be found

75

5 The Visual REST Eclipse Plugin

in appendix D. For each editor type—that means for each view on the notation—there is a
distinct feature provider. Distinct features need to be created to support different actions.
An AddFeature is implemented to provide the addition of an existing meta-model element
to a diagram. The AddFeature is thus responsible for the generation of the graphical rep-
resentation. To do this, it utilizes PictogramElements and Shapes provided by Graphiti
and its various factories. Examples can again be found in appendix D. To actually enable
the creation of new elements, a CreateFeature is needed. The CreateFeature adds an
entry to the editors palette as shown in figure 5.1.

.o Palette [+
[,\\3 Select
[::-_ Marquee
| Resources 40

[Primary
Resource

D Paging Resource

&8 Projection
Resource

L2 Activity
Resource

= List Resource

5 Aggregation
Resource

Filter Resource
& Subresource
| Properties &0
A Attribute
@2 Internal Link

¢» Containment

Figure 5.1: The editor palette

Additional features need to be implemented to provide additional behaviour. For exam-
ple, to properly layout the graphical representations of the individual elements when the
element is resized, a LayoutFeature needs to be implemented. The LayoutFeature is
then called when layout of the element is done and enables the repositioning and modi-
fication of the individual parts of the representation. The UpdateFeature is responsible
for updating the representation of the meta-model element if changes are made. Without
an update feature, changing properties, for example, the name of a model element would
not be reflected in the representation. The model element would have to be added to the
diagram again to be recreated by the AddFeature. Through the UpdateFeature this can
happen in place since it is executed when the model changes. There are additional features
that can be implemented. For example, the CopyFeature and the PasteFeature together

76

5.1 Development Environment

provide copy and paste operations of graphical element. The DirectEditFeature is used
to provide direct editing of textual elements, for instance the resource type name, as
shown in figure 5.2. Again, examples of the various features and their implementations
can be found in appendix D.

==Primary=»

ftopiciid}

+name : string

Figure 5.2: Direct editing feature

To support editing properties of graphical representations of certain domain objects, there
is a need for properties views. A properties view shows the properties such as the name,
attributes and identifiers of, for example, a resource type once the representation of the
resource type is selected in the graphical editor.

E Properties 53 S =]

Base Resourceelements : i

< Attribute positiveReviews

< Attribute negativeReviews
< Attribute statement

< Attribute status

< Internal Link picture

Methods :

4 Method addReview
4 Method update

m

Figure 5.3: A rich properties view

However, manually crafting properties views is a tedious and error-prone task. There-
fore, for the development of the prototypical editor, the Enhanced Editing Framework
(EEF) [58] is used to generate property views. EEF uses a model-driven approach. Using
the EMF genmodel, it takes two additional models—the components model and the eef-
gen model—to generate rich property sheets from the information available in the models.
The components model describes which parts of the model are mapped to which elements
of the properties view while the eefgen model describes general generation parameters.
Figure 5.3 shows an example of such a properties view for the Book resource type.

7

5 The Visual REST Eclipse Plugin

Both Graphiti and EEF are still very young projects and are thus still in a phase were
new features and bug fixes are added in very short intervals. This sometimes leads to
incompatibilities with regard to their APIs (because of changes made by the developers)
or with the generated code (in case of EEF).

5.2 Supporting Infrastructure

A problem with building Eclipse based products—such as the Visual REST editor—
is that the Eclipse Integrated Development Environment (IDE) uses a manual export
mechanism to do the assembly of such a product. This poses a problem on different
levels. First, this approach does not easily support building for multiple target platforms
(for example Windows, Linux and MacOS X). Secondly, it is cumbersome to manually
repeat the process over and over again when the code changes. This leads to development
mainly happening in a non-productized version of the final environment. Only when a
release is eminent, the product would be built and errors would show up—the process
of building products is different from that for testing the plugins that form the final
product. These shortcomings demand for a more automated and structured approach.
For a long time Eclipse Buckminster [92] was the primary tool for automated building and
deployment. However, Buckminster itself is quite hard to setup and work with. A rather
new alternative approach is the use of Tycho [63], which is a plugin for Maven [62]. Tycho
follows a manifest first approach—as opposed to the classical Maven POM first approach.
This means that it simply reuses the information that is already there anyway inside the
plugins—namely the manifest—to derive the build information. Additionally, Tycho is
test-aware. It uses the maven surefire plugin [93] as its primary test driver for executing
JUnit tests [59]. Additionally, Tycho easily supports building products for many different
target platforms.

Testing an Eclipse product also needs considerable effort. The Visual REST editor is
tested on different levels. Junit [59], Hamcrest [94], jMockit [95], SWTBot [60] and Google
WindowTester Pro [61] are used to support testing of core and User Interface (UI) plugins.
SWTBot [60] was chosen here because it is one of the standard testing tools used by
many FEclipse projects; Graphiti itself is one of them. SWTBot allows implementing
interactions with the Eclipse editor in the form of JUnit tests. WindowTester Pro [61] is
used to enable record-and-playback development of test cases. This is especially useful
when bugs are reported and regression tests need to be created. JUnit and Hamcrest
provide the supporting infrastructure for both SWTBot and WindowTester Pro. JUnit
and Hamcrest are also used together with jMockit to provide unit level testing for the
core components. More details on testing can be found in section 5.4.

Even with all those tools defined to form a solid infrastructure for building and testing,

78

5.3 Development Process

there is still one problem left: To have any value, tests need to be executed regularly.
Although test execution happens automatically when running a Maven/Tycho build, this
only moves the problem to that level: The Tycho build needs to be executed regularly—
which is not the case during everyday development since it takes quite some time and
is only really useful at deployment time when the products need to be built. This leads
to another problem still: If the build is not executed regularly there is no guarantee it
will actually work the next time it is executed. Continuous Integration [64] mitigates this
problem by executing the build every time new code is committed to source control. In
the context of the development of the Visual REST editor, the Jenkins [65] continuous
integration server is used to provide the necessary infrastructure to enable continuous
integration. Every time source code is changed and committed to source control, the
server will pick up the changes and run a full Maven/Tycho build in the process. The
results of the tests are evaluated and in case of failures a notification is sent via email (see
figure 5.4).

Step 3
Build and Test
using Maven/Tycho

2
Sor Step 4a
Query for changes :
Update local co Publish results
P Y & artifacts

Development Hudson Cl HTTP Server
Machine

Step 4b
Notify users of—
failed tests

Step 1
commit & push

Mercurial
(source control)

Figure 5.4: Steps in a continuous integration build

5.3 Development Process

Using Test-Driven Development (TDD) [96] is not easily feasible when developing visual
editors using Eclipse. The main problem is that using SWTBot requires a lot of effort in
the development of new tests. It is not easily possible to just specify wanted interaction
but they need to be programmed in source code—without an actual editor available this
is very hard. The same holds for WindowTester Pro. Jubula is an alternative that offers
functional specification of test cases rather than programming them. However, due to

79

5 The Visual REST Eclipse Plugin

the nature of this editor (being a prototype) and the fact that both Graphiti and Jubula
were new tools and it was unclear if they would even provide the necessary capabilities
to implement the editor, Jubula was not used to specify functional tests yet.

The process used to implement the editor followed one of the basic ideas of Scrum [97]: The
first step was to try out some functionality in an isolated environment (the exploration
phase) and once it was deemed feasible and enough knowledge about a specific feature was
built up it was implemented in the actual editor code. With more and more insight into
the structure and inner workings of Graphiti and the other involved Eclipse frameworks
and APIs, the structure of the plugins was refined gradually in subsequent iterations. The
availability of an automated build and test system based on Maven and Tycho proved
to be a huge asset in these refinement steps. The architecture and decomposition of
the plugins evolved from one big monolithic plugin to a set of twelve individual plugins
that form the Visual REST “feature”. The details of the plugin decomposition, their
dependencies and use is given in section 5.5.

5.4 Testing the Graphical Editor

There are three forms of tests performed: module tests for the core components as well
as functional tests and regression tests for the ui components. The module tests are
implemented using JUnit [59], Hamcrest [94] and jMockit [95]. JUnit provides the over-
all infrastructure and Hamcrest is used to provide “fluent” assertions in the test cases.
JMockit is used to actually make sure module tests and not module integration tests are
performed on the model classes.

For functional testing of Ul components, JUnit is again used as the basic framework
together with SWTBot [60]. SWTBot instruments the Standard Widget Toolkit (SWT)
to provide programmable interactions with Eclipse user interface. It also uses matchers
provided by Hamcrest for assertions.

For regression testing of Ul components, Google WindowTester Pro [61] is used. Win-
dowTester Pro also works in concert with JUnit and thus integrates nicely with existing
tooling around JUnit itself (such as the Eclipse integration and the maven surefire plu-
gin). WindowTester is used for regression testing since it allows recording tests instead of
having to program them manually. It allows starting any application in recording mode,
record some interaction with the Ul and then generate JUnit code from the recording.
Although recording is not flawless, it makes creating tests much easier. The problem,
however, is that tests can only be recorded if there is an application to record them for,
so WindowTester Pros recording feature can only be used once an editor has been im-
plemented and is ready to be used. It is thus not suitable for test-driven development of

80

5.5 Architecture of the Visual REST Plugin

graphical environments.

An alternative for functional testing is Jubula [98] which has recently been made an Eclipse
project. Instead of writing or recording JUnit code, Jubula uses a different approach. In
Jubula interactions with the UI are provided through predefined building blocks that can
be put together into functional test cases. The benefit is that this still allows a test (or
feature) driven approach—because the test cases can be created with a readily available
editor—while being easier to handle (for common cases) than SWTBot or WindowTester
Pro. Since no JUnit code is generated or written, however, Jubula does not integrate so
nicely with existing tools like Maven and Tycho, although it is possible to run Jubula
tests from Maven. For future versions of the Visual REST editor Jubula is a strong
candidate to be used for any functional testing and be a replacement for both SWTBot
and WindowTester Pro.

5.5 Architecture of the Visual REST Plugin

The Visual REST editor is divided into individual plugins that form the Visual REST
features. The plugins of the Visual REST editor are grouped by functionality but there are
still some dependencies among them. However, the plugins were designed such that there
are no circular dependencies in the dependency graph of the application. The grouping

of plugins into features and the dependencies between plugins and features are depicted
by figure 5.5.

Tests Feature |

Tests

Recorded
RIS, Product Feature |
! Ul Feature | !

ul ‘

Properties Bundle

CORE Feature Help Feature | |
CORE
Editor ’ Help

Figure 5.5: Structure of the plugins and features

The core feature includes all core plugins and is the basis for Ul plugins and the Ul feature

81

5 The Visual REST Eclipse Plugin

respectively. The UI properties plugins depends on the UI plugin and the core plugin to
provide support for editing the model. The test plugin instruments and uses all other
plugins and thus is on almost the same level a client or user would be.

Java source package names follow plugin names. For each of the plugin, the contained
sources are located in sub-packages of the respective plugin name to make finding sources
and debugging easier. For example, the plugin classes of the de.van porten.vrest.ui
plugin can be found in the Java package de.van_porten.vrest.ui and its sub-packages.

The Visual REST product feature de.van_porten.vrest.feature aggregates all features
except the test feature into a single installable unit alongside the bundle plugin which
is the products defining plugin. The following subsections detail the contents of the
individual features and plugins.

5.5.1 Core Feature

The core feature de.van_porten.vrest.core.feature contains the plugins that provide
the core functionality to be able to edit a meta-model instance at all. They do not
provide any graphical editing but just textual manipulation and persistence of the model
instances.

de.van_porten.vrest.core

The de.van_porten.vrest.core plugin contains the meta-model itself alongside the gen-
model. Tt also contains the generated classes of the REST meta-model to be used by other
plugins. The core plugin is the basis for the core.edit and core.editor plugin which both
rely on it to provide the infrastructure needed by them. It uses only one emf specific
extension point (org.eclipse.emf.ecore.generated package).

de.van_porten.vrest.core.edit

The de.van_porten.vrest.core.edit plugin is the model editing component generated
by EMF. Like the core plugin, it is also generated from the meta-model through the gen-
model. The core.edit plugin provides the Provider and Factory classes for the meta-model
classes. The extension point used is org.eclipse.emf.edit.itemProviderAdapter-
Factories.

82

5.5 Architecture of the Visual REST Plugin

de.van_porten.vrest.core.editor

The de.van_porten.vrest.core.editor plugin is the textual editor component generated
by EMF. The classes of this plugin are also generated from the genmodel. It uses the
extension points org.eclipse.ui.newWizards and org.eclipse.ui.editors to register
the editors and wizards generated by EMF with the Eclipse environment. The generated
editor only supports basic editing operations on a textual basis. Figure 5.6 provides an
example of the editor that is provided by this package.

L&) myApplication.rest I3 =0
L7 Resource Set

a [{ platform:/resource/PhotoAlbumMNew/myApplication.rest -
4 4 Application Model PhotoAlbum
<+ Method Type HTTR-POST
< Method Type HTTP-GET
<+ Method Type HTTP-PUT
< Method Type HTTP-DELETE
<= Primitive Data Type string
<= Primitive Data Type boolean
<= Primitive Data Type file
<= Primitive Data Type int
<4 Media Type atom+entry
4 < Media Type suggestion
4 Media Type Element positiveReviews

m

4 Media Type Element negativeReviews i

Selection | Parent | List| Tree | Table| Tree with Columns

El Properties &2 = :{=:t> ¥ =0
Property Value

Mame '= HTTP-GET
4 m r

Figure 5.6: The editor provided by the core.editor plugin

5.5.2 Ul Feature

The UI feature de.van_porten.vrest.ui.feature provides the graphical editors that ac-
tually implement the Visual REST language and are used to manipulate the application
model in a graphical way. The Ul feature consists of two plugins, the basic UI plugin and
the UI properties plugin.

83

5 The Visual REST Eclipse Plugin

de.van_porten.vrest.ui

The de.van_porten.vrest.ui plugin provides the actual graphical editors based on Gra-
phiti. There are three distinct diagram types registered with the org.eclipse.graphi-
ti.ui.diagramTypes and org.eclipse.graphiti.ui.diagramTypeProviders extension
points provided by Graphiti. These diagram types constitute the three distinct editors
for the three views on the model as defined by the Visual REST language specification.

The de.van_porten.vrest.ui does only contain handcrafted code. The editor implemen-
tations and utility classes provided by this plugin are grouped into different Java packages.
Figure 5.7 provides an overview.

de.van_purten.vrest.ui|

de van_portenvrestuidiagram

de van_portenvrestuinavigator

de.van_porten.vrestui.diagram.structure

de van_portenvrestuioutline

de.van_porten.vrest.ui.diagram.state

devan_porten.vrestuiwizards

de van_porten.vrest ui.diagram.method

devan_porten.vrest.ui.util

Figure 5.7: Overview of the packages in the de.van_porten.vrest.ui plugin

The de.van_porten.vrest.ui base package contains the project nature that is used in ex-
tending the org.eclipse.core.resources.natures extension point provided by Eclipse.
It also contains the perspective factory used in the definition of the Visual REST mod-
eling perspective. The Visual REST modeling perspective is tailored towards modeling
Visual REST applications and provides an initial collection and layout of Eclipse views.
The perspective definition makes use of the org.eclipse.ui.perspectives extension

84

5.5 Architecture of the Visual REST Plugin

point. The actual definition of the views in that perspective and their relative positions
to each other happens through the org.eclipse.ui.perspectiveExtensions extension
point.

The Visual REST perspective is used as preferred perspective for the NewRestProject-
Wizard found in the de.van porten.vrest.ui.wizards package. The new project wiz-
ard, extending the org.eclipse.ui.newWizards extension point, creates new projects,
assigns the Visual REST project nature and switches the perspective if necessary. The
Visual REST project can be created through the context menu as shown in figure 5.8. All
wizards are also available through any other mechanism Eclipse offers to start individual
wizards.

Mew M| Project..
Show In Alt+5Shift+W » [050 vREST Project
Copy Ctrl+C ([Example..
Copy Qualified Mame % Other.. Ctrl«N
E Paste Ctrl+V
Delete Delete
fay Import..
iy Export.. T
#] Refresh F5

Figure 5.8: New Visual REST project

The NewRestStructureDiagramWizard is also found in the de.van_porten.vrest.ui.-
wizards package and also uses the org.eclipse.ui.newWizards extension point. It is
used to create new structure diagrams as shown in figure 5.9.

= states
4 = st
= Mew k| Project.
=
& myAp; Go Into % File
=| Copy Ctrl+C | [Folder
Paste Ctrl+V . vREST Project
¥ Delete Delete :_: vREST Structure Diagram
Move.. M4 Example...

Figure 5.9: New structure diagram

The de.van_porten.vrest.ui.diagram package contains the image provider class Rest-

85

5 The Visual REST Eclipse Plugin

ImageProvider that is used to create the icons used in the editor palette. The image
provider is shared between all editors. The RestModelLabelFactory is also part of that
package and is responsible for creating labels for the different model elements (like resource
types and states, for example). The labels are used in the display of the outline and the
tree view provided as part of this plugin.

There is one top level package for each editor. The structure editor is located in the de .-
van_porten.vrest.ui.diagram.structure package. On its top level, that package con-
tains the specific diagram type provider for the structure editor. In its sub-packages, the
individual graphical elements can be found. For example, the de.van porten.vrest.-
ui.diagram.structure.resourcetype package holds the implementation of the tool to
support the creation and display of resource types in general. In this special case, there
are additional sub-packages for the individual concrete resource types that implement
type specific functionality. For instance, the folding (i.e. switching between detailed and
condensed representation of the resource type) is implemented generically for the abstract
resource type since it works the same way for all concrete resource types. There is also an
abstract base class for adding the graphical representation of a resource. This abstract
class utilizes open recursion and by that enables very easy implementation of concrete re-
source types by overriding some methods of the abstract resource type implementation.

The resource states editor is located in the de.van porten.vrest.ui.diagram.states
package and and the resource methods editor is located in the de.van_porten.vrest.-
ui.diagram.methods package. Both their sub-package structures follow that of the struc-
ture editor. There is a package for each individual graphical element that contains all
features necessary to provide the required functionality. As with resource types, there
is also a generic implementation of the features for the abstract Action and a concrete
implementation in a suitable sub-package for concrete actions.

The de.van_porten.vrest.ui.outline package provides the diagram outline as shown
in figure 5.10. It implements an adapter factory and registers it with the org.eclipse.-
core.runtime.adapters extension point to provide the outline view. Note that the
symbols used in the outline have been taken from the famfam silk icons [99] and do not
match the iconic representations used in the notation yet.

The de.van_porten.vrest.ui.navigator package contains the classes needed to provide
the application tree. The application tree shows the complete model instance as an
expandable tree in the project explorer. Figure 5.11 shows an example of such a tree. To
provide this tree, the extension point org.eclipse.ui.navigator.navigatorContent is
used.

The de.van_porten.vrest.ui.util package contains utility classes. These include classes

to provide help in consistently laying out visual elements (LayoutUtil), a class to set and
check properties of visual elements that are used to identify them (PropertyUtil) and

86

5.5 Architecture of the Visual REST Plugin

0= Qutline &2 =08
 Alburm
4 | 7 Picture
&8 album
& next
B2 previous
&3 data
2 Sugg&(inn
All5uggestions
PicturesOfAlbum
PictureData

SuggestionsUnderReview
AllAlbums

A I %-

Figure 5.10: The outline view

classes used to provide persistence for the model instances created through the graphical
editor (FileService and ResourceUtil).

de.van_porten.vrest.ui.properties

The de.van_porten.vrest.ui.properties plugin contains the code generated by EEF.
This plugin provides rich property editing of the elements added to the diagrams using
the editors provided through the ui plugin. As the name suggests, the ui.properties
plugin is a sub-component of the ui plugin and depends on it. It uses the org.eclipse.-
ui.views.properties.tabbed.* and org.eclipse.emf.edit.itemProviderAdapter-
Factories extension points.

5.5.3 Help Feature

The help feature de.van_porten.vrest.help.feature contains the help system. The help
system is provided by the de.van_porten.vrest.help plugin. It uses the org.eclipse.-
help.toc extension point to make a contribution to the Eclipse help system as shown in
figure 5.12.

87

5 The Visual REST Eclipse Plugin

4 = PhotoAlbumMew
4 = Model
4 (&) Photollbum
s Data Types

» [Media Types
> Method Types
> Op Types
s Rel Types
a4 Resource Types

> 1 Alburmn
AllAlbums
All5uggestions
» . Picture
PictureData
PicturesOfAlbum

4 o7 Suggestion

] é

| Creators

| Identifiers

| Methods

- [2] addReview
[delete

- [get

- [update

[

» || Resource Elements |

» || States
» oo SuggestionsUnderRevi
4 [= diagrams

= wmathade |

Figure 5.11: The application tree

88

m

=

5.5 Architecture of the Visual REST Plugin

,
= Help - Visual REST

Search: Scope: All topics
Contents S| ¥ 3 8

. —
@ workbencr‘ User Gu"de [q)) _
@ Java development user guide L - R

L Graphiti Developer Guide

=) B visual REsT Using the help system
[Getting Started
[Concepts Browse topics in the Contents frame ([‘3_]]] on the left. Click
[Tasks Forward buttons to navigate within the history of viewed top
[Reference
[samples Searching

To quickly lecate tepics on a particular subject in the docum

Search frame (7) to display the Search view. You can nan
sections you are interested in.

Synchronizing

Clicking the Show in Table of Contents button (E%) will sl
Contents button [Q==§) keeps the navigation tree synchronize

Figure 5.12: The help system of the Visual REST editor

5.5.4 Product Feature

The product feature is located inside the package de.van_porten.vrest.feature. It
aggregates Core, Ul and Help feature into one single installable unit. Besides the sub-
features it contains just one additional plugin. The de.van_porten.vrest.bundle plugin
provides an introduction view as well as customization of the RCP application. The cus-
tomization applied is the modification of the splash screen shown while launching the
editor as well as the provisioning of the welcome screen that provides a general introduc-
tion to the product.

5.5.5 Test Feature

Testing is an integral part of software development. Also in the development of a graphical
editor testing plays an important role. There are however different areas that need testing
and there are also different techniques that can or must be used. To provide some sort
of structure for testing, there are three distinct test plugins. A test plugin is simply the
means by which an Eclipse based application can be tested. Test-plugins are not added
to the final product. The test plugins are aggregated into the de.van_porten.vrest.-
tests.feature feature. The tests are automatically executed as part of the Maven/Tycho
build. All tests are based on the JUnit framework.

89

5 The Visual REST Eclipse Plugin

de.van,porten .vrest.tests.core

The de.van_porten.vrest.tests.core plugin tests the core plugins. It is mainly used
to validate that the code generated by EMF behaves as expected. It utilizes jmockit to
provide unit level testing. Hamcrest is used to provide meaningful assertion based on the
fluent API provided by it.

de.van_porten.vrest.tests.ui

The de.van_porten.vrest.tests.ui plugin uses SWTBot to run hand-crafted tests. SWT-
Bot instruments SWT for those purposes and allows using the IDE in pretty much the
same manner a human user would. As opposed to recorded tests, SWTBot tests can
be written before any functionality is actually implemented and thus allow test-driven
development to some extent—with the limitations mentioned earlier.

de.van_porten.vrest.tests.recorded

WindowTester Pro is used in the de.van_porten.vrest.tests.recorded plugin. Instead
of hand-crafting the test-cases, however, a WindowTester Pro feature that enables record-
ing of test-cases and subsequent generation of the JUnit code from those recordings is
utilized. This provides for an easy way to create regression tests if errors occur.

5.5.6 Additional Packages

Besides features and plugins presented before, there are also additional packages that are
part of the project.

The de.van_porten.vrest.build package is not a plugin in the usual sense. It is basically
a package that contains the parent pom of all other plugins and is used as the basis for
the Maven-based build.

The de.van_porten.vrest.p2-repository package is also a Maven and Tycho specific
package. It contains the product definition used to build the concrete packages of Visual
REST for different target platforms. A Tycho action builds zipped releases for all sup-
ported target platforms using that product definition. The product definition is also used
for development and testing purposes in the launch configuration inside the IDE.

90

5.6 Beyond Visual Rest

The p2-repository also constitutes the update site. Besides building the zipped products
Tycho also creates an update site that can be used from any eclipse installation via the
p2 update mechanism.

5.6 Beyond Visual Rest

The Visual REST editor presented in this chapter goes beyond what the mere description
of a visual notation could provide. The editor provides interaction support to effectively
use mechanisms of the notation.

Navigating through an application model is supported via the circle menu and the context
menu of resource types. Through both menus it is possible to open a resource types states
and method diagram as shown in figure 5.13. The circle menu appears when the mouse
hovers over a resource type; the context menu appears when the users performs a right-
click on the resource type.

a2 =

<<Primary==

Book =

bookifid} "
= Print.
+ title : string

+igbn : string Copy
+ abstract : string

Paste

i 7 =

==Primary==

Update Ctrl+F5

A Remove Ctrl+Delete

Book (=1 Delete

| View 3
; 2l
oot ’_ Edit Resource Methods adllEcdiiReouciatey
% Edit Resource Methads

M ?'rlle . strir.lg ~ Edit Resource States
+isbn : string -

+ abstract : string

Export Diagram... Ctrl+0

(a) circle menu (b) context menu

Figure 5.13: Contextual menus of resource types

The editor also provides an outline as well as a miniature view for all of the different views
which make navigating complex diagrams easier. Figure 5.14 shows the outline view of a
bookshop application. As can be seen, the outline shows not only the resource types in the
current diagram but also the internal links as properties of the resource types. Figure 5.15
shows the miniature view miniature view of a structure overview diagram. It can be used
to easily navigate on larger diagrams and provides some location awareness.

Adding foreign elements to diagrams provides contextualisation. To make adding these

91

5 The Visual REST Eclipse Plugin

92

4 7y Book;
& author
A Author

&2 booksOfAuthor
&2 bicgraphie
= Books
g8 BooksTitleOnly
. BooksOfAuthor
5 BooksWithAuthor
i 0 ShoppingCart
Q Authors
i o Checkout

1% Bicgraphie

[

Figure 5.14: Outline of a bookshop application

4

=zinternallink=>
titlesOnty

I

<<containment=> s

listType
4

o

A

<l istee
k:

:

ﬁEMiniature‘u’... @m|=a

| »

4% Palette b

h Select

P
L4 Marquee

rj Resources o]

m

1 Prirmary

Resource

Q Paging Resource
R Projection
Resource

. Activity

Resource

II |
L]
==Primary==
Book

= List Resource
| SR |

1

==InternalLink: '.

1 .
1 Properties <0
! I Prop
1l

1

1

1

1

]

1

book

v

A Attribute
@ Internal Link

b «» Containment

Figure 5.15: Miniature view of a bookshop application

5.6 Beyond Visual Rest

foreign elements to diagrams easier, all elements from the the application model can be
dragged and dropped from the application tree onto a diagram as shown in figure 5.16.
However, only elements from the same application and of the correct type can be added
to a diagram (e.g. a method cannot be added to a structure diagram).

Identifiers
Methods
. Resource Elerments
. States | RictureData
> |ip PictureData 1
. = PicturesOfAlbum f4]

» ¢ Suggestion
. SuggestionsUnderRevi

Figure 5.16: Drag and Drop operation from the application tree

To make cognitive integration even more comfortable when context is to be displayed,
it is possible to collapse individual resource types into their less-detailed representations
at the push of a button in the circle menu of the resource types as shown in figure 5.17.
This allows adding foreign resource types to diagrams in a less intrusive way which makes
reading the structure diagrams easier still.

Cj\:a_"LrEﬁ << Activity= e
aé‘\;"rb Suggestion Collapse f

{suggestion/{id} y Al

+ positiveReviews : int
+ negativeReviews ; int
+ statement : string

+ =tatus : string

Figure 5.17: The collapse button

93

6 Final Remarks

This thesis has presented a new and unique visual language for modeling resource-oriented
applications called Visual REST. The semantic basis for Visual REST is the meta-model
for resource-oriented applications [6]. The language was designed to meet the criteria de-
fined by Daniel Moody in his article “The physics of notations” [8]. Following Moody’s
guideline allowed building a notation that should be easier to use for modeling resource-
oriented applications than, for example, UML, because it is tailored towards visual ef-
fectiveness. Visual REST offers ways to manage application complexity by providing
partitioning and hierarchical organisation of the application. It uses perceptually dis-
criminable representations for the concepts found in resource-oriented applications. The
chosen representations are also semantically transparent. They carry a meaning and hint
users to the actual semantics of the objects. Furthermore, there is no symbol excess,
symbol overload or symbol redundancy that would break with semiotic clarity and dual
coding is used to provide textual annotations to symbolic representations. Dual coding
makes it easier—especially for novice users—to understand diagrams. Cognitive fit is
achieved on the one hand by designing the notational elements such that they can still be
used on a whiteboard as well as on a computer screen and on the other hand by allowing
professional users of the notation to omit unneeded elements such as textual annotations
and color. Color is an essential element in providing visually expressive representations
and eases the use of the notation and the discrimination between different symbols. In
addition, cognitive integration is provided through sign posting, contextualisation and
overview diagrams to help users of the notation put all diagrams into context. Lastly,
graphic economy is achieved through the explicit introduction of symbol deficit—there is
no graphical representation for every given part of the meta-model but only for a carefully
selected set.

During the development of Visual REST a process was defined that was used as the
basis for iteratively creating and improving the notation (see section 3.2). This process
showed how a notation can be built on top of an existing meta-model in a constructive
and structured way, following the visual guidelines provided by Daniel Moody’s work. It
provides direction in the task of model language creation.

Visual REST was also evaluated with a focus on the properties defined by Moody. Al-

though the notation was designed with all the different properties that are desirable in
mind, the results of the evaluation still show room for improvement on various levels. For

95

6 Final Remarks

one, the resource method behaviour diagram seems ineffective and might need replacement
by a more appropriate representation. Furthermore, some of the iconic representations
need to be replaced by better ones, some seemed to be hard to discriminate from others
and some were not semantically transparent. The use of partitioning as a means of com-
plexity management and the use of textual indicators for signposting seems to work well
for most probands. Finally, most probands thought that Visual REST will be usable,
given that a dedicated editor is available to do the modeling.

The Visual REST editor implements the new notation into an Eclipse application. The ed-
itor allows users to build new resource-oriented applications with a comfortable tool. The
application model generated through the editor is the input for a number of possible code
generators, some of which are in development [100] or have already been developed [101].
There is no limit to the target platform in general so any number of additional generators
are possible. Ideally, they would be integrated into the Visual REST graphical editing
environment to provide a complete tool set to build resource-oriented applications. The
graphical editor itself is based on EMF, Graphiti and EEF which provide the foundation
for modeling in general and graphical editors in particular.

Visual REST is a first step in the development of a well-defined and visually effective
graphical language for the design of resource-oriented applications. It allows the definition
of applications in a straight forward fashion while still providing the means to handle also
larger application models well. As is the nature of first steps, there is still much room
for improvement in the future, though. To give some examples, it might make sense to
leave out the URLs from the model and create a separate mapping from resource name to
URL. It might also make sense to change the representation of states to make them more
discriminable and semantically clearer. It would also be interesting to see if a way can
be found to foster reuse of elements. For the future a changed meta-model might call for
a different structuring of the graphical language as well. It might also lead to additional
graphical symbols. Regarding behaviour modeling, it is questionable if using a graphical
notation is the right way to go or if a textual language would be better suited for the
task; or maybe even a hybrid between textual and graphical language would be a good
solution to the problem.

Alternative representations for the resource types could be found that are perceptually
more effective. For example, the boxes around the resource types could be completely
omitted. Figure 6.1 gives an example of an alternative representation of resource types
without the introduction of “boxitis”. Instead of representing the URLSs inside the nota-
tion they could be omitted and a map from resource type name to a list of possible URIs
could be created.

Additions to the meta-model could be made. For example, it would help to be able to

demarcate the entry point(s) into an application—for that there needs to be support in the
meta-model, though. It would also be worthwhile to think about additional packaging

96

F;:'}’t,# << Activity=>

C)-LK____;\;':‘ Suggestion
+ attr - Type
+ attr - Type

Figure 6.1: Possible alternative representations of an activity resource type

mechanisms inside the meta-model which could then be transferred into the notation.
This could improve complexity management.

The process presented to derive the notation from the meta-model is still far from perfect,
but also is a first step in the right direction. It is still too much tailored towards the
development of Visual REST and not generic enough to be used for the development
of other notations. What is missing is mainly a generic description of the steps that
are necessary to build a notation on the principles of visual effectiveness. Using only
those principles—despite them being a prescriptive theory—is still a destructive process.
Creativity is needed to come up with new symbols and to actually build a notation around
a meta-model. What would be desirable is a more constructive process. A way to build
a notation “bottom-up” needs to be found—and the outcome should be a language that
is visually effective.

The survey that was conducted as part of this thesis showed how well (or badly at some
points) the notation follows Moody’s criteria for cognitive effective visual languages. The
feedback provided through the use of a questionnaire is invaluable to any visual language
designer and should be included in the process of visual language development. In the
limited time given for the development, implementation and evaluation of Visual REST
it was not possible to let the information gathered through the survey flow back into
the notations design. When thinking about processes, any feedback mechanism that is
available should be part of the process itself and should be used to guide the development
of the new language towards the needs of the domain users. What would also be desir-
able is a blue print of a questionnaire that can be tailored towards new notations. The
questionnaire developed in this work is a first step. Deriving generic questions that can
then again be adapted to a different notation would be a next.

The Visual REST editor is still a prototype and needs improvement. It will be made an
open-source project so that everybody who is interested can participate in the creation
of a development environment for resource-oriented applications. Ideally, this will build
an infrastructure with different kinds of code generators and possibly additional textual
languages (for example for behaviour modeling) around the meta-model for resource-
oriented applications. First and foremost, the integration between the different modeling
components needs to be improved, though. Although section 5.6 showed that there is

97

6 Final Remarks

already much integration done to support the development using Visual REST, there are
still options that can be exploited. To give just one example, navigation between different
diagrams could be made easier through the use of additional context menu items.

The implementation of the Visual REST editing environment also needs additional work
beyond adding features. Additional tests—also functional ones, possibly using Jubula—
need to be developed to make the editor more robust and to provide the basis for any
number of refactoring tasks. It is also thinkable to re-implement the editor from scratch
with the experience gathered through the prototypical implementation. For this task,
some interesting projects have been emerging in the vicinity of the Eclipse Modeling
Project. EuGENia [102] is part of the Eclipse Epsilon project [103]. EuGENia allows
generating the models required by GMF [53] from an annotated meta-model. However,
at this point only a single diagram per model is possible so this would not have worked
for the project at hand without the need to create additional meta-models and model-
to-model transformations. Spray [104] on the other hand is a domain-specific language
tailored towards generation of code based on Graphiti [105-107]. In the future it might
prove useful for creating graphical editors using the Graphiti framework without the need
to hand-craft as much code as is required today. Using either EuGENia or Spray could
provide a way to create a better version of the editor either based on Graphiti again or
using the Graphical Modeling Framework.

98

A Visual Language Questionnaire

Visual REST

Visual REST is a graphical modeling language for the development of resource-oriented applications. The language development is based on nine criteria due to Daniel Moody
that establish a scientific basis for the design of graphical languages

The purpase of this questionnaire is to evaluate how well those nine criteria have been applied in the development of the Visual REST language. Its purpose is NOT to evaluate
how good the criteria are at all

The results of this questionnaire will be part of my final Masters thesis. However, the data is anonymized completely.

Welcome to the Visual REST graphical notation survey.

The questionnaire tries to be as simple as possible. Only closed questions are used to make your life a litlle easier. Atthe end there is one open optional question where you
can place you comments on the notation, should you have any.

Atthe end there is the possibility to enter your email address to win a copy of one of the following books:

= Clinton Wong - HTTP Pocket Reference

and forthose notinto IT. Hermann Maurer - Xperen Bd.1: Der Telekinet

You will need about 20 minutes to finish the questionnaire.

There are 49 questions in this survey

User Background
The following question will gather some basic information about your knowledge of fields related to the work at hand. This will give us the means to put your answers into
context and maybe also to deduce some correlation between certain "knowledge” levels and the "understanding™ of the Visual REST language

1 [QUB_0001]How would you rate your knowledge of REST? *

Please choose only one of the following:

O | did research on REST and related areas

O Ihave developed applications using REST

O I have heard about REST
O I have never heard of REST
REST is defined by Roy Fielding's dissertation: Fielding, R. T. (2000). Architectural styles and the design of network-based software architectures. University of California,

Irvine. hitp:/wwwiics. uci. edu~fieldina/pubs/dissedationftop. htm

2 [QUB_0002pre]Are you familiar with graphical modeling languages such as UML 2, BPMN or state charts? *

Please choose only one of the following:

O Yes
O Mo

99

A Visual Language Questionnaire

3 [QUB_0002]How would you rate your knowledge of following the UML 2 diagrams? #*

Only answer this question if the following conditions are met:
= Answer was Y'Yes' at question 2 [QUB_0002pre] (Are you familiar with graphical modeling languages such as UML 2, BPMN or state charts?)

Please choose the appropriate response for each item

Don't know Know (but have not used) Used
Activity Diagram O O O
Class Diagram @] O O
State Machine Diagram O O O

4 [QUB_0003 JHow would you rate your knowledge of graphical notations? *

Please choose only one of the following:

O I'm a researcher in the field
O ma regular user of graphical editors
O I have used a graphical editor before

O | have never used a graphical editor

Moody :: Perceptual Discriminability

Questions regarding “"Perceptual Discriminability” criterion

5 [QMPD_0000a]

Please compare the following symbols graphically. For each pair, state if you find them easy to distinguish or not.

*

Please choose the appropriate response for each item

.
U

Mo, they are not easy to
Yes, they are easy to distinguish distinguish I'm not sure

@] O O

e

% 0m
@*ﬂ*ﬂﬂ%

L

100

6 [QMPD_0000b]

Again, please compare the following symbols graphically. For each pair, state if you find them easy to distinguish or
not.

Ed

Please choose the appropriate response for each item

No, they are not easy to
Yes, they are easy to distinguish distinguish I'm not sure

@ @ O

101

A Visual Language Questionnaire

7 [QMPD_0000c]

Again, please compare the following symbols graphically. For each pair, state if you find them easy to distinguish or
not.

*

Please choose the appropriate response for each item

Mo, they are not easy to
Yes, they are easy to distinguish distinguish I'm not sure

w <) o o o

o
<) p. | o o o

@]
@]
@]

G o
d a

8 [QMPD_0000d]

Again, please compare the following symbols graphically. For each pair, state if you find them easy to distinguish or
not.

*

Please choose the appropriate response for each item

No, they are not easy to
Yes, they are easy to distinguish distinguish I'm not sure

B e : :

102

% “:] O O O

9 [QMPD_0010]

When comparing the following representations of the primary resource type, does the added box around the left
version have any effect on the discriminability. That is, is it easier, harder, or equally hard to discriminate the
representation from, for example, the aggregation resource type as shown below.

<<primary>>

N - NAME

IDENTIFIER

ceprimary>>

NAME

g c<aggregations>

r 3
. 4 NAME
4
:‘_\‘/
TOENTTFIER

ccaggregationss

NAME

®
Please choose only one of the following:

(O The left ones are easier to discriminate
(O The right ones are easier to discriminate

O The are equally hard / easy

103

A Visual Language Questionnaire

10 [QMPD_0009]Please compare the following symbols graphically. For each pair, state if you find them easy to
distinguish or not. *
Please choose the appropriate response for each item

Mo, they are not easy to
Yes, they are easy to distinguish distinguish I'm not sure

o o O

v

11 [QMPD_0011]Please compare the following symbols graphically. For each pair, state if you find them easy to
distinguish or not. *

Please choose the appropriate response for each item

No, they are not easy to
Yes, they are easy to distinguish distinguish I'm not sure

12 [QMPD_0012a]

Please compare the following symbols graphically. For each pair, state if you find them easy to distinguish or not.

*

Please choose the appropriate response for each item

Mo, they are not easy to
Yes, they are easy to distinguish distinguish I'm not sure

| ' @] O O

]
jo ‘E} o o 0

K
@

104

13 [QMPD_0012b]

Again, please compare the following symbols graphically. For each pair, state if you find them easy to distinguish or
not.

*®

Please choose the appropriate response for each item

No, they are not easy to
Yes, they are easy to distinguish distinguish I'm not sure

D ‘ + ¢ O O

14 [QMPD_0012c]

Again, please compare the following symbols graphically. For each pair, state if you find them easy to distinguish or
not.

*

Please choose the appropriate response for each item

Mo, they are not easy to
Yes, they are easy to distinguish distinguish I'm not sure

[] D o o o

105

A Visual Language Questionnaire

D 0 0 0

Moody :: Semantic Transparency

Questions regarding "Semantic Transparency” criterion

15 [QMST_0001a]Please choose the resource type you think is represented by the symbol displayed. *

Please choose the appropriate response for each item

Primary Paging Projection Activity List Aggregation Filter
Resource Resource Resource Resource Resource Resource Resource Subresource
Type Type Type Type Type Type Type Type

ii)} o o o o o o o 0

16 [QMST_0001b]Please choose the resource type you think is represented by the symbol displayed. *

Please choose the appropriate response for each item

Primary Paging Projection Actiity List Aggregation Filter
Resource Resource Resource Resource Resource Resource Resource Subresource
Type Type Type Type Type Type Type Type
L 0 o o o o o o 0

17 [QMST_0001c]Please choose the resource type you think is represented by the symbol displayed. *

Please choose the appropriate response for each item

Primary Paging Projection Activity List Aggregation Filter
Resource Resource Resource Resource Resource Resource Resource Subresource
Type Type Type Type Type Type Type Type

w o o o o o o o 0

18 [QMST_0001d]Please choose the resource type you think is represented by the symbol displayed. *

Please choose the appropriate response for each item

Primary Paging Projection Activity List Aggregation Filter
Resource Resource Resource Resource Resource Resource Resource Subresource
Type Type Type Type Type Type Type Type

@] o o o O O O @]

19 [QMST_0001e]Please choose the resource type you think is represented by the symbol displayed. *

Please choose the appropriate response for each item

Primary Paging Projection Actiity List Aggregation Filter
Resource Resource Resource Resource Resource Resource Resource Subresource
Type Type Type Type Type Type Type Type

“j o o o o o o o o

106

I'm not
sure

I'm not
sure

I'm not
sure

I'm not
sure

I'm not
sure

O

20 [QMST_0001f]Please choose the resource type you think is represented by the symbol displayed. *

Please choose the appropriate response for each item

Primary Paging Projection Activity List Aggregation Filter
Resource Resource Resource Resource Resource Resource Resource Subresource
Type Type Type Type Type Type Type Type
N @] &) &) &) @] O @] @]

21 [QMST_0001g]Please choose the resource type you think is represented by the symbol displayed. *

Please choose the appropriate response for each item

Primary Paging Projection Activity List Aggregation Filter
Resource Resource Resource Resource Resource Resource Resource Subresource
Type Type Type Type Type Type Type Type

Q o o o o o O o 0

22 [QMST_0001h]Please choose the resource type you think is represented by the symbol displayed. *

Please choose the appropriate response for each item

Primary Paging Projection Activity List Aggregation Filter
Resource Resource Resource Resource Resource Resource Resource Subresource
Type Type Type Type Type Type Type Type
p. | o o o o o o o o

23 [QMST_0002a]Please choose the type of link you think is represented by the arrows displayed. *

Please choose the appropriate response for each item

Containment (e.g. A list
Internal Link “contains” a list element type) I'm not sure

> {> 0 0)

24 [QMST_0002b]Please choose the type of link you think is represented by the arrows displayed. *

Please choose the appropriate response for each item

Containment (e.g. Alist "contains”
Internal Link a list element type) I'm not sure

@] O o

v

25 [QMST_0003a]Please choose the type of state you think is represented by the symbol displayed. *

Please choose the appropriate response for each item

L

\ }I O O O

\
N S

Initial State State I'm not sure

26 [QMST_0003b]Please choose the type of state you think is represented by the symbol displayed. *
Please choose the appropriate response for each item

Initial State State I'm not sure

O @] @

I'm not
sure

I'm not
sure

I'm not
sure

107

A Visual Language Questionnaire

27 [QMST_0004a]Please try to identify which action type is represented by which symbol displayed below. *

Please choose the appropriate response for each item

List
Message Return Conditional Update Create List Add Remove I'm not
Action Action Action Action Action Action Action sure
O O O O O O G O

28 [QMST_0004b]Please try to identify which action type is represented by which symbol displayed below. *

Please choose the appropriate response for each item

List
Message Return Conditional Update Create List Add Remave I'm not
Action Action Action Action Action Action Action sure
' @] O @] @] O O @] O

29 [QMST_0004c]Please try to identify which action type is represented by which symbol displayed below. *

Please choose the appropriate response for each item

List
Message Retumn Conditional Update Create List Add Remaove I'm not
Action Action Action Action Action Action Action sure
=i
O O O O O O O O

30 [QMST_0004d]Please try to identify which action type is represented by which symbol displayed below. *

Please choose the appropriate response for each item

List
Message Return Conditional Update Create List Add Remave I'm not
Action Action Action Action Action Action Action sure
O O O O O O O O

31 [QMST_0004e]Please try to identify which action type is represented by which symbol displayed below. *

Please choose the appropriate response for each item

List
Message Retumn Conditional Update Create List Add Remaove I'm not
Action Action Action Action Action Action Action sure
g o O @] o O Q @] O

32 [QMST_0004f]Please try to identify which action type is represented by which symbol displayed below. *

Please choose the appropriate response for each item

List
Message Retumn Conditional Update Create List Add Remaove I'm not
Action Action Action Action Action Action Action sure

jo o o 0 o o o 0 o

108

33 [QMST_0004g]Please try to identify which action type is represented by which symbol displayed below.

Please choose the appropriate response for each item

Return
Action

O

Message
Action

O

S

Moody :: Complexity Management

Questions regarding "Complexity Management” criterion

34 [QMCM_0001]

Condition
Action

@]

al Update
Action

List
Create List Add Remove
Action Action Action

O @] @]

I'm not
sure

O

The visual REST notation allows having multiple diagrams for modeling the structure. For example, consider the

following diagram

il\ﬂ,?: cehitibye
- i
bt Suagestion

Ssuggeshienid)

* pralisRaviewa il

+matemere sty
<mahs g

ceriEmEL Rk reviois =Primanys

Picturs

Al Suggestions

uggesten

\ /

<Lgan

SuggestionslndarReviee

contems

wirtemaking- next 27

cxlghn

PicturesOlbuim

H

ceSubresounce

* MyHesource?

aLiies abum

‘piciuresOlEbund)

iy hawResourcs

[

.

[r—p—

A

B imyhlestissouice

cciuman >

7
g b

g yp2 l

colgas

AllAlbuse

taloum

Jfr_\\t

rimary

Fictura

gt suagestion

[P —
=

aific) <cconanments
e

il inkes det

<<Zubresourcar>

nienaL = akurm

e

<l
¢
Led Mbum

pictures Oftlburific)

——

MyResource?

Smytlesesouee

+ altrbute 777

c<iteaLne= picture

imyNewfiesource

You could model the same application using two distinct structure diagrams, like for instance so

109

Visual Language Questionnaire

celistes
E AllSuggestions

a

¥ o

e

* poakiveteviews il

= negatieRevens i
- statement : strng
- status : sinng

e e e

<<Primary==
N

Alb

imyMewRasource

W <<Filler>

\/ SuggesionslinderReview

Isuggestsion Mype=undereien

wsListen
g AlAbums

fallbum

Do you think having the ability to split the structural model as presented above will help in managing application

complexity?
*

Please choose only one of the following:

O Yes
O Mo

35 [QMCM_0002]

Methods for a single resource type can be modeled in multiple diagrams, but all methods can also be contained in only

one diagram. For example, you can have a single diagram like the following:

e
PUT : Newblethad |

MmO
POST: HewMethod2(|

Bipm-eny S—ty

AT <<ListagiAchom

X

<<Conditipnalictions>

3 rmview TN el

revien —@

TRUE FALSE

=l “-LisRemonAction=>

<<RefurRAChioms
404
)

+ <aListAcdinctiom>

!

<xzzagadotions>
roger

{ M

coRaturmActiom

U

23

B siomesntry

110

But you can also distribute the methods of a single resource type over multiple diagrams, like in the next example

Methods of: MyRescurced

<<liethom>
PUT : HewMethod()

BOTHERT) Il

+ <<l istAddAction=>

\

==Candtionalaclion=>

TRUE

<<Messsgeiction =

¥

<cljpstedetion=>

@

FALSE

Bl -ListRemovsdctionss

= |

|

<<ReturnAction>
404
7

B——F review

Methods of. MyResourced ‘

<cMathod>>
POST : Newidethod2()

imgipng It

e]

+ =L istAgdAction»

|

ssagedctions=

B siomeenity

Do you think the ability to distribute the methods of a single resource type over multiple diagrams helps in managing

complexity?

*

Please choose only one of the following:

O Yes
O Mo

Moody :: Cognitive Integration

Questions regarding "Cognitive Integration” criterion

36 [QMCI_0002]

The following state diagram shows the states of the suggestion resource type.

111

A Visual Language Questionnaire

Skate: of: Suggestion

FOST: -
GET gel

| FUT : update |
\ DELETE : ceiene
s
g 7
dekli ghRaviEw
L.
etz <cSiae=s
aaisted dane
POST:
GET -
RUT:
DELETE -

Please look at the diagram and answer the following questions.

*

Please choose the appropriate response for each item

The box at top helps to identify

which resource type the states O O
belong to

It is helpful that every state

lists all possible method types

instead of just those that are O O
actually supported

37 [QMCI_0003]

Looking at the following method diagram, please answer the questions below

odsthaden
PUT : hewliemoo] |

MY el 1 sl ispdsadennm Wt i

\
w=Candlonslécion=»
4 =
=1 L
'
‘_"

*

Please choose the appropriate response for each item

The box at the top helps in

identifying which resource type O O
the methods belong to

112

Moody :: Dual Coding

Questions regarding "Dual Coding” criterion

38 [QMDC_0001]

Does adding a textual representation help you to grasp the meaning of the resource types?

A,
FARN

o Vs, L

|
-4

Py

=

<<PrimaryResourcer>
Please choose only one of the following:

O Yes
O Mo

39 [QMDC_0001b]

What about the states. Does it help there?

*

Please choose only one of the following:

O Yes
O Mo

40 [QMDC_0001c]

What about the Method Behavior. Does it help you there?

trigger trigger

<<MessageAction>>

Ed

Please choose only one of the following:

O Yes
O No

41 [QMDC_0002]Does adding the meaning of the iconic representations in form of UML-like stereotypes appeal to
you? *

Please choose only one of the following:
O Yes

O No
O I don't know

113

A Visual Language Questionnaire

Moody :: Graphic Economy

Questions regarding “Graphic Economy” criterion

42 [QMGE_0001]

Looking at the following diagram, do you think there are too many different graphical elements?

<<Internallink=> link

¥

[

<<Primary== <<Paging==
MyResourcel MyResource2
q \l‘
<<l igte= <=Aggregation==
MyResources MyResourced

<

<<Projection=>

MyResource3

<=Fitter=>

MyResource?

;@

ad
<< Activity=s
MyResourced

H

<«Subresource=>

MyResourced

~

L

<<containment=»
contains

*

Please choose only one of the following:

O Yes
O Mo

43 [QMGE_0002]

Looking at the following diagram, do you think there are too many different graphical elements?

114

Methods of: MyResource0d

<=Method==
PUT : NewMethod()

FIOMAEALTY Il

==l istdddActions=

\

=<Conditionalaction=>

q ==Updatedction==

TRUE

==Messagedctions=

¥

FALSE

<=ListRemoveAction=>

|

<=Createdetion==

==ReturnAction==
404
227

@——) review

*®

Please choose only one of the following:

O Yes

O Mo

44 [QMGE_0003]

Looking at the following diagram, do you think there are too many different graphical elements?

States of: MyResourceS

POST: -

==5Stale>:
MyFollowup.

=

State

| POST: addReview

GET : get
PUT : update
DELETE : delete

test T ger

PUT -
DELETE : -

*

Please choose only one of the following:

O Yes
O No

115

A Visual Language Questionnaire

Moody :: Cognitive Fit

Questions regarding "Cognitive Fit” criterion

45 [QMCF_0002]

Do you feel overwhelmed by the mass of information in the following diagram?

<intermaLnies avhe

P
Authoes
"
cestemaL ks ttes0ny
e
Bucgraphie
{/]J st
" JocoraTiseon
~ "
—
tnrmert
aggrepatedType
e p—— EE——
L
\r’ BooksOthuthor I BocksWithAuthor ShoppinaCart Checkout
ot —

‘Beskalawnorsuthars) mosksaunors

~contarme:
agaragateTyee
/ <<lemalink- bagkanthuttar

Please choose only one of the following:

O Yes
O No

=

46 [QMCF_0003a]

Imagine you wanted to draw the model of a resource-oriented application on a whiteboard, for example. Do you
think the notation presented in this questionnaire would be useable for that purpose?

*
Please choose only one of the following:

O Yes
O No

47 [QMCF_0003b]

Imagine you had a dedicated editor that would support modeling using Visual REST. Do you think the notation could
be useable for you then?

*
Please choose only one of the following:

O Yes
O Mo

116

General Comments

In this section you can give some general comments on the notation which are beyond what we could cover with our questions.

48 [QGC_0001]

Do you have any comments on the notation as a whole? What do you like? What do you dislike? What would you
change if you could? Are there things you do not understand or that are not clear? Would there be anything that

could be done to improve the situation?

Here are the diagrams used as examples throughout this questionnaire again for reference. You can click on the

individual diagrams to see a larger version.

Az AN se

sy

s reven

e

Ry —

[

Please write your answer here

49 [QGC_0002]

As a token of gratitude for your participation you have the opportunity to win one of these books:

* Bruce A. Tate - Seven Languages in Seven Weeks: A Pragmatic Guide to Learning Programming Languages
* Clinton Wong - HTTP Pocket Reference

+ and for those not into IT: Hermann Maurer - Xperten Bd.1: Der Telekinet

117

A Visual Language Questionnaire

Just enter your email address in the following field for the chance to win. Your email address will only be used to get

in touch with you should you win and will not be used for any other purpose. It will not be shared with any third
party.

Entering your email address is optional and does not influence the evaluation in any way.

Please write your answer here:

Thank you for participating in the Visual REST graphical notation survey. Your input is highly appreciated. Ifyou are interested in the results of the evaluation please feel free to
send me an email to gliver@van-porten.de
01.01.1970 - 01:00

Submit your survey.
Thank you for completing this sunvey.

118

B Comments given in the questionnaire

Die Diagramme mit verschiedenen Ressourcentypen erscheinen etwas ”un-
ruhig” und sind daher schwer auf einen Blick zu erfassen - es ist ”zuviel los”.
UML-Stereotypen sind fiir mich schnell zu erfassen - zumindest im Moment, da
die Icons noch ungewohnt sind - und sorgen auch fiir mehr Ruhe in der Darstel-
lung. Die Auswahl der Icons selbst ist allerdings gut, ich kann an einzelnen
Artefakten relativ schnell erkennen, was die Semantik ist. Nur dhie farbliche
Komponente fithrt wohl in der Praxis nicht weiter, da sie oft wegfallen wird
(Whiteboards, Papers, Ausdrucke ...).

I really wonder why generalisation is abused (by having the symbol doubled-up
on a dependency arrow) to make containment rather than using aggregation.
I’'m concerned that competing arcs in the state diagram don’t have real con-
ditions. I'm concerned that the uniform HTTP interface is under-represented
(especially missing PATCH).

I would remove the URI patterns - they are not of relevance. The most
important part the represent between the resources are the link relations;
this is for contained/embedded resources too. Fwiw, I have a generic media
type for representing resources which I have visualised graphically http://
stateless.co/hal_specification.html I have thought about producing a
graphical client for browsing applications exposed with that media type - if
you think there is scope for collaboration definitely get in touch Best, Mike

Ich bin eher der textuelle Typ, deshalb ist die Sprache fiir mich ein bisschen
zu "bunt”. Da die Anzahl der Symbole iiberschaubar ist, denke ich aber,
dass man sich mit etwas Einarbeitungszeit daran gewchnen kann. Die Bedeu-
tungen der einzelnen Symbole ist fiir einen REST-"Laien” nicht immer ein-
deutig. Wenn man mehr Erfahrung, insbesondere mit Ressource-Typen und
den verfiigharen Aktionen hat, kann ich mir aber vorstellen, dass es klarer
wird. Ansonsten hoffe ich, dass diese Umfrage einen guten Beitrag zur Ab-
schlussarbeit liefer und wiinsche noch viel Erfolg dabei.

i think there are some fundamental flaws in the design here. for example,

119

B Comments given in the questionnaire

120

”sub-resource” is not a needed representation; just "resource” will do just
fine. modeling update as a ”circle of arrows” is needlessly complex. a single
icon to represent an idempotent write should be sufficient. modeling REST
using a single protocol (HTTP) is needlessly limiting. REST addresses much
more than resources, it also representation intermediaries (caches), code-on-
demand, etc. i don’t see them represented here at all. i think using color in
your design is a problem. there will be users who are color-blind; black and
white representations of the diagram will loose important details. in several
cases the arrows seem disjointed; it’s not clear where they are coming from
or leading to. as REST promotes a stateless interaction, it it not clear how
you plan to represent state (it is ”stand-alone?”, part of some resource? part
of a server somewhere? which server?, etc.). i like the idea of representing
an architectural style visually and i am not sure this captures the POV of
Fielding’s REST.

I have the attention span of about 2 seconds. I give 5 days of training course
in a row on resource-oriented arhictecutres. Some of those idioms could be
quite useful when drawing stuff on the white board. A lot of them I'm not
sure about.

I would hardly use graphical notation for designing a REST system, but per-
haps could be useful for documentation purposes. Your notation is not really
describing a REST system; otherwise there will not be custom verbs, but only
GET/PUT/POST/DELETE. I would much more prefer describing a REST
system as suggested here http://www.ibm.com/developerworks/rational/
library/basic-profile-linked-data/index.html.

- wirkt an manchen stellen etwas bunt - das sternchen bei create... erkennt man
nicht unbedingt als solches - stern (prim resource?) suggerriert eine semantik
wie "favorit”

Great job! I really like this stuff and I am sure, that it is helpful fiir designing
RESTful apps.

In my opinion, adding icons does not help out someone who is trying to under-
stand the semantics of the diagram. E.g. in https://survey.van-porten.
de/upload/surveys/26232/images/Photoalbum.png, it does not help me
that I see icons in understanding how the service works as a whole. However,
it does help me to quickly understand which types of resources are available in
the service - e.g. I see that there is a filter and several types of list resources.
Therefore, I am quickly able to focus on a specific resource type or determine
if the service supports filtering at all. Also, I think it would be useful to some-

how indicate which of the resources may be used as application entry points
in order to navigate the resource space onward.

To use the icons on a whiteboard I need to be able to draw them myself by
hand quickly. Some of the icons are hard to draw.

- Not all “Resource Types” you use have immediate Meaning to me - The
transition Names in the state diagramm seem strange. You’d expect http
verbs here. - The usage of “Method” feels strange. In (Http-) REST there
are just four Methods: GET; PUT; POST; DELETE. “PUT: NewMethod()”
does not make any sense. - In the Questionary when asking for the meaning
of Conditional Action you should not have the text “COND NAME” in the
symbol.

good luck interesting

Sorry, I don’t see the point. REST has a uniform interface, so every GET
PUT etc will be the same. The resources will be different, as will their media
types. How do these diagrams help in any way? What are they for? What
problem are they solving?

I dislike the funnel as a symbol for filtering - I guessed it correctly because it’s
used in other apps, but I don’t like it. Generally, I like your work. I think it’ll
be useful.

The symbols are to colorful. I would prefer if the symbols would use a more
consistent style. In the complexityMgmtFull.png it is not clear what is the
meaning of the arrows that point to the method boxes. What does the content
of those boxes mean?

Viewing resources as types with methods makes the approach seem more ob-
ject oriented. Use of such a system requires one to know all the types in the
system, and how each type may be used. This makes it possible that one
finally ends up with a system that requires out-of-band documentation to use,
and hence not hypertext driven. Don’t take me to mean what you have is not
useful. I only think it exclusively focuses on the server, and helps in server
implementation. Starting with a client view (define the mediatypes and the
types of hyperlinks), and moving on to constructing the server components
from those primitives will help build a RESTful system.

Ich wiirde bei den Grafiken weniger gefiillte Flachen verwenden Die Symbole

121

B Comments given in the questionnaire

122

fiir Primary und Subressource kénnten (sollten?) etwas gemeinsames haben.
Ein Editor wére cool ;-) Wiird ich nutzen

From a purely aesthetic perspective, I think sequences in the third diagram
could be represented in a nicer, less ambiguous manner than the use of little,
short arrows. Maybe a grid could be used whereby adjacent grid squares
are used to indicate progression through state? The icons themselves are a
little rough and could be improved... In general, I think the state transition
aspects of the diagram are useful, some aspects clutter up the diagrams too
much which risks reducing the communication value of these diagrams. I don’t
think that any graphical representation will ever be both comprehensive and
comprehensible at the same time. In my mind, the inclusions of list operations
and conditional items is too detailed, particularly as important aspects about
them cannot be simply represented in a graphical manner (e.g. the conditions
in the conditional block). Arguably other aspects of a RESTful API such as
HTTP status codes are equally important but I struggle to see how more than
2-3 different returns can be modeled without cluttering things up. Otherwise,
great effort!

The most symbols can be right interpreted without a declarative text and the
not directly interpretable symbols can be remembered once explained. Such
for a application there should be something like a show legend function then
the description of each symbol in the graphical representation can be omitted.

Simplify it.. to many different elements with subtle differences. Clearer icons
might help.

I think there’s too much emphasis on the internal change of state of the re-
sources, and not enough emphasis on HATEOAS. There’s also nothing said
about such matters as headers (etags, caching etc); the only thing I can see is
a 404 return code. There’s also nothing about conneg.

C Source Code Statistics

Plugin # Lines | Generated
de.van_porten.vrest.ui 10,292 0%
de.van_porten.vrest.ui.properties | 40,489 98%
de.van_porten.vrest.core 11,348 100%
de.van_porten.vrest.core.edit 6,453 100%
de.van_porten.vrest.core.editor 4,814 100%
de.van_porten.vrest.bundle 24 0%
de.van_porten.vrest.help 6 0%
Total 76,223 76%

Table C.1: Source lines of code of the Visual REST plugins

Plugin # Lines | Generated
de.van_porten.vrest.tests.core 2,117 80%
de.van_porten.vrest.tests.ui 651 0%
de.van_porten.vrest.tests.recorded 59 95%
Total 2,827 62%

Table C.2: Source lines of code of the Visual REST tests

123

D Graphiti Code Samples

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

Listing D.1: Graphiti FeatureProvider

public class RestStructureFeatureProvider
extends CommonFeatureProvider {
public RestStructureFeatureProvider (
IDiagramTypeProvider dtp) {
super (dtp);
}

@0verride
public IAddFeature getAddFeature (IAddContext context) {
Object addedClass = context.getNewObject ();
if (addedClass instanceof IRestModelContainer) {
addedClass = ((IRestModelContainer) addedClass)
.getModel ();

if (addedClass instanceof PrimaryResourceType) {
return new AddPrimaryResourceTypeFeature (this);
} else if (...) {

}
return super.getAddFeature (context);

3

@0verride
public ICreateFeature[] getCreateFeatures () {
return new ICreateFeature[] {
new CreatePrimaryResourceTypeFeature(this),
new CreatePagingResourceTypeFeature(this),

};

@0verride
public IUpdateFeature getUpdateFeature (

125

D Graphiti Code Samples

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

126

IUpdateContext context) {
PictogramElement pictogramElement = context
.getPictogramElement () ;
Object bo =
getBusinessObjectForPictogramElement (
pictogramElement);
if (bo instanceof PrimaryResourceType) {
return new UpdatePrimaryResourceTypeFeature (
this);
} else if (...) {

3

return super.getUpdateFeature (context);

@O0verride
public ICustomFeature[] getCustomFeatures (
ICustomContext context) {
return new ICustomFeature[] {

new DrillDownResourceTypeStatesFeature (this),
new DrillDownResourceTypeMethodsFeature (this),

new CollapseResourceTypeFeature (this),
new ExpandResourceTypeFeature (this) };

Listing D.2: Graphiti DiagramTypeProvider

public class RestStructureDiagramTypeProvider extends

AbstractDiagramTypeProvider {

private IToolBehaviorProvider [] toolBehaviorProviders;

public RestStructureDiagramTypeProvider () {
super () ;
setFeatureProvider (new
RestStructureFeatureProvider (this));

@0verride
public IToolBehaviorProvider []
getAvailableToolBehaviorProviders () {

15
16
17
18
19
20
21
22
23

if (toolBehaviorProviders

toolBehaviorProviders
IToolBehaviorProvider [] {

new RestStructureToolBehaviorProvider (this)

return toolBehaviorProviders;

Listing D.3: Graphiti AddFeature

public class AddStateFeature
extends AbstractAddShapeFeature {

public AddStateFeature (IFeatureProvider fp) {

super (fp);
}

@0verride
public boolean canAdd(IAddContext context) {
if (context.getNewObject() instanceof State) {

if (context.getTargetContainer ()
instanceof Diagram) {
return true;

return false;

@0verride

public PictogramElement add(IAddContext context) {
(State) context.getNewObject ();
(Diagram)

State addedClass
Diagram targetDiagram
context.getTargetContainer ();

IPeCreateService peCreateService =
Graphiti.getPeCreateService ();
IGaService gaService = Graphiti.getGaService();
ContainerShape containerShape =
peCreateService.createContainerShape (
targetDiagram, true);

127

D Graphiti Code Samples

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
o7
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
(0]

128

if (addedClass.eResource() == null) {

}

getDiagram (). eResource ()
.getContents () .add (addedClass);

link(containerShape, addedClass);

int width = context.getWidth() <= 0 7 150

context.getWidth ();

int height = context.getHeight() <= 0 7 150

context.getHeight () ;

PropertyUtll setStateShape (containerShape) ;

{

foregroundColor COLOR_STATE_FOREGROUND ;
backgroundColor COLOR_STATE_BACKGROUND ;
textColor = COLOR_STATE_TEXT_FOREGROUND;

Rectangle rect = gaService
.createRectangle (containerShape);
rect.setFilled (true);

rect.setForeground (manageColor (foregroundColor));
rect.setBackground (manageColor (backgroundColor));

rect.setLineWidth (1) ;
rect.setStyle(StyleUtil
.getStyleForState (getDiagram()));
gaService.setLocationAndSize (rect,
context.getX (), context.getY(),
width, height);

/***%x BEGIN: Name Label *x*xx/

{

Shape shape = peCreateService
.createShape (containerShape, false);
Text text = gaService.createDefaultText (

getDiagram(), shape,

addedClass.getName ());
text.setForeground (manageColor (textColor)) ;
text.setHorizontalAlignment (

Orientation.ALIGNMENT_CENTER) ;

76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

text.setVerticalAlignment (
Orientation.ALIGNMENT_CENTER) ;

text.setFont (gaService.manageDefaultFont (
getDiagram(), false, true));

gaService.setLocationAndSize (text, 0, 30, width, 25);

PropertyUtil.setStateNameShape (shape);

/* create link and wire it */
link (shape, addedClass);

+

/*** END: Name Label **x/

/* add a chopbox anchor to the shape */
peCreateService.createChopboxAnchor (containerShape);

/* call the layout feature */
layoutPictogramElement (containerShape);

return containerShape;

Listing D.4: Graphiti CreateFeature

public class CreateStateFeature
extends AbstractCreateFeature {
public CreateStateFeature (IFeatureProvider fp) A
super (fp, "State",
"Create a new State for the
underlying ResourceType");

@0verride
public boolean canCreate(ICreateContext context) {
return context.getTargetContainer () instanceof Diagram;

}

@0verride
public String getCreateImageId () {

return RestImageProvider.IMG_STATES_STATE;
}

129

D Graphiti Code Samples

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37 }

130

@0verride
public Object[] create(ICreateContext context) {

State newClass = RestBehaviorFactory
.eINSTANCE.createState ();
newClass.setName ("NewState");
try {
ResourceUtil.saveToModelFile (newClass, getDiagram());
} catch (CoreException e) {
e.printStackTrace ();
} catch (IOException e) {
e.printStackTrace ();
}
ResourceType parent = (ResourceType)
getBusinessObjectForPictogramElement (getDiagram());
parent.getStates () .add(newClass);
addGraphicalRepresentation(context, newClass);
return new Object[] { newClass };

List of Abbreviations

DSL domain-specific language

REST Representational State Transfer
RCP Rich Client Platform

EEF Enhanced Editing Framework
EMF Eclipse Modeling Framework
GEF Graphical Editing Framework
GMF Graphical Modeling Framework
GMP Graphical Modeling Project
SDK Software Development Kit

API Application Programming Interface
WWW World Wide Web

URI Uniform Resource Identifier

URL Uniform Resource Locator

SOAP formerly Simple Object Access Protocol. No longer an acronym since version 1.2
HTTP Hypertext Transfer Protocol

OOD object-oriented software development

UML Unified Modeling Language

MDD Model-Driven Development

IDE Integrated Development Environment
Ul User Interface

TDD Test-Driven Development

Ci Continuous Integration

DFD Data Flow Diagram
SWT Standard Widget Toolkit
json JavaScript Object Notation

131

Bibliography

M. Fowler, Domain-Specific Languages, 1st edition. Boston, Massachusetts, USA:
Addison-Wesley Professional, 2010.

T. Stahl, M. Volter, S. Efftinge, and A. Haase, Modellgetriebene Softwareentwick-
lung: Techniken, Engineering, Management, 2nd edition. Heidelberg, Germany:
dpunkt.verlag, 2007.

R. T. Fielding, “Architectural styles and the design of network-based software
architectures”, Thesis (PhD), University of California, Irvine, 2000.

S. Tilkov, REST und HTTP: Einsatz der Architektur des Web fir Integrationsszenar-
ien, 2nd edition. Heidelberg: dpunkt.verlag, 2011.

The Object Management Group. (2005). Unified Modeling Language 2.0, [Online].
Available: http://www.uml.org/ (visited on 02/20/2012).

S. Schreier, “Modeling RESTful applications”, in WS-REST, R. Alarcén, C.
Pautasso, and E. Wilde, Eds., ACM, 2011, pages 15-21.

D. Moody and J. van Hillegersberg, “Evaluating the Visual Syntax of UML: An
Analysis of the Cognitive Effectiveness of the UML Suit of Diagrams”, Information
Systems Journal, volume 5452, pages 134-163, 2008.

D. L. Moody, “The “Physics” of Notations: Toward a Scientific Basis for Construct-
ing Visual Notations in Software Engineering”, IEEE Transactions on Software
Engineering, volume 35, number 6, pages 756-779, Nov. 2009.

Eclipse, http://www.eclipse.org/ (visited on 02/20/2012).

R. France and B. Rumpe, “Model-driven Development of Complex Software: A
Research Roadmap”, in Future of Software Engineering FOSE 07, IEEE, IEEE
Computer Society, 2007, pages 37-54.

B. Selic, “The pragmatics of model-driven development”, IEEE Software, volume
20, number 5, pages 19-25, Sep. 2003.

G. Pietrek, J. Trompeter, B. Niehues, T. Kamann, B. Holzer, M. Kloss, K. Thoms,
J. C. F. Beltran, and S. Mork, Modellgetriebene Softwareentwicklung: MDA und
MDSD in der Praxis, 1st edition, J. Trompeter and G. Pietrek, Eds. Frankfurt:
entwickler.press, 2007.

133

Bibliography

[13]

[14]

[15]

[16]

[17]

[18]

[25]

134

D. R. Bertolami, M. Riedlinger, F. Buchli, and M. Hofer, “Doménenspezifis-
che Sprachen - Verschiedene Ansétze im Vergleich”, ObjektSpektrum, volume 03,
pages 74-79, 2011.

R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-
Lee. (1999). Hypertext Transfer Protocol - HT'TP/1.1, [Online]. Available: http:
//www.ietf.org/rfc/rfc2616.txt (visited on 02/20/2012).

T. Berners-Lee, R. Fielding, and L. Masinter. (1998). Uniform Resource Identifiers
(URI), [Online]. Available: http://www.ietf.org/rfc/rfc2396.txt (visited on
02/20/2012).

N. Freed and N. Borenstein. (1996). Multipurpose Internet Mail Extensions (MIME)
Part Two: Media Types, [Online]. Available: http://www . ietf . org/rfc/
rfc2046.txt (visited on 02/20/2012).

J. Postel. (1994). Media Type Registration Procedure, [Online|. Available: http:
//www.ietf.org/rfc/rfc1590.txt (visited on 02/20/2012).

T. Berners-Lee, L. Masinter, and M. McCabhill. (1994). Uniform Resource Locators
(URL), [Online]. Available: http://www.ietf.org/rfc/rfc1738.txt.

M. Gudgin, M. Hadley, N. Mendelsohn, J.-J. Moreau, H. F. Nielsen, A. Karmarkar,
and Y. Lafon. (2007). SOAP Version 1.2, [Online]. Available: http://www.w3.
org/TR/soap12/ (visited on 03/17/2012).

Apache Subversion, http://subversion.apache.org/ (visited on 02/20/2012).

C. Atkinson and T. Kuhne, “Model-driven development: a metamodeling founda-
tion”, IEEFE Software, volume 20, number 5, pages 36—41, Sep. 2003.

M. Lankhorst, Enterprise Architecture at Work: Modelling, Communication and
Analysis, 2nd edition. Berlin, Germany: Springer, 2009.

J. Lee, “Design Rationale Systems: Understanding the Issues”, IEEE FExpert, vol-
ume 12, number 3, pages 78-85, 1997.

D. L. Moody, P. Heymans, and R. Matulevicius, “Improving the Effectiveness
of Visual Representations in Requirements Engineering: An Evaluation of i* Vi-
sual Syntax”, in IEEFE 17th International Requirements Engineering Conference,
Washington, DC, USA: IEEE, Aug. 2009, pages 171-180.

A. F. Blackwell, C. Britton, A. L. Cox, T. R. G. Green, C. A. Gurr, G. F. Kadoda,
M. Kutar, M. Loomes, C. L. Nehaniv, M. Petre, C. Roast, C. Roe, A. Wong,
and R. M. Young, “Cognitive Dimensions of Notations: Design Tools for Cognitive
Technology”, in Proceedings of the 4th International Conference on Cognitive Tech-
nology: Instruments of Mind, London, UK, UK: Springer-Verlag, 2001, pages 325—
341.

T. Green and A. Blackwell. (Oct. 1998). Cognitive Dimensions of Information
Artefacts: a tutorial (Version 1.2), [Online]. Available: http://www.cl.cam.ac.
uk/~afb21/CognitiveDimensions/CDtutorial.pdf (visited on 03/17/2012).

Bibliography

T. Green, “Usability Analysis of Visual Programming Environments: A ’Cognitive
Dimensions’ Framework”, Journal of Visual Languages and Computing, volume 7,
number 2, pages 131-174, Jun. 1996.

T. R. G. Green, “Cognitive Dimensions of Notations”, in People and Computers,
A. Sutcliffe and L. Macaulary, Eds., Cambridge, UK: Cambridge University Press,
1989, pages 443-460.

G. Costagliola, A. Delucia, S. Orefice, and G. Polese, “A Classification Framework
to Support the Design of Visual Languages”, Journal of Visual Languages and
Computing, volume 13, number 6, pages 573—-600, Dec. 2002.

G. Costagliola, V. Deufemia, and G. Polese, “A framework for modeling and im-
plementing visual notations with applications to software engineering”, ACM
Transactions on Software Engineering and Methodology, volume 13, number 4,
pages 431-487, Oct. 2004.

M. Petre, A. F. Blackwell, and T. R. G. Green, “Cognitive Questions in Software
Visualisation”, Software Visualization: Programming as a Multi-Media Experience,
pages 453-480, 1998.

S. Kirchhoff, S. Kuhnt, P. Lipp, and S. Schlawin, Der Fragebogen. Datenbasis,
Konstruktion und Auswertung, 3rd edition. Stuttgart, Germany: UTB, 2006.

E. Raab-Steiner and M. Benesch, Der Fragebeogen - Von der Forschungsidee zur
SPSS/PASW-Auswertung, 2nd edition. Stuttgart, Germany: UTB, 2010.

M. Biithner, Finfihrung in die Test- und Fragebogenkonstruktion, 3rd edition.
Miinchen, Germany: Pearson Studium, 2010.

G. A. Lienert and U. Raatz, Testaufbau und Testanalyse, 6th edition. Weinheim,
Germany: BeltzPVU, 1998.

J. Rost, Lehrbuch Testtheorie - Testkonstruktion, 2nd edition. Bern: Huber, Feb.
2004.

H. Moosbrugger and A. Kelava, Testtheorie und Fragebogenkonstruktion, 1st edi-
tion. Heidelberg, Germany: Springer, 2007.

IBM, IBM SPSS Statistics 20, http://www.ibm.com/software/de/analytics/
spss/ (visited on 11/02/2012).

F. Brosius, SPSS 19, 1st edition. Heidelberg, Germany: mitp, 2011.
GNU PSPP, http://wuw.gnu.org/software/pspp/ (visited on 02/20/2012).
The R Project, http://www.r-project.org/ (visited on 02/20/2012).

A. F. Blackwell and T. R. G. Green, “A Cognitive Dimensions Questionnaire Op-
timised for Users”, Proceedings of the 12th Workshop of the Psychology of Pro-
gramming Interest Group, pages 137-154, 2000.

135

Bibliography

[43]

[44]

136

A. E. Bobkowska, “A Methodology of Visual Modeling Language Evaluation”,
in SOFSEM, P. Vojtas, M. Bielikovd, B. Charron-Bost, and O. Sykora, Eds.,
volume 3381, Springer, 2005, pages 72-81.

—, “Cognitive Dimensions Questionnaire Applied to Visual Modelling Language
Evaluation - a Case Study”, in Proceedings of the 15th Workshop of the Psychology
of Programming Interest Group, 1. M. Petre and D. Budgen, Eds., Keele UK, Apr.
2003, pages 367-378.

—, “A framework for methodologies of visual modeling language evaluation”, in
Proceedings of the 2005 symposia on Metainformatics - MIS ’05, New York, New
York, USA: ACM Press, 2005.

L.-O. Johansson, M. Wairja, H. Kjellin, and S. Carlsson, “Graphical modeling
techniques and usefulness in the Model Driven Architecture: Which are the criteria
for a ”"good” Computer indepedant model?”, Proceedings of The 31st Information
Systems Research Seminar in Scandinavia (IRIS31), V. Asproth, Ed., 2008.

Eclipse Rich Client Platform, http://www.eclipse . org/rcp/ (visited on
02/20/2012).
E. Gamma and K. Beck, Contributing to Eclipse: Principles, Patterns and Plug-

Ins, E. Gamma, L. Nackman, and J. Wiegand, Eds. Amsterdam, Netherlands:
Addison-Wesley Longman, 2003.

E. Clayberg and D. Rubel, Eclipse: Building Commercial-Quality Plug-ins, 3rd edi-
tion, E. Gamma, L. Nackman, and J. Wiegand, Eds. Amsterdam, Netherlands:
Addison-Wesley Longman, 2009.

Eclipse Modeling Framework, http://www.eclipse.org/modeling/emf/ (visited
on 02/20/2012).

D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks, FEMF': Eclispe Mod-
eling Framework, 2nd edition, E. Gamma, L. Nackman, and J. Wiegand, Eds.
Amsterdam, Netherlands: Addison-Wesley Longman, 2009, page 704.

Graphical Editor Framework, http://www . eclipse . org/gef/ (visited on
02/20/2012).

Graphical Modeling Framework, http://www.eclipse.org/gmf/ (visited on
02/02/2012).

R. C. Gronback, Eclipse Modeling Project: A Domain-Specific Language (DSL)
Toolkit, 1st edition, E. Gamma, L. Nackman, and J. Wiegand, Eds. Amsterdam,
Netherlands: Addison-Wesley Longman, 2009.

Eclipse Graphiti, http://www.eclipse.org/graphiti/ (visited on 02/20/2012).

C. Brand, M. Gorning, T. Kaiser, J. Pasch, and M. Wenz, “Graphiti - Entwicklung
hochwertiger grafischer Modelleditoren”, FEclipse Magazin, volume 1, pages 67-72,
2011.

Bibliography

=
=

=y

Graphical Modeling Project, http://www.eclipse.org/modeling/gmp/ (visited
on 02/20/2012).

Enhanced Editing Framework, http://www.eclipse.org/modeling/emft/
?project=eef (visited on 02/20/2012).

gUnit, http://www.junit.org/ (visited on 02/20/2012).
SWTBot, http://eclipse.org/swtbot/ (visited on 02/20/2012).

Google WindowTester Pro, http://code.google.com/javadevtools/wintester/
html/index.html (visited on 11/18/2011).

Maven, http://maven.apache.org/ (visited on 02/20/2012).
Tycho, http://www.eclipse.org/tycho/ (visited on 02/20/2012).

P. M. Duvall, Continuous Integration: Improving Software Quality and Reducing
Risk. Boston, Massachusetts, USA: Addison-Wesley Professional, 2007.

Jenkins Continuous Integration, http://www . jenkins-ci . org (visited on
02/20/2012).
Hudson Continuous Integration, http://hudson-ci.org/ (visited on 02/20/2012).

P. T. Quinlan, “Visual feature integration theory: past, present, and future”, Psy-
chological Bulletin, volume 129, number 5, pages 643-673, 2003.

A. M. Treisman and G. Gelade, “A feature-integration theory of attention”, Cog-
nitive Psychology, volume 12, number 1, pages 97-136, 1980.

J. Mackinlay, “Automating the design of graphical presentations of relational in-
formation”, ACM Transactions on Graphics, volume 5, number 2, pages 110-141,
Apr. 1986.

W. Winn, “An Account of How Readers Search for Informations in Diagrams”,
Contemporary Educational Psychology, volume 18, pages 162—-185, 1993.

M. Petre, “Why Looking Isn’t Always Seeing: Readership Skills and Graphical
Programming”, Communications of the ACM, volume 38, number 6, pages 33—44,
1995.

J. Sweller, “Cognitive load theory, learning difficulty, and instructional design”,
Learning and Instruction, volume 4, number 4, pages 295-312, 1994.

R. Mayer and R. Moreno, “Nine Ways to Reduce Cognitive Load in Multimedia
Learning”, Educational Psychologist, volume 38, number 1, pages 43-52, 2003.

C. S. Peirce, Charles S. Peirce: The Essential Writings (Great Books in Philoso-
phy). Amherst, New York, USA: Prometheus Books, 1998.

T. DeMarco, Structured Analysis and System Specification. Yourdon Press, 1979,
pages 409-424.

P. Bruza and T. P. Van Der Weide, “The semantics of data flow diagrams”, In-
formation Systems Journal, pages 1-13, 1993.

137

Bibliography

[77]

78]

138

K. Siau, “Informational and Computational Equivalence in Comparing Information
Modeling Methods”, Journal of Database Management, volume 15, number 1,
pages 73-86, 2004.

J. Hahn and J. Kim, “Why are some diagrams easier to work with? Effects of dia-
grammatic representation on the cognitive intergration process of systems analysis
and design”, ACM Transactions on Computer-Human Interaction, volume 6, num-
ber 3, pages 181-213, 1999.

J. Kim, J. Hahn, and H. Hahn, “How Do We Understand a System with (So)
Many Diagrams? Cognitive Integration Processes in Diagrammatic Reasoning”,
Information Systems Research, volume 11, number 3, pages 284-303, 2000.

K. Lynch, The Image of the City. Cambridge, Massachusetts, USA: The MIT
Press, 1960, ch. 16.

A. v. K. Lemon and O. v. K. Lemon, “Constraint Matching for Diagram Design:
Qualitative Visual Languages”, in Proceedings of the First International Confer-
ence on Theory and Application of Diagrams, London, UK: Springer-Verlag, 2000,
pages 74-88.

G. A. Miller, “The Magical Number Seven, Plus or Minus Two”, Psychological
Review, volume 63, number 2, pages 81-97, 1956.

A. McNeile and N. Simons, “Methods of Behaviour Modelling. A Commentary on
Behaviour Modelling Techniques for MDA” | Architecture, 2004.

E. Tufte, Envisioning Information. Cheshire, Connecticut, USA: Graphics Press,
1990.

—, The Visual Display of Quantitative Information, 2nd edition, 2. Cheshire,
Connecticut, USA: Graphics Press, Jun. 2001.

A. White, The Elements of Graphic Design: Space, Unity, Page Architecture and
Type. New York: Allworth Press, 2002.

LimeSurvey, http://wuw.limesurvey.org/ (visited on 02/20/2012).

D. Green and J. Swets, Signal Detection Theory and Psychophysics. New York:
Wiley, 1966.

G. Lohse, “The Role of Working Memory in Graphical Information Processing”,
Behaviour and Information Technology, volume 16, number 6, pages 297-308, 1997.

C. Shannon and W. Weaver, The Mathematical Theory of Communication. Ur-
bana, Illinois, USA: University of Illinois Press, 1963.

The Object Management Group, Business Process Modeling Notation 2.0, http:
//www . bpmn.org/ (visited on 02/20/2012), 2011.

Eclipse Buckminster, http://eclipse.org/buckminster/ (visited on 02/20/2012).

Maven Surefire Plugin, http://maven.apache.org/plugins/maven-surefire-
plugin/ (visited on 02/20/2012).

Bibliography

[100]

[101]

[102]

[103]
[104]

[105]

[106]

[107]

Hamcrest, http://code.google.com/p/hamcrest/ (visited on 02/20/2012).
JMockit, http://code.google.com/p/jmockit/ (visited on 02/20/2012).

K. Beck, Test Driven Development: By Example, 1st edition. Boston, Mas-
sachusetts, USA: Addison-Wesley Professional, 2002.

K. Schwaber and J. Sutherland. (2011). Scrum Guide, [Online|. Available: http:
//www.scrum.org/scrumguides/ (visited on 03/17/2012).

Jubula, http://eclipse.org/jubula/ (visited on 02/20/2012).
famfam Silk Icons, http://www.famfamfam.com/lab/icons/silk/ (visited on
02/20/2012).

W. Schneider, “Entwicklung eines Codegenerators, der Modelle ressourcenori-
entierter Anwendungen in eine funktionale Sprache umsetzt”, Masterarbeit am
Lehrgebiet Datenverarbeitungstechnik, FernUniversitdt in Hagen, 2012.

J. Briiwer, “Entwicklung eines Java-Codegenerators fiir ressourcenorientierte An-
wendungen”, Masterarbeit am Lehrgebiet Datenverarbeitungstechnik, FernUni-
versitat in Hagen, 2012.

FuGENia, http://www.eclipse.org/gmt/epsilon/doc/eugenia/ (visited on
02/20/2012).

Eclipse Epsilon, http://www.eclipse.org/gmt/epsilon/ (visited on 02/20/2012).
Spray, http://code.google.com/a/eclipselabs.org/p/spray/ (visited on
02/20/2012).

M. Boger. (2011). A DSL for Graphical Editors - A Proposal for the Spray project,

[Online]. Available: http://spray.eclipselabs.org. codespot.com/files/Aj
20DSLY%20for%20graphical’20editors-2011-05-31.pdf (visited on 03/17/2012).

Gentleware AG. (2011). Poseidon for DSLs User Guide, [Online]. Available: http:
//wwu . gentleware.com/fileadmin/media/archives/userguides/poseidon-
for-dsls/user-guide/Poseidon_for_DSLs_Documentation.html (visited on
03/17/2012).

J. Warmer, K. Thoms, and J. Reichert. (2011). Spray User Guide, [Online|. Avail-
able: http://spray.eclipselabs.org.codespot.com/files/SprayUserGuide.
pdf (visited on 03/17/2012).

139

	titel
	A Graphical Modeling Language for Resource-Oriented Applications

