

A generalized computational model for modeling
and simulation of complex systems

Research Report 4/2012
ISSN 1865-3944

Jochen Kerdels & Gabriele Peters

© 2012 Jochen Kerdels, Gabriele Peters

Editor: Dean of the Department of Mathematics and Computer Science

Type and Print: FernUniversität in Hagen

Distribution: http://deposit.fernuni-hagen.de/view/departments/miresearchreports.html

A generalized computational model for modeling

and simulation of complex systems

Jochen Kerdels Gabriele Peters

November 29, 2012

Abstract

The use of computer models and simulation is a widely adopted ap-
proach to study complex systems. To this end a diverse set of computational
models like Cellular Automata, Artificial Neural Networks, or Agent-based
simulation is being used. As a common denominator virtually all of these
approaches favor different variations of complex systems and are tailored
to support the description of systems that fit the corresponding variation
well. Although this form of specialization has its benefits like ease of
modeling with respect to the particular subset of complex systems, the
drawbacks of this specialization are a lack of comparability between struc-
turally different systems and a diminished expressiveness with respect to
systems that do not fit any particular subset of complex systems favored
by existing, specialized models. In this paper a generalized computational
model for complex systems is proposed which allows for the description
of most types of systems with a single model. Furthermore, the proposed
model provides a high degree of encapsulation and reduces the amount
of shared knowledge needed among the constituents of the system. The
paper closes with a set of example applications of the proposed model to
further illustrate the involved concepts and to provide an intuition on how
this model may be used.

1 Introduction

In recent years the interest in modeling and simulation of complex systems has
increased considerably among a broad variety of domains and scientific disciplines.
For instance, Niazi and Hussain describe the increasing use of Agent-based mod-
eling over the last two decades in [NH11]. Although lacking a precise technical
definition the term complex system is generally applied to systems consisting of
many interacting constituents that collectively exhibit some traits which cannot
easily be deduced from specific properties of the individual constituents. Instead,
these collective traits emerge from the interactions occurring within the complex
system. Typical examples of such complex systems are ant colonies, economic
systems, nervous systems or biological evolution [New11].

In order to study such systems the use of exploratory models is a widely adopted
approach. To this end a set of diverse computational models like Cellular

1

(a) (b)

Figure 1: Complicated (a) vs. complex (b) systems.

Automata, Artificial Neural Networks, or Agent-based simulation is being used.
The models focus on different variations of complex systems and are tailored
to support the description of systems that fit the corresponding variation well.
For example, Cellular Automata aim at the description of complex systems that
consist of vast numbers of cells which are arranged in a regular topology and
which act according to very few, simple rules. In contrast to this, Agent-based
models focus on fewer, more elaborate constituents, i.e. agents, that can roam
freely in a typically two- or three-dimensional environment.

On the one hand, the use of specialized models allows for the intuitive description
of a complex system if this system fits the particular characteristics favored by
the model. Additionally, the intuitive mapping of a complex system to such
a model can ease the interpretation of results gained through simulation with
respect to the original complex system. On the other hand, the results obtained
by a specialized computational model may not be readily generalized and applied
to other complex systems that do not fit the characteristics of the particular
model. Furthermore, the use of specialized models that favor or even ”demand”
certain characteristics of a complex system bears the risk of Maslow’s hammer1,
i.e. it might be tempting to fit the complex system onto the characteristics of
the model instead the other way around. In order to lessen these drawbacks, it
is desirable to have a generalized computational model for complex systems that
minimizes the requirements on specific characteristics of the particular complex
system and thus maximizes the diversity and number of systems that can be
analyzed within one model.

This paper proposes a computational model for complex systems that is designed
to be as general and reduced as possible while maintaining the ability to allow
for an intuitive modeling of the particular complex system at hand.

2 The difficulty of modeling complex systems

The analysis, modeling and simulation of complex systems is generally acknowl-
edged as a hard problem. The main argument in this regard is based upon
the distinction between complicated and complex systems. While both types
of systems can consist of many interacting constituents, the former type has a

1”I suppose it is tempting, if the only tool you have is a hammer, to treat everything as if
it were a nail.” – Maslow, 1966, [MW66]

2

fully known and well-formed structure, e.g., in the form of a hierarchy (Fig. 1a),
whereas the latter type is characterized as a collection of heterogeneous, highly
interconnected constituents that lack such a structure (Fig. 1b) and thus – ac-
cording to common reasoning – can not be analyzed with otherwise successful
and widespread reductionistic methods. Although this argument hints at the
right direction as to why it is difficult to analyze complex systems, the conclu-
sion drawn appears premature. The sole fact that a complex system consists
of heterogeneous, highly interconnected entities does not suffice to make this
system hard to analyze. According to the given description a complex system
would be nothing more than some form of complicated graph – a structure for
which a rich set of tools exists in computer science and mathematics.

In order to shed some light on the root causes as to why complex systems
are difficult to analyze and model it is worthwhile to investigate two central
characteristics of complex systems. The first one regards the change of relations
in time between the constituents of a complex system. The second one regards
the superposition of constituents based on the particular aspects under which a
complex system is analyzed.

Change of relations

In a complex system it is likely that the relations between its constituents change
considerably over time. In contrast to complicated systems, where such changes
occur only rarely or not at all, it is an important and distinctive feature of complex
systems. A good example for this kind of change can be observed in neural
networks where the relations between different neurons change constantly in
response to the activation of the involved neurons. In Artificial Neural Networks
these changing relations between neurons are commonly modeled as weighted
connections whose weights vary in course of a particular learning process. As
the actual weights of the connections are only determined during runtime based
on the input data, it is impossible to predict the connection weights in advance,
i.e. during design-time, and thus it is not possible to exactly specifiy which
neuron will contribute to which output of the system. As a consequence, it is
very difficult among other things to determine how many neurons arranged in
which configuration are sufficient to produce the desired behavior of the network.

A slightly different kind of changing relations between constituents of a complex
system can be described by Agent-based models. In this case the relations
between the constituents, i.e. agents, are induced by a shared environment.
As the agents move, their relations, e.g. their relative positions to each other,
change over time. In contrast to Artificial Neural Networks the relations between
the constituents of an Agent-based model are not explicitly modeled. Instead,
they are implicitly defined by the particular environment of the model. On the
one hand this implicit definition of relations enables the intuitiv modeling of
a complex system by translating the perceived structure of the system almost
one to one into the structure of the Agent-based model. On the other hand this
approach may obfuscate important relations which should be stated explicitly in
order to isolate and precisely characterize them.

These examples illustrate that it is not the sheer amount of connections between
the entities of a complex system which cause the system to be difficult to analyze

3

and model. It is the fact, that those connections are only potential connections
that can vary over time. Computational models like Artificial Neural Networks
or Agent-based models focus on exactly this characteristic of complex systems
by providing mechanisms and structural elements which allow to model these
potentially varying relations.

Superposition of constituents

The second characteristic of complex systems regarding the difficulty of analyzing
and modeling is more subtle and it relates to the way we humans perceive and
think. Our main mental strategy to cope with arbitrarily complex matters is
the use of categorisation. Typically we begin by taking (perceived) continua and
breaking them down into manageable categories. For example, if we want to
address the wavelength emitted by an object we see, we break the continuous
visible spectrum of wavelengths down into a small number of categories, i.e. colors.
When matters get more complex, we aggregate categories into more abstract
super-categories. As this process continues we build up ever more abstract
categories. If such a higher-level category is contemplated, the constituting
lower-level sub-categories become increasingly less present in working memory,
thus effectively hiding the full complexity of the higher-level category and keeping
the perceived complexity approximately constant. This strategy enables us to
think about arbitrarily complex matters without the need to actually address
the full complexity of the particular matter at once.

In fact, even if we would want to address the full complexity of some matter
at once, we would not be able to do so. As soon as we start to explore some
aspect of a higher-level category by recursively breaking down the category
into its lower-level sub-categories we are bound to a limited number of items
that we can store in our working memory at once. Thus, while dealing with
some specific detail of a higher-order category we temporarily lose sight of the
”big picture”. When dealing with complicated systems like the one depicted in
figure 1a, this limitation poses no serious problem to the analysis and modeling
since the different sub-parts of a complicated system are cleanly separated from
each other. For each sub-part of the system it is sufficient to define a proper
interface that hides the internal structure and allows for ”black boxing” the
particular sub-part.

In contrast, when dealing with complex systems the approach of piece by piece
analysis and modeling of the system is not without problems as the assumption
of cleanly separated sub-parts is usually not true for a complex system. As a
result, the previously decribed strategy of ”black boxing” which corresponds well
to the way we mentally deal with complex matters does not fit the structure of
complex systems. Instead, the categories involved in complex systems frequently
share common sub-categories that give rise to potentially unanticipated, mutual
influences. These potential side-effects can be difficult to notice and track since
the involved sub-categories may not be readily present in the working memory
of the person that is performing the analysis. As described before, our mental
strategy for dealing with complex matters hides the full complexity of higher-
level categories by keeping the lower-level sub-categories out of working memory.
Hence, lower-level sub-categories that are shared between different parts of the

4

Figure 2: Constituents of a hypothetical complex system with respect to four
different aspects of that system.

Figure 3: The resulting superposition of constituents that correspond to different
aspects of the system when viewed as a single model.

complex system can easily be overlooked. For example, it is a practical necessity
to stop the analysis and modeling of some aspect of a system at a level of
abstraction which appears to approximate the particular aspect reasonably well.
If it then happens that a shared sub-category ”hides” some levels below that
choosen level of abstraction, a crucial part of mutual influence in the system may
be missed in the resulting model. The mere possibility of shared sub-categories
between different parts of a complex system makes it much more difficult –
compared to a complicated system – to determine if the analysis and modeling
of each part has reached a sufficiently detailed level.

Furthermore, the intricate relations of higher- and lower-level categories at-
tributed to a complex system affect the constituents of the corresponding model
since the constituents are predominantly deduced from these categories. As
a result, constituents of the model that reflect certain aspects of the complex
system inherit some of the intricate relations from the underlying categories,
i.e. they overlap to a certain extent where the underlying categories share
common lower-level subcategories. Figures 2 and 3 illustrate this by showing
the constituents of a hypothetical complex system with respect to four different
aspects and their resulting superposition when the constituents corresponding to

5

the different aspects are merged into a single model of the complex system. The
mutual influences of shared lower-level categories hint at potential side-effects
between overlapping constituents that have to be considered in order to model
the paricular complex system correctly.

The foregoing considerations as to why complex systems are difficult to analyze
and model can be summarized as follows:

• The relations between the constituents of a complex system can vary
over time in non-trivial ways and thus cannot be specified in advance.
The particular computational model which is being used has to provide
structures and mechanisms that allow for a determination of these relations
at runtime.

• Mutual influences between constituents of a complex system are not only
represented by higher-level categories as in complicated systems but are
also indicated by shared, lower-level categories. As the mental analysis of
a complex matter typically progresses from higher-level categories towards
lower-level categories while simultaneously only a limited number of items
can be kept in working memory at once, it is difficult to reliably identify
the mutual influences occurring between the constituents of a complex
system.

• If a complex system is analyzed with respect to different aspects, the
resulting constituents for each aspect can ”conceptually overlap” when
they are merged into a single model of the system. These overlaps hint at
potential side-effects between the involved constituents and suggest that a
further fragmentation of the corresponding constituents may be necessary
in order to transform the implicit side effects into explicit relations.

Existing computational models for complex systems focus predominantly on
the first point by providing structures and mechanisms to deal with dynamic
relations between constituents. The main aspect involving the latter two points,
i.e. the granularity and identification of suitable constituents, is usually not
handled explicitly. Instead, it is implicitly predefined by the characteristics of
the specific variation of complex systems that is favored by the particular model.
In order to treat this aspect explicitly, a more general computational model may
be beneficial.

3 A generalized model for complex systems

Virtually all present-day computational models for complex systems focus on
different variations of complex systems and are tailored to support the description
of systems that fit the corresponding variation well. While such a restriction can
be quite useful regarding the intuitive mapping of the complex system to the
model, it bears also a number of drawbacks. As described in the previous section
the identification of suitable constituents that reduce the amount of implicit side
effects can be difficult. If a given model favors a certain kind of constitutents,
this preference can interfere with the already difficult selection process and lead

6

to a poor choice of constituents, i.e. the complex system is fittet onto the model
instead of the opposite. Furthermore, the results obtained by a specialized model
may not be readily generalized and applied to other complex systems that do
not fit the characteristics of the particular model.

A generalized computational model could offer the flexibility needed to address
the aforementioned drawbacks. The main challenge for such a generalized model
would be to provide a common theme that allows for an intuitive interpretation
of the model and the corresponding system while being general enough to
encompass all or at least most types of complex systems. As it turns out, an
appropriate common theme can be derived from a similar modeling problem
in physics. There, one of the most general ways to characterize a system is
to describe how the energy contained in the system is distributed across and
transformed by its constituents. For example, if a stone is lifted up, the energy
required to do the lifting is transfered from the lifter to the stone and stored as
potential energy. Although this example is as simple as it gets, it illustrates an
important insight: The seemingly passive stone is an active constituent of the
system. It can ”store” and ”release” energy by means of its location, mass and
momentum.

Analogous to this approach a complex system can be characterized by describing
how information is distributed and transformed inside the system. To this end a
complex system can be described as a set of information processing nodes which
send and receive information using messages. In contrast to the constituents
of existing models, e.g. cells or agents, these nodes represent also parts of the
system that would be commonly considered as passive elements. For example, if
an agent in an Agent-based model can place some resource onto a patch of the
model’s environment, this patch – like the stone in the example above – is an
active part of the complex system. In that sense, the patch can be regarded as a
very simple information processing node.

The addressing problem

Based on this common theme of communicating nodes, the issue of varying
relations between constituents becomes an addressing problem:

How can a set of nodes exchange messages in a constantly changing
system with a minimal amount of shared2 knowledge?

A solution to this addressing problem can be infered from the following ob-
servation. Many computational models for complex systems use some form of
environment to impose a set of comparable attributes on all constituents, thereby
creating a means to relate the individual constituents to each other. For example,
the environment in a Cellular Automaton places the cells in a grid topology
resulting in inter-cell relations like 4- and 8-neighborhoods. The definition of a

2The addendum requiring that shared knowledge should be avoided if possible emphasizes
that solutions to the addressing problem like yellow pages which are based on global knowledge
are ill-suited to model complex systems as such global mechanisms do not scale well.

7

cell’s behavior can then refer to these neighborhoods, regardless where in the
grid the cell is actually placed3.

This functional role of the environment, i.e. establishing comparable attributes
among the constituents, can be generalized to serve as a key element in a solution
to the addressing problem. Instead of using a globally defined environment,
each node of the proposed model can exhibit a custom and potentially changing
set of arbitrary properties on its own. These properties can then be used in
conjunction with a property based addressing scheme. This scheme determines
the recipient nodes of a message by evaluating a set expression composed of sets
of nodes, common set operators and special set operators called property filters.

A property filter
Φ : Cin → Cout with Cout ⊆ Cin

is essentially a function that takes a set of nodes Cin as argument and returns a
subset Cout . Which node of the input set remains in the output set is determined
by the property filter using only information provided by the properties of the
nodes in the input set. For example, let K be the set of all nodes of a model.
Further, let K contain nodes with properties of a type 〈position〉 and a type
〈color〉. Then, a set of all red nodes in the neighborhood of the position (xs, ys)
can be expressed as the set expression(

K ◦ Φ〈neighborhoodOf 〉(xs, ys)
)
∩
(
K ◦ Φ〈hasColor〉(red)

)
where ◦ denotes the application of a property filter to the left hand side of
the operator. Based on this addressing scheme, a node that wants to transmit
information can indirectly address a set of nodes as recipients by using a set
expression as previously described.

Model component overview

The four component types Node, Property, PropertyFilter, and Message intro-
duced so far are the basic building blocks of the proposed, generalized model.
Figure 4 illustrates these four component types and their relation among each
other. The functional roles of the four components can be summarized as follows:

• Nodes encapsulate local processing of information. They ”consume” and
”produce” packets of information, i.e. messages.

• Properties encapsulate common attributes shared among a subset of nodes.
They allow to relate different nodes to each other and thus facilitate the
indirect addressing of nodes as recipients of information.

• Property filters encapsulate semi-global operations on properties. They
allow to select specific nodes as recipients of information based on an
arbitrarily complex evaluation and comparison of properties.

• Messages encapsulate packets of information that can be send from one
node to a set of recipient nodes. The contents of a message can be arbitrary.

3A popular instance of a Cellular Automaton whose cells make use of such a neighborhood
relation is John Conway’s Game of Life[Gar70].

8

Figure 4: Overview of all components of the proposed model.

The proposed model minimizes and isolates shared knowledge. For example, if
the nodes of a complex system should be related to each other by their position,
only the fact that each node has a position is shared knowledge that has to be
present in each node – especially if the nodes can change their position. The
actual implementation of this attribute is isolated as a separate element, i.e. the
property of type 〈position〉. Additionally, the way how relations are build upon
this attribute is isolated in corresponding property filters, like Φ〈neighborhoodOf 〉.
As a result, the nodes themselves do not need to know how high-level concepts
like neighborhoodOf are implemented.

Time discretization

In the model described so far, a node may change the properties it exhibits
and may send messages at any time. This approach is not practically feasible
and therefore the time domain has to be discretized. Accordingly, the proposed
model operates on a discrete time scale with steps t ∈ N. For each time step t
the model performs the following sequence of actions:

1. Determine the set of recipients for every message by evaluating the property
set expression of the particular message.

2. Determine the set of incoming messages for every node.

3. Let every recipient node process its incoming messages. Each node may
create new outgoing messages, create or delete other nodes and create,
delete or modify its properties.

Due to this three stage approach the model effectively simulates the parallel
execution of the information processing performed by the individual nodes in the
third stage. Changes to the properties of a node, or the creation and deletion of
nodes take effect only in the following time step.

9

Formal definition

As the proposed model has only four basic components and processes only three
stages per time step, it is reasonable to provide a formal definition of the model
in addition to the informal description given so far.

Basically, the model consists of three types of sets per time step t: A set of nodes

Kt = {k1, k2, . . .} ,

a set of exhibited properties per node

P t
k = {p1, p2, . . .} , k ∈ Kt,

and a set of messages
M t = {m1,m2, . . .} .

A message m ∈M t is a tuple (φm, c) with a property set expression φm and the
message content c.

Each node k ∈ Kt has a message processing function

δk : Dk 7→
(
∆+Kt+1

k ,∆−Kt+1
k ,∆+P t+1

k ,∆−P t+1
k ,M t+1

k

)
which processes all messages m ∈ Dk and returns a tuple of five sets that describe
the changes to the set of nodes, the changes to the set of exhibited properties
and the outgoing messages of that node for the next time step. The returned
tuple of five sets reflects the node’s ability to create and delete nodes, to create,
modify (implicitly) and delete its properties, and to create new messages.

In this formal description of the model the previously described three stages
performed per time step t are extended to four stages:

• For every message m ∈ M t determine the set Cm of recipient nodes by
evaluating the property set expression φm.

• For every node k ∈ Kt determine the set Dk = {m|k ∈ Cm} of messages
that are addressed to node k.

• For every node k ∈ Kt where Dk 6= ∅ evaluate the message processing
function δk.

• Update the sets of nodes, properties and messages:

Kt+1 =

(
Kt ∪

⋃
k∈Kt

∆+Kt+1
k

)
\
⋃

k∈Kt

∆−Kt+1
k ,

P t+1
k =

(
P t
k ∪ ∆+P t+1

k

)
\ ∆−P t+1

k , k ∈ K,

M t+1 =
⋃

k∈Kt

M t+1
k .

This formal definition concludes the description of the proposed computational
model.

10

Figure 5: Overview of all components of the proposed model as pseudocode
classes.

4 Examples

The following sections provide examples of different complex systems modeled
with the computational model introduced above. These examples are intended
to illustrate the broad applicability of the proposed model and to convey some
ideas on how to utilize the model.

Pseudocode introduction

The examples use a pseudo-code notation that is similar to an existing object-
oriented implementation of the model. The main base classes are Property,
PropertyFilter, Node, and Message. Figure 5 illustrates these four base classes.
It is noteworthy how minimal the actual code base for the proposed model is.

The class PropertyFilter is the base class for all property filters. It provides
three virtual methods which are used to describe the behavior of any property
filter. The methods are

• virtual void init()

• virtual bool filter(Property properties_of_node[])

• virtual bool reiterate()

The method init() is called once every time the filter is applied onto a node set.
The method filter() is called for every node in a node set and should return
true if the node should remain in the set and false otherwise. As some filters
will need to iterate more than once over the set of nodes, e.g. a maximum filter,
the method reiterate() is called after each iteration loop. If it returns true

another iteration will be performed. The default implementation of reiterate()
returns false.

The class Node is the base class for all nodes. It provides one virtual method to
process incoming messages and several support methods:

• virtual void process_messages(Message messages[])

• void add_property(Property p)

• void remove_property(Property p)

• void add_node(Node n)

• void remove_node(Node n)

11

• void send_message(Message m)

• void ensure_call()

While most of the methods are self-explanatory, the method ensure_call() may
need an explanation. If called, it ensures that process_messages() is called in
the next time step even if there are no incoming messages. This could be useful
for example, if the node wants to perform some computation in every time step
regardless of the messages it receives. The method itself is rather a convenience
method than an addition to the proposed computational model. Instead of using
this method the node could send an empty message addressed to itself by means
of some unique property, e.g. an unique ID.

The class Message is the base class for all messages. It has a member address

which can hold an arbitrary property set expression to specifiy the recipient
nodes of the particular message.

The constant K is used in the following examples to refer to the set of all nodes.

4.1 Conway’s Game Of Life

John Horton Conway’s Game Of Life [Gar70] is a widely known cellular automa-
ton which can generate amazingly complex patterns based on a very simple set
of rules. The cells are organized in a regular grid pattern where each cell has 8
neighboring cells. Each cell can either be active or inactive. The activation or
deactivation of a cell is guided by the following two rules:

• If a cell is active and two or three neighboring cells are active too, the cell
stays active. Otherwise, it deactivates.

• If a cell is inactive and exactly three neighboring cells are active, the cell
activates itself.

The definition of this system in terms of the pseudocode introduced above is
straight forward. It needs a property Position, a property filter NeighborhoodOf,
a node ConwayCell, and a message ActiveMsg :

Position : Property {

int x;

int y;

}

The property Position is just a container for the two grid coordinates of the
ConwayCell (see below).

NeighborhoodOf : PropertyFilter {

Position refPos;

NeighborhoodOf(Position rp) :

refPos(rp)

{}

12

bool filter(Property properties_of_node[]) {

Position p = properties_of_node["position"];

if p is valid {

int dx = abs(refPos.x - p.x);

int dy = abs(refPos.y - p.y);

return (dx == 1) || (dy == 1);

}

return false;

}

}

The property filter NeighborhoodOf provides a constructor to set a reference
position. It selects via its filter() method all nodes which exhibit a property
position that has a manhattan distance of one to the reference coordinates.

ConwayCell : Node {

Position ownPos;

bool active;

int survivalBegin = 2;

int survivalEnd = 3;

int birthBegin = 3;

int birthEnd = 3;

ConwayCell(Position p, bool act) :

ownPos(p),

active(act)

{

add_property(ownPos);

}

void process_messages(Message messages[]) {

if (active) {

active = (messages.count >= survivalBegin) &&

(messages.count <= survivalEnd);

} else {

active = (messages.count >= birthBegin) &&

(messages.count <= birthEnd);

}

if (active) {

ActiveMsg am;

am.address = K * NeighborhoodOf(ownPos);

send_msg(am);

ensure_call();

}

}

}

The node ConwayCell provides a constructor to set the position and the inital
state of the cell. It also makes the position an exhibited property by calling
add_property(). The process_messages() method implements the two basic
rules for activation and deactivation of the cell. If the cell turns out to be active
after the rules are applied, it sends an ActiveMsg to its neighboring cells. In
addition, the call to ensure_call() guarantees that the process_messages()

13

method is executed in the next time step. This is necessary if no surrounding
cells are active in the current time step and therefore no ActiveMsg is sent to the
cell. As only one type of message, i.e. the ActiveMsg, is used in this example,
the process_messages() method does not have to distinguish between different
message types. To apply the rules for activation and deactivation it can simply
rely on the pure number of messages received.

Albeit the given implementation outline is aimed at Conway’s Game Of Life,
variations like Kellie Evans Larger than Life (LtL) [Eva01] can be implemented
with only minor modifications. In case of LtL just the property filter defining
the neighborhood as well as the survival and birth intervals of the cells would
have to be updated.

4.2 Boids

In [Rey87] Craig Reynolds presents a computer model of “coordinated animal
motion”. He calls his simulated flocking creatures boids. In contrast to the cells
of the previously described cellular automaton the boids can roam freely in a
three-dimensional space. However, they too are guided by only a small number
of local rules of which the three essential ones are:

• Separation: steer to avoid collisions with nearby flockmates.

• Alignment: steer to match the heading and speed of the flockmates in
proximity.

• Cohesion: steer towards the average location of nearby flockmates.

In their simplest form boids have an internal state consisting of a position and a
speed. In addition to this, boids have a limited perception. They can only sense
flockmates within a certain distance and under a certain viewing angle. At first
glance the general structure of the model given for the previous example seems to
fit here too. The neighborhood of a boid could be modeled by a single property
filter that uses a general assumption on how the boids’ limited perception affects
what each boid can sense. Although this approach is valid, it does not seem to
fit the characteristics of the underlying system very well. The limited perception
described above is an individual trait of each boid and should not be modeled
separately as it is easy to imagine having several different types of boids with
very different perceptual abilities within one simulation. Therefore, the model
should express the shared concept of boids seeing each other on the one hand
as well as the individual aibility of each boid to see on the other hand. The
following model outlines a solution to this requirement by combining a so called
active property with the object-oriented concept of an abstract class.

Position {

float x;

float y;

float z;

}

14

Speed {

float dx;

float dy;

float dz;

}

The first two classes of the model are Position and Speed. Both are simple
containers for the respective values and as they are not used as properties in
this example, they do not need to inherit from Property.

VisionSense : Property {

virtual bool canSee(Position pos) = 0;

}

The property VisionSense is the first part of the aforementioned solution
to combine a shared concept with individual and localized implementations.
The property is defined as an abstract class that provides an interface to the
subsequently defined property filter. The method canSee() should return true,
if the particular boid which is exhibiting a property of type VisionSense can see
the position pos. The property is dubbed an active property as its values are
not read passively, but are queried actively by calling a member function.

HaveInSight : PropertyFilter {

Position refPos;

InSight(Position rp) :

refPos(rp)

{}

bool filter(Property properties_of_node[]) {

VisionSense vs = properties_of_node["vision"];

if vs is valid {

return vs.canSee(refPos);

}

return false;

}

}

The property filter HaveInSight uses the interface defined by the property
VisionSense to decide, if a message should be send to the particular biod which
is exhibiting the property. Thus, it relates a group of boids to each other based
on the individual capabilities of the involved boids by means of a shared, abstract
property.

BoidInfoMsg : Message {

Position boidPos;

Speed boidSpeed;

}

15

The message BoidInfoMsg encapsulates the actual information that is transmit-
ted between a pair of boids. It contains the position and the speed of the boid
which sends the message.

Boid : Node {

Position ownPos;

Speed ownSpeed;

BoidVision : VisionSense {

Position ownPos;

Speed ownSpeed;

void update(Position p, Speed s) {

ownPos = p;

ownSpeed = s;

}

bool canSee(Position pos) {

// return true if boid can see pos

}

}

BoidVision ownVision;

Boid(Position p, Speed s) :

ownPos(p),

ownSpeed(s)

{

ownVision.update(p,s);

add_property(ownVision);

}

void process_messages(Message messages[]) {

Speed d1,d2,d3;

foreach BoidInfoMsg b in messages {

d1 += calc_seperation_influence(b);

d2 += calc_alignment_influence(b);

d3 += calc_cohesion_influence(b);

}

normalize(d1, d2, d3);

ownSpeed = ownSpeed + d1 + d2 + d3;

ownPos = ownPos + ownSpeed;

ownVision.update(ownPos, ownSpeed);

BoidInfoMsg bim;

bim.boidPos = ownPos;

bim.boidSpeed = ownSpeed;

bim.address = K * HaveInSight(ownPos);

send_msg(bim);

ensure_call();

}

}

16

Finally, the node Boid describes the abilities and behavior of a boid. The inner
class BoidVision defines the local implementation for the abstract interface
VisionSense and thus enables the definition of individual vision capabilities for
every class of boids. If parameterized, it even allows the definition of individual
vision capabilities for every single boid instance.

At last, the method process_messages() applies the three steering rules based
on the received positions and speeds of the surrounding boids, it updates the
boid’s speed and position accordingly and it sends out the information about
the updated position and speed to all other boids that have this particular boid
in sight. As the boid should update its position and speed also if there are no
boids in its perception range, the invocation of ensure_call() makes sure that
process_messages() is called in every time step.

The presented solution to combine a shared concept with individual and localized
implementations acts on two levels. The property VisionSense and the property
filter HaveInSight encapsulate the abstract notions of seeing and being seen
that induce the corresponding relation among the involved boids. The inner
class BoidVision encapsulates, how the individual perceptual abilities of each
boid contribute to this relation.

4.3 An Ubiquitous Computing Scenario

The third example illustrates the use of the proposed model to describe a basic
ubiquitous computing scenario. The scenario has the following setup:

• A person is standing in a room and can point at several objects in the
room.

• The pointing gestures are recognized by a 3D camera, e.g. a Kinect sensor.

• Some of the objects, e.g. lights, have special capabilities like being switch-
able.

• A voice recognition system captures commands from the person in the
room.

The following sketch of the model describes how a voice command ”toggle that”
is processed such that the light the person is pointing at is toggled. Additionally,
the model tries to capture some particular characteristics of the given scenario.
One of these characteristics is the way, how the meaning of commonly passive
objects changes in different contexts. For example, a common object which is
not specified further has not much more properties than a position and some
basic shape. But as soon as something interacts with that object the object
acquires a property that reflects this interaction, e.g., if a person is pointing
at that object, it acquires the property of being pointed at. In general, this
observation can be stated as:

Objects are contextualized by interaction.

17

This notion is captured within the subsequent model by the common base node
Contextualizable. This node is the base class for all objects in the scenario. It
possesses a property Position and the special ability to exhibit properties that
are externally impressed on the node. The node processes ExhibitPropertyMsg
messages which contain the property to exhibit and a duration how long the
property should persist.

Position : Property {

float x;

float y;

float z;

}

ExhibitPropertyMsg : Message {

Property propertyToExhibit;

int duration;

}

Contextualizable : Node {

Position ownPos;

Property extProperty;

int extDuration;

Contextualizable(Position p) :

ownPos(p),

extProperty(null),

extDuration(0)

{

add_property(ownPos);

}

void process_messages(Message messages[]) {

ExhibitPropertyMsg epm = messages["exhibitProperty"];

if epm is valid and extProperty is null {

extProperty = epm.propertyToExhibit;

extDuration = epm.duration;

add_property(extProperty);

}

if extDuration == 0 {

return;

}

extDuration--;

if extDuration > 0 {

ensure_call();

return;

}

remove_property(extProperty);

extProperty = null;

}

}

18

In this example the only descendant of Contextualizable will be the node Light
which represents some form of switchable light source, e.g., a lamp standing in
the corner of the room.

Switchable : Property {}

ToggleMsg : Message {}

Light : Contextualizable {

Switchable sw;

Light(Position p) :

Contextualizable(p)

{

add_property(sw);

}

void process_messages(Message messages[]) {

Contextualizable::process_messages(messages);

ToggleMsg tm = messages["toggle"];

if tm is valid {

performToggle();

}

}

}

The node Light calls the method process_messages() of its parent class to
ensure the proper handling of the ExhibitPropertyMsg messages. The light itself
exhibits the property Switchable and processes ToggleMsg messages.

The two sensors of the scenario – the 3D camera and the voice recognition – are
modeled by the nodes Kinect and VoiceRecognition. The node Kinect tries
to detect a pointing gesture in every time step. If it is successful, it sends out a
ExhibitPropertyMsg to impress a property Selected on the node that is being
pointed at.

Selected : Property {

float intensity;

Selected(float i) :

intensity(i)

{}

}

To account for inaccuracies of the pointing gesture, the Selected property has a
parameter intensity which correlates to the distance from the selection center. In
order to different impress Selected properties with variable intensities on poten-
tial target objects, the Kinect node utilizes the subsequently defined property
filter BeingPointedAt. With this propertery filter the Kinect node can create a
set of ring shaped selections of potential recipients for the ExhibitPropertyMsg

messages.

19

BeingPointedAt : PropertyFilter {

PointingGesture refGesture;

float refRadius;

BeingPointedAt(PointingGesture rg, float r) :

refGesture(rg),

refRadius(r)

{}

bool filter(Property properties_of_node[]) {

Position p = properties_of_node["position"];

if p is valid {

//return true if p is in the direction of

//refGesture and within a radius of refRadius

}

return false;

}

}

PointingGesture {

float baseX, baseY, baseZ;

float dirX, dirY, dirZ;

}

Kinect : Node {

void process_messages(Message messages[]) {

PointingGesture p = detect_pointing_gesture();

if p is valid {

ExhibitPropertyMsg epm;

epm.propertyToExhibit = Selected(1.0);

epm.duration = 10;

epm.address = K * BeingPointedAt(p, 1.0);

send_msg(epm);

float radius;

for (radius = 2.0; radius < 10.0; radius += 1.0) {

epm.propertyToExhibit = Selected((10.0 - radius) / 10.0);

epm.address = (K * BeingPointedAt(p, radius)) -

(K * BeingPointedAt(p, radius - 1.0));

send_msg(epm);

}

}

ensure_call();

}

}

As described above, the Kinect node uses the property filter BeingPointedAt

in combination with a common relative set complement to address potential
recipient nodes in order to impress Selected properties with decreasing intensity.

Finally, the node VoiceRecognition checks in every time step if a new voice
command was issued. If this is the case, a ToggleMsg message is send to that

20

node which

• exhibits a Switchable property,

• exhibits a Selected property,

• and has the highest intensity among those nodes exhibiting a Selected

property.

To select the right node, i.e. the light the person points at, the VoiceRecognition
node uses two property filters. The first property filter just checks, if a node ex-
hibits a certain property. It is used to select all nodes exhibiting the Switchable

property.

HaveProperty : PropertyFilter {

Property refProp;

bool filter(Property properties_of_node[]) {

if properties_of_node contains property of type refProp {

return true;

}

return false;

}

}

The second property filter is an example for a filter that needs to reiterate over
the set of nodes, as the filter selects the node with the highest intensity among
those nodes exhibiting the Selected property.

MaxSelected : PropertyFilter {

float maxInt;

int round;

void init() {

maxInt = 0.0;

round = 0;

}

bool filter(Property properties_of_node[]) {

Selected s = properties_of_node["selected"];

if s is valid {

if round == 0 {

maxInt = max(if s.intensity, maxInt);

return true;

} else {

return s.intensity == maxInt;

}

}

return false;

}

bool reiterate() {

return round++ == 0;

}

}

21

The definition of the node VoiceRecognition as already described above:

VoiceRecognition : Node {

void process_messages(Message messages[]) {

VoiceCommand vc = detect_new_voice_command();

if vc is command "toggle that" {

ToggleMsg tm;

tm.address = (K * HaveProperty(Switchable)) * MaxSelected();

send_msg(tm);

}

}

ensure_call();

}

}

The model of this third example is more extensive than it would have to be
in order to illustrate some more advanced uses of the proposed computational
model, e.g., the use of more complex property set expressions for addressing.

One important pattern that was demonstrated is the use of the ExhibitProper-
tyMsg message to manipulate the properties a node is exhibiting. By doing so
a node, like the Kinect node in this example, can implicitly channel informa-
tion to another node. It is worth noting, that the message which conveys the
manipulation, itself is send indirectly by means of the BeingPointedAt property
filter.

5 Conclusion

The proposed computational model offers a way to model and simulate a broad
variety of complex systems. The model promotes and supports a strict en-
capsulation of all constituents involved in the behavior of the complex system.
It facilitates the use of established object-oriented programming concepts like
polymorphism and combines it with a simple, yet powerful mode of addressing
as basis for the exchange of information inside the system.

The use of a generalized model offers not only the ability to describe a wider
range of complex systems with a single approach but also allows for a more
accurate modeling of systems that do not fit any of the complex system types
favored by more specialized computational models.

22

References

[Eva01] Evans, Kellie M.: Larger than Life: Digital Creatures in a Family
of Two-Dimensional Cellular Automata. In: Cori, Robert (Hrsg.)
; Mazoyer, Jacques (Hrsg.) ; Morvan, Michel (Hrsg.) ; Mosseri,
Rémy (Hrsg.): Discrete Models: Combinatorics, Computation, and Ge-
ometry, DM-CCG 2001 Bd. AA, Discrete Mathematics and Theoretical
Computer Science, 2001 (DMTCS Proceedings), 177-192

[Gar70] Gardner, M.: Mathematical Games: The Fantastic Combinations
of John Conway’s New Solitaire Game ‘Life’. In: j-SCI-AMER 223
(1970), oct, Nr. 4, S. 120–123. – ISSN 0036–8733 (print), 1946–7087
(electronic)

[MW66] Maslow, Abraham H. ; Wirth, Arthur G.: The John Dewey Society
lectureship series. Bd. 8: The psychology of science: a reconnaissance.
Harper & Row, 1966

[New11] Newman, M. E. J.: Resource Letter CS-1: Complex Systems.
In: American Journal of Physics 79 (2011), aug, S. 800–810.
http://dx.doi.org/10.1119/1.3590372. – DOI 10.1119/1.3590372

[NH11] Niazi, Muaz ; Hussain, Amir: Agent-based computing
from multi-agent systems to agent-based models: a visual
survey. In: Scientometrics 89 (2011), nov, Nr. 2, 479–
499. http://dx.doi.org/10.1007/s11192-011-0468-9. – DOI
10.1007/s11192–011–0468–9. – ISSN 0138–9130

[Rey87] Reynolds, Craig W.: Flocks, herds and schools: A distributed
behavioral model. In: Proceedings of the 14th annual conference on
Computer graphics and interactive techniques. New York, NY, USA :
ACM, 1987 (SIGGRAPH ’87). – ISBN 0–89791–227–6, 25–34

23

