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Evolutionary Stability in Asymmetric 
Oligopoly 
A Non-Walrasian Result

Abstract

It is a very well-known result that in terms of evolutionary stability the long-run 
outcome of a Cournot oligopoly market with fi nitely many fi rms approaches the perfectly 
competitive Walrasian market outcome (Vega-Redondo, 1997). However, in this paper 
we show that an asymmetric structure in the cost functions of fi rms may change the 
long-run outcome. Contrary to Tanaka (1999) we show that the evolutionarily stable 
price in an asymmetric Cournot oligopoly needs not equal the marginal cost, it may 
rather equal a weighted average of (diff erent) marginal cost. We apply a symmetrization 
technique in order to transform the game with asymmetric fi rms into a symmetric 
oligopoly game and then extend Schaff er’s defi nition (1988) of a fi nite population ESS 
(FPESS) to this setup. Moreover, we show that the FPESS in this game represents a 
stochastically stable state of an evolutionary process of imitation with experimentation.

JEL Classifi cation: C72, C73, D43, L13
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1. Introduction

In a 1999 paper (Economic Theory, 14, 705-715), Tanaka considers an evolutionary game 
theoretic model for an asymmetric oligopolistic industry composed of two groups of firms, in 
which the output choices of low cost firms and high cost firms jointly determine market price of a
homogeneous good. His main result shows that the finite population evolutionarily stable 
strategies (FPESS) of low cost and high cost firms are equal to the respective competitive 
(Walrasian) outputs in the two groups. Moreover, this static outcome is also the long-run 
equilibrium of a dynamic evolutionary model based on imitation and stochastic mutation. 
Tanaka`s result is read as a generalization of a celebrated result of Vega-Redondo (1997), namely 
that FPESS in a symmetric oligopoly of identical firms selects the Walrasian outcome (and not
the Cournot-Nash equilibrium), to asymmetric oligopoly.

The purpose of the present paper is to reexamine this issue and give a critical account of Tanaka`s 
unintuitive result. More precisely, we will argue that Tanaka applies the finite population 
evolutionary argument in a particular parameterized way, which amounts to an evolutionary 
analysis of the two groups in separation. Otherwise it would not be possible to apply a symmetric 
solution concept like (FP)ESS to the (full) asymmetric model. A standard procedure of 
evolutionary game theory (originating with Selten (1980)) when applying ESS to a multi-
population model is to symmetrize the given asymmetric game and then apply the evolutionary 
solution concept to the symmetrized game. We will show that if one follows this prescription in a 
simple alternative model, then the marginal cost pricing result will not be confirmed.

The paper is organized as follows: in the next section we present Tanaka`s model as well as our 
approach to evolutionary stability in asymmetric finite populations. Section 3 contains the 
analysis following from our approach. Section 4 considers dynamics explicitly and derives 
evolutionary equilibrium in the long run. Section 5 concludes.

2. Evolutionary stability in asymmetric oligopoly

In our model we employ an alternative conceptualization of evolutionarily stable strategies to 
asymmetric oligopoly markets. Recall that Tanaka applies the concept of a finite population 
evolutionarily stable strategy (FPESS) by Schaffer (1988), in which agents in economic and 
social environment adhere to relative payoff maximizing rather than absolute payoff maximizing 
behavior. Tanaka (1999) does so in the following way: each group of either low cost firms or 
high cost firms performs its relative payoff maximization under the assumption that the other 
group`s behavior is given. The parametric treatment of the, respectively, other group`s behavior 
allows for the symmetric treatment of firms in each single group; a prerequisite for the use of 
symmetric solution concept ESS. However, this parameterization also means that a mutation of 
firm strategies in the evolutionary process cannot occur in both groups simultaneously; in fact, 
the evolution of behavior in one group is not influenced by the evolution of behavior in the other 
group as the two evolutionary processes are studied in isolation of each other. And it is this fact  
that leads to the conclusion that the equilibrium price resulting from FPESS of the good must 
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equal the marginal costs of low cost firms as well as high cost firms; accordingly, high cost firms 
supply a lower amount of the good than low cost firms in order to equalize marginal cost.

In contrast, we use Selten`s (1980) approach to construct a symmetric monomorphic population
game out of an asymmetric multi-population game. It is assumed that firms have one of the 
following two roles: either they become a member of the low cost group or they become a 
member of the high cost group. Accordingly, a strategy for a firm assigns behavior to its potential 
role as a high cost firm as well as the potential role of a low cost firm. Nature assigns these roles 
to each of the = + firms with a probability function proportioned to the number of firms 
in each group. Then Schaffer`s (1988) definition of finite population ESS is applied onto these 
extended strategies in the now symmetric game. Note that this - in contrast to Tanaka (1999) -
also amounts to a kind of “production uncertainty” as a firm`s cost function might be high or low 
in any new play of the game.

Since a mutant strategy now may contain different behavior for both roles our result will differ
from the one derived in Tanaka (1999). The analysis in Tanaka`s paper does not allow for the 
possibility of instantaneous strategy mutation for both types of firms while, with this approach,
mutation is allowed to take place simultaneously for both types.

The result by Vega-Redondo (1997) that in a symmetric quantity competition game with a 
homogenous product imitation of successful strategies leads to the competitive equilibrium 
outcome, has been challenged on several grounds. Alós-Ferrer (2004, 2008) and Alós-Ferrer and 
Shi (2012) introduce memory capacity into the learning model and show that once firms 
remember more than one period, all quantities between the Walrasian (perfectly competitive) and 
the Cournot–Nash one become stochastically stable. Apesteguia et al. (2010) also show that 
Vega-Redondo’s result is not robust to the slightest asymmetry in fixed costs in the theoretical 
part of their paper; however they cannot find any significant difference in the experimental part 
between symmetric and asymmetric treatments in terms of quantities.

3. The Model

Consider a game between N firms, which are divided into two groups, low cost firms and high 
cost firms. All firms produce a homogeneous good. The number of firms in the low cost group
is , and the number of firms in the high cost group is with + = . Low cost firm 
produces output level and high cost firm produces output level  . The price of the good is 
denoted by p.

The inverse demand function is as follows( + )    =          =( . )   is decreasing in its argument X + Y.
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The cost functions for the low cost firms and for the high cost firms are respectively given by:( ) =  ( )      ( ) =  ( )  > 1.    (. ) represents an increasing, twice differentiable and convex function.

Consequently, payoff functions for low cost firms and high cost firms are as follows,

     (  , + ) = ( + )  ( ),              = 1,2, … ,         (  , + ) = ( + )  ( ),             = 1,2, … ,   
Where =  and = .

Tanaka (1999) defines FPESS for low cost firms and high cost firms, respectively, as follows: and   are  a   if the following two conditions  (1)and (2) hold
  , , + >   , + ,       =  , =                                                                                                                  (1)

This requirement means that no mutant strategy of a low cost firm can yield higher profits than 
given the total output of the high cost firms . Moreover,   , , + >   , + ,       =  , =                                                                                                                 (2)
This requirement means that no mutant strategy for a high cost firm can yield higher profits than 

given the total output of the low cost firms .

Hence Tanaka`s model set-up is not really playing the field among N firms; it is rather playing 
the field among the low cost firms exclusively and the high cost firms exclusively and then 
coupling both results in a consistent way.

FPESS is then derived in accordance with Schaffer (1988) as the solutions of the following two
problems independently,                              =  argmax =   , +   , , +                                      (3)
                             =  argmax =   , +   , , +                                     (4)

Values of  ( ) and ( ) are obtained given the total output of high cost firms and total output 
of low cost firms respectively. Hence a low cost firm only evaluates own payoff relative to the 
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payoffs of other low cost firms; and a high cost firm only evaluates own payoff relative to 
payoffs of other high cost firms. Effectively, this approach postulates two separate independent 
mutation processes in the two groups. And this accounts for the marginal cost pricing result.

In our alternative set-up the N firms contemplate behavior before they know their assigned roles 
of high or low cost firm, hence they condition their behavior on roles. Nature then assigns these 
roles to each of the N = + firms, so firm { 1, … , } is chosen by nature with probability 

as a low cost firm and with probability as a high cost firm. Firms then carry out their 
strategies based on the assigned role. This assignment process of roles takes place before any 
play of the game anew. From this ex-ante point of view the game played in role-contingent 
strategies is symmetric (see Selten (1980) and for a generalization Balkenborg (1994)). Therefore 
one can define the expected payoff function for each firm in this monomorphic population game 
as

 ( (  , ) , [ , ] ) =    (   , + ) +   (   , + )              { 1, … , }    (5)
Where [ , ] = [(  , ), … , (  , ), (  , ), … , (  , )]
Note that a strategy for a firm in this symmetric monomorphic population game is defined as a 
tuple  (  , ) giving a decision for the role as a high cost and the role of a low cost firm.

Consider now a finite population evolutionarily stable strategy of the game among these N firms. 
A strategy is evolutionary stable, if no mutant firm which chooses a different strategy
than ( , ), say, can realize higher expected profits than the firms which employ the incumbent 
strategy ( , ). In other words, no mutant strategy ( , ) can invade a population of ( , ) strategists successfully.

Formally Schaffer`s definition (1988) then reads

Definition 1. A strategy profile ( , ) is an evolutionarily stable strategy (ESS) if  ( , ), (  , ), [ , ]  >   (  , ), [ , ] ,                                                    (6) (  , ) ( , ), and all i j where   (  , ) = (  , ),  (  , ) = ( , )     .
The novelty in this definition, compared to Tanaka (1999), is that it allows the mutation to occur 
simultaneously for both types of firms. Hence evolution of behavior for one type depends on the 
evolution of behavior for the other type and vice versa.

In line with Schaffer (1989), we can find a finite population evolutionarily stable strategy (ESS) 
as the solution of following optimization problem                                                     ( , ) =  argmax  , ,                                                                                             (7)
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                                  =   (  , ), [ , ]  ( , ), (  , ), [ , ]  
The strategy that survives in economic natural selection under playing the field conditions is the 
relative, not absolute, payoff maximizing strategy. A firm needs to beat the average of expected 
payoffs over all firms rather than to maximize its absolute expected payoff to be evolutionarily 
successful.

Hence we write expected payoff of the mutant and expected payoff of an incumbent as follows:   , , [ , ]=      , + . ( ) +     , +  . ( )                         (8)
 ( , ),  , , [ , ]

=   11    , , + . ( ) + 1   , , + . ( )  +
               , , +  . ( ) +    , , +  . ( )                       (9)
The first term of   (  .  ) indicates the potential role of the mutant as a member of  low cost 
group, and the second term refers to its potential role as a member of high cost group. 
Accordingly, for incumbents  (  .  ) the calculation is slightly more complicated and consists 
of four terms in order to account for the mutant`s role.

Note that we have the following equivalency  , + =   , , + =   , , +  ( + ( 1) + ),  , + =   , , + =   , , + ( + ( 1) + )
Consequently the finite population evolutionarily stable strategy (ESS) can be established as the 
solution of following optimization problem( , ) =  argmax  , ,                                                                                                                                                                   (10)

       =     , + . ( ) +     , +  . ( )         .  1 11   , , + . ( ).  2 1   , , + . ( ).  2 1    , , +  . ( ).  2 11   , , +  . ( )
First order conditions with respect to  , respectively are as follows:
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:                             (. ) + (. )  ( ) .  1 11  . (. )  .  2 1 . (. ) = 0
:                             (. ) + (. )  . ( ) .  2 11  . (. )  .  2 1 . (. ) = 0( . ) is the derivative of inverse demand function.

For the reason that the solution must be symmetric in roles and satisfies definition (1), we impose=  ,  = .

Then after rearranging, the following equations are obtained

( + ) + ( + )  11  . 1 . = ( )                                                           (11)
( + ) + ( + )   1 . 11  . = ( )                                                        (12)

Equations (11) and (12) can be rewritten as follows:

( + ) + ( + )  1 . ( ) = ( )                                                                                 (13)
( + ) ( + ) 1 . ( ) = ( )                                                                                (14)

Two important conclusions are immediate now:

Firstly, subtracting (14) from (13) yields

( )   ( ) =  ( 1 + 2 )  1 (  )
From this it is easily seen that >  must hold: assume the opposite; i.e. that   . Then 
the right-hand side of the above expression is positive as ( . ) < 0. But (. ) is convex and (. )
hence increasing, which yields a contradiction to > 1.

So FPESS output of a low cost firm is larger than that of a high cost firm.   

Secondly, after multiplying both sides of equation (13) by and equation (14) by and then 
summing up both equations, the following expression for price is obtained

                                                        ( + ) = ( ) + ( )                                                                      (15)
It means that the price of the good in evolutionary equilibrium is equal to a convex combination 
of the marginal costs of low cost firms and high cost firms. The weights of marginal cost in this 
combination are identical with the population share of each group of firms. Note that (15)  
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reproduces the Walrasian result of Tanaka for either group, if = 0 resp. = 0.

Moreover, equation (15) means that the price of the good is not equal to the marginal cost for 
either the low cost or the high cost firms. In fact, one type of firm, namely the high cost firm sells 
at a price below its marginal cost. This is summarized in the following proposition.

Proposition 1 (Non-Walrasian Outcome). In the symmetrized game of the asymmetric oligopoly
market with two groups of low cost firms and high cost firms any FPESS output does not conform
to Walrasian behavior; neither for the low cost firms nor the high cost firms. Rather the 
equilibrium price equals a weighted average of marginal costs, where the weights are given by 
the population shares of high and low cost firms. Low cost firms supply a higher amount of 
output than high cost firms.

It is important to note that all firms – low cost firms and high cost firms - must make non-
negative profit in FPESS equilibrium; otherwise high cost and low cost firms could not coexist in 
equilibrium.  This requirement can indeed be met, if the cost function (. ) is sufficiently convex.

To see this in more detail, observe that the profit function of a high cost firm in FPESS
equilibrium can be written as 

 = ( 1 + 2 )  ( ) = [ ( ) + ( )]  ( )
Let the cost function be of the following convex form:                                                                    ( ) =                                                                                                  (16)

                                     
Proposition 2. Assume that (16) holds. Then   implies that a FPESS exists in which both 
types of firms make positive profits.

Proof:
By assuming (16), we obtain profit function of high cost firm as follow:

 = ( ) + ( )  ( )
We can decompose the term ( ) as follows: = [ ( ) + ( ) ]   [ ( ) + ( ) ] > 0 
Since we have >  , the condition  > 1 implies that  > 0 .                    
Note that  is a sufficient condition for existence of a FPESS, but not a necessary one.
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We now study the relation between our results and the notion of Walrasian outcomes. To this end 
we give formal definition of this notion in our model.

Definition 2. A Walrasian outcome for N firms is given by a quantity profile ( , ) and a
market price  that satisfy the set of following conditions:                      = =  ( )                                        = 1, … ,                                                           (17)                      = = ( )                                   = 1, … , 2                                                           (18) 
Proposition 3. The following relationship between FPESS behavior ( , ) and Walrasian 
behavior ( , ) of individual firms holds:

< < <
Proof.

This relationship is equivalent with the following relationship  <    < (since we
already know that < ). A proof by contradiction is employed. Let´s assume that these 
inequalities do not hold. So we must have one the following three cases.

i) <    <
ii) >    >
iii) >    <

Next we derive a useful condition for and in our solution of (13) and (14), which we employ 
in this proof.
So we have from earlier

( + ) + ( + )  1 . ( ) = ( )                                                                                 (13)
( + ) ( + ) 1 . ( ) = ( )                                                                                (14)

Then, knowing that  . ( ) > 0, equations (13) and (14) imply that 

( ) < ( + ), ( + ) < ( )
By substituting equation (15) 

( ) < ( ) + ( ),         ( ) + ( ) < ( )
And this implies that the values for and in our solution of (13) and (14) satisfies                                             ( )( )  <                                                                                                                        (19)
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If case i) were to apply, then we must have( ) <( ) <( + ) > ( + ) as c' (.) is increasing and P( .) is decreasing,

Furthermore, we have from equilibrium conditions ( + ) = ( )( + ) < ( )
As a consequence, ( + ) > ( + ) leads to ( ) >  ( ) and this is a contradiction.

If case ii) were to apply, with the same reasoning, we obtain ( ) >( ) >( + ) < ( + )
But knowing that ( + ) = ( ) and ( + ) > ( ) the first implication cannot hold.

If case iii) were to apply, we obtain by convexity of the cost function, that( ) >( ) <
Moreover, by ( + ) = ( ) = ( ), these two inequalities yield the following 
inequality( ) < ( )    which contradicts (19).

Hence our average marginal cost pricing result moves firms` outputs in evolutionarily stable 
equilibrium closer to each other compared to the Walrasian result of Tanaka (1999). Total output 
of high cost firms increases, while total output of low cost firms decreases. Due to the convexity 
of the cost function total output over both groups is reduced and all firms make higher profits.

We illustrate this in a numerical example :

Let the number of firms in the low cost group and high cost group, respectively, be given by an 
integer  [1,10] and [1,10]. We use a linear demand function of the form  = 10000( + ) = 10000 ( + ). We specify the cost function to  ( ) = , . .  = 2.
Consequently, ( ) =  ( ) =       ( ) =  .    where (1, 2].
Then we obtain total output in equilibrium as follows:

FPESS equilibrium:
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= 10000 ( + 2 + 2 + 2 )2 + 3 + 2 + 4 + 4 + 6 + 2 + 2 + 2
= 10000 ( 2 + 3 + 3 )2 + 3 + 2 + 4 + 4 + 6 + 2 + 2 + 2

+ = 10000 ( 2 + 3 + 4 + 2 + 2 + 2 )2 + 3 + 2 + 4 + 4 + 6 + 2 + 2 + 2
Walrasian equilibrium:

= 10000+ 2 += 10000+ 2 ++ = 10000 ( + )+ 2 +
We can plot the above functions with as the single variable for fixed values of m For 
example, the following graphs illustrate the result where  = 2 and = 5. 1

Fig.1. Comparison between equilibrium outputs 

1 We obtain similar figures for other parameter choices as well. 
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Fig.2. Comparison between equilibrium profits

Our main result states that evolutionary forces in an oligopoly market with two types of firms 
determine the price in FPESS as equal to average marginal cost. It is not difficult to show that 
this weighted average marginal cost pricing rule of FPESS generalizes to oligopolistic 
competition between J groups of firms with different cost functions. However, it is then more 
elaborate to show existence of FPESS as the positive profit conditions become more stringent.

Proposition 4. In the symmetrized game of the asymmetric oligopoly market with K groups of 
firms that differ w.r.t. cost functions the FPESS price equals a weighted average of marginal 
costs, where the weights are given by the population shares of the K types of firms.                                        = ( )                                                                                                  (20)
Proof.

Let´s define profit function as follow:

   , ( ) ( ) = =1=1  ( ),              = 1,2, … ,   , = 1, … ,  
 =1 =   

Moreover expected payoff of each firm in our symmetrized version of game is like: ( (  , … , ) , [ , … , ] ) =    , ( ) ( )                            = 1, … ,
Then also it requires writing expected payoff of mutant and incumbent in the general case:  ( 1 , … , ) , [  , … , ] =  =1    , =1  ( )   +
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 ( 1 , … , ), ( 1 , … , ) , [  , … , ] = =1  , , =1  ( ) ( ) ( ) + , , =1  ( ) ( )  ( )
Then similar to optimization problem in (7), we drive the first order conditions with respect to 

:

::                             (. ) + (. )  ( ) .  11  (. )  1 (. ) = 0
After imposing =  we obtain:

=1 + =1 11 1 = ( )                 = 1, … ,   
It can also be written as follow:

=1 + =1 1 ( ) = ( )                                     = 1, … ,  
By summing over all equations, we obtain (by observing that ( ) = 0)

   = ( )  
Finally, note that for the symmetric case in which all these marginal costs are equal, the well-
known marginal cost pricing result of Vega-Redondo (1997) results.

4. Stochastically stable states and long-run equilibrium

A stochastically stable state can be viewed as a refinement of the solution concept FPESS. One of 
the limitations of the latter as a static notion of equilibrium is that it need not capture the notion 
of long-run stability for an evolutionary process, if evolution is also exposed to stochastic 
influences. An FPESS is also stochastically stable if under vanishing stochastic influence the 
probability that the population is following it does not go to zero. We now show this property for 
the unique FPESS in our model with respect to an evolutionary process, which has been studied 
extensively in the literature.
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We follow Vega-Redondo (1997) and other contributions to evolutionary oligopoly theory (e.g. 
Schenk-Hoppé (2000), Tanaka (2000)) who analyze a certain type of imitation dynamics between 
firms subject to a stochastic influence, called experimentation: at each stage of the process there 
is a positive probability for any firm to change its strategy and adopt (“imitate”) the most 
successful strategy of the ones chosen at the stage before. I.e. if all firms had chosen the same 
strategy in the previous stage, no adjustments would occur. Yet, there is also the stochastic 
influence of “experimentation”: each firm will change its strategy to an arbitrary other one with 

– usually with finitely many states –
such a process always converges to a stationary distribution of strategies. One is then interested 
in the strategies that form the support of the limit of these stationary distributions if the noisy 
experimentation probability ; i.e. those states are then stable against 
experimentation.

Like the above mentioned contributions to evolutionary oligopoly theory we can use a result by 
Kandori and Rob (1995), which states that only monomorphic states; i.e. symmetric strategy 
vectors, can occur in this limit, which, moreover, are characterized by a “best reachability 
condition” and a “worst leaving condition”. The former means that the number of experiments,
i.e. stochastic shocks, needed for the process to reach them must be the minimal feasible one.
Those states intuitively have the best chances to occur again and again as they are reached most 
easily. The latter means that the number of experiments needed for the process to leave them is 
higher than in other states. Those states, which are most easily reached and most difficultly left, 
are most frequently observed, which is the meaning of stochastic stability.

Obviously, the minimal number of experiments is one. However, this may not be the minimal 
feasible one for reachability of a certain state given the process. To check, one can operationalize 
the one-experiment requirement in the following way: suppose there is a strategy, which can 
invade successfully any monomorphically adopted; i.e. symmetric other strategy vector (recall, 
that there are only symmetric states in the limit). Then one experiment of one firm with this 
strategy would suffice to move the process to this invading strategy and the minimality 
requirement of “best reachability” would be met. Such a strategy is called a Globally Surviving 
Strategy GSS (see Tanaka (2000)). Its relation to the notion of FPESS is the following:

While a FPESS, if adopted by all firms, cannot be invaded by any single invader different from it 
(see (6)), a GSS is defined as a most effective (single) invader: it can successfully invade any 
symmetrically adopted other strategy. This, in turn, is equivalent to the requirement that a GSS, if 
adopted by all firms, cannot be invaded by (N-1) invaders with any commonly adopted other 
strategy. Hence, while a FPESS is stable against any single invader strategy, a GSS is stable 
against any (N-1) identical invader strategies that occur simultaneously. (One can refer to this 
property as (N-1)-stability whereas FPESS demands 1-stability.) Consequently, if a GSS exists it 
is the only candidate for FPESS, because any other strategy, if adopted by all firms, could be 
invaded by it as a single invader. Hence any state different from a GSS can be left with a single 
experiment of a single firm, which experiments with the GSS strategy. If, in contrast, the GSS 
itself is also an ESS, then it is the only strategy that cannot be left through any single experiment. 
Consequently, the “worst leaving” requirement is fulfilled as well.
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Hence, if one can show - as in the model of Tanaka (2000) - that a unique GSS, which also is the 
unique FPESS exists, then this FPESS must be stochastically stable. (Leininger (2006) examines 
global stability of an FPESS, which is an even stronger property as it demands m-stability for any  

with 1    1, not just  =  1 and  =  1 as is required here).

We now show that this stochastic stability argument goes through in our model; i.e. we show that 
there is a unique GSS, which coincides with our FPESS.

If a single mutant firm j chooses ( , )while the other firms choose( , ), then the expected 
profit of this firm is

 ( , ), ( , ) , … ,1 ( , )=   [ ( + ( 1) +  ). ( )]+  [ ( +  + ( 1) ).  ( )]                                                               (21) 
And expected profits of the other firms are

 ( ( , ), ( , ), … , ( , )) = {  11  [ ( + ( 1) +  ). ( )] +
                                                                    1 [ ( +  + ( 1) ). ( )] } 

                                                                       + {  1 [ ( + ( 1) +  ).  ( )] +
                                                                                       11 [ ( +  + ( 1) ).  ( )]}         (22)
The strategy ( , ) is a GSS, if it can invade any symmetric ( , ) state; i.e. if the following condition 
holds ( ( , ), ( , ), … , ( , ))  ( ( , ), ( , ), … , ( , )) > 0        ( , ) ( , )
Define=  ( ( , ), ( , ), … , ( , ))   ( ( , ), ( , ), … , ( , ))                                               (23)
A necessary and sufficient condition for ( , ) to be a unique GSS is that it is a solution of the 
following problem ( , ) = argmax,
Substitution of (21) and (22) into and differentiating it with respect to  and  , we obtain the 
following first order conditions
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FOC with respect to :11 [( 1) (. ) + (. ) ( )] + 1 [ (. ) + (. ) ( )]+ 1 [( 1) (. )] + 11 [ (. )] [( 1) (. )] [ (. )] = 0                                                                                                   (24)
FOC with respect to :11 [ (. )] + 1 [( 1) (. )]+ 1 [ (. ) + (. ) ( )] + 11 [( 1) (. ) + (. ) ( )] [ (. )] [( 1) (. )] = 0                                                                                                   (25)
Symmetry imposes = and =   which simplifies equations (24) and (25) to

(. ) + .  11 . ( 1) (. ) + .  1 . (. ) + .  1 . ( 1) (. )+ .  11 . (. )= ( ) + [( 1) (. )] + [ (. )]                                                       ( )
(. ) + .  11 . (. ) + .  1 . ( 1) (. ) + .  1 . (. )+ .  11 . ( 1) (. )= ( ) + [ (. )] + [( 1) (. )]                                                   (25 )

Then by adding the two equations term by term and collecting terms we derive 

+ = 1 ( ) + 2 ( )
This is the same condition as equation (15) in the previous section, which characterizes the 
FPESS output. It means that the maximization problem of has the same solution as the 
maximization problem of . Hence if an FPESS exists it must also be (N-1)-stable.

We record

Proposition 5.  The unique FPESS of our symmetrized oligopoly game is also a GSS and hence 
represents a stochastically stable state w.r.t. imitation dynamics with experimentation.

Our average marginal cost pricing result is thereby shown to apply in the long-run as well.
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5. Conclusion

In this study we reexamined the issue of evolutionary stability in asymmetric Cournot oligopoly  
with a homogenous product. Tanaka (1999) has shown that a celebrated result by Vega-Redondo
(1997) for symmetric oligopoly, namely that the long-run evolutionary outcome of such a market 
equals the competitive Walrasian outcome (and not the Cournot-Nash outcome), can be extended 
to asymmetric oligopoly. We took issue with this extension and provided an alternative analysis 
of an asymmetric oligopoly game, which does not lead to marginal cost pricing and the 
competitive outcome in the long-run.

We symmetrized the asymmetric evolutionary game in a particular way and then applied 
Schaffer`s (1988) definition of FPESS as a solution concept to the symmetrized game. As a first 
result, marginal cost pricing becomes incompatible with FPESS, both for the low cost firms as 
well as the high cost firms. Instead, a form of weighted average cost pricing results in 
equilibrium, where the weights are given by “population shares” of the high and low cost firms. 
One reason for diminished evolutionary pressure towards competitive pricing in our model is that 
we allow for simultaneous mutations in the behavior of a low cost and a high cost firm, while the 
analysis in Tanaka (1999) does not. Tanaka`s evolutionary analysis treats the total number of 
firms effectively as two separate populations, each composed  of identical firms, which do not
interact with each other evolutionarily. This comes close to performing Vega-Redondo`s 
symmetric analysis “doubly” and makes survival of both types of firms less surprising.

In contrast, in our model firms with different costs do interact evolutionarily with each other and 
– perhaps surprisingly - both types of firms can survive in the long run despite the persistent 
differences in production cost over the population. This, however, is not compatible anymore 
with marginal cost pricing. 
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