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Abstract

Web browsers are one of the most used, complex and popular software systems nowadays.
They are prone to use-after-free vulnerabilites and this is the de-facto way to exploit them.
From a technical point of view, an attacker uses a technique called vtable hijacking to exploit
such bugs. More specifically, she crafts bogus virtual tables and lets a freed C++ object point
to it in order to gain control over the program at virtual function call sites.

In this paper, we present a novel approach towards mitigating and detecting such attacks
against C++ binary code. We propose a static binary analysis technique to extract virtual
function call site information in an automated way. Leveraging this information, we instru-
ment the given binary executable and add runtime policy enforcements to thwart the illegal
usage of these call sites. We implemented the proposed techniques in a prototype called T-VIP
and successfully hardened three versions of Microsoft’s Internet Explorer and Mozilla Firefox.
An evaluation with several zero-day exploits demonstrates that our method prevents all of
them. Performance benchmarks both on micro and macro level indicate that the overhead
is reasonable with about 2.2%, which is slightly higher compared to recent compiler-based
approaches that address this problem.

1 Introduction

Within the last decade, we observed a shift in how attackers compromise systems. Instead of tar-
geting server applications such as common Windows network services, adversaries nowadays often
launch attacks against client applications. Especially office applications and browsers (including
their plugins) are affected, mainly since they are complex software products and thus prone to
software defects. Modern web browsers are highly complex programs: they are capable of nu-
merous tasks including media playback and manipulation, 3D gaming, interpretation of several
computer languages, and real-time communication. Furthermore, browsers can serve as the basis
for complete usermode environments in operating systems (e.g., Chrome OS [41] or FirefoxOS).
Most modern web browsers are developed in C and C++ and consists of several million lines
of code. These languages are prone to programming mistakes, which can result in exploitable
vulnerabilities hard to spot in such huge programs (both on the source code and on the binary
level).

Vtable Hijacking Attacks Particular kinds of programming mistakes that are prevalent today
result in so called use-after-free vulnerabilities. These temporal safety problems are often abused
by adversaries [2]. In a use-after-free bug, a program path exists during which a pointer to an
object that was previously freed, is used again. This dangling pointer could cause the program to
crash, unexpected values could be used, or an adversary could even execute arbitrary code.

Especially use-after-free software defects are frequently used during targeted attacks. For
example, government agencies recently used a zero-day exploit that takes advantages of such
vulnerabilities against Mozilla Firefox to identify users of the TOR network to deanonymize sus-
pects [37]. During the yearly pwn2own competition, security researchers showed several times that



such vulnerabilities are prevalent in browsers and successfully demonstrated exploits against Inter-
net Explorer, Mozilla Firefox and Google Chrome. Furthermore, several recent zero-day exploits
for Microsoft’s Internet Explorer were based on such use-after-free vulnerabilities [33]. In fact, a
recent study suggests that 69% of all vulnerabilities in browsers and 21% of all vulnerabilities in
operating systems are related to such bugs [14].

To take advantage of such vulnerabilities in object-oriented code, attackers typically utilize a
technique called vtable hijacking. Compared to traditional attacks like stack-based buffer overflows
or formatstring attacks, this technique targets heap-based pointers to virtual tables (shortened:
vtables), a feature of object-oriented languages like C++. Polymorphic C++ classes have vtables
that contain function pointers to the implementation of its virtual methods. If an object of a
polymorphic class is freed, but a reference is kept, bogus vtables can be utilized to gain control
of the program’s control flow. Therefore a bogus vtable is crafted and a pointer to it is injected
at memory where the object is pointing to. A virtual function call site is then abused to use the
bogus vtable, enabling an adversary to hijack the control flow.

Preventing Vtable Hijacking Since vtable hijacking attacks are a frequent problem in prac-
tice, several compilers recently started to include protection techniques during the compilation
phase. Both GCC and Microsoft Visual Studio started to implement defense solutions. More
specifically, GCC introduced the -fvtable-verify option [56] that analyzes the class hierarchy
during the compilation phase to determine all vtables. Using this information, all virtual func-
tion call sites are modified such that virtual method dispatches can be checked during runtime.
Similarly, SafeDispatch [25] – as a LLVM extension – inserts checks during compilation phases.
VTGuard by Microsoft adds a guard entry at the end of the vtable such that (certain kinds of)
vtable hijacks can be detected. Note that these approaches are only applicable to source code
since they are implemented during the compilation and link phase. This prevents an adoption to
COTS applications where only the binary code is available. However, especially such applications
are vulnerable to vtable hijacks.

Our Approach In this paper, we present a lightweight approach to provide vtable integrity for
COTS binaries implemented in C++ code. We perform our analysis on the binary level since we
aim to protect executables for which we do not have source code, debugging symbols, or runtime
type information, such as for example web browsers or office applications for Windows. To this end,
we introduce a generic method to identify virtual call sites in C++ binary code. More specifically,
we lift the assembler code to an intermediate language (IL) and then perform backward slicing on
the IL level such that we can spot different kinds of C++ virtual function dispatches. In a second
step, we instrument each virtual call site and add integrity checks. To this end, we implemented
a generic, static binary rewriting engine for PE files that enables us to implement an integrity
policy P for each call site. For now, we have implemented different kinds of integrity policies
that, for example, check if a vtable pointer points to a writable memory page (which indicates
that an integrity violation happened) or check if a random chosen vtable entry actually is a code
pointer.

We have implemented our approach in a tool called T-VIP (towards Vtable Integrity Pro-
tection) that consists of a slicer called vExtractor and a binary rewriting engine called Pe-
Bouncer. Experimental results demonstrate that the precision is reasonable and the performance
overhead small. Furthermore, our tool was able to mitigate all tested zero-day attacks against
Microsoft’s Internet Explorer and Mozilla Firefox.

Contributions Our main contributions are:

• We introduce an automated method to identify virtual function call sites in C++ binary
applications based on an intermediate language and backward slicing. This enables us to
determine the potential attack surface for use-after-free and related vulnerabilities in binary
executables implemented in C++.
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• We present a generic binary rewriting framework for PE executables with low overhead called
PeBouncer that we utilize to implement integrity policies for virtual call sites.

• To the best of our knowledge, we are the first to present virtual table integrity protection
for binary C++ code without the need for source code, debugging symbols, or runtime type
information.

• We show that T-VIP protects against sophisticated, real-world use-after-free remote code
execution exploits launched against web browsers, including zero-day exploits against Mi-
crosoft’s Internet Explorer and Mozilla Firefox. A performance evaluation against GCC’s
virtual table verification feature [56] with micro- and macro-benchmarks demonstrates that
our approach introduces a comparable performance overhead.

2 Technical Background

Before presenting our approach to enforce the integrity of virtual call sites, we first review the
necessary technical background to understand the rest of the paper. More specifically, we ex-
plain C++ inheritance and polymorphism and show their manifestation on the internal low-level
assembly stage. Furthermore, we discuss how virtual function tables are typically implemented,
how this enables use-after-free memory corruption vulnerabilities, and explain why we need an
intermediate language to perform our analysis.

2.1 C++ Inheritance and Polymorphism

Inheritance is a general concept in Object Oriented Programming (OOP) languages. Data struc-
tures called classes can contain data attributes and functions named methods. Working with
classes is mostly done on their instances, which are referred to as objects. Classes can serve as
base classes when they are inherited, creating derived classes, which inherit the base’s attributes
and methods in addition to their own attributes and functions. Classes can inherit from multiple
base classes, and also, derived classes themselves can serve as base classes, such that a (potentially
very complex) class hierarchy is created between them.

A programmer can change the functions of base classes inside derived classes by overloading or
implementing them. They must be declared as virtual, and any class containing virtual functions
is a polymorphic class (see Figure 1, left). The binding of virtual functions to a class’ instance
is performed dynamically during runtime if the compiler cannot determine the instance’s type
statically. Thereby, the function acts as a message and the instance as the message’s receiver. De-
pending on the dynamically determined type of the instance, the appropriate function is selected,
hence, the message has different impacts on the instance according to its runtime type. For more
details, the reader is referred to the literature [7, 53].

When compiling C++ code that contains virtual function dispatches, most compilers generate
machine code instructions containing indirect calls. These are good constructs for attackers to
gain control of the instruction pointer by controlling the call’s target register. We elaborate on
this danger in the following sections.

2.2 Virtual Function Calls

For each class that defines virtual functions, a virtual function table (abbr. vtable) will be created
during compile time. It contains the addresses of all virtual functions that a class provides. During
runtime, when an instance is created, a pointer to a vtable is inserted into the instance’s layout
similar to a data attribute. A class instance’s lifetime can involve the usage of several vtables
depending on the number of base classes with virtual functions it inherits from.

Figure 1 shows the low level instructions on two virtual function dispatches. At first, a vtable
address is loaded into a register (¬). Then an indexing offset is added to it to let the register point
to the address of the virtual function (­). This is omitted if the virtual function is the vtable’s
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class A{
  virtual int Fn(){..};
};
class B{
  virtual int Fc(){..};
};
/*single inheritance*/ 

class C: public B{
  virtual int Fc(){..};
};
/*multiple inheritance*/ 

class D: public A, public B
  {  ..  };

①  mov R, [p]  

②  add R, offsetFc  

③  mov R, [R]  

④  mov this , p  

⑤  call R 

/* call of overloaded  

virtual function */  

C* p = new C();

p->Fc();

①  mov R, [p+offsetVtB]  

②  add R, offsetFc  

③  mov R, [R]  

④  lea this , [p+offsetVtB]  

⑤  call R 

/* call of base's virtual  

function */  

D* p = new D();

p->Fc();

Figure 1: Single and multiple inheritance with polymorphic classes (left). C++ and assembly code of
dispatching an overloaded virtual function (middle). And an inherited base class’ virtual function dispatch
(right). Registers are denoted with R.

first entry. Afterwards, it is selected by dereferencing the vtable’s entry (®) and dispatched with
an indirect call (°). Additionally, a this pointer is created and passed as parameter to the virtual
function (¯), either via the register ecx [35], or as the first parameter. As first parameter, location
or registers are used, which are specified in the corresponding calling convention, i.e., the stack
or the register rdi. The this pointer constitutes the instance’s address and is adjusted in case of
multiple inheritance.

These semantic steps can then be generalized: let obj be the address of an instance and i the
displacement offset to the vtable pointer at obj. The length of the vtable in bytes is indicated as

|vtable|. Then, on a 32-bit system, j ∈ [0, |vtable|
4 − 1] denotes the index into the vtable, where an

address of a virtual function vf resides. A memory dereference is stated with mem. Thus, we get:

∀ vf ∃ mem : mem(mem(obj + i) + j ∗ 4) = vf

∀ this ∃ obj : (obj + i) = this

(1)

(2)

(1) and (2) holds for virtual functions called indirectly, where (1) comprises steps ¬ - ® and °,
and (2) describes step ¯.

Compilers usually translate calls into these five steps [18]. Highly optimized code, such as
modern web browser libraries, can omit step ¯, combine several steps into single instructions, and
have multiple unrelated instructions in between.

There are syntactical varieties in steps ¬ - ® and ° dependent on optimization levels. However,
the manifestation of semantic step ¯ into assembly strongly depends on the used compiler and is
independent of the optimization (see Table 1). These subtleties were observed in our 32-bit test
binaries originating from C++ code with virtual, single, and multiple inheritance and polymorphic
classes, as well as in COTS browser code.

While the syntax may differ, virtual function dispatches reveal themselves in generalized se-
mantics, at least in binary code stemming from GCC, LLVM, and MS Visual C++. As GCC and
Visual C++ are standard compilers for browsers on MS Windows, our framework is able to extract
virtual function dispatches from their generated code (see Section 4.1).

We refer to the low-level assembly semantics of a C++ virtual function call as virtual dispatch,
which includes vtable loading, virtual function selection, and passing the this pointer as hidden
or first parameter to the virtual function. The assembly instruction which performs the indirect
call of the virtual function we refer to as virtual call.

Recent in-the-wild exploits, including two targeted zero-day attacks against Internet Ex-
plorer [33] and one against the Mozilla Firefox version included in the Tor Browser Bundle [37],
achieved remote code execution by abusing virtual dispatches. Figure 2 illustrates the different
manifestation of the five semantic steps for the three virtual dispatches, utilized to exploit CVE-
2013-3897, CVE-2013-3893, and CVE-2013-1690. Such exploits abuse in general the five steps
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Compiler Passing this to virtual function via:
non-variadic function variadic function

GCC (MinGW) ecx stack(FPO)
Clang (LLVM) stack(FPO) stack(FPO)
MS Visual C++ ecx stack(push)

Table 1: Variations of step (4) based on compilers: variadic virtual functions retrieve the this pointer via
the stack, either by a push instruction or by stack pointer addressing (FPO). For non-variadic functions,
the ecx register is used.

outlined in Figure 1, but the actual manifestation of the steps can be completely different due to
compiler optimizations and other low-level characteristics.

0x7167d53e: mov   eax, [ebx]           

0x7167d540: and   dword [ebp-0x18], 0x0   

0x7167d544: lea   ecx, [ebp-0x18]      

0x7167d547: push  ecx                 

0x7167d548: push  dword 0x7167d58c    

0x7167d54d: push  ebx                 

0x7167d54e: mov   edi, 0x80004002      

0x7167d553: call  dword [eax]

0x706c3857: mov   ecx, [esi]     

0x706c3859: mov   edx, [ecx]     

0x706c385b: mov   eax, [edx+0xc4]  

0x706c3861: call  eax 

0x612dc754: mov   ecx, [eax]      

0x612dc756: push  eax            

0x612dc757: call  dword [ecx+0x4]  

①

④

②③⑤

CVE-2013-3897: mshtml.dll 8.0.7601.17514 @ 0x714c0000

Disassembly with Virtual Dispatches Semantics

④

①

②③

⑤

CVE-2013-3893: mshtml.dll 9.0.8112.16421 @ 0x702b0000

CVE-2013-1690: xul.dll 17.0.6.4879 @ 0x611d0000

②③⑤

④

①

Figure 2: Disassembly and corresponding semantic steps of virtual dispatches in vulnerable modules
with base addresses denoted after the @ sign. All examples were used in real attacks to gain control of
the instruction pointer at step (5) by loading a fake vtable at step (1) first.

2.3 Threat Model: Vtable Hijacking

In the recent past, attackers have developed several exploitation techniques to turn use-after-free
memory corruption vulnerabilities into reliable and arbitrary execution of their code of choice [46,
47,50]. Such exploits render all current operating system security mechanisms ineffective and are
one of the most common attack vectors we observe currently in the wild. In the following, we
explain the different basic stages of such exploits based on Figure 3.

Use-after-free memory corruption vulnerabilities are based on dangling pointers. During run-
time, a C++ application requests a new instance of class C at time tn which has implemented a
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Figure 3: The C++ stages, internal low-level operations, and resulting instance’s memory layout of a
use-after-free exploitation process utilizing vtable hijacking

virtual function fc. Internally, constructing an instance invokes the memory manager to allocate
needed memory. The instance’s structure is built, including a vtable of C. Furthermore, a pointer
p to the instance is created. At subsequent execution time tn+1, the instance is removed but the
pointer is still kept. If the programmer did not reset the pointer or if an alias was created, the
reference to the freed memory still exists. Hence p or the alias becomes dangling.

At time tn+2, an adversary can deliver payload content of her choice to the memory where
p is pointing to (e.g., via heapspraying [17, 51] and similar techniques), and inject a fake vtable.
In practice, this vtable resides in writable memory, whereas a legitimate vtable always resides
in non-writable memory. Surprisingly, just checking for non-writable on vtable addresses during
runtime before their usage already prevents many of the in-the-wild exploits as our evaluation
shows (see Section5.3 for more details).

The value of the injected vtable needs to be carefully chosen by the attacker to have an entry
pointing to the adversary’s first chosen chunk of code [16]. Later at tn+3, the virtual function fc is
dispatched, leading to the instances’s pointer p dereference, the fake vtable’s pointer dereference,
and the call of the adversary’s code. Thus, this initiates the first step of a code execution attack
by retrieving control of the instruction pointer and redirecting the logical program flow.

Note that an adversary can utilize code reuse methods to bypass no-execute (NX) protection
and may craft memory leaks [47] beforehand to bypass address space layout randomization (ASLR).
For more details, the reader is referred to the available literature on code reuse techniques [10,
15, 29, 43, 48]. In case return-oriented programming is utilized, the adversarie’s first chosen code
chunk is typically a so called stack pivot gadget used to exchange the stack pointer with a controlled
register to further redirect program flow to her injected payload [16]. In real-world use-after-free
web browser exploits, program snippets executed at time tn, tn+1 and tn+3 often reside far away
from each other and may have been generated from different source files. Also, mostly the pointer
p is not the original created one but another reference pointer, which is reused.

Many recently detected zero day exploits utilize vtable hijacking to exploit vulnerabilities in
web browsers as shown in Table 2.

CVE Targeted Application Module Vulnerability
2013-1690 Fx 17.0.6 (TorBrowser) xul.dll use-after-free
2013-3893 Internet Explorer 9 mshtml.dll use-after-free
2013-3897 Internet Explorer 8 mshtml.dll use-after-free
2014-0322 Internet Explorer 10 mshtml.dll use-after-free
2014-1776 Internet Explorer 8-11 mshtml.dll use-after-free

Table 2: Zero-day attacks using vtable hijacking in-the-wild.
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The main idea behind our protection scheme is to mitigate an exploitation attempt at the entry
point, meaning, after the loading of a fake vtable pointer, but before it is used further to select
a virtual function. Thus, the execution of the subsequent virtual call can be stopped, preventing
the attacker from obtaining control of the instruction pointer, and impeding successive malicious
computations.

2.4 Intermediate Language Prerequisites

As discussed in Section 2.2, dispatching a virtual function consists of several low-level instructions
that can be interleaved by other code or distorted due to compiler optimization. Our goal is
to identify such virtual dispatch sites in a given binary executable in an automated way. Since
our target architecture is Intel x86, this is a complex task due to the large number of ways to
express virtual dispatches in x86 assembly. Furthermore, side-effects of the individual instructions
complicate the analysis process. Thus we opted to abstract away from the assembler level and
perform our analysis based on an intermediate language (IL). In the following, we explain the
needed background information and review the IL used for our implementation.

We utilize a RISC-like assembly language as IL to transform 32-bit x86 disassembly to an
intermediate representation. Currently, our IL of choice is REIL [19]. As typical for RISC,
there is only one dedicated memory load and memory write instruction. Thus, one x86 assembly
instruction is typically transformed into several IL instructions. One IL instruction consists of a
mnemonic and three operands. The first and second operand after the mnemonic represent the
source and the mnemonic’s preceding operand represents the destination holding the instruction’s
result value. Note that not all operands have to be used in one instruction. As registers, real x86
registers as well as an unlimited number of temporary registers (referred to as IL registers) can be
used in an interchangeable way. Real registers are generalized to Ri and temporary registers to rj .
We refer to an undetermined register (i.e., a register that is either R or r) as q. Any immediate
value is denoted with m and operands which are either q or m are denoted with v.

Relevant instructions for our analysis are:

• memory load instruction q1 ← load v1 which loads a memory value pointed to by v1 into q1

• addition q1 ← add v1, v2 which adds v1 to v2 and saves it to q1

• substraction q1 ← sub v1, v2 which substracts v1 from v2 and saves it to q1

• register store q1 ← stor v1 which stores the value of v1 into q1

• memory store v2 ← stom v1 which stores the value v1 to the memory pointed to by v2

• call v1 sets the instruction pointer to v1.

Note that the usage of IL registers indicates that a complex x86 instruction was decomposed
into several IL instructions. Decomposing an indirect addressing instruction with base and dis-
placement will lead to several IL instructions with temporary registers. However, the semantic
of a x86 indirect memory addressing can be achieved with several x86 instructions, too. When
decomposing them to an IL, almost the same IL instructions are generated as before, except that
less temporary and more real registers are used. This means that we can imply certain syntax
usage in x86 disassembly from its IL representation. This becomes important in Section 4.1.

3 High-Level Overview

Developing a practical vtable hijacking mitigation and protection framework for binary C++ code
involves several engineering challenges. In the following, we introduce our approach called T-VIP
(towards Vtable Integrity Protection) to achieve this goal. T-VIP consists of vExtractor, the
unit which identifies virtual dispatches in binary code, and PeBouncer which transforms the
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Figure 4: Overview of T-VIP, consisting of vExtractor and PeBouncer

original executable in order to allow only legitimate virtual calls to be executed. We start by
giving a brief description of each component and present a high-level overview of their necessary
interactions (see also Figure 4 for an illustration).

3.1 Automated Extraction of Virtual Function Dispatches

The first component of T-VIP is vExtractor, a static instruction slicing and extraction frame-
work. It takes an executable as input whose vtable usage instructions before virtual calls should
be protected, and disassembles it in a first step. While disassembling x86 binaries correctly is
challenging [45], current approaches are sufficient to generate disassemblies usable for program
transformations [59]. A control flow graph (CFG) is generated, reflecting the control flow in the
form of vertices and edges. Vertices represent basic blocks and edges the control transfers between
them. The disassembly is then transformed into an intermediate language to boil down the com-
plex instruction set into a RISC-like syntax, while preserving the semantics and the CFG of the
original code. Next, all addresses of indirect call instructions are extracted and defined as slicing
criterions [9, 49]. vExtractor then performs backward program slicing on the IL to determine
if an indirect call is a virtual call. It extracts all instructions which fulfill the low-level semantics
of a virtual dispatch, thus, we retrieve virtual dispatch slices.

This is achieved via state machines, whereby one state consists of a set of IL instructions (see
Section 4.1 for details). Furthermore, each state points to at least one successor state. Slicing
starts at indirect call sites and the state whose instruction should be found next (in the backward
IL instruction stream) is set as target state. If a target state is successfully matched against an
instruction in the stream, then its successor is set as target state. As long as the last state of
the state machine is not reached or is still satisfiable, slicing continues. It stops either if the last
state is reached or if a state cannot be fulfilled. The latter disqualifies the indirect call site as a
virtual call. In the former case, vExtractor classifies the call site as part of a virtual dispatch,
extracts all instructions which are part of it, and associates its components such as x86 registers,
offsets and addresses with instance, vtable and virtual function properties. Most important is the
instruction which loads the vtable pointer of the instance into a register, as verification checks will
be performed on these registers later on during runtime.

3.2 Automated Protection of Virtual Function Dispatches

The information produced by vExtractor and the original executable are the input to Pe-
Bouncer, the second component of T-VIP. We developed PeBouncer as a generic and static
binary rewriting engine for executables conforming the PE specification [34]. Thus, while we use
it to generate a protected executable, it is suitable to instrument instructions of interest similar
to Pin [31] or DynamoRIO [5, 12]. Furthermore, it can be used to insert arbitrary code in order
to enhance an executable with defense techniques similar to Vulcan [52] or SecondWrite [40].

A user who wishes to instrument an executable with PeBouncer has to specify the addresses
of instructions to instrument. Each of these instructions is replaced by a forward jump redirecting
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to an instrumentation stub inserted into a newly created section in the executable. The original
instruction is preserved by copying it to the beginning of the stub. The stub ends with a backward
jump targeting the address after the redirection to continue the original program flow. When
replacing instructions, edge cases such as control transfers, basic block transitions, and relocations
are considered and measurements are taken into account to rewrite such cases correctly (see
Section 4.2).

The instrumentation can then implement an integrity policy P to perform checks on the virtual
dispatches. Instrumentation stubs to enforce the policy can be developed in assembly code and
can invoke functions of a user generated shared library, which we refer to as service library. Hence,
major instrumentation code can reside inside the service library in order to remain customizable
and still being able to accomplish complex tasks.

Using PeBouncer, we can instrument instructions which load a vtable in virtual function
dispatches and generate distinct binaries with different integrity policies. As noted above, a
vtable always resides in memory pages which are non-writable such as code or read-only data
sections. They contain virtual function pointers pointing to read-only and executable pages.
This basic insight can be leveraged to implement a simple integrity policy that checks if vtable
pointers correctly point to non-writable memory pages. The following kinds of integrity policies
are possible:

1. Pnw: Look up vtable pointers in a lookup table with bits set for non-writable memory pages
of modules and unset otherwise. This offers performant validation. When determining the
memory protection of a vtable address, the page it belongs to is queried instead of the vtable
pointer itself.

2. Pnwa: Includes Pnw. Additionally, one entry inside the vtable residing above the virtual
function pointer about to be called, is randomly chosen. The entry is dereferenced, and the
resulting address is queried for the non-writable flag. This is applied to all virtual dispatches
calling a virtual function pointer that is not the first in the vtable.

3. Pobj : Leverage type reconstruction of object-oriented code [26] in order to reconstruct all
objects and the according class hierarchy. As an integrity check, we could verify if a vtable
actually maps at virtual dispatch sites.

Note that Pobj is hard to implement in practice on binary code (in contrast to compiler-level
implementation), as object recovery has yet to be shown practicable for huge COTS software like
web browsers [26]. Hence, we did not implement this policy as part of our work.

The automated extraction of virtual dispatches can also yield slices not being virtual dispatches.
For example, when binary code originated from nested C structs (see Section 5.1). As such,
vExtractor might output instructions which seemingly load a vtable, but in fact represent
other kinds of code constructs. This problem can be addressed with a profiling phase as follows:
T-VIP first generates an executable instrumented with the checks using policy Pnw, and runs it
dynamically on tests in a trusted environment to visit (ideally) all instrumentation stubs. Hence,
assumed vtables appearing in writable memory are the result of other constructs and are discarded
in a second pass: To ensure vtable integrity protection at runtime, T-VIP applies PeBouncer a
second time to the original executable using policies Pnw or Pnwa to produce the final protection.

Note that additional policy checks (even complex ones such as Pobj) could be implemented in
the future to ensure a more complete protection towards virtual table integrity, as PeBouncer
is generic.

4 Implementation

We now describe in detail the inner workings of T-VIP involving the stages of disassembling an
executable, transforming it into intermediate language, and performing program slicing to retrieve
virtual dispatch slices. This is followed by the architecture of our generic binary rewriting engine,
and its usage relevant to instrumenting and protecting executables against vtable hijacking.

Currently vExtractor supports the IDA Pro disassembler internally to disassemble an ex-
ecutable and generate a control flow graph. Other disassembly frameworks (e.g., BAP [13] and
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ROSE [42]) could be supported in the future. Based on the disassembly, we search for call in-
structions with registers or indirect addressing with base register and optionally index, scale and
diplacement as operand. Addresses of indirect calls are stored and the disassembly is transformed
into the platform-independent intermediate language REIL [19]. This produces a second CFG
layer: Even strict x86 basic blocks having only one entry and exit can turn into a CFG when
being transformed into an IL. Due to certain x86 instructions having implicit branches, the de-
composed IL instructions emerge into a CFG, such that a x86 basic block is represented as CFG.
We treat the outer x86 CFG layer and inner IL CFG layer separately.

As discussed in Section 2.2, virtual dispatches have a certain semantic which can express itself
differently in the x86 syntax. We exploit the advantages of an IL which converts syntactically
greatly varying but semantically similar instruction streams into similar constructs. This facilitates
the harvesting and classification of semantically similar but syntactically different instruction
streams like virtual dispatches via backward slicing.

4.1 Amorphous Slicing

We implemented intra-procedural backward slicing on IL into vExtractor based on state ma-
chines. As program slicing is a common technique, we refer the reader to the literature for
information about program slicing [9, 23,49].

In our state machines, one state consists of a set of IL instruction patterns. Figure 5 shows our
state design and a state transition. When an IL instruction in the instruction stream to search
(¬), fulfills a pattern’s condition such as matching mnemonic and matching destination register,
the state is triggered (­). The source of the matched instruction is taken and inserted into the
successor state’s instruction patterns as destination (®). A transition to the successor state is
performed (¯). Slicing continues (°), and the patterns of the successor state have to be fulfilled
in order to trigger it.

Figure 5: State design and state transition principle. Wildcard operands are denoted with /.*/

While the semantics of virtual function dispatches are simple, they can manifest themselves in
different and complex x86 syntax constructs (as previously shown in Figure 2). To extract virtual
dispatches precisely, we developed several state machines to unveil instructions being components
of them, each visualized in Figure 6.

The first state machine is used to search backwards, starting from each indirect call instruction
in the IL instruction stream for dereferences. On a successful pass, if the final state is reached,
vExtractor detects the vtable entry’s dereferencing and the instance’s dereferencing. We refer
to the instance also as obj. Furthermore, if available in the IL instruction stream, the reference to
the instance and the reference to the reference are detected, too. We name the reference which—
when dereferenced—yields a reference to the instance, ref2. The reference that yields the address
of the instance when dereferenced is called ref1. The instance’s reference (ref1), and also the
reference’s reference (ref2), become important in subsequent state machines.

In the first state machine, the indirect call represents the start state. State one to match is a
memory load: the call’s destination register is followed to its definition. In case it was defined by
a memory load, state two is set as next state to match. The matched instruction’s source of state
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Figure 6: State machines used to detect consecutive dereferences and thiscall in virtual dispatches.
Transitions may be constraint (by e.g.: mnemonic: add, source: add v, destination: v ←add)

one becomes the destination register of state two. A mandatory memory load and an optional
addition or subtraction instruction are searched. In case an addition or subtraction is matched,
the state to match next does not change. As soon as the memory load is matched, the source
register in the matched instruction dictates the next state to match: In case it is an IL register,
state three is set as next state. If it is a x86 register, state four is the next state to match. To
trigger state eight from state three, the destination register of state three has to be found as source
register in an addition or subtraction instruction respectively. State eight is the final state. Thus,
starting from state zero (start state), successively transitioning into states 1, 2, 3 and ending at
state eight yields the following IL example slice:

State:
3 r0 ← add q3, m1

2 q2 ← load r0
2 q1 ← add q2, m0

1 q0 ← load q1
0 call q0

When extracting the x86 disassembly, corresponding to the IL slice, a dereferencing sequence
arises, which exists in virtual dispatches when used with multiple inheritance:

mov q2, [q3 + m1]
call [q2 + m0]

q3 is the instance address (obj ), q2 contains the vtable address, m1 is the displacement to the base
classes’ vtable to take, and m0 is the offset to the virtual function to call.

When vExtractor backtraces the IL instruction stream continuing from state two and tran-
sitions the other states until the final state, it detects the following additional information:
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Transitions Information
2→ 4 register with obj

4→ 8 second register with obj

4→ 6 register with ref1

4→ 5→ 6 register and displacement of ref1

6→ 8 register with ref2

6→ 7→ 8 register and displacement of ref2

While the first state machine extracts semantic components related to instance and vtable loading,
the second state machine is designed to detect a thiscall. In a thiscall, the (adjusted) instance’s
address is passed via ecx to the virtual function as a hidden parameter. Dependent on the
information gained by slicing with state machine one, the second state machine is built dynamically
and adjusted with the registers and offsets found by machine one. Thus, one of three state machines
shown in Figure 6 arises and will be chosen for the thiscall detection.

Machine A is chosen if ref1 and ref2 were not found. Thus, it detects if obj is moved into
ecx (transitions 0→ 1→ 7). With transitions 0→ 1→ 2→ 7, A detects if ecx is filled with an
adjusted instance’s address. That is the case in virtual dispatches used in multiple inheritance,
where an adjusted instance’s address is dereferenced to gain the vtable, and as well moved to ecx

to prepare the thiscall.
Machine B is chosen if there is no ref2, and it detects if ref1 is dereferenced to obj and if a

subsequent move into ecx follows (transitions 0→ 1→ 3→ 7). If ref1 was displaced by an offset,
transitions 0→ 1→ 3→ 4→ 7 of B detect the thiscall. If it fails to detect a thiscall with ref1,
but recognizes that obj was used in transition 0→ 1→ 3, it is declared also as valid thiscall.

When ref2 was found, machine C is chosen. Similar to B, it detects if a thiscall is prepared
using ref2. If it fails to reach the final state but recognizes that obj or ref1 was used for the
thiscall, it is classified as valid.

Additional state machines are used to detect if an instance is passed as first parameter via
the stack to the virtual function at dispatch time. They comprise our third set of state machines.
These are built similar to A, B and C. But instead of using states with ecx ← stor qi, states
containing patterns with esp ← stom qi are utilized. Thus, if the first parameter on the stack
is obj, or if it evolves from ref1 or ref2, then the corresponding instructions are classified as
components of a virtual function dispatch.

Summary vExtractor uses a state machine based approach to harvest virtual dispatch data
of potential virtual dispatches. Therefore, it walks the CFG of a binary of interest backwards,
starting from indirect calls and tries to match states to IL instructions. On a match, object location
and register, vtable register, virtual function offset, and the addresses of corresponding instructions
are saved. Additionally the corresponding disassemblies of virtual dispatches are gained as slices.
This virtual dispatch data is then fed into PeBouncer to generate an instrumentation of the
vtable loading instruction to enforce specific policies.

4.2 Binary Transformations

Static binary rewriting (also called static binary transformations) allows the modification of com-
piled executables without the need for source code information or recompilation, and is done
directly on the binary level. We implemented PeBouncer as a generic and automated instru-
mentation engine for PE executables for Windows. Thus, transformations are applied statically to
produce an instrumented binary that realizes an integrity policy. The relevant enforcement checks
become active during runtime.

4.2.1 Insertion of Instrumentation Checks

We statically create a new code section where the integrity policy checking code will reside. Ad-
dresses of instructions to instrument are fed into PeBouncer and disassembled. As an instruc-
tion will be replaced with a redirecting, relative 32-bit jump to its instrumentation stub, we need
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enough space for the jump opcodes, while keeping other instructions in the neighborhood func-
tional. Therefore, if the size of the original instruction’s opcodes is greater than the jump, we
replace it and insert NOPs to fill the remaining space. If the size is smaller than the size of
the jump, we disassemble downwards starting from the original instruction until there is at least
enough space to insert our jump. Thus, we replace the instruction to instrument and subse-
quent instructions. The replaced instruction(s) will be copied to the beginning of the associated
instrumentation stub into the new section.

Note that some instructions cannot be overwritten without additional measures:
1. Targets of all relative control transfer instructions have to be kept
2. Instructions with relocations must remain relocatable, our jump should not change due to

an original relocation
3. Basic block terminators and basic block leaders must be preserved. For example, one ter-

minator’s opcodes, and at the adjacent address located leader opcodes cannot be replaced
with opcodes of one instruction. When there are several entries into the adjacent block,
the inserted instruction would get split and resulting opcodes of both halves get interpreted
wrongly as distinct instructions.

To tackle these and similar corner cases, we stop our downward search for space at such instruc-
tions and traverse the disassembly upwards instead, starting from the instruction to instrument.
Similar to the downward search, we stop as soon as we have enough space to insert our redirecting
jump, while overwriting additional instructions if necessary. If the instruction to instrument is
enclosed between two instructions of above mentioned edge cases, we overwrite one of them with
an illegal instruction and install a vectored exception handler. It then serves as a trampoline to
the instrumentation stub.

For each instruction to instrument, the redirecting jump’s target address is automatically
calculated to point to the next available free location in the new section. The replaced instructions
are copied there, and the instrumentation code is placed below them into the stub. At the end
of the stub, a relative 32-bit jump is inserted. Its target address is calculated to point to the
original code, to the address right after the redirecting jump. Thus, the new code section is filled
successively, stub after stub. An inserted instrumentation stub is shown in Figure 7.

Figure 7: Instrumentation stub insertion: a virtual dispatch is transformed in order to perform instru-
mentation on the vtable register (EAX) before a virtual call is issued.

vExtractor provides virtual dispatch slices including the addresses of vtable load instruc-
tions. For a C++ executable, we utilize these addresses to instrument and to protect them.

4.2.2 Generation of Instrumentation Stubs

For instructions of interest, instrumentation stubs can be supplied in position-independent assem-
bly. Hence, relative addressing can be utilized. A stub starts with a prolog to save the register
context and ends with an epilogue to restore it. The Netwide Assembler (NASM [55]) is used
as assembly backend. We created an annotation feature that serves PeBouncer as hint to mod-
ify the stub after it is assembled, but before it is inserted into our new code section. This allows
one-time assembling of instrumentation code and many-time stubwise modification.

It works as follows: Instrumentation code is provided as assembly file and contains specific key-
words inside angle brackets, which PeBouncer recognizes. The brackets including the annotation
keywords are replaced with a x86 mnemonic and a hash of the keyword as operand. Depending on
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the keyword, corresponding mnemonics which allow at least a four byte operand are used. This
way, the assembly syntax stays error free, and the keyword’s information is preserved. Also, the
occurrence of each keyword is counted. After the instrumentation code is assembled, it contains
the binary representation of the hashes. Before the binary instrumentation code is about to be
inserted as a stub, the hashes are searched and their occurrences are compared to the keywords’
occurrences to prevent collisions. Then they are replaced with adjusted opcodes specific for a
keyword and specific for an instrumentation stub. The reader may ask what benefit it has. We in-
strument instructions representing vtable loading and each of these may use a different mnemonic
and a different register to load the vtable. With our annotation feature, PeBouncer can assemble
one instrumentation code for all instructions to instrument, and modify it for each stub to include
the specific register which holds the vtable. Thus, each instrumentation stub for every vtable load
instruction will operate on its specific vtable register.

While creating instrumentation code in assembly is already convenient, the complete API
provided by an operating system can be used as well. This is important for the usage of Windows
API functions (e.g., OutputDebugString). Therefore, a shared library (service library) is compiled
with exported functions which wrap the API functions to use. Then an instrumentation stub is
developed in a certain structure. It starts with a prolog to save the register context and instructions
follow which save the instruction pointer (IP) to the stack. Thus, the first stack value will point
to the absolute virtual address of the beginning of the stub. To call a service library’s function
from instrumentation code, an instruction is specified to load the saved IP into a register. A
subsequent indirect call with the register and an annotation keyword containing the library and
function name follows. When PeBouncer encounters such a keyword, it replaces the keyword
with its four byte hash, such that an indirect call instruction with base register and displacement
emerges. The structure of a possible instrumentation stub is shown in Figure 8.

Figure 8: Instrumentation stub structure: During runtime, the context is saved in the prolog and
restored in the epilogue. Annotation keywords are replaced with respective instructions before assembling
and stubwise modified before insertion.

After the instrumentation code is assembled, the four byte hash is replaced with a binary
displacement value. This value is calculated in such a way that the register with the saved IP and
the displacement (when summed up) point to a custom Import Address Table entry. This entry
will contain the address to the service library’s function to use. During runtime – similar to an
Import Address Table (IAT) generation – an additional data section is filled with pointers to the
service library’s functions. This resolution is performed as soon as the instrumented executable is
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loaded into the address space of an application. Thus, the instrumentation code in the executable
can reference the service library’s resolved functions addresses in our custom generated IAT. The
service library itself can be loaded in many ways into an applications address space [24]. Either
the application’s entry point is patched to load the library in case the instrumented executable is
known to be loaded afterwards, or the service library is specified to be loaded into every process’
address space [32] in case the instrumented executable is known to be loaded at the application’s
startup. In any case, the service library is loaded before the instrumented executable’s entrypoint
is about to be executed. Note that the above concept allows the full support of both ASLR and
DEP (NX).

4.2.3 Virtual Dispatch Instrumentation

To mitigate vtable hijacking, virtual dispatches are instrumented with policies Pnw (12 assembly
instructions) or Pnwa (23 assembly instructions). Each virtual dispatch consists of the low-level
semantic steps described in Section 2.2. To protect against the use of fake vtables, we instrument
vtable load instructions after step one of the virtual dispatch semantic to be able to check the
register with the vtable address. We do this in the following way: We keep a read-only 64KB sized
lookup bitmap in our service library, representing the complete usermode memory pages. This
bitmap is made writable and set up when an instrumented module is loaded into the address space
of its application. Then its access permissions are set to read-only again. Each bit represents the
write permissions of a page. A set bit means the page is non-writable, an unset bit means the
page is writable. Thus, when loading the module, we find all non-writable module sections in
complete memory and set the appropriate bits of corresponding pages in the bitmap. To keep it
up to date, Windows loader functions are hooked to change bits when unprotected modules are
loaded and unloaded. By now, instrumentation checks can query the page of a vtable address by
a simple lookup instead of querying the vtable itself: During runtime, a vtable is loaded into a
register. The control flow is then rerouted to its instrumentation stub. Then, the vtable address
is transformed with simple operations to an index into the page bitmap. The bit for the page is
queried and if it is not set, a violation of Pnw occurred. A set bit means that the page, and thus
the vtable it resides in, is non-writable. However, an adversary could circumvent this check, if she
manages to find an address which is non-writable and contains a pointer to a gadget of choice to
start her ROP chain. Thus, to mitigate this type of attacks, after the page lookup of the vtable,
there is an additional virtual method check (Pnwa): As step two of virtual dispatch semantics
provides the offset to the virtual function, a pseudo-random index up to that offset is generated
with the help of rdtsc. The vtable is dereferenced at this index and the resulting value is looked
up in the page bitmap. A violation can be detected, as all entries in a valid vtable above the
offset of the virtual function about to be called are method pointers pointing into non-writable
code pages.

5 Evaluation

We have implemented prototypes for both vExtractor and PeBouncer. In what follows, we
evaluate both tools regarding their precision, performance overhead, and prevention of real-world
exploits.

5.1 vExtractor’s Precision

As a first step, we wanted to gain insights into the precision and recall of vExtractor’s virtual
dispatch detection. The analysis is performed against all identified indirect call instructions of a
given program. We leverage a simple classification metric which states that any virtual dispatch
found not being a virtual dispatch is a false positive (FP ) and missed virtual dispatches are false
negatives (FN). True positives (TP ) and true negatives (TN) are the correctly found and rejected
virtual dispatches, respectively. Based on this, we can define precision, recall, and F-measure as
follows:
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precision =
TP

TP + FP

recall =
TP

TP + FN

F-Measure = 2 · precision · recall
precision + recall

(3)

We used version 4.9.0 of the MinGW-w64 GCC cross compiler as it contains a partly imple-
mentation of GCC’s virtual table verification feature [56]. Also, we ported missing parts of GCC’s
vtable verification library (vtv) to Windows to be able to compile 32-bit PE files with MinGW-w64
resulting in functional vtable verification checks. This porting was necessary since we instrument
programs as proprietary web browsers such as Microsoft’s Internet Explorer on Windows (see
Sections 5.2 and 5.3). Thus, we needed a vtv version on Windows to compare against1.

Compilation of 32-bit PE files with the -fvtable-verify flag will insert verification calls at
each virtual dispatch after the instruction which loads the vtable into a register. Other resulting
code stays identical for the same program when this flag is omitted. The version with verification
is used to build a ground truth for indirect calls as they are preceded with verification routines in
case the indirect call is part of a virtual dispatch. Otherwise, they are non-virtual calls. Indirect
calls in the version compiled without verification are then grouped exactly into virtual dispatches
and non-virtual dispatches based on the information gained from the first version. We applied
vExtractor to the second version and classified the outcome of slices function-wise to retrieve
a classification on the binary.

We utilized the open source C++ cryptographic library Botan [11], which contains 90 crypto-
graphic primitives. We chose Botan because of its extended use of C++ features. We compiled it
with and without vtable verification. vExtractor traced a total of 6779 indirect calls and iden-
tified 6484 virtual dispatches (TP ) with 62 being non-virtual dispatches and 179 false negatives.
This yields a precision of 0.99, a recall of 0.97, and an F-measure of 0.98.

We analyzed the reasons for false positives and discovered that they are due to C code con-
structs. More specifically, C code can have semantics equal to virtual dispatches. Consider the
following C code line with st and innerSt being pointers to structs and sFn being a function
pointer:

st->innerSt->sFn(st, p1, p2)

The two dereferences and st as first parameter fulfill the virtual dispatch semantics when
compiled down to binary code. However, these and similar constructs can be eliminated in a
profiling phase, as we show later in Section 5.2. We discuss the reasons for false negatives in
Section 7.

5.2 Runtime of Instrumented Programs

To assess the performance overhead, we compiled Botan with and without GCC’s vtable verifi-
cation and compared the runtime in micro- and macro-benchmarks to the plain build of Botan,
and to the plain build instrumented with T-VIP. Additionally, we compiled the SPEC CPU2006
benchmark with MS Visual C++, instrumented it with T-VIP and compared the runtimes to
the native build. Finally, we hardened browser modules and measured their runtime overhead.
Benchmarks were performed on an Intel Quad Core i7 at 2.6GHz with 2 GB of RAM running
Windows 7.

Comparison to GCC’s virtual table verification We patched our port of vtv’s source code
to measure the CPU cycles needed for each verification routine execution (VLTVerifyVtablePointer)
in order to perform micro-benchmarks. Therefore, we inserted GCC’s build-in rdtsc routine at

1Our MinGW-w64 extension is available at https://github.com/RUB-SysSec/WindowsVTV
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the beginning and at the end of the verification routine and executed Botan’s benchmark. The
verification produced a median cycle count of 9205. We binary-rewrote Botan using T-VIP to
measure the cycle count of our vtable protecting check code. Thus, we added additional rdtsc
calls to the start and end of our instrumentation checks consisting of policies Pnw and Pnwa,
and took the vanilla build of Botan. We ran the benchmark and retrieved a median cycle count
of 8,225 for Pnw and 12,335 for Pnwa.

To perform macro-benchmarks, we built Botan with and without vtv with our newly ported
GCC, not using rdtsc. We protected the vanilla build with T-VIP using policy Pnwa and run
the benchmarking capability of both, ten times each. Botan’s benchmark consists of 90 highly
demanding cryptographic algorithms. The version compiled with GCC vtv produced a median
overhead of1.0 % with 46 algorithms producing a median overhead smaller than 2.0 %. The version
protected with T-VIP produced a median overhead of 15.9 % with 37 algorithms producing a
median overhead smaller than 2.0 %. We investigated the rather high appearing overhead: T-VIP
installs a vectored exception handler for instrumented instructions, which cannot be overwritten
with a jump to an instrumentation stub (see Section 4.2.1). As an exception handler produces
high overhead, algorithms executing it will run perceptibly slower.

Runtime overhead measurements We compiled the seven C++ benchmarks of SPEC CPU
2006 with MS Visual C++ 2010, applied vExtractor and gained virtual dispatch slices for all
except two (i.e., only five benchmarks actually have virtual dispatches). We hardened them with
policies Pnw, Pnwa, and an empty policy (Pe) separately, using PeBouncer. Pe consist of a
prolog and epilog only, and serves to measure the net overhead introduced by PeBouncer. The
results are depicted in Table 3.

Runtime (in s) and overhead (in %)
CPU2006 Size #VD Native Pe Pnw Pnwa

rt(s) rt(s) ov(%) rt(s) ov(%) rt(s) ov(%)
soplex 403K 746 232.25 231.05 -0.52 232.41 0.07 233.64 0.60
omnetpp 793K 1593 217.12 293.72 35.28 303.48 39.78 318.15 46.53
povray 1038K 154 164.27 164.22 -0.03 164.36 0.06 164.31 0.03
dealII 947K 272 360.97 361.75 0.22 363.01 0.57 363.14 0.60
xalancbmk 3673K 14061 182.97 294.29 60.84 331.98 81.44 372.26 103.45

Table 3: Binary sizes, amount of instrumented virtual dispatches (#VD), median runtime over three
runs, and overheads of C++ SPEC CPU2006 benchmarks.

Overheads are ≤ 0.6 % in soplex, povray and dealII, while high overheads for Pnw and
Pnwa in omnetpp and xalancbmk are mostly due to the net overhead of our rewriting engine (Pe

column in Table 3). Using our policies Pnw and Pnwa with another binary rewriter could lower the
overhead. However, as we show with COTS browser modules, the overhead in macro-bechmarks
is actually low in practice.

We applied vExtractor to xul.dll of Mozilla Firefox 17.0.6 and to mshtml.dll of Internet
Explorer in versions 8, 9, and 10. We chose these modules because they contain the major parts
of the browsers’ engines and former zero-day attacks were related to code in these modules (see
Section 5.3 for details). Table 4 shows the amount of indirect calls and extracted virtual dispatch
slices.

We applied PeBouncer to each module to instrument all vtable load instructions, such that
during runtime, the addresses of vtables, their memory page permission, and the addresses of the
corresponding virtual call sites are gained with OutputDebugString. Less than 900 exception
handlers had to be inserted for each module due to non-overwritable instructions, but all were
instrumented without problems.

We then, at first, ran the two browser benchmarks SunSpider [4] and Kraken [38] to profile
the browsers. Vtable addresses retrieved, not being vtables, show themselves as writable. This
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way, we can filter out all non-virtual dispatches like calls from nested C structs and eliminate all
false positives (see Table 4 for details).

App. Module #IC #Slices #Filtered #Instr.
Fx 17.0.6 xul.dll 66,120 53,268 73 53,195
IE 8 mshtml.dll 23,682 19,721 3,117 16,604
IE 9 mshtml.dll 64,721 53,312 7,735 45,577
IE 10 mshtml.dll 56,149 44,383 5,515 38,868

Table 4: Amount of indirect calls (#IC), extracted virtual dispatch slices, and filtered non-virtual calls.
#Instr. indicates the number of slices fed into PeBouncer to harden listed modules.
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Figure 9: Runtime overhead for instrumented browsers on the browser benchmarks SunSpider and
Kraken.

These were removed from the virtual dispatch slices and each module was rewritten again by
PeBouncer. This time, we used instrumentation checks based on our polices Pnw and Pnwa, and
policy Pe was used as well. All benchmarks were run again to measure the introduced performance
overhead. The results can be seen in Figure 9 and yield an overall average performance overhead
of approx. 2.1% (Pe), 1.6% (Pnw) and 2.2% (Pnwa).

5.3 Vtable Hijacking Detection

Real-world exploits for zero-day vulnerabilities utilized vtable hijacking to first load a fake vtable,
and then dereference an entry to call a ROP gadget. In this way, attackers gained a foothold into
victim systems via CVE-2013-3897, CVE-2013-3893, and CVE-2013-1690. The virtual dispatches
were all found by vExtractor and successfully protected with policies Pnw and Pnwa by
PeBouncer. We then attempted to exploit the protected web browsers with corresponding
exploits from Metasploit and exploits gained from the wild. All attempts were detected successfully
already with Pnw.

Another critical vulnerability (CVE-2013-2556) in Windows 7 allowed remote code execution
without any shellcode or ROP in conjuction with vtable hijacking. The culprit was the non-ASLR
protected SharedUserData memory region containing function pointers [58]. Attackers used the
region’s address as fake vtable and an entry with a pointer to LdrHotPatchRoutine to gain remote
code execution via virtual dispatches. This is detected by policy Pnw, as it checks vtables for
non-writable in modules. Another zero-day use-after-free vulnerability (CVE-2014-0322) was used
in targeted attacks. While the vulnerability only allowed a one byte write, a vtable pointer of a
flash object was modified to gain control [20]. As the precision of vExtractor is high, T-VIP
can protect against this vulnerability when the corresponding virtual dispatch is extracted and
then instrumented by PeBouncer.

6 Related Work

Due to their prevalence and high practical impact, software vulnerabilities have received a lot
of attention in the last decades. Many different techniques were proposed to either exploit or
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detect/mitigate/prevent them. In the following, we briefly review work that is closely related to
our approach and discuss how our approach differs from previous work in this area.

Reducing the Attack Surface There are many methods that can be used to harden a given sys-
tem against software vulnerabilities. A few examples include data execution prevention (DEP) [36],
address space layout randomization (ASLR), SAFESEH/SEHOP to protect execption handlers,
instruction set randomization (ISR) [6], and similar approaches [21, 28, 57]. They are all comple-
mentary to our approach, which primarily focusses on protecting the integrity of vtables.

Reference counting is a memory management technique used for example in garbage collectors
to track during runtime how many references to a given object exist [30, 44]. The basic insight
is that if no pointer to an object exists anymore, the object can be safely freed. Unfortunately,
referencing counting induces a certain performance overhead and no security guarantees can be
given since an attacker might be able to corrupt the reference counts since this information needs
to be stored on the heap.

Control Flow Integrity (CFI) A general concept to prevent memory corruption attacks that
divert the control flow of a given program is Control Flow Integrity (CFI) [1]. The basic idea is
to instrument a given program to verify that each control flow transfer jumps to a valid program
location. Recently, several methods were proposed to implement CFI with low performance over-
head [59, 60]. Efficient implementation incur a performance overhead of less than 5%, but had
to sacrifice some of the security guarantees given in the original CFI proposal [1]. Götkas et al.
recently demonstrated circumventions of these CFI implementations [22]. Their proof-of-concept
attack gains control over an indirect transfer by overwriting a vtable pointer with a heap address.
This specific use case is detectable by our approach: we enforce policies at instructions which
load vtable addresses before targets of indirect transfers are loaded. Bogus targets might seem
legitimate in coarse-grained CFI protections, due to conforming to their CFI policies. We detect
a violation if any indirect target comes from a fake vtable.

The main difference compared to existing work is that we specifically focus on the integrity of
virtual dispatches, since vtable hijacking attacks have become one of the most widely used attack
vectors recently. Instead of protecting all indirect jumps and inducing a performance impact that
prevents widespread adoption [54], we focus on a specific subset of indirect jumps that are an
attractive target for attackers.

Compiler Extensions Recently, several compiler extensions were proposed that protect vtables
from hijacking attacks:

• GCC introduced the -fvtable-verify option [56] that analyzes the class hierarchy during
the compilation phase to detect all vtables. Furthermore, checks are inserted at all virtual
function call sites to verify the integrity of virtual method dispatches.

• Closely related, SafeDispatch implements an LLVM extension that performs the same
basic steps [25]. A class hierarchy analysis is used to determine all valid method implemen-
tations and additional checks are inserted to ensure that only valid dispatches are performed
during runtime. The measured runtime overhead is about 2.1%.

• VTGuard by Microsoft [27] adds a guard entry at the end of the vtable such that (certain
kinds of) vtable hijacks can be detected. This instrumentation is added during the compi-
lation phase. If an information leak exists, an attacker could use this to obtain information
about the guard entry, enabling a bypass of the approach.

The main difference to our approach is the fact that we operate on the binary level such that
we can also protect proprietary programs where no source code is available. Since the full class
hierarchy can be determined during the compilation phase, the security guarantee provided by
the first two approaches is stronger than ours: these approaches can implement Pobj and perform
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a full integrity check. However, empirical results demonstrate that our policy can already defeat
in-the-wild zero-day exploits. Our performance overhead is sligthly higher, but this is mainly due
to the fact that we instrument binary programs.

Heap Monitoring By monitoring the heap of a given program during execution, dangling
pointers that can lead to use-after-free or double-free vulnerabilities can be detected. For exam-
ple, Undangle is a detection tool that leverages taint and pointer tracking to recognize dangling
pointers during runtime [14]. Note that the tool is not designed to protect applications. Cling is
a memory allocator that constrains memory allocation to allow address space reuse only among
objects of the same type, thus preventing use-after-free vulnerabilities [3]. The authors report a
performance overhead of less than 2% for most benchmarks. Other proposals for memory allocators
that provide additional security guarantees are DieHard [8] and DieHarder [39]. Both prevent
use-after-free vulnerabilities, but have rather high performance overheads (e.g., DieHarder im-
poses on average a 20% performance penalty). Our performance overhead is comparable to Cling,
but we do not require to exchange the memory allocator.

7 Discussion

In the following, we discuss the limitations and shortcomings of our approach and the current
implementation.

It is crucial to identify virtual dispatches precisely in order to protect all virtual call sites. As
the evaluation shows, vExtractor misses 2.6 % of virtual dispatches. Recall formulae (1) and
(2) from §2.2. Manual investigation revealed that in rare cases, especially GCC creates multiple
aliases for obj. While vExtractor already performs an alias analysis to some extent, cases can
slip away if an alias of obj is used in instructions represented by (2), but cannot be connected to
obj in (1). Also, at the time of writing, trying to compile Firefox with the original GCC 4.9.0
enabling GCC’s vtable-verification, led to compiler crashes. Thus, we were not able to evaluate
vExtractor’s precision using Firefox as ground truth.

Currently, binaries have to be profiled in order to remove virtual dispatch-like code constructs.
On the binary level, it is impossible to differentiate certain C code constructs from virtual dis-
patches, and thus we need this (automated) profiling phase, to filter all non-virtual dispatches.

As shown in our evaluation, T-VIP protects against real-world vtable hijacking attacks. How-
ever, policy Pnw could be circumvented by using a pointer residing in a non-writable module
memory page and pointing to code of an attacker’s choice. To mitigate this, we sacrify perfor-
mance by generating a random index into a vtable in the implementation of Pnwa. Hence, T-VIP
guarantees that a different vtable entry is checked for each execution time at the same virtual
dispatch. An attacker is thereby restricted to use non-writable function tables in order to reliably
compromise a system. By itself, circumventing this is already very hard, but would be still possible
if a valid vtable of a wrong class type is used at a virtual dispatch site. This is a limitation we
have in common with VTGuard according to [25]. However, implementing Pobj would prevent
even such attacks.

PeBouncer currently supports 32-bit PE files since the majority of web browsers uses 32-bit
code and this is the primary target of use-after-free exploits. However, the concept of PeBouncer
is usable for 64-bit code and the ELF file format as well, with only minor modifications. Some cor-
ner cases during rewriting are currently handled by an exception handler and introduce additional
overhead (see Section 4.2.1). This could be solved by leveraging binary rewriting capabilities of
ROSE [42] to insert checks inline.

8 Conclusion

In this paper, we introduced an approach to protect binary programs against vtable hijacking
vulnerabilities, which have become the de-facto attack vector on modern browsers. To this end,
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we introduced an automated method to extract virtual function dispatches from a given binary,
which we implemented in a tool called vExtractor. Furthermore, we developed a generic, static
binary rewriting engine for PE files called PeBouncer that can instrument a given binary with a
policy that checks the integrity of virtual function dispatches. Empirical evaluations demonstrate
that our approach can detect recent zero-day vulnerabilities and the performance overhead is only
slightly higher compared to compiler-based approaches.
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