
Bochumer
Linguistische

Arbeitsberichte
13

Automatic Normalization for Linguistic Annotation of
Historical Language Data

Marcel Bollmann

Bochumer Linguistische
Arbeitsberichte

Herausgeber: Stefanie Dipper & Björn Rothstein

Die online publizierte Reihe "Bochumer Linguistische Arbeitsberichte" (BLA) gibt
in unregelmäßigen Abständen Forschungsberichte, Abschluss- oder sonstige Ar-
beiten der Bochumer Linguistik heraus, die einfach und schnell der Öffentlichkeit
zugänglich gemacht werden sollen. Sie können zu einem späteren Zeitpunkt an
einem anderen Publikationsort erscheinen. Der thematische Schwerpunkt der
Reihe liegt auf Arbeiten aus den Bereichen der Computerlinguistik, der allge-
meinen und theoretischen Sprachwissenschaft und der Psycholinguistik.

The online publication series "Bochumer Linguistische Arbeitsberichte" (BLA)
releases at irregular intervals research reports, theses, and various other academic
works from the Bochum Linguistics Department, which are to be made easily and
promptly available for the public. At a later stage, they can also be published
by other publishing companies. The thematic focus of the series lies on works
from the fields of computational linguistics, general and theoretical linguistics,
and psycholinguistics.

© Das Copyright verbleibt beim Autor.

Band 13 (Dezember 2013)

Herausgeber: Stefanie Dipper
Sprachwissenschaftliches Institut
Ruhr-Universität Bochum
Universitätsstr. 150
44801 Bochum

Björn Rothstein
Germanistisches Institut
Ruhr-Universität Bochum
Universitätsstr. 150
44801 Bochum

Erscheinungsjahr 2013
ISSN 2190-0949

Marcel Bollmann

Automatic Normalization for Linguistic
Annotation of Historical Language Data

2013

Bochumer Linguistische Arbeitsberichte

(BLA 13)

Contents

1 Introduction 6

2 Corpora 8
2.1 Luther corpus . 8
2.2 TIGER/Tüba corpus . 9
2.3 Anselm corpus . 10

2.3.1 Preprocessing . 11
2.3.2 Annotation . 12

2.4 GerManC-GS corpus . 14

3 Normalization 16
3.1 Methods . 16

3.1.1 Wordlist mapping . 17
3.1.2 Rule-based normalization . 18
3.1.3 Levenshtein distance . 19
3.1.4 Weighted Levenshtein distance 20

3.2 Evaluation . 24
3.2.1 Quantitative analysis . 26
3.2.2 Qualitative analysis . 29
3.2.3 Effect of training corpus size 40
3.2.4 Using the Luther corpus for training 45

3.3 Combining normalization methods 46

4 Part-of-speech tagging 49
4.1 Methods and procedure . 49
4.2 Tagging on modern data . 53
4.3 Tagging on historical and gold standard data 57

4.3.1 Semantic and morphologic variation 60
4.3.2 Syntactic variation . 62
4.3.3 Limits of the training corpus 64
4.3.4 Punctuation . 67

4.4 Tagging on automatically normalized data 68
4.4.1 Correlation between normalization and tagging performance . . 70
4.4.2 Bridging the gap . 73

5 Related work 76

6 Conclusion 78

List of Tables

1 Correlation between original and modern punctuation marks in Anselm
texts . 13

2 GerManC-GS texts used for evaluation 14
3 Mappings for tags unique to the GerManC-GS corpus 14
4 Size, baseline, and maximum accuracy per text 25
5 Normalization accuracy per text, trained on first 500 tokens 26
6 Unknowns per text . 28
7 Examples for historical types mapped to multiple modern types 30
8 Top 7 non-identity rules per text . 33
9 WLD weights learned from the first 500 tokens of Melk 35
10 Example normalizations with distance-based algorithms from Melk . . 37
11 Example normalizations with distance-based algorithms from JubelFeste,

Berlin, and Melk . 39
12 Normalization accuracy per text, trained on first n tokens 42
13 Comparison of the 10 most frequent rules with differently sized training

parts . 44
14 Normalization accuracy per text, trained on Luther 45
15 Normalization accuracy per text, using combinations of normalizers . . 47
16 Tagging accuracy on modern data . 51
17 Mappings from STTS to STTSred and Universal 52
18 Tagging accuracy on modern data, without capitalization and punctua-

tion marks . 55
19 Tagging accuracy on historical data and gold standard normalizations . 58
20 Tagging accuracy on unknowns in gold standard normalizations 65
21 Tagging accuracy on automatically normalized texts 69
22 Comparison of tagging accuracy between original, gold standard and

automatic normalizations . 70
23 Comparison of tagging accuracy using RFTagger, on unknowns and

with different tagsets . 74

List of Figures

1 Normalization accuracy for different sizes of the training part 43

Abstract

This paper deals with spelling normalization of historical texts with regard to further
processing with modern part-of-speech taggers. Different methods for this task are
presented and evaluated on a set of historical German texts from the 15th–18th century,
and specific problems inherent to the processing of historical data are discussed. A chain
combination using word-based and character-based techniques is shown to be best for
normalization, while POS tagging of normalized data is shown to benefit from ignoring
punctuation marks. Using these techniques, when 500 manually normalized tokens are
used as training data for the normalization, the tagging accuracy of a manuscript from
the 15th century can be raised from 28.65% to 76.27%.

1 Introduction1

In the domain of corpus linguistics, part-of-speech (POS) annotation is probably the
most commonly found type of annotation for large, modern language corpora. It
can serve as a starting point for the full syntactic parsing found in treebanks such
as the Penn treebank (Marcus et al., 1993), the TIGER corpus (Brants et al., 2002),
and Tüba-D/Z (Telljohann et al., 2004). Apart from this, POS annotation can be
used for a wide range of practical applications, such as information retrieval, semantic
disambiguation (e.g., Wilks and Stevenson, 1998), or distance computations (e.g., Dipper
and Schrader, 2008). Gold standard POS annotation also plays an important role for
training and evaluation of automatic POS taggers, which in turn can provide valuable
assistance in the creation of further annotated resources. Automatic POS tagging of
modern language data is a well explored field, commonly achieving accuracies around
97% (Schmid, 1995; Brants, 2000; Schmid and Laws, 2008).

The typical domain of larger corpora such as Tüba-D/Z or TIGER is newspaper texts.
One reason for this is the common availability of such texts in relatively large amounts.
Another reason is that newspapers are typically written in a neutral, formal style of
the standard variety of a language, as opposed to, e.g., literary works, which may be
more heavily influenced by the personal writing style of one author. In recent times,
there has been a growing interest in more specialized types of corpora, e.g., corpora of
SMS texts (Walkowska, 2009) or Twitter messages (Petrović et al., 2010). Corpora of
historical data are another example of these specialized resources; projects to create his-
torical corpora have been started for several different languages, e.g., German (Scheible
et al., 2011a), Spanish (Sánchez-Marco et al., 2010), or Slovene (Erjavec, 2012). While
the creation of a corpus of modern standard language can be heavily aided by tools like
POS taggers, the same cannot be said for non-standard varieties, as performance of these
tools is typically much worse. As an example, Scheible et al. (2011b) present a study on
Early Modern German texts and report an average tagging accuracy of 69.6% for this
type of data.

While syntactic and semantic differences between historical and modern language
varieties are common, differences in spelling are probably the biggest obstacle for
natural language processing (NLP) tools. This is because spelling in historical texts
is not only different from modern spelling, but also often inconsistent due to the lack
of fixed spelling conventions. These inconsistencies can also arise within a single text
written by one author. A common approach to this problem, which is also employed
in this paper, is to “normalize” these historical spellings to their modern counterparts.
While this method has generated a lot of interest by various research groups lately (e.g.,

1This paper is a slightly modified and updated version of my Master’s thesis from December 7th, 2012, which was
supervised by Prof. Dr. Stefanie Dipper. A brief summary of the main results has also been previously published as a
workshop paper (Bollmann, 2013).

6

Baron et al., 2009; Jurish, 2010; Bollmann et al., 2011; Hendrickx and Marquilhas,
2011; Adesam et al., 2012), no clear “best” algorithm for automatic normalization has
been identified yet. Also, comparisons between the various normalization algorithms
are rarely performed (Reynaert et al., 2012, is a recent example, though).

Furthermore, there has been less focus on the effect of various normalization methods
on POS tagging. While Dipper (2010) and Scheible et al. (2011b) describe an increase
in tagging performance when using a normalization layer (rather than the original data),
the normalization was created manually in both cases and can therefore be assumed to
be correct. However, when using automatic methods, it is not obvious whether tagging
accuracy is directly linked to normalization accuracy. This is especially true for strongly
inflecting languages like German: minor differences in inflection that arise during
normalization are counted as errors there, but can still generate the correct POS tag.
Similarly, the POS tag of wrongly normalized words might conceivable be inferred
from their syntactic context if the surrounding words have been normalized correctly.
Different normalization methods might have different advantages in this regard which
cannot be derived from normalization accuracy alone.

This thesis aims to do two things: firstly, to compare different approaches to nor-
malization and evaluate them on different types of historical texts; and secondly, to
evaluate the task of POS tagging on historical language data, with a particular focus
on the effect that normalization has on tagging accuracy. It will show that there are
specific characteristics of normalized texts which affect POS tagging and should be
carefully considered when using such an approach. The language of the texts used
for the evaluation is German from the Early New High German (ENHG) to the Early
Modern period, with sample texts ranging from the 15th to 18th centuries. The modern
standard variety of New High German (NHG) is sometimes also referred to as “modern
German” here.

Spellings of ENHG and NHG wordforms are compared frequently; for easier identifi-
cation, the historical wordform and its modern (or, sometimes, automatically normalized)
counterpart are often separated by an arrow (e.g., old→ new). If glosses are used, the
first line in italics will always be the historical text, while the following lines contain
gold standard annotations; if an example deviates from this structure, it will be labelled
accordingly.

The structure of this paper is as follows: Section 2 presents all corpora that are
used in the evaluation, while Section 3 presents different approaches to normalization
and evaluates them on historical data. Section 4 discusses part-of-speech tagging
by highlighting specific problems of tagging historical data and evaluating tagging
performance on original and normalized historical texts. Section 5 presents related work,
and Section 6 concludes and discusses possible lines of future research.

7

2 Corpora

This section describes the corpora used for the normalization and tagging experiments.
Section 2.1 presents the Luther corpus that was used for the evaluation of normalization
methods. Section 2.2 describes the modern German corpus used to train the POS tagger
and to perform tagging experiments on modern data. The remaining sections discuss
the corpora used to evaluate normalization, POS tagging, and the combination of both
in the context of actual research scenarios: the Anselm corpus in Section 2.3; and the
GerManC-GS corpus in Section 2.4.

2.1 Luther corpus

Gold standard data of normalizations of historical texts is not easily available. Such
data is required, however, for training and evaluating automatic normalization methods.
An earlier study described in Bollmann et al. (2011) tried to address this problem by
creating test data from two different versions of the Luther bible. The resulting Luther
corpus is briefly described here.

For this corpus, two different versions of the bible were used: the original Early New
High German version by Martin Luther from 1545, and a revised modern version of it.2

Both versions were aligned on the basis of verses and split up randomly in development,
evaluation, and training parts. Bollmann et al. (2011) describe the alignment process in
more detail; the Luther corpus used in this thesis is identical to the one described there
except for one change: 1:n alignments, such as soltu→ sollst du ‘should you’, have
been removed.

One reason for removing 1:n alignments is that they raise the complexity of the
normalization process; it is not trivial, for example, to decide how such normalizations
could be generated with a simple Levenshtein algorithm (cf. Sec. 3.1.3). If the space
character between the words is treated just like any other character, the number of
possible normalization candidates increases by a large margin, which is likely to increase
the error rate significantly. Considering that 1:n alignments only make up a tiny fraction
of the corpus (e.g., 0.65% of the evaluation part), the disadvantages likely outweigh
the benefits. The more important reason, however, is that 1:n alignments do not occur
in the Anselm corpus, which is one of the primary application scenarios considered in
this thesis. Here, in cases like soltu, the modern word boundaries are already marked in
the transcription (e.g., solt|u). Therefore, these wordforms can be split up before the
normalization process, avoiding the above-mentioned problems. The GerManC corpus
features a similar tokenization scheme (Scheible et al., 2011b).

With this modification, the Luther corpus used here consists of 218,504 tokens in the
training part and 109,258 tokens in the evaluation part. This is comparatively large for a

2Available from http://www.sermon-online.de/.

8

corpus of annotated3 historical data: the manually annotated GerManC-GS corpus, for
example, only consists of 57,845 tokens divided across 24 different texts with possibly
different writing styles, while the average length of a text in the Anselm corpus is around
8,000 tokens.

Despite being written in 1545, language and spelling in the Luther bible is already
relatively close to modern German. In the evaluation part of the corpus, 65.13% of all
tokens in the ENHG version are already equivalent to their aligned modern counterparts,
setting a relatively high baseline for a normalization algorithm. This is not too surprising,
though, considering that Luther’s 1545 bible translation was highly influential for
the subsequent development of New High German (Besch, 2000). Typical spelling
differences to NHG are ‘v’ in place of (modern) ‘u’ (as in vnd → und ‘and’) and
duplication of consonant letters, often ‘f’ (as in the preposition auff → auf ‘in/on/at’).

2.2 TIGER/Tüba corpus

The TIGER/Tüba corpus has been created as a test and training corpus for the evaluation
of part-of-speech tagging in Section 4. As the name suggests, it results from the
combination of the TIGER corpus (Brants et al., 2002) and version 6 of the Tüba-D/Z
treebank (Telljohann et al., 2004).

Although most POS taggers already provide a language model for German, there
are a few problems with using them in the context of this work. First, models for
different taggers have often been trained on different tagsets, requiring an individual
post-processing step to map them to the tagset used in the evaluation texts. If the model
uses a smaller tagset, an unambiguous mapping might not even exist, which could lead
to distorted results. Second, while many taggers provide a pre-compiled language model,
they do not provide the data that was used to train it. Having access to the training
data, however, enables us to perform more sophisticated experiments, such as testing
the effect of removing all punctuation, a potential drawback that resembles the situation
found in historical data. Finally, tagging performance across different taggers becomes
more comparable when the training data is the same in each case.

A slight problem arises from the fact that the texts in TIGER and Tüba-D/Z mostly
follow traditional German orthography before the 1996 orthography reform. The gold
standard normalizations in the Anselm corpus do not consequently follow either the
original or the reformed orthography, though (GerManC-GS appears to follow old
orthography rules). The most significant change of the reform consists of replacing
‘ß’ with ‘ss’ after short vowels; however, vowel length cannot be determined from the
wordform alone. Therefore, to reduce potential errors that could arise from incompatible
spellings, the corpora were modified to replace all ‘ß’ spellings with ‘ss’ regardless of
their context; the same has been done with all other input data for the POS tagger. This

3In this case, the annotation is the modernization of the 1545 Luther text.

9

results in a partially artificial, but more consistent spelling style, while not negatively
impacting tagging performance.4

Both TIGER and Tüba-D/Z contain POS annotation in the style of the Stuttgart-
Tübingen-TagSet (STTS) (Schiller et al., 1999). There are several minor differences,
however, mostly concerning the ordering of morphological attributes and naming con-
ventions of tags (e.g., pronominal adverbs are tagged as PROP in Tüba-D/Z, but PROAV
in TIGER). Therefore, a pre-processing step was performed to map both corpora to a
uniform tagset. This mapping is unambiguous and introduces only minor changes to
the tags. The combined corpus still conforms to the STTS guidelines5 and consists of
1,864,816 tokens in 106,288 sentences.

2.3 Anselm corpus

The Anselm corpus (Schultz-Balluff and Dipper, 2013) consists of different versions of
the text “Interrogatio Sancti Anselmi de Passione Domini” (‘Questions by Saint Anselm
about the Lord’s Passion’). It is created in the context of an ongoing, interdisciplinary
research project which aims to provide a digital, annotated edition of these texts. This
includes enriching the data with part-of-speech annotation. Using this data, the perfor-
mance of normalization and POS tagging can be evaluated in the context of an actual
research scenario.

In total, there are more than 50 German manuscripts and prints of the Anselm text,
written in various German dialects between the 14th and 16th centuries. Versions can
differ considerably in length, averaging about 8,000 tokens. The texts are religious
in nature and written in a question–answer style, with Saint Anselm of Canterbury
asking questions to the Virgin Mary about the Passion of Jesus Christ. A gold standard
annotation has been created for two of the manuscripts so far, which are consequently
used here: a manuscript of 4,783 tokens kept in Melk, Austria, written in an Eastern
Upper German dialect; and another manuscript of 5,399 tokens from Berlin, written in
an Eastern Central German dialect. Both manuscripts are dated to the 15th century.

(1) Owe
Oh weh

allerlibeſte
allerliebste

vrouwe
frau

dyn
dein

lybes
liebes

kynt
kind

unſer
unser

meiſter
meister

iſt
ist

gevangen
gefangen

‘Alas, dearest woman, your dear child, our master, has been captured’

(2) O
Oh

allerliebſte
allerliebste

fraw
frau

· dein
dein

chind
kind

vnſer
unser

maiſter
meister

iſt
ist

geuan̄gn̄
gefangen

‘Oh dearest woman, your child, our master, has been captured’

Example 1 shows an excerpt from the Berlin manuscript, while Example 2 shows the
same passage from the Melk text; the second line always gives the modern spelling of

4This is not surprising, considering that ‘ß’ and ‘ss’ are different spellings for the same consonant and rarely induce
a difference in meaning. Nevertheless, ten-fold cross-validation has been performed on the TIGER/Tüba data with and
without the replacement of ‘ß’, and found no difference in average POS tagging accuracy.

5A minor deviation is that prepositions do not contain annotations of morphological case, as this information was
available in the TIGER corpus, but not in Tüba-D/Z.

10

each wordform (ignoring capitalization). Some characteristic spelling differences can
already be observed here, e.g., the frequent use of the letter ‘y’ in the Berlin text, which
can represent modern ‘i’, ‘ie’, or ‘ei’. The Melk manuscript uses the letter ‘y’ much
less, but has the frequent spelling ‘ch’ for modern ‘k’, which does not appear in the
Berlin text. Also note the very different spellings for modern Frau ‘woman’, vrouwe vs.
fraw, which are both used frequently in the respective texts to refer to the Virgin Mary.
These examples already highlight some of the difficulties of spelling normalization, as
the individual spelling characteristics can vary substantially between texts.

2.3.1 Preprocessing

Transcriptions of the manuscripts are diplomatic, i.e., they seek to preserve as many
features of the original manuscript as possible. As transcriptions are done in plain
text, special characters or character sequences are used to encode such features. Very
common encodings are, e.g., a dollar sign ($) for a ‘long s’ (ſ) and a backslash followed
by a hyphen (\-) for a nasal bar (). It is not trivial to process this data with normaliza-
tion algorithms: in a naive approach, multi-character transcription symbols would be
treated as separate “letters” by the algorithm. Converting the transcriptions to Unicode
characters is a possible solution here. However, another problem remains: combining
Anselm data with data from other sources that use different transcription conventions
might prove difficult. If, for example, the ‘long s’ is not transcribed separately (and the
plain ‘s’ character is used instead), normalization algorithms trained on Anselm texts
(which always encode ‘long s’) will likely perform worse on this type of data, and vice
versa. As the automatic processing of historical texts typically suffers from a sparse
data problem, it is desirable to be able to include data from as many similar resources as
possible, though.

To avoid the above-mentioned issues, all transcriptions are converted to plain alpha-
betic characters before further processing. ‘Long s’ is converted to plain ‘s’ during this
step. Superscriptions and ligatures are treated as separate characters, while diacritics
are removed except for the umlaut characters (ä, ö, ü) that still exist in modern German.
Most of these conversions are straightforward; some transcription marks do not have a
unique replacement, though. The nasal bar and the ‘r’ abbreviation (transcribed as an
apostrophe) are typical examples, and occur relatively frequently in the texts. The former
can be used in place of ‘(e)n’, ‘(e)m’, or ‘e’ preceding a nasal, while the latter typically
replaces ‘(e)r’. Several of these variants can be observed in the Melk manuscript:

(3) (a) meȳ→ mein (nasal bar for ‘n’)
(b) iudn̄→ juden (nasal bar for ‘e’ before ‘n’)
(c) vm̄b→ um (nasal bar has no modern representation)

(4) (a) v’chaufft→ verkauft (abbreviation for ‘er’)
(b) ma’ia→ maria (abbreviation for ‘r’)

11

Variants (3b) and (4a) occur the most often in this manuscript. Also, it can be
observed that the nasal bar usually represents ‘e’ only when placed above ‘n’, and often
has no representation in modern spelling when placed above ‘m’. Therefore, for the
Melk manuscript, the following simplification rules are used: ‘n̄’ is simplified to ‘en’;
‘m̄’ is simplified to ‘m’; all other uses of the nasal bar introduce an extra letter ‘n’ after
the letter they are placed on; and the ‘r’ abbreviation is always simplified to ‘er’. In the
Berlin manuscript, the nasal bar is simplified to ‘n’ in all cases, as this appears to be the
predominant use here. Also, both symbols are used much more frequently in the Melk
manuscript (403 nasal bars, 39 ‘r’ abbreviations) than in the Berlin text (30 nasal bars,
2 ‘r’ abbreviations). While these simplification rules still introduce some errors, they
appear to be the most sensible rules for these manuscripts without making individual
decisions for each wordform.

Additionally, the letter ‘ß’ is always converted to ‘ss’. This only affects normalization
and modernization, as ‘ß’ in its modern form does not occur in the transcriptions. The
former, however, were found to be inconsistent regarding their use of the reformed
German orthography. As the letter ‘ß’ is always replaced by ‘ss’ in the input data for the
POS tagger anyway (cf. Sec. 2.2), the change was already made in the normalization
and modernization layer here.

Finally, all characters in the transcriptions are converted to lowercase. The Anselm
manuscripts lack consistent capitalization: in the Melk text, capital letters are often—but
not always—used with proper nouns, but also in some contexts without a clear pattern,
as seen in Example (5). They are not regularly used for common nouns. Also, while
words at the beginning of a sentence are sometimes capitalized, this is not a definite
rule.

(5) von
von

Rechter
rechter

chrankchait
Krankheit

‘(because) of grave disease’

These factors make it appear unlikely that capitalization provides a reliable clue for
either the normalization or the tagging process. Therefore, this information was dropped
by always lowercasing all characters.

Whenever examples from the texts are shown during discussion of normalization and
POS tagging, only the lowercased, simplified version of the transcription will be given.

2.3.2 Annotation

Both the Melk and the Berlin manuscript have been manually normalized and POS tagged
by student assistants. POS tagging follows the STTS tagset (Schiller et al., 1999) but
does not include morphological information (such as case, number, gender). The nor-
malization follows the guidelines published in Bollmann et al. (2012), which distinguish
two layers: “strict” normalization and modernization. Normalization in the stricter sense

12

$. $, other

virgule (/) 126 17 24
dot (.) 27 3 10

middle dot (·) 11 2 7
other 203 258 4,089

(a) Melk text

$. $, other

alinea (¶) 177 21 20
middle dot (·) 98 200 158

virgule (/) 1 1 0
other 81 166 4,474

(b) Berlin text

Table 1: Correlation between original and modern punctuation marks in the Anselm
texts; column labels refer to STTS tags, i.e., ‘$.’ is sentence-final punctuation (including
colons and semi-colons), ‘$,’ is the modern comma.

represents the closest modern wordform for a given historical wordform, while modern-
ization changes wordforms with regard to semantics and correct modern inflection. The
latter also replaces extinct wordforms with modern equivalents, while the normalization
layers maps them to “artificial” lemmas. The hypothesis here is that the normalization
layer is easier to generate with automatic normalization algorithms (especially if they do
not take word context into account to help determine proper inflection), while the mod-
ernization layer achieves a higher tagging accuracy due to being closer to a grammatical
NHG sentence.

Additionally, both texts were enriched with information about modern punctuation
and sentence boundaries. Table 1 gives an overview of the correlation between punctua-
tion marks found in the manuscripts and the modern punctuation marks added by the
annotator. In the Melk text, the original punctuation most often coincides with modern
sentence-final punctuation, with the virgule being used the most. However, 55.31% (203)
of all modern sentence boundaries are not marked in the original manuscript at all.
In place of the modern comma, no punctuation mark appears in the manuscript in
92.14% (258) of the cases. The virgule symbol appears very frequently in this tran-
scription, however only in the first 72% of the text—in the remaining part, not a single
virgule symbol is found. It could not be determined whether this is an original feature
of the manuscript or due to an unfinished transcription process. If it is the latter, modern
sentence-final punctuation could potentially show a higher coincidence with the virgule
symbol on the finished transcription.

In the Berlin text (Table 1b), the virgule is almost never used. Instead, a certain
type of paragraph mark (¶), the alinea, is frequently used along with the middle dot
(·). Here, the tendency is a bit clearer for modern punctuation marks to coincide with
a symbol in the manuscript: modern sentence boundaries are most often marked with
an alinea (49.58%), while the modern comma is most often represented by a middle
dot (51.55%). On the other hand, considering Table 1b by row, the middle dot only

13

No. Date File name Tokens

1 1677 LeichSermon 2,585
2 1730 JubelFeste 2,523
3 1770 Gottesdienst 2,292

Table 2: GerManC-GS texts used for
evaluation; information taken from
Scheible et al. (2011a).

GerManC-GS STTS

NA NN
PAVREL PAV
PTKREL PRELS
PWAVREL PWAV
PWREL PRELS

Table 3: Mappings for tags unique to
the GerManC-GS corpus

corresponds to a modern comma 43.86% of the time, while having no modern equivalent
in 34.65% of cases (158 occurrences; column ‘other’). While this distribution is notably
different from that of the Melk text, it is still very unreliable for creating a mapping of
original to modern punctuation.

2.4 GerManC-GS corpus

The GerManC corpus aims to be a representative corpus of historical, written German
from 1650–1800 (Scheible et al., 2011a), classified as Early Modern German (EMG)
by the authors. It contains texts from different periods within that time frame, different
dialectal regions, and different genres (such as “newspaper”, “letter”, or “narrative”).
The GerManC-GS corpus aims to be a subcorpus of GerManC that has been enriched
with gold standard annotations of normalization, lemmatization, and part-of-speech tags.
For this purpose, three texts of different time periods have been selected for each genre.
The subcorpus is created specifically to test and to help improve existing NLP tools on
historical data (Scheible et al., 2011a, p. 125).

In this thesis, the texts of the genre “sermon” from the GerManC-GS corpus will be
used (referred to as “Sermon texts” from now on).6 This genre was chosen because
it is of a religious nature, similar to the Anselm texts and the Luther bible. Table 2
gives some general information about the three texts. On average, they are less than
2,500 tokens in size, making them the shortest texts in this evaluation. Also, with the
oldest text being written in 1677, they are considerably newer than both the Anselm
texts (which are dated to the 15th century) and the Luther bible (from 1545). Therefore,
the language of these texts is expected to be considerably closer to New High German,
which in turn should make them easier to process with existing tools.

Examples (6–8) show an excerpt from each of the three Sermon texts. They give
the impression that spelling is not as varied as with the Anselm texts, however, some

6I would like to thank Silke Scheible for kindly providing me with the texts.

14

inflectional (k eostlich → köstliches ‘delicious’) and syntactic differences can still be
found (dir danken would actually be dir zu danken ‘to thank you’ in NHG).

(6) Und
Und

darumb
darum

ist
ist

Ihnen
Ihnen

ihr
ihr

Schmertz
Schmerz

desto
desto

gr eosser
größer

worden
geworden

‘And that is why their pain became so much greater’

(7) Mein
Mein

GOTT
Gott

!
!

es
Es

ist
ist

ein
ein

k eostlich
köstliches

Ding
Ding

,
,

Dir
dir

dancken
danken

‘My Lord! It is an exquisite thing to thank you’

(8) gieb
gib

meinen
meinen

Worten
Worten

das
das

Feuer
Feuer

,
,

das
das

die
die

Herzen
Herzen

entz eundet
entzündet

‘Give my words the fire to ignite hearts’

The gold standard part-of-speech annotation follows the STTS tagset without mor-
phological attributes. However, some additional tags have been introduced to cover
features specific to Early Modern German: NA marks adjectives that are used as nouns,
while the other tags (PAVREL, PTKREL, PWAVREL, PWREL) mark various parts of
speech when used to introduce a relative clause. As the tagging evaluation is performed
using a tagger trained on standard STTS, these tags are mapped back according to the
scheme in Table 3. This mapping only affects 80 tokens from all three Sermon texts
combined.

Contrary to the Anselm corpus, the original transcriptions are given in the form of
Unicode characters. Superscripts of characters are commonly found, though in general,
fewer “special” characters are used than in the Anselm data. Still, to be able to perform
comparable evaluations with both types of data, the same conversions are applied to the
Sermon texts (cf. Sec. 2.3.1): all texts are lowercased and converted to plain alphabetic
characters. In analogy to the Anselm texts, examples discussed in the remainder of this
thesis will use this simplified version of the texts only.

The normalization of spelling variants in GerManC-GS aims to achieve a compromise
between historical accuracy and usefulness for modern NLP tools, and is described
as “a type of pre-lemmatisation” (Scheible et al., 2011a, p. 126). Spelling variants are
normalized to a common head variant, typically representing the modern spelling of the
word; however, extinct wordforms are also normalized by applying systematic spelling
modernizations (Scheible et al. (2011a) give the example of the verb ending -iren→
-ieren). All in all, this normalization scheme is closer to the “normalization” layer of
the Anselm corpus than the “modernization” one, though not exactly identical. The
lemmatization layer is not used in this thesis.

15

3 Normalization

The task of normalization as it is performed here is defined as the mapping of historical
wordforms to their modern counterparts. Section 3.1 first presents various normalization
methods that can be used to achieve this, while Section 3.2 evaluates them on the corpora
discussed in the previous section. Finally, Section 3.3 presents an approach to combine
normalization algorithms and evaluates such combinations for the previously discussed
methods.

3.1 Methods

This section describes the normalization methods, sometimes referred to as “normal-
izers”, that are used for the evaluation. Sec. 3.1.1 presents a simple wordlist mapper;
Sec. 3.1.2 presents a rule-based approach to normalization; Sec. 3.1.3 discusses how
Levenshtein distance (and other distance measures) can be used for normalization; and
Sec. 3.1.4 describes the automatic learning of a weighted Levenshtein distance.

All normalization methods presented here have been previously discussed in Boll-
mann (2012), except for the learning algorithm presented in Sec. 3.1.4. In the context of
this thesis, a stronger focus will be put on the individual strengths and weaknesses of
the algorithms, especially in the light of the individual characteristics of the Anselm and
GerManC texts.

There is one characteristic that all of the presented methods have in common: they
operate context-free, i.e., they only process one wordform at a time without taking
neighboring wordforms into account. Naturally, this is a disadvantage when dealing
with ambiguous wordforms that should be normalized differently depending on context.
A common example from Early New High German is the form jn, which can represent
both the preposition in ‘in’ and the pronoun ihn ‘him’. All methods discussed below
will (ideally) always choose either one or the other, but cannot discriminate between
these cases, which limits the maximum accuracy they can achieve. As an example, this
upper bound is found to be between 90% and 95% for the Anselm texts (cf. Table 4 on
p. 25).

A method to make use of context information to improve normalization is presented
by Jurish (2010), which also includes a combination of different normalization algo-
rithms. The reasons for not considering such an approach here mainly lie in the raised
complexity of such a system: as few comparisons between methods exist, it is desirable
to evaluate the strengths, weaknesses, and typical accuracies of the individual normaliza-
tion methods first before including them in a more complex framework. As some of the
discussed algorithms have not yet been thoroughly evaluated on their own, evaluation is
restricted to the simpler context-free approach here.

16

3.1.1 Wordlist mapping

From a conceptual point of view, arguably the simplest method of normalization is to
perform word-by-word substitutions according to a pre-defined list. This method is
called “wordlist mapping” here, as it maps entries from a list of historical wordforms
to their modern counterparts. As a result, it has no concept of characters or spelling
variation.

Mappings can be created manually or learned from training data. In the implemen-
tation used here, the wordlist mapper trivially learns pairs of historical and modern
wordforms from aligned data, and also keeps track of how often each pair was seen
during training. During normalization, if a historical wordform can be mapped to more
than one modern wordform, the mapping with the highest frequency is chosen.

Despite its simplicity, the wordlist mapping approach is actually a very effective
strategy for automatic normalization, as the evaluation in Section 3.2 confirms. A word-
list that has been trained on a sufficiently varied corpus of historical data can possibly
contain many different spelling variants, particularly of function words. Therefore, even
if the vocabulary of the text to be normalized is quite different from the one the wordlist
has been trained on, if many common function words are covered by the list, this will
still result in many correct normalizations. The effect of correctly normalizing function
words should not be underestimated; they are not only very frequent in any kind of text,
but also among the hardest words to normalize for other algorithms. This is because
they tend to be short, and therefore more easily confusable with other words:

(9) eyme→ einem ‘a/an’ (dative case)

Example (9) is taken from the Berlin text. The wordform eyme here has only two
letters in common with its desired normalization einem (or three, if transposition of
letters is allowed), which in this case means that more than half of the input word must
be changed in order to match the modern form. It is not obvious how a context-free
algorithm that operates on a character level would arrive at the correct word, considering
that there are several other candidate wordforms which are more “similar” to the input
string, such as eimer ‘bucket’ or reime ‘rhymes’ (see also Secs. 3.1.3 and 3.1.4 for
clearly defined notions of “similarity”).

This example also highlights another advantage of using wordlists: it can cover
spellings that are highly idiosyncratic (provided that at least one instance of the spelling
has been learned during training) and/or differ considerably from modern spelling
conventions. Also, it is well-suited for handling abbreviations, which are very common
in historical manuscripts and cannot be sensibly processed on a character level alone,
such as in Example (10).

(10) ihūs xpūs→ jesus christus ‘Jesus Christ’

17

Due to the very nature of the method, a wordform that has not been previously seen
cannot be normalized at all using wordlists. This is a drawback which implicates that
wordlist mapping should probably not be used alone, but rather as one component of a
combination of normalization methods. This approach is explored further in Section 3.3.

3.1.2 Rule-based normalization

The rule-based normalization algorithm was first presented in Bollmann et al. (2011);
the identical algorithm will be used here. The main idea of this approach is to extract
character rewrite rules from a training set of aligned data. Rewrite rules can operate
on one or more characters and take their immediate context into account. They can be
written in a form similar to phonological rules:

(11) v→ u / # _ n (‘v’ is replaced by ‘u’ between a word boundary and ‘n’)

(12) j→ ih / # _ r (‘j’ is replaced by ‘ih’ between a word boundary and ‘r’)

(13) we→ ε / u _ # (‘we’ is deleted between ‘u’ and a word boundary)

Example (11) shows a rule typical for the Luther bible, where it is learned from
the very frequent word pair vnd→ und ‘and’. Rule contexts always consist of exactly
one character or a word boundary (#), whereas both the left- and right-hand side may
contain multiple characters as well as none (Examples (12) and (13)), the latter case
being symbolized by the epsilon symbol (ε). This feature of the rule-based method
resulted from an ambiguity inherent in the learning algorithm for the rules. It is based on
the algorithm for calculating Levenshtein distance (Levenshtein, 1966), where instead
of only counting the number of edit operations that are performed, the actual operations
themselves are recorded. However, this can lead to ambiguous alignments. Example (14)
shows the two possible alignments for the word pair jre→ ihre ‘her/their’:

(14) (a) j r e
i h r e

(b) j r e
i h r e

Here, both alignments can be generated by the Levenshtein algorithm, as the number
of edit operations is the same for both (14a) and (14b). However, from a linguistic
point of view, the replacement j→ i is more plausible than the alternative j→ h. Also,
during the development of this method, many cases like (14) involved digraphs (‘ih’) or
trigraphs. Therefore, to circumvent the alignment problem, neighboring replacement
rules are always merged, in this case resulting in rule (12). In Section 3.1.4, an alternative
approach to this problem is discussed.

For normalization, rules are applied to a historical input word from left to right. If
there are several applicable rules for a given position within a word, rules are chosen
in such a way that the average probability of rules used to generate a normalization

18

is maximized. Rule probabilities are calculated from the frequencies of the rules
during training. However, they are not the only factor in deciding which rule to apply:
additionally, a (modern) lexicon lookup is performed. Only words that are covered by
this lexicon can ever be generated by the rules. In the implementation used here, this
dictionary is dynamically updated during training if the training data contain previously
unknown modern wordforms.

(15) (a) d→ d / n _ # (‘d’ is not changed between ‘n’ and a word boundary)
(b) ε→ ε / r _ e (nothing is inserted between ‘r’ and ‘e’)

A peculiarity of the rule-based approach is the introduction of identity rules and
epsilon identity rules, as shown in Example (15). Identity rules state that a character
should not be changed in a given context, while epsilon identities are taken to mean that
no insertion has taken place. These type of rules are intended to “compete” with other,
non-identity rules during the actual normalization process. As rules are selected based
on their probabilities, if an identity rule has a sufficiently higher probability, it will be
chosen over other, non-identity rules. This is the only mechanism in this approach for
deciding whether a given character in the input word should even be modified or not.
Again, Section 3.1.4 presents an alternative way to handle this problem.

Note that the rule-based normalization can fail to produce a result in either of two
cases: (1) there is no applicable rule for a given position in a word; or (2) no combination
of rules leads to a word covered by the modern lexicon. The first case can occur if
there is very little training data, or the data to be normalized contains spellings that are
very different from those seen during training. The second case can occur for the same
reasons, but also when the vocabulary of the test data is not covered by the modern
lexicon. Both cases result in leaving the historical wordform unchanged.

3.1.3 Levenshtein distance

Levenshtein distance is a string-based distance measure originally described in Lev-
enshtein (1966). The Levenshtein distance—also called edit distance—between two
strings is defined as the minimum number of edit operations required to transform one
string into the other. Allowed edit operations are the insertion, deletion, and substitution
of characters.

In the context of normalization, Levenshtein distance can be used by comparing a
historical input string to all wordforms found in a modern lexicon. The wordform with
the lowest distance to the input string is then used as the normalization. In theory, this
approach is not restricted to Levenshtein distance, but can be used with any string-based
distance measure.

The normalization algorithm based on Levenshtein distance is the only normalization
method compared here which requires no training data, and in fact cannot be trained at
all. For this approach to produce meaningful results, it is necessary that the spelling in

19

the historical text is already very close to modern spelling. However, even then, wrong
normalizations are very likely to occur. This is because every character is treated the
same way: for the wordform got, the algorithm is just as likely to return the correct gott
‘God’ as it is to return rot ‘red’ or gut ‘good’, because they all have an edit distance of 1
to the input string.

Therefore, standard Levenshtein distance should probably not be seen as a serious
normalization method, but rather as a baseline for other distance-based measures. The
evaluation in Section 3.2 supports this view.

3.1.4 Weighted Levenshtein distance

While standard Levenshtein distance is a very raw measure for comparing strings,
there exist several refinements for different application scenarios. One of the most
versatile extensions is to allow edit operations to have individual weights. In this version,
instead of simply counting the number of edit operations, the sum of the weights of the
individual operations is used. From all possible sets of edit operations that transform
one string into the other, the sums of the weights are considered; the minimum of these
sums is then defined as the distance between the two strings. This variant of Levenshtein
distance will be called “weighted Levenshtein distance” (WLD) here. If all weights are
set to 1, WLD is equivalent to the standard Levenshtein distance discussed above. The
method of using this distance for normalization is the same as for standard Levenshtein
distance, too.

Properties Weights are typically set between 0 and 1, with 1 being the default cost for
insertions, deletions, and substitutions if no individual weight is defined. Weights allow
for a more refined assessment of spelling differences: the substitution j→ i can be given
a relatively low weight, as this is a common spelling variation in some ENHG texts,
whereas a substitution that should never occur (such as j→ x) can be left at the default
cost. This way, the first substitution will always be preferred, while the latter will only
be considered in rare circumstances, if at all.

Note that even with weighted Levenshtein distance, different variants are conceivable:
for example, WLD can be either directed or undirected. In the undirected version,
substituting ‘a’ with ‘b’ always has the same weight as substituting ‘b’ with ‘a’; in the
directed version, they can be assigned different weights. Spelling variations between
historical and modern texts are typically not symmetric, though. While the letter ‘u’
can sometimes represent a modern ‘f’—Example (16) shows this and is taken from the
Luther bible—it is unusual to find an example for the opposite direction. Even with
characters that are used interchangeably to some extent, like ‘u’ and ‘v’, one direction is
usually more common than the other: while u→ v is possible, as in Example (17), it
is much more common to find the replacement v→ u. These observations should be

20

reflected in the edit weights. Hence, it seems reasonable to always use directed WLD
when working with historical texts.

(16) zweiuel→ zweifel ‘doubt’

(17) douon→ davon ‘therefrom’

A distinguishing property of WLD is that only actual modifications to the input string
can be assigned weights. In other words, leaving a character unchanged always has
a “cost” of zero. This is a fundamental difference to the approach of the rule-based
method (cf. Sec. 3.1.2), where identity and non-identity rules have equal status, and
the preference for any given character to be left unchanged must be learned from the
training data first. Therefore, normalization with WLD always has a bias towards similar
wordforms, which is not necessarily the case with the rule-based approach. In fact, if an
input wordform is already covered by the modern lexicon, it will never be changed by
the WLD approach (as the distance of a wordform to itself is always zero), whereas this
is still possible with the rule-based method.

Levenshtein distance and its modifications typically operate on single characters.
It is possible, though, to extend the measure to n-gram substitutions. As an example,
for the word pair in Example (17), a weight could be defined for the edit operation
ou→ av. Note that this weight can be independent of that of the two single-character
edit operations combined. Furthermore, it is not necessary that both sides of the edit
operation have the same number of characters. The resulting distance measure is still
well-defined using the same definition as given above; allowing n-gram weights simply
extends the number of possible edit operations that have to be considered.

With this modification, WLD does not only cover both common single-letter variants
and multi-character substitutions, but also offers more flexibility than the rule-based
approach. This is because n-gram weights can also be defined for substitutions where
both sides share one or more characters, e.g., vn → un. This resembles the context
information found in the rule-based approach, but has the advantage that the amount of
context that is included can be freely varied. Therefore, WLD with n-grams can assign
weights to very specific replacements as well as to more general ones. The rule-based
method, on the other hand, is not able to capture generalizations (such as v→ u) unless
the replacement is learned in all of its possible contexts. There is one drawback of the
current WLD implementation, though: it is not possible to refer to word boundaries in
n-gram substitutions. While it is conceivable to extend the approach to allow for this
(by treating the word boundary as just another character), this feature has not yet been
implemented here.

To sum up, weighted Levenshtein distance (WLD) as it is used here extends Lev-
enshtein distance by assigning weights to edit operations. The default cost of single-
character edit operations is 1, while the identity of characters (i.e., not changing anything)
always has a weight of 0. Weights may be also assigned to n-gram edit operations.

21

Furthermore, a directed WLD measure is used, so rule weights do not need to be
symmetric.

Implementation and learning of weights In Bollmann (2012), first experiments
were performed with a WLD measure where weights had been defined manually. For
this, the historical data had been manually inspected for characteristic spelling variations
first. A more elegant solution is to learn weights automatically from training data, as this
approach can profit from already existing gold standard normalizations without requiring
further manual work. Several algorithms have been proposed for this purpose (e.g.,
Ristad and Yianilos, 1998; Hauser and Schulz, 2007); the implementation used here
roughly follows the approach outlined in Adesam et al. (2012).

Before any weights can be learned, the word pairs used for training have to be aligned
on a character level. This can be achieved using a Levenshtein algorithm, but requires
the resolution of ambiguity, which was already mentioned in the discussion of the rule-
based approach (cf. p. 18) and illustrated in Example (14). Where the rule-based method
circumvents the problem by merging neighboring rules, another approach is taken for
the WLD method. Here, the ambiguity is resolved by using iterated Levenshtein distance
alignment (Wieling et al., 2009). The main principle underlying this alignment algorithm
is to calculate statistical dependence between characters. In the example jre→ ihre, two
possible alignments for the character ‘j’ exist; which alignment is chosen ultimately
depends on the other contexts where ‘j’ occurs. If there are other word pairs where
‘j’ can be unambiguously aligned to ‘i’ (e.g., jn→ in), but none that unambiguously
connect ‘j’ to ‘h’, the statistical dependence between ‘j’ and ‘i’ will be considerably
higher. This leads to the alignment j → i being preferred in ambiguous cases, too.
Statistical dependence is calculated using pointwise mutual information (Church and
Hanks, 1990); edit distance weights are then adjusted accordingly, and alignments are
re-calculated using these new weights. The whole process is repeatedly iteratively until
the alignments have converged.

The formula to calculate WLD weights from the final set of alignments is again based
on Adesam et al. (2012), but was refined empirically by testing on the development part
of the Luther corpus (cf. Sec. 2.1) to produce more sensible results. If LHS and RHS
are the left- and right-hand sides of a substitution, respectively, the basic formula is:

(18) −1

d
log pα(RHS|LHS)

The function pα calculates the (conditional) probability of the characters with additive
smoothing (using α = 0.5), with the exception that infrequent characters on the left-
hand side are additionally penalized. The factor d is used to scale down the resulting
value in order to bring it in line with the default cost of 1. Adesam et al. (2012) use
d = 10; with the Luther bible, d = 7 was found to be better. Finally, weights that are

22

higher than the number of characters on the left-hand side were cut, as they will rarely
if ever be used during normalization. Primarily, this was a consideration of runtime
performance of the algorithm (see below).

With regard to n-gram weights, two seperate variants are considered: firstly, using
only unigram weights (WLDuni); and secondly, extracting unigram, bigram, and trigram
weights (WLDtri). For determining bigrams and trigrams, “empty” alignments are also
counted. Consider again the alignment of jre→ ihre in Example (14a), repeated here
including the epsilon symbol for the empty position:

(19) j ε r e
i h r e

The modern character ‘h’ has no alignment in the historical input string. However,
the empty position in the input string is still counted for the extraction of n-grams. As an
example, for bigram extraction, this results in the following alignments to be considered:

(20) (a) [j ε] r e
[i h] r e

(b) j [ε r] e
i [h r] e

(c) j ε [r e]
i h [r e]

From the alignments in Example (20), weights will be learned for the substitutions
j→ ih and r → hr. The alignment in (20c) has identical characters on the left- and
right-hand side, and is therefore not assigned a weight, as identities are required to
always have a weight of zero. This example shows that counting empty positions can
result in edit operations with differing numbers of characters on both sides, similar to
the multi-character rules from Examples (12) and (13).

One exception is made when extracting weights: “pure” insertions, i.e., edit operations
with an empty left-hand side, are not allowed. This is a drawback especially for the
unigram-only variant, as no insertion weights can be learned at all. Here, the insertion
of a character always has the default cost of 1. This restriction was found to significantly
improve normalization results, as insertions tend to be applied too often otherwise. Note
that insertions can still occur with bigrams and trigrams, as in Example (20), if the
left-hand side of the edit operation has fewer characters than the right-hand side.

Finally, a few things should be said about the implementation of the normalization
algorithm. Normalization using WLD is defined as finding the entry in a modern lexicon
with the lowest distance to the input string. Of course, calculating the distance for
all entries in the lexicon is computationally expensive and therefore not feasible. The
implementation used here is built using finite-state technology. The main idea is that any
WLD parametrization can be represented as a weighted finite-state transducer (Mohri
and Sproat, 1996). If this transducer is composed with a finite-state acceptor representing
the modern lexicon, this results in a finite-state automaton that takes an input string and

23

outputs all words in the modern lexicon along with their distance. Applying a shortest-
path algorithm to this automaton then yields the entry with the lowest distance (Mohri
et al., 2000, p. 15).

While this method is exact, it is also relatively slow. The time to normalize a
single token varies a lot and also depends on the amount of different weights that
have been defined/learned. However, it was not uncommon to see durations between
500 ms and 3,000 ms on the test setup7 for normalization of just one token, which
is probably too slow for productive use. Using heuristics to reduce the number of
calculations is probably the most promising solution; Adesam et al. (2012) use a filtering
approach for this purpose. While there has been theoretical work on more efficient
algorithms for generalizations of Levenshtein distance (Mitankin et al., 2011), no
efficient implementation for WLD exists based on this theoretical model.8

3.2 Evaluation

This section presents an evaluation of the normalization methods discussed above. First,
some general information about the evaluation procedure and the texts used for the
evaluation is given. Section 3.2.1 then proceeds to give a quantitative evaluation of the
different methods across the texts, while Section 3.2.2 examines the individual strengths
and weaknesses of the methods by analyzing examples and looking at what was actually
learned. Section 3.2.3 tries to assess the question of how much training data is required
for good normalization results.

All normalization methods except for the wordlist mapper require a modern lexicon
to work. The same modern lexicon is used for all evaluations here. It consists of all
simplices that can be generated using the finite-state morphology DMOR (Schiller,
1996) and is additionally enriched with the vocabulary of the full modernized Luther
bible.

For all texts except Luther, normalization is evaluated without punctuation and foreign
words (e.g., passages or phrases written in Latin). These tokens are filtered out using
the gold standard part-of-speech annotation to detect them. While the Luther test
corpus does not contain punctuation marks, foreign words have not been removed as
no POS annotation for the corpus is available. The filtering is done to obtain more
accurate results: punctuation marks should not be changed by the normalization and
are therefore trivial to normalize, and the spelling of foreign words is unlikely to be
relevant for the spelling of words in the main language. At least for the Anselm corpus,
POS annotation is not required to perform this filtering step: punctuation marks can
be detected relatively easily from the characters used, and foreign words are already
explicitly marked in the transcriptions. Therefore, the filtering can also be applied to

7Intel i7-870 @ 2.93 GHz, 16 GB RAM, Linux 3.6.4
8In fact, the main author of the cited paper doubts that such an implementation is feasible for weighted Levenshtein

distance due to the high memory requirements (P. Mitankin, personal communication, October 8, 2012).

24

Text Tokens Baseline Maximum

Luther (eval) 109,258 65.13% 94.65%

Berlin (norm) 4,700 23.40% 95.23%
Berlin (mod) 4,700 21.34% 92.04%
Melk (norm) 4,541 39.46% 93.26%
Melk (mod) 4,541 35.87% 90.42%

LeichSermon 2,178 73.09% 98.99%
JubelFeste 2,137 79.41% 99.53%
Gottesdienst 1,953 83.92% 99.74%

Table 4: Size, baseline (accuracy without normalization) and maximum achievable
accuracy per text, after filtering punctuation marks and foreign words; “norm” and “mod”
refer to the normalization and modernization layer of the Anselm corpus, respectively.

these texts without prior POS annotation.
Table 4 shows the size of all texts after filtering along with their baseline and max-

imum accuracies. The baseline is the percentage of identical tokens without any nor-
malization step. It shows how similar the spelling of a historical text already is to its
modernized (or manually normalized) version. Baseline scores differ vastly, but not
surprisingly: the Anselm texts (Berlin and Melk) are the oldest ones in the evaluation
and have the lowest baseline, the Berlin text going as low as 21.34%, showing that it is
very far from modern German spelling. The Sermon texts, on the other hand, are the
most recent ones and show baselines as high as 83.92%. Also, the baseline steadily
increases from the oldest (LeichSermon, 1677) to the newest text (Gottesdienst, 1770).

Maximum accuracy is the highest accuracy that can be achieved using context-free
normalization methods. As discussed at the beginning of Section 3.1, if a historical
wordform is aligned with more than one modern wordform over the course of a text, one
of these wordforms is inevitably normalized incorrectly, thereby limiting the maximum
possible accuracy. Again, there is a tendency for older texts to have a lower score here:
90.42% is the maximum for the modernization layer of Melk, while the Gottesdienst text
can, in theory, be normalized almost perfectly (99.74%). However, the high percentages
of the Sermon texts may at least partly arise from their comparatively small size: the
shorter a text is, the less likely conflicting normalizations are to occur. The Anselm
texts show that maximum accuracy is not directly tied to the baseline score: while the
Berlin text has the lowest baseline, its maximum accuracy is slightly higher than that of
the Melk text. This may be an indicator that although Berlin is the most different from
modern spelling, its spelling might be slightly more consistent than that of Melk.

25

Baseline Mapper Rules Leven WLDuni WLDtri

Luther (eval) 65.13% 92.60% 90.40% 80.19% 83.79% 87.72%

Berlin (norm) 23.05% 62.05% 63.17% 37.17% 51.14% 60.71%
Berlin (mod) 21.12% 58.05% 58.90% 34.71% 47.55% 56.14%
Melk (norm) 39.32% 63.15% 64.14% 54.10% 65.40% 69.34%
Melk (mod) 35.91% 57.81% 60.41% 50.16% 60.55% 64.56%

LeichSermon 72.71% 76.46% 78.67% 70.80% 75.63% 76.40%
JubelFeste 79.47% 85.22% 88.52% 84.06% 86.07% 88.15%
Gottesdienst 83.41% 86.58% 90.50% 87.89% 93.05% 95.46%

Table 5: Normalization accuracy per text after training on the first 500 tokens and
evaluating on the rest, ignoring punctuation and foreign words (except for Luther:
training and evaluation on separate parts); best result for each row is highlighted in bold,
differences to the best result that are not statistically significant (p > 0.05) are marked
in italics.

Finally, for the Anselm texts, the scores of the modernization layer are significantly
lower than those of the normalization layer. This is only natural, as the normalization
layer is defined as being closest to the original text. Because the modernization layer also
adjusts inflection, it is conceivable that a historical wordform (or rather: a type) without
inflectional endings is mapped to several modern wordforms (types) with different
inflectional endings, depending on context. This would explain the differences in
maximum accuracy between the layers.

3.2.1 Quantitative analysis

All normalization algorithms evaluated here, except for the Levenshtein method, require
training data before they can be used for normalization. As the individual spelling
characteristics of the texts are so different (cf. Secs. 2.3 and 2.4), it seems reasonable
to first use in-domain training data only; i.e., all normalization algorithms are trained
only on a portion of the same text they are evaluated on. For the Luther corpus, separate
training and evaluation parts are used (see Sec. 2.1). For all other texts, the first
500 tokens are used for training, and the remainder of the texts for evaluation.

Table 5 presents the normalization results. It shows that for all texts except Luther,
either the rule-based method (column “Rules”) or the trigram variant of weighted
Levenshtein distance (“WLDtri”) works best. The wordlist mapper always performs
slightly (about 1–4 percentage points) worse than the rule-based method, except for
the Luther bible, where it is the best normalization method. Also, its difference to the

26

best method is not statistically significant9 for Berlin and LeichSermon. Levenshtein
distance (“Leven”) has the worst accuracy in all cases except for Gottesdienst, where it
is better than wordlist mapping. Still, this confirms the view that it is not well-suited for
the normalization task, but rather as a baseline for the weighted Levenshtein variants,
which always perform better here. WLD that uses only unigrams (“WLDuni”) is always
worse than the version including bigram and trigram weights, sometimes considerably
so (e.g., 51.14% vs. 60.71% for the Berlin text).

For the Anselm texts, the normalization and modernization layers are again evalu-
ated separately. The results are not surprising; accuracies for the modernization are
consistently and almost evenly (about 3–5 percentage points) worse than for the nor-
malization. Again, this only resembles the fact that the normalization layer is closer to
the original wordform. The wordlist mapper is the only method which is insensitive to
the extent of spelling difference, and could therefore be expected to perform better on
modernization than other methods. This is not the case, which is likely due to the same
reason as the difference in maximum accuracy (cf. p. 26): the adjustment of inflectional
endings causes a type in the historical text to be aligned with several more types in the
modernization layer, forcing a higher number of errors.

Among the texts used in this evaluation, the Luther corpus takes a special position. It
is significantly larger than all the other texts, especially when considering the portions
used for training: while only 500 tokens are used for the other texts, the Luther bible’s
training part consists of 218,504 tokens. As it is typically best to have as much training
data as possible, the size of the training portion should have a noticeable effect on
normalization accuracy. In fact, even though the Sermon texts all have a higher baseline
than Luther, only the third one achieves a higher accuracy (94.49% vs. 92.60%). Still,
considering the huge size difference, this is already a remarkable result.

The fact that the best result for Luther is achieved by the wordlist mapper—contrary
to all Anselm and Sermon texts—could also be attributed to the large amount of training
data. From the evaluation, this cannot be claimed with certainty, as even when increasing
the size of the training parts for Anselm and Sermon (see Sec. 3.2.3), using the wordlist
mapper never results in the best score. However, as the Luther training portion is even
larger than all of the other texts combined, it cannot be ruled out that the wordlist mapper
is actually the best overall method with large amounts of training data. The results
can definitely be seen as an argument in favor of pooling resources of gold standard
normalizations in order to create a larger and better training corpus.

Apart from the factor of size, the Luther corpus is also the only one which does
not represent an actual research scenario, but was constructed specifically to evaluate
normalization methods. Being a bible translation, it is also likely to be very carefully
translated and printed, thereby showing more systematic spelling variations, but less

9For these and all further tests of statistical significance, chi-squared tests on the token counts (with a confidence level
of 95%) have been used.

27

spelling inconsistencies. Manuscripts (such as Berlin and Melk), on the other hand, are
much more prone to clerical errors. Additionally, spelling in manuscripts can also be
influenced by external factors such as the size or layout of the page, while the layout of
printed texts is usually planned out in advance. All of these factors might contribute to
the comparatively higher accuracy scores reported for Luther.

Text Unknowns

Luther (eval) 0 0.00%

Berlin (norm) 174 3.70%
Berlin (mod) 130 2.77%
Melk (norm) 146 3.22%
Melk (mod) 82 1.81%

LeichSermon 270 12.40%
JubelFeste 111 5.19%
Gottesdienst 54 2.76%

Table 6: Unknowns per text (tokens in
the gold standard normalization not cov-
ered by the modern lexicon)

Finally, the Luther corpus has another ad-
vantage that causes the results to be slightly
biased: the complete vocabulary of its modern
version has been added to the modern lexi-
con. Hence, each of the correct wordforms
can theoretically be produced by the automatic
normalization, while this is not necessarily the
case for the other texts. Table 6 shows the ra-
tio of “unknowns” for each text, i.e., tokens in
the gold standard normalization that are not in-
cluded in the modern lexicon. Unknowns make
up between 1.81% and 5.19% of the other texts,
with the exception of LeichSermon, which has
a significantly higher percentage of unknown
tokens (12.40%). Looking at the normalization
of LeichSermon, the reason for this quickly be-
comes clear: it contains an unusually high amount of numerical tokens, typically
referring to bible verses, as in Example (21).
(21) psal.

psalmen
ix. 13.
9 13.

luc.
lukas

2. 52.
2. 52.

sir.
sirach

39. 2. 3. 4. 5.
39. 2. 3. 4. 5.

tob.
tobit

10. 5.
10. 5.

[. . .]
[. . .]

‘Psalms 9,13, Luke 2,52, Sirach 39,2–5, Tobit 10,5, . . . ’

Numerals are not explicitly handled; they do not occur at all in the Anselm texts
or the Luther corpus. While there are numerals in the other Sermon texts, too, they
do not appear as frequently as in LeichSermon, where they account for 165 of the
270 unknowns. As no exhaustive list of numerals is included in the modern lexicon,
the Levenshtein algorithm will try to normalize them to other wordforms, leading to
nonsense normalizations. This problem is specific to the distance-based algorithms,
though: not only can the wordlist mapper and the rule-based method learn the proper
mappings, but they will leave the original token unchanged if no appropriate mapping or
rule was learned. Example (21) shows that for using numerals with Levenshtein-based
algorithms, they either have to be explicitly added to the lexicon (which is impractical,
considering that their number is theoretically unbounded) or handled by an exception
rule in the algorithm.

The high ratio of unknowns in the LeichSermon text also explains the seemingly
dubious result that Levenshtein distance is actually performing worse than the baseline

28

here (70.80% vs. 72.71%). As the baseline accuracy is equivalent to that of a “normaliza-
tion” method which leaves all words unchanged, this means the Levenshtein algorithm
introduces more unwanted changes than correct ones. As a Levenshtein-based algorithm
will never change a wordform that is already in the modern lexicon, the only explanation
for this result is that the normalization of LeichSermon contains many wordforms that
are not covered by the lexicon, which is consistent with the data shown in Table 6.

From the evaluation results in Table 5, the scores for Luther have already been
reported in Bollmann (2012), except for those of the WLD measure.10 Instead, the
study evaluated a similar version of WLD with the difference that weights had been
defined manually rather than learned automatically. Weights were created after manual
inspection of the first 500 tokens of the Luther training corpus. This procedure resulted
in 88.33% accuracy, whereas the automatically trained parametrizations only achieve
87.72% at best (Table 5, Luther with WLDtri). These results suggest that the learning
process of the edit distance weights, e.g., the scaling and smoothing factors (cf. p. 22
ff.), can still be improved.

3.2.2 Qualitative analysis

The last section compared the performance of normalization methods by their overall
accuracy. However, this is not the only factor in deciding how useful an automatic nor-
malization is for further processing with NLP tools. Especially in those cases where the
methods produce incorrect results, these wrong normalizations can range from complete
mistakes to only having different inflection from the correct wordform. Furthermore, it
is conceivable that the set of correctly normalized wordforms is also different between
the algorithms. This section takes a closer look at the actual normalizations and the
parametrizations learned by each method.

Note that when discussing examples, the Anselm texts do not contain the ‘ß’ character
(cf. Sec. 2.3). The following examples will therefore sometimes use a slightly artificial
modern spelling, using ‘ss’ in places where modern ‘ß’ would be correct. This is not a
mistake, but due to the technical considerations explained in Sections 2.2 and 2.3.

Wordlist mapping The wordlist mapper is probably the simplest case to analyze. Due
to its nature, it cannot produce partially correct normalizations, as it only operates on
whole wordforms. Therefore, a correct normalization can only result from two scenarios:
either the correct mapping for the input wordform has been learned and is correctly
applied, or there is no known mapping for the input string, but the normalized form
is equal to the historical one. The latter case certainly occurs more or less by chance
and is not a “feature” of the normalizer itself, but also contributes to the final accuracy

10Note that while the Melk text had also been evaluated in Bollmann (2012), the results cannot directly be compared as
the evaluation here is based on a newer version of the transcription.

29

Mapping Count

jn→ ihn 839
jn→ in 38
jn→ ihm 5
jn→ indes 2
jn→ es 1

auff→ auf 1,746
auff→ herauf 22
auff→ an 1

ding→ dinge 30
ding→ ding 11

(a) Luther

Mapping Count

yn→ in 2
yn→ ihn 2
yn→ ihm 1
yn→ ihnen 1

das→ das 5
das→ dass 5

komen→ kommen 1
komen→ gekommen 1

spricht→ spricht 1
spricht→ heisst 1

(b) Berlin (modern)

Table 7: Examples for historical types mapped to multiple modern types, considering
only the training parts of the texts

score. Incorrect normalizations, on the other hand, can result when no mapping has been
learned even though the input wordform should be changed, but also from applying
learned mappings when not appropriate. This is typically the case with historical types
that have multiple alignments in the normalization, as only the most frequent mapping
will ever be applied.

Table 7 shows examples for such ambiguous mappings that have been learned by
the wordlist mapper. It suggests that especially for short function words, multiple
alignment types are likely to exist. This is the case with the token jn in Luther, for
example, that is usually mapped to either the pronoun ihn ‘him’ (accusative case) or
the preposition in ‘in’. Other alignments, e.g., with the pronoun ihm ‘him’ (dative
case), also occur, but are relatively rare. It is not impossible that they partly stem from
mistakes during the alignment process of the two bible versions, which was not done by
hand, but rather automatically (Bollmann et al., 2011). From this parametrization, the
wordlist mapper will always normalize jn to ihn. If we assume that a similar distribution
of in vs. ihn can be found in the evaluation part of Luther, which is half the size of
the training part, then this should introduce about 20 incorrect normalizations in the
evaluation. While this is certainly not much, if there are many cases of these ambiguous
mappings, the mistakes can quickly add up. From the Luther training part, a total of
14,905 mappings with 12,242 unique source types are learned. This means that there is
a total of 2,663 mappings which are learned, but never applied.

Typically, if a mapping is ambiguous, one of the modern normalization candidates

30

has a much higher frequency than the others. For example, auff has been mapped to
the preposition auf ‘at/on’ 1,746 times, while the second most frequent mapping to
the adverb herauf ‘on’ was seen only 22 times. In the modernization of the Berlin
manuscript, though, the wordform das is mapped an equal number of times to both das
and dass. While the former can be an article, a demonstrative pronoun, or a relative
pronoun, the latter is always a subordinating conjunction. Hence, this is a difference
which will have consequences for part-of-speech tagging. In cases like these, where
there is a tie between two possible mappings, it is more or less up to chance which
mapping the normalizer will apply: the mapping that has been learned first will be
chosen. If these situations occur often or with wordforms of high frequency, many
mistakes will be introduced this way. This is a strong argument in favor of using context
information to aid the normalization process, an approach which will not be explored in
the context of this thesis, though.

Different types of ambiguous mappings can be observed in Table 7, too. The different
mappings for jn and yn usually stem from distinctions in spelling that are not yet made
(or not made consistently) in Early New High German. On the other hand, the different
mappings for ding result from inflectional differences. While ding ‘thing’ is a singular
form in modern German, it is more often mapped to the plural form dinge. Example (22)
shows an alignment from which this mapping would be learned; it is an excerpt from
the Old Testament, 2 Kings, 8,13.

(22) Was
Was

ist
ist

dein
dein

Knecht
Knecht

[. . .],
[. . .],

daß
daß

er
er

solch
so

groß
große

Ding
Dinge

tun
tun

sollte?
sollte?

‘What is your servant [. . .], that he should do such great thing(s)?’

The 1545 Luther translation uses the phrase solch groß Ding, which is syntactically
singular, but can actually refer to more than one entity; this is reflected in the modernized
bible version, which has the plural form. In the Berlin manuscript, the wordform spricht
is an example for an ambiguous mapping due to semantic differences. Where it is
mapped to modern heisst (which would actually be written heißt), it is used in the phrase
daz spricht following a passage in Latin. In this context, spricht does not have the
modern meaning of ‘speak’, but is rather used in the sense of ‘this means’, which in
modern German is expressed as das heißt. As the modernization layer of the Anselm
corpus also changes wordforms based on semantic differences, this discrepancy arises.

These types of ambiguity in the learned wordlist have different consequences than
the cases of jn or das, though. The latter will result in part-of-speech tags of very
different categories, e.g., preposition versus pronoun for jn, depending on the chosen
normalization. Inflectional differences, such as ding/dinge, do not change the lexical
class of the word, though, as both are nouns. Similarly, if spricht is replaced by heisst
due to semantic differences, as both are verbs, the part of speech still remains the same.
Consequently, while the first type of ambiguity will necessarily introduce errors during

31

the tagging process, the other types will not. Finally, there are cases like the mapping
of komen in Table 7b which are somewhere in between: the modern kommen ‘to come’
is either a finite or infinitive form of the verb, while gekommen is its participle form.
These are assigned different tags in the STTS tagset, but are still both verb forms. The
evaluation of POS tagging will try to account for this similarity (cf. Sec. 4.1).

To conclude the discussion of Table 7, the observed frequency of the mappings
presented for the Berlin text is very low, ranging between 1 and 5 occurrences. In fact,
there are only 15 mappings learned from the modernization of the Berlin text with a
frequency higher than 5. The most common mapping, in this case, is that of do→ da
‘as/there’, which was seen 20 times in the training portion. These numbers illustrate that
a training corpus of 500 tokens is actually tiny for wordlist mapping (and probably for
other algorithms, too), as even a single occurrence of a mapping can greatly influence
the outcome of the normalization.

(23) ORIG:
MAPPER:
NORM:

do
da
da

chom
chom
kam

czuhant
czuhant
zehant

iudas
judas
judas

in
ihn
in

den
den
den

garten
garten
garten

‘There, Judas immediately came into the garden’

Example (23) shows an excerpt from the Melk manuscript normalized with the
wordlist mapping approach. The adverb do is normalized correctly, as is the proper
noun iudas. Both words are relatively common in the Melk text. The wordforms chom
and czuhant were not previously learned and are therefore (incorrectly) left unchanged.
Note that czuhant is an extinct form meaning ‘immediately’; as neither czuhant nor its
artificial lemma zehant exist in modern German, either form is not likely to be useful
for part-of-speech tagging. Still, the mapping to a consistent artificial lemma could be
helpful for other NLP applications, e.g., alignment of the different Anselm manuscripts.

The mapping of in is another interesting case. It is the same in both the original and
the gold standard normalization, but was changed by the wordlist mapper to ihn. Again,
this is the previously discussed example of preposition versus pronoun. Apparently, in
the training sample, the historical in was more often normalized as the pronoun ihn,
leading to this erroneous mapping. A contributing factor is that the wordlist mapper
does not perform any lexicon lookup to see if the wordform is already covered, and
will therefore change even valid modern words if the appropriate mappings have been
learned.

Rule-based method Contrary to the wordlist method, the rule-based approach learns
rewrite rules on a character level. It also keeps track of characters that did not change
and learns them in the form of identity rules. As the majority of characters in a word
typically does not need to be changed, identity rules always make up the largest part
of the learned rules. This is true even for the Berlin text, which has the lowest baseline
to begin with: 723 of 900 rule types (or 80.33%) learned from the first 500 tokens

32

Rule Freq.

v→ u / # _n 31
o→ a / d _# 21
y→ ie / d _# 12
y→ ei / s _n 12
v→ f / # _r 12
y→ ei / m_n 11
y→ ie / l _b 10

(a) Berlin (norm)

Rule Freq.

v→ u / #_n 40
o→ a / d_# 19

ch→ k / #_i 9
p→ b / #_a 7

iu→ jü / #_n 7
e→ ng / i_# 7
c→ ε / #_z 7

(b) Melk (norm)

Rule Freq.

ß→ ss / a _# 5
y→ i / e _n 4

ue→ ü / m_s 3
ue→ ü / l _c 3
y→ i / e _# 2

ue→ ü / w_r 2
ue→ ü / f _ l 2

(c) Gottesdienst

Table 8: Top 7 non-identity rules learned by the rule-based normalizer from the first
500 tokens of Gottesdienst and the Anselm texts (normalization layer)

are identity rules. Furthermore, the 22 most frequent rule types learned from the text
are identity rules, too. The numbers for the Melk text are similar (82% identity rules,
16 most frequent rule types are identities).

In order to give an impression of the actual spelling variations that are learned by the
rule-based approach, Table 8 lists the top seven non-identity rules for some of the texts.
Naturally, the frequency counts are higher than those of the wordlist mapper in Table 7b
for the Berlin text (even though the normalization layer is used here). This is because
for each word pair, while it provides only one word-to-word mapping, several rules can
be extracted from it. However, the frequencies are still relatively low, dropping quickly
for the Melk text to only 7 instances for the fourth most frequent replacement rule. The
Gottesdienst text is used as one of the examples (Table 8c) because it is the text with the
highest baseline. Consequently, identity rules make up almost 95% of all rules learned.
As the large majority of words does not change at all, the most frequent non-identity rule
was learned only 5 times. This illustrates an important point: the closer a text already is
to modern spelling conventions, the more training data is needed to reliably learn the
variations it contains. While it may sound counterintuitive at first, the reason lies within
the composition of the training data. If a text is already close to modern spelling, it
contains fewer training pairs which actually differ from each other. However, only these
pairs can provide any information about potential variant spellings.

For the Anselm texts, many different types of spelling variation are found among
the most frequent rules. The two most frequent ones chiefly result from the same pairs
of words, vnd → und and do→ da, respectively. These words commonly appear in
the Melk text as well as the Berlin manuscript, which is why the top two rules are
the same for both. The other common rules actually provide a good impression of
the general spelling characteristics of the texts. For Melk, the third rule from the top
commonly stems from the word pair chind→ kind ‘child’; the spelling variant ch→ k

33

can also be found in other words, though, such as those in Examples (24) and (25b).
Examples (25–28) show common word pairs resulting in rules 4–7 from Table 8b.

(24) (a) chrafft→ kraft ‘strength’
(b) chrankchait→ krankheit ‘disease’

(25) (a) pat→ bat ‘[he] asked/begged’
(b) parmherczichait→ barmherzigkeit ‘mercy/compassion’

(26) iungern→ jüngern ‘disciples’

(27) gie→ ging ‘[he] went’

(28) czu→ zu ‘to’

Spelling characteristics of the Berlin text are quite different. The fifth rule of Ta-
ble 8a (v → f / # _ r), for example, stems from the very common word pair shown
in Example (29). The spelling that is captured by the rule, i.e., word-initial vr → fr,
occurs a total of 90 times in the full Berlin text. On the contrary, it is only found three
times in Melk and not a single time in any of the other texts. These examples show that
examining the rules which are automatically extracted from the texts can indeed provide
insights about the individual spelling characteristics they contain.

(29) vrouwe→ frau ‘woman’

Another noticeable feature of Table 8a is that four of the highest ranked rules modify
the character ‘y’. This suggests that ‘y’ is an extremely common character in the Berlin
text, confirming the impression given by Example (1). Indeed, analysis of the Berlin
manuscript reveals that it contains the letter ‘y’ a total of 1,301 times. Judging from
Table 8a, its most common occurrences are in the feminine definite article dy and the
pronoun syn (→ sein ‘his’). The frequency of rules replacing ‘y’ also demonstrates
another characteristic feature of the rule-based method. Evaluation of the complete
list of rules shows that in all cases except three, the replacement of ‘y’ involves the
letter ‘i’. The rule-based method, however, is not designed to capture this generalization,
as it always requires the additional context information to perform the substitution.
Therefore, even if the letter ‘y’ was always replaced by ‘i’ in the training data whenever
it occurred, if it appears in a context in which it was not previously seen, it will not get
replaced by the rule-based method during normalization. This is a potential drawback
of the approach, as it entails that a higher amount of training data is required in order to
capture spelling variants in all possible contexts.

Example (30) shows how this property of the rule-based method manifests itself
in practice. It shows an excerpt of the JubelFeste text along with its gold standard
normalization, while Example (31) gives the automatic normalizations of both the
rule-based method and WLDtri.

(30) das
das

zweyte
zweite

was
was

david
david

zur
zur

freymuehtigkeit
freimütigkeit

unsers
unseres

lob-gesanges
lobgesangs

erfordert
erfordert

‘The second (thing) which David requires for frankness of our song of praise’

34

Edit Weight

v→ u 0.100
c→ ε 0.143
p→ b 0.167
o→ a 0.184
z→ s 0.189
f→ ε 0.245
h→ k 0.267
u→ ü 0.282
y→ i 0.291
a→ e 0.318

(a) WLDuni

Edit Weight

v→ u 0.100
vn→ un 0.100

vnd→ und 0.112
c→ ε 0.143
p→ b 0.169

do→ da 0.170
z→ s 0.193
o→ a 0.211
ai→ ei 0.211
z→ ss 0.240

(b) WLDtri

Edit Weight

c→ ε 0.143
ch→ k 0.263
ch→ h 0.366
ch→ ε 0.411
ch→ che 0.439
ch→ gk 0.439
c→ g 0.449

ch→ cht 0.596
c→ t 0.606
c→ k 0.606

(c) WLDtri

Table 9: WLD weights learned from the first 500 tokens of Melk (norm); (a) and (b)
show the 10 lowest weights learned by WLDuni and WLDtri, respectively; (c) shows all
of the WLDtri weights for replacing ‘c’ or ‘ch’.

(31) ORIG:
RULES:
WLDtri:

das
das
das

zweyte
zweyte
zweite

[. . .]
[. . .]
[. . .]

zur
zur
zur

freymuehtigkeit
freimütigkeit
freimütigkeit

unsers
unsers
unsers

lob-gesanges
lob-gesanges
lobgesang

Here, the word freymuehtigkeit has apparently been learned in the first 500 tokens of
the text, as it is normalized correctly by both methods. The word zweyte, on the other
hand, has not been previously learned. Both wordforms show the same spelling variation
ey → ei, though, which the rule-based approach does not capture, as the context is
different both times: in freymuehtigkeit, the ‘y’ has the right context ‘m’, while it is
‘t’ in zweyte. The WLDtri method, however, was able to apply this generalization after
training on the same data set.

(32) chrewcz→ kreuz ‘cross’

A similar example from the Melk text is (32); here, the spelling variation in question
is cz→ z, which often occurs in the word pair czu→ zu. This was already shown above
in Table 8b and Example (28). Again, the rule-based method is not able to normalize
Example (32) correctly (and simply returns the unchanged wordform) as the contexts
are different, while the WLDtri method produces the correct modern word.

(Weighted) Levenshtein algorithm The above examples already highlighted a few
differences between the rule-based method and weighted Levenshtein distance. Table 9
shows some example weights extracted by the WLD methods from the normalization

35

layer of the Melk text. The most frequent rule of the rule-based method (Table 8b) was
derived from the common mapping vnd→ und; similarly, the substitution v→ u has the
lowest weight associated with it for both the WLDuni and WLDtri algorithm. Even more,
all possible n-grams for this word pair are represented in the top three rules of WLDtri.11

The substitution p→ b is ranked high in both methods, too, while o→ a additionally
appears here in the form of the bigram mapping do→ da. Notable differences include
the mapping z→ s, which is not represented in the top-ranked rules, while the frequent
rule iu→ jü is not reflected in the top ten rules of WLDtri.

Also, it quickly becomes clear why the weighted Levenshtein method is able to handle
the spelling ‘cz’ in Example (32) correctly: the simple deletion of the character ‘c’ has
one of the lowest weights (0.143) for both the unigram and trigram method. Looking at
the first 500 tokens of the Melk text, when the character ‘c’ is found in the original but
not the normalization, it occurs mostly in the context of cz→ z or ch→ k. It is easy to
see how the generalization to the deletion of ‘c’ can be derived from these mappings.
However, in the latter case, the preferable (unigram) substitution to be learned would
be c→ k followed by a deletion of ‘h’, as this is more historically and linguistically
accurate. This would require the character alignment process to opt for the alignment in
Example (33a); apparently, though, it is the alignment in (33b) which is preferred by
the algorithm. This can also be seen from the relatively high ranking of the substitution
h→ k in Table 9a.

(33) (a) c h i n d
k i n d

(b) c h i n d
k i n d

Section 3.1.4 described the process by which alignments are selected; it is used
exactly for the purpose to properly disambiguate cases like Example (33). Why, then,
is the wrong alignment chosen in this case? Table 9c shows that the alignment c→ k
was given a weight and therefore must have been seen during training. Indeed, an
unambiguous case of this alignment occurs exactly once in the training data in form of
the word pair creatur→ kreatur ‘creature’. However, there are three occurrences of the
word parmherczichait ‘mercy/compassion’, already shown in Example (25b), which—
assuming standard Levenshtein alignment—only has the single optimal alignment shown
in Example (34).

(34) parmherczi c h ait
barmher zi g k eit

In this example, if the alignment c→ k was to be used, this would require both the
insertion of ‘g’ and the deletion of ‘h’, increasing the Levenshtein distance. Such an
alignment would therefore not even be considered, as it is assumed to be suboptimal.

11The mappings n→ n, d→ d, and nd→ nd cannot be included as they are pure identity mappings, which always have
a weight of zero.

36

This example shows the limits of Levenshtein-based character alignment: unless the
correspondence of ‘c’ and ‘k’ was somehow hardcoded into the algorithm, or unam-
biguously represented in the training data more often, it is hard to see how an automatic
alignment method would arrive at a different solution than (34). It also shows that
distance-based methods are less adequate if differences in spelling are manifold. A con-
ceivable solution is to place less emphasis on single-character substitutions in such cases,
as they might be seen as less reliable when multiple adjacent substitutions occur; this is
the same philosophy that is already employed by the rule-based approach, though.

ORIG: chust chom sach
‘kissed’ ‘came’ ‘saw’

NORM: küsste kam sah
WLDuni: hut ham sah
WLDtri: huste ham sah
LEVEN: chus chrom bach

Table 10: Example normalizations with
distance-based algorithms, taken from Melk
(norm); correct normalizations shown in
bold.

While the low weight of ‘c’ deletion
is beneficial for wordforms like chrewcz,
there is a danger of overgeneralization.
Table 10 shows normalizations for three
other wordforms found in Melk. The
historical wordforms chust and chom are
two more examples of ch → k substitu-
tion; however, none of the distance-based
algorithms is able to arrive at the cor-
rect normalizations küsste ‘kissed’ and
kam ‘came’ (and neither is the rule-based
method or the wordlist mapper, in this
case). Even though the substitution has
been learned, the low weight of the ‘c’ deletion causes it to be preferred if at all possible.
WLDuni wrongly normalizes chust→ hut ‘hat’, which is not too surprising: it has no
concept of bigrams, so after the deletion of ‘c’, it will always try to leave the character ‘h’
intact if this leads to a (cheaper) solution. The trigram-based variant will try the same
thing in this case, though, as the operation c→ ε has a lower weight than all possible
alternatives (cf. Table 9c).

The same principle applies to the second example, chom. The wrong normalization
ham produced by both WLD algorithms reveals yet another fundamental problem,
though. At first glance, it is unclear how this wordform can be produced at all, as it is
not a modern German word.12 Remember that the distance-based approaches can only
ever produce a wordform that is covered by the supplied lexicon. The lexicon used for
this evaluation is a combination of wordforms from DMOR (Schiller, 1996) and the
vocabulary of the Luther bible. It is the bible which supplies the basis for this incorrect
normalization, and also for the equally strange-looking chus: Ham was a son of Noah,
while Chus was a son of Ham; both are mentioned in Genesis 10,1–6. As all lexicon
entries are lowercased, they cannot be identified as proper nouns anymore—however, as
capitalization is an unreliable factor in historical texts, treating all words as lowercase

12In colloquial and/or dialectal speech, ham can be a contraction of haben ‘to have’, but such examples are not included
in the lexicon.

37

is probably unavoidable. The actual problem lies in the fact that lexical frequency is
not considered at all. In a balanced text corpus, the verb kam will be significantly more
common than the proper noun Ham. Hence, these wrong normalizations suggest that
(weighted) Levenshtein distance should ideally not be the only criterion for determining
a normalization, but lexical frequency should be in some way factored in.

The third example in Table 10, sach→ sah, shows an example of ‘c’ deletion applied
correctly by both WLD algorithms. The suggestions of the Levenshtein algorithm,
however, are nonsensical in all three cases, underlining the fact that it is not very useful
on its own. For this reason, it will not be analyzed in more detail here.

A characteristic feature of distance-based normalization is that it will always produce
a correct modern wordform, no matter how inappropriate it is. This is because the
algorithm always returns the word in a lexicon with the lowest distance to the input
string—as long as there is at least one word in the lexicon, the algorithm cannot fail to
find a normalization candidate. However, this is only useful to a certain extent: if the
spelling is very far from the modern word, or the correct normalization is not covered
by the lexicon, even the WLD algorithm can produce very strange suggestions, as in
these examples from the Berlin text:

(35) ORIG:
NORM:
WLD:

anshelme
anselm
asel

(36) ORIG:
NORM:
WLD:

cruczegete
kreuzigte
kruste

‘[he] crucified’
‘crust’

Example (35) illustrates how normalization can fail if the target word is not contained
within the lexicon, which can often happen with proper nouns, such as anselm in this
case.13 Note that while the rule-based method suffers the same handicap, as it also
relies on the lexicon to verify its normalization candidates, it is less likely to produce a
candidate form as different from the input form as the one in (35). Instead, it is more
likely to fail and return anshelme unchanged. Still, a better solution might be to enrich
the modern lexicon with proper nouns commonly found in the text. As all texts in the
Anselm corpus refer to Saint Anselm in some way, and quite frequently so, creating a
list of proper nouns and adding them to the lexicon more likely results in the correct
normalization of the wordform anshelme, thereby noticeably improving overall accuracy.
On the other hand, if a proper noun occurs frequently in a text, simple wordlist mapping
is likely to be the better method to handle these cases without any modification of the
lexicon.

In Example (36), the target word is covered by the lexicon, but its historical spelling
is apparently too distant for WLD (both unigram and trigram variants) to normalize it
correctly. The suggested candidate does not have much in common with the input word:

13The suggested normalization asel is, again, a character from the bible (1 Chronicles, 8,38).

38

ORIG: umstaende vsseczyk iungern hynmel
‘circumstances’ ‘leprous’ ‘disciples’ ‘heaven’

NORM: umstände aussätzig jüngern himmel
WLDuni: umstand fetzig ungern himmel
WLDtri: umstände aussätzig jüngern heimel
LEVEN: umstände steck ungern himmel

Table 11: Example normalizations with distance-based algorithms, taken from
JubelFeste, Berlin (norm), and Melk (norm); correct normalizations shown in bold.

it does not have the same part of speech; it is not semantically related; and it is not
close to the spelling of the original wordform. Suggestions like these could be at least
prevented by setting a cutoff for the WLD algorithm. A cutoff mechanism would break
out of the algorithm if the calculated distance gets larger than a certain threshold, and
return the original wordform instead. This way, it could “fail”, similar to the mapper
and the rule-based method. However, the question of how to define the threshold is
not a trivial one. What can be considered a “too high” distance depends on several
factors, e.g., the average weight of the learned edit operations, and the length of the
input word. Especially the latter has to be taken into account in order not to preclude
perfectly correct normalizations with a high number of spelling differences, such as in
Example (37), which is also from Berlin (norm) and is correctly normalized by both
WLD variants.

(37) iuncvrouwen→ jungfrauen ‘virgins’

Another feature of distance-based methods is that a historical wordform which is
already identical to a modern one will never be changed. This can sometimes be
inappropriate, too, as Example (38) from the LeichSermon text demonstrates: the
historical form wehrt corresponds to the modern wert ‘worthy’ in this context, but is
not modified as wehrt is a valid modern wordform meaning ‘[he] resists’. This is a
general problem of context-free normalization, though, and is not necessarily restricted
to distance-based algorithms—neither the rules nor the wordlist mapper changed the
input word in this case.

(38) ORIG:
NORM:
WLD:

wir
wir
wir

sind
sind
sind

nicht
nicht
nicht

wehrt
wert
wehrt

‘we are not worthy’

Finally, the accuracy scores in Table 5 (p. 26) already showed that WLDuni performs
worse than WLDtri for all texts. Examples from the normalizations, as shown in Table 11,
mainly confirm this observation. In a few cases, such as umstaende, standard Levenshtein

39

distance even returns the correct result where WLDuni does not. This happens mainly
for newer texts with less spelling variations (the example is from JubelFeste). Cases
where WLDuni produces the correct normalization and WLDtri does not are exceptional,
but do happen, as the right-most example (hynmel) shows.

3.2.3 Effect of training corpus size

Up to this point, normalizations of Anselm and Sermon texts have been evaluated after
training on the first 500 tokens of the respective texts, which is a more or less arbitrarily
chosen size. In the context of a research project, this data would have to be normalized
manually first to provide the normalizers with training material. However, manual
normalization can be a tedious and time-consuming process, and whether manual nor-
malization of 500 tokens is a realistic goal might depend on the number of texts to be
processed and the available resources. Also, when comparing the normalization algo-
rithms, the factor of size of the training corpus has been neglected so far. Comparisons
could only be made between the Luther corpus, which has a comparatively huge training
part, and all other texts.

Therefore, in this section, a different evaluation method is chosen: training is per-
formed on the gold standard normalizations of the first n tokens, with increasing values
for n; afterwards, the trained methods are evaluated on the remaining part of the same
text. This approach reflects a process than can conceivably be employed in an actual
research project.14 It allows an assessment of the question whether accuracy of nor-
malization can be significantly improved by manually normalizing a sample of the text,
and if so, how much training data is required. For researchers building a corpus of
historical texts, this could turn out to be an attractive tradeoff between the extremes of
an all-automatic and an all-manual normalization of the data.

For the Anselm texts, the normalization methods are successively trained on the first
100, 250, 500, 1,000, and 2,000 tokens of the texts. 2,000 tokens are chosen as the upper
bound because this is almost half of the texts, and the benefit of a normalization method
that requires more tokens for training than it actually normalizes is doubtful, at least in
terms of efficiency. For the same reason, 1,000 tokens are chosen as the upper bound for
the Sermon texts, which is also about half of their size.

It should be noted that as the size of the training portion increases, the size of the
evaluation portion decreases. This means that the accuracies resulting from different
training sizes are not based on exactly the same evaluation data. For this reason, the
Levenshtein algorithm (cf. Sec. 3.1.3) is also evaluated separately for each training size,
even though it does not actually learn anything. Another effect of this evaluation method
is that with more training data, accuracy sometimes goes down. These fluctuations

14As the normalizers operate context-free, cross-validation is a possible—and probably better—alternative. Due to time
contraints, cross-validation has not been carried out for all scenarios evaluated here, though Bollmann (2013) reports an
evaluation of the best chain combination method (cf. Sec. 3.3) using cross-validation.

40

usually correspond to similar changes in the baseline score and are not statistically
significant; i.e., while the performance of normalization does not improve in these cases,
it does not actually get worse, either. While it makes comparison of results between
different training sizes a bit more difficult, this method—again—more accurately repre-
sents real-life application scenarios, as it reports the accuracy of normalization on that
part of the text which would otherwise have to be processed manually.

As the evaluation does not take the already normalized training parts into account, this
means that the accuracies for the whole texts are always higher than the figures reported
here. Therefore, if a normalization method reports 70% accuracy when trained on
about half of a text, the accuracy for the text as a whole is actually closer to about 85%.
This is, of course, relevant for the discussion of part-of-speech tagging (cf. Sec. 4), as
POS tagging is always evaluated on full texts, but is not considered here as it would
obscure the effects of the actual automatic normalization.

Table 12 lists the complete results for each combination of text, training size, and
normalization method. The most evident result from this evaluation is that, in terms
of absolute accuracy, either the rule-based method or WLDtri performs best in every
single case. However, in many cases other normalization methods cannot actually be
shown to be significantly worse; these results are marked in italics in the table. Most
often, this also applies to the rule-based method or WLDtri, i.e., they sometimes both
perform comparably well. Also, the wordlist mapper always stays behind the rule-based
method in terms of total accuracy, but in a few cases, this difference is not statistically
significant, either. For the Sermon texts, when the training portion is small, the unigram
WLD model is not significantly worse than the trigram version. This is not surprising,
as the baseline is relatively high for these texts, so more tokens need to be processed to
reliably learn the spelling variations. Also, spelling differences are likely to be smaller
and restricted to single letters more often than in older texts, reducing the advantage of
learning trigrams over unigrams.

An observation that holds true in all evaluated cases is that for small training portions,
the WLDtri method is always best (sometimes among other, comparably good results),
while for large training portions, the same usually holds true for the rule-based method.
Typically, when considering the same text with increasing training corpus sizes, WLDtri

starts out performing best, followed by a “turning point” where both the rule-based
method and WLDtri perform similarly well, with the rule-based method winning out at
the end with the larger training parts. This turning point can be found at only 100 tokens
for training with the LeichSermon text, and at 250 tokens for JubelFeste, for example.
For the Gottesdienst text, the rule-based method is never the absolute best, but not
significantly worse on the largest training sample with 1,000 tokens. It is conceivable
that, if the Gottesdienst text were longer and even more training data would be used, the
trend would continue, with the rewrite rules producing the best normalization.

41

Baseline Mapper Rules Leven WLDuni WLDtri

Berlin
(norm)

100 23.24% 37.09% 40.20% 37.52% 47.26% 55.78%
250 23.12% 56.38% 59.96% 37.44% 51.37% 61.35%
500 23.05% 62.05% 63.17% 37.17% 51.14% 60.71%

1000 23.14% 66.46% 67.65% 37.19% 51.43% 63.24%
2000 22.30% 72.41% 75.07% 36.74% 50.48% 65.41%

Berlin
(mod)

100 21.24% 34.28% 35.61% 35.02% 42.20% 50.70%
250 21.19% 51.21% 54.47% 35.01% 46.58% 56.52%
500 21.12% 58.05% 58.90% 34.71% 47.55% 56.14%

1000 21.35% 62.22% 63.62% 34.76% 47.65% 58.46%
2000 20.81% 68.52% 70.48% 36.67% 47.11% 61.07%

Melk
(norm)

100 39.54% 57.10% 59.78% 54.45% 64.67% 68.21%
250 39.62% 61.94% 65.07% 54.44% 65.88% 68.98%
500 39.32% 63.15% 64.14% 54.10% 65.40% 69.34%

1000 39.11% 66.56% 69.19% 53.94% 65.86% 69.70%
2000 39.75% 70.84% 71.86% 54.94% 67.02% 70.72%

Melk
(mod)

100 36.05% 53.70% 54.76% 50.42% 59.90% 62.80%
250 36.12% 56.79% 60.80% 50.43% 61.24% 63.88%
500 35.91% 57.81% 60.41% 50.16% 60.55% 64.56%

1000 35.72% 61.03% 64.36% 49.90% 60.83% 64.47%
2000 36.09% 67.10% 67.18% 50.73% 61.87% 65.49%

LeichSermon

100 72.95% 73.72% 75.84% 71.27% 75.79% 77.00%
250 73.13% 75.26% 78.22% 71.68% 76.61% 77.18%
500 72.71% 76.46% 78.67% 70.80% 75.63% 76.40%

1000 71.39% 77.08% 82.26% 69.86% 75.13% 76.32%

JubelFeste

100 79.82% 82.38% 81.74% 84.19% 86.30% 86.99%
250 79.81% 83.57% 85.00% 84.00% 86.01% 86.59%
500 79.47% 85.22% 88.52% 84.06% 86.07% 88.15%

1000 78.80% 86.46% 90.77% 83.91% 86.28% 88.13%

Gottesdienst

100 83.81% 84.08% 83.81% 87.91% 91.64% 93.20%
250 83.56% 84.73% 87.32% 87.90% 90.96% 94.36%
500 83.41% 86.58% 90.50% 87.89% 93.05% 95.46%

1000 84.05% 89.51% 94.01% 87.72% 93.07% 95.80%

Table 12: Normalization accuracy per text after training on the first n tokens and
evaluating on the rest, ignoring punctuation and foreign words; best result for each row
is highlighted in bold, differences to the best result that are not statistically significant
(p > 0.05) are marked in italics.

42

(a) Berlin (norm)

Size of training part (Tokens)

A
cc

ur
ac

y
on

 r
es

t (
%

)

100 500 1000 2000

40

50

60

70

●

●

●

●

●

●

● ●

●

●

●

●

Map
Rules
WLD

(b) Melk (norm)

Size of training part (Tokens)

A
cc

ur
ac

y
on

 r
es

t (
%

)

100 500 1000 2000

55

60

65

70

75

●

●

●

●

●

●
● ● ●

●

●

●

Map
Rules
WLD

Figure 1: Normalization accuracy for different sizes of the training part

Figure 1 illustrates the progression of the accuracy scores for the Anselm texts. It
shows that while the rule-based method tends to perform better with more training data,
the point at which it overtakes WLDtri is quite different. It only takes 250 tokens for the
rule-based method to perform similarly well on the Berlin text, while for the Melk text,
1,000 tokens are needed. A possible explanation lies in the types of spelling difference
found in the texts: the WLD algorithm always has a preference for leaving characters
unchanged, while character rewrite rules have no such bias unless this tendency is
explicitly learned. Consequently, if many characters need to be changed, the rule-based
approach likely has an advantage. This could explain the difference between Berlin and
Melk: a common word in both texts is modern frau ‘woman’ to refer to the Virgin Mary;
in Melk, it is commonly spelled fraw, while Berlin has vrouwe. It is apparent that the
former is much closer to the normalization and easier to handle with distance-based
methods. The WLD approach will always have an advantage over rewrite rules if such
spelling variations (e.g., w→ u) appear regularly and in many different contexts, as it
will quickly make generalizations, while it is at a disadvantage if the word lengths are
very different or the spelling variants are relatively special (deletion of ‘we’ occurs only
with vrouwe and not anywhere else). Note that this factor is not directly tied to baseline
accuracy—few words with lots of spelling variation will result in a higher baseline than
many words with few variations. This is shown by LeichSermon (cf. Table 12): even
though its baseline is much higher than that of Berlin or Melk, the rule-based method is
already among the best at only 100 tokens.

Figure 1 also highlights another interesting feature of the WLDtri normalizer: while
it tends to be outperformed by the rule-based method at some point, it already reaches
comparatively high accuracies from 100 training tokens only. This effect is not quite as

43

Rule Freq.

v→ u / # _ n 7
ε→ s / l _ t 6
y→ ei / d _ n 4
ε→ l / i _ l 4
ε→ d / # _ u 4
a→ ol / s _ l 4
z→ se / # _ e 3

ow→ au / b _m 3
y→ i / m_ t 2
y→ i / e _ n 2

(a) 100

Rule Freq.

v→ u / # _n 17
ε→ s / l _ t 8
v→ f / # _r 7
y→ ei / s _n 6
o→ a / d _# 6
a→ ol / s _ l 6
y→ i / m_t 5
y→ ei / d _n 5

we→ ε / u _# 5
o→ a / r _u 5

(b) 250

Rule Freq.

v→ u / # _n 57
o→ a / d _# 53
v→ f / # _r 28
y→ ie / l _b 27
y→ ei / m_n 27
t→ d / n _# 25
o→ a / r _u 23

we→ ε / u _# 22
y→ ei / s _n 19
y→ i / k _n 18

(c) 1,000

Table 13: Comparison of the 10 most frequent rules with differently sized training parts,
learned from Berlin (norm); subcaptions indicate number of tokens for training.

pronounced with the Berlin text, where it starts at about 55% and ends at 65% accuracy
(with 2,000 tokens for training). For all other texts however, the difference between
100 tokens and 1,000/2,000 tokens for training is only between 1 and 3 percentage
points. With the LeichSermon text, there is no statistically significant difference at all
between the different sizes of the training corpus (p > 0.05). These figures suggest that
WLDtri actually requires very little training data to successfully perform normalization,
with the restriction that spelling variations should not be too irregular or distant from
the target language. The rule-based method, on the other hand, is typically better with
high amounts of training material.

Considering Table 12 once more, it confirms the tendency for Levenshtein distance
to generally perform worse than other methods. A notable exception is JubelFeste and
Gottesdienst, where it is sometimes better than the wordlist mapper and closer to, e.g.,
WLDuni than with the other texts. Again, this is a consequence of the relatively low
amount of spelling difference to be found there. If many regular spelling variations
occur (oe→ ö is common in JubelFeste, for example), it is easier for the Levenshtein-
based measures to arrive at the correct normalization. The wordlist mapper, on the
contrary, can make no generalizations at all and is therefore at a disadvantage under
these circumstances.

To give an impression of how the size of the training corpus affects the rules learned,
Table 13 gives an overview of the top ten rules learned from Berlin (norm) with different
numbers of tokens for training (the top seven rules for a training size of 500 tokens were

44

Baseline Mapper Rules WLDuni WLDtri

Berlin (norm) 23.05% 29.81% 32.02% 43.00% 45.30%
Berlin (mod) 21.12% 27.60% 29.91% 40.02% 42.15%
Melk (norm) 39.32% 49.39% 51.71% 57.70% 59.35%
Melk (mod) 35.91% 46.29% 47.68% 53.23% 54.53%

LeichSermon 72.71% 77.13% 77.73% 80.62% 80.85%
JubelFeste 79.47% 82.87% 82.55% 87.18% 88.07%
Gottesdienst 83.41% 83.56% 84.18% 90.42% 90.68%

Table 14: Normalization accuracy per text after training on Luther, ignoring punctuation
and foreign words; best result for each text highlighted in bold.

already shown in Table 8a). All rules to normalize the example vrouwe→ frau discussed
above can be found among the top ten with only 250 tokens for training (Table 13b,
third row and final two rows).

3.2.4 Using the Luther corpus for training

Evaluation showed that using more training data typically results in a higher normaliza-
tion accuracy, especially for methods like the rule-based normalizer and the wordlist
mapping approach. If, however, gold standard normalizations have to be created for a
part of the text in order to achieve good results, there is a limit on the amount of training
data that can be used. With the largest size of the training portions that was considered
in the last section (2,000 tokens for Anselm and 1,000 tokens for Sermon), almost half
of all texts in question would have to be normalized manually beforehand. The required
effort should not be underestimated, and might not always be realizable in practice. On
the other hand, this raises the question whether normalizers can be trained on other
resources and successfully applied to different texts. One such resource could be the
Luther corpus: the training part of Luther is roughly a hundred times larger than the
largest training part considered for Anselm.

Table 14 shows evaluation results on the full Anselm and Sermon texts after training
on the Luther training corpus. The figures for the Anselm texts are rather disappointing:
even the method with the highest accuracy is still well below the numbers that can be
achieved with as little as 100 training tokens of the same text (cf. Table 12). However, the
Anselm texts have a few characteristics which make a direct transfer of the information
extracted from Luther quite difficult: they are manuscripts with diplomatic transcriptions,
whereas the bible is a carefully printed work, and were written considerably earlier. This
is also reflected in the lower baseline score compared to Luther.

45

Results for the Sermon texts are a bit more promising. For LeichSermon and
JubelFeste, applying the WLDtri algorithm that has been trained on Luther results
in a better accuracy than training with the first 250–500 tokens of the texts themselves.
Still, the results do not exceed the best scores reported in Table 12 when more training
data is used. Also, accuracies for Gottesdienst are worse in all cases, showing that the
date of a text is not the only factor in deciding whether applying knowledge learned
from the Luther corpus is successful or not. Of course, it is to be expected that the
type of spelling variation also plays a role—judging from the results, LeichSermon and
JubelFeste are likely to be closer to the spelling of Luther than Gottesdienst is.

An interesting fact from Table 14 is that WLDtri performs best for all texts. This
seems to contradict the impression that the rule-based method gets better than WLDtri

when more training data is available—after all, both methods were trained on about
220,000 tokens here. However, this is not necessarily the case. Rather, the rule-based
method learns very specialized character replacements, relying heavily on context
information. As a consequence, it does not only require a certain amount of training
data to work best, but also needs to be more closely adapted to the specific spelling
characteristics of a text. Therefore, it profits less from training on a different text
with (even slightly) different characteristics, while WLDtri is able to transfer learned
substitutions more reliably to other (similar) data. When working with many different
texts that have similar, yet distinct enough spellings, this may be an argument in favor
of using WLDtri.

3.3 Combining normalization methods

So far, all normalization methods have only been evaluated in isolation. If every
normalization algorithm has particular strengths and weaknesses, it seems profitable,
though, to combine them in some way. Combinations of algorithms are successfully used
by Jurish (2010) and the VARD normalization tool for Early Modern English (Baron
and Rayson, 2008). A first evaluation in Bollmann (2012) has also confirmed that
combining techniques indeed improves the results noticeably. There, normalizers were
combined in form of a “chain”: the normalizer that is first in the chain is always called
first; only if it is not able to successfully produce a normalization, the second one is
called, and so on. Let us recapitulate what it means for a normalization algorithm to
“fail”: wordlist mapping can fail if the historical wordform to be normalized cannot
be found in the wordlist; rule-based normalization fails if no wordform in the target
lexicon can be reached using the learned transformation rules (e.g., due to a previously
unseen combination of characters). The distance-based methods can never fail, as there
is always a wordform in the lexicon which is closest to the input string.

In addition to these chain combinations, it is also conceivable to use a “majority vote”
approach. Here, no single normalization method is favored. Instead, either all or a

46

Best
Single

Chain Combination Majority Vote

M,R,W3 M,W3 R,(M,)W3 M,W1,W3 All

Berlin (norm) 63.17% 75.07% 74.24% 70.14% 67.48% 46.07%
Berlin (mod) 58.90% 69.98% 69.21% 65.33% 62.71% 42.76%
Melk (norm) 69.34% 74.49% 74.12% 71.49% 72.78% 61.12%
Melk (mod) 64.56% 68.30% 68.10% 67.01% 66.52% 54.74%

LeichSermon 78.67% 79.56% 79.50% 79.26% 79.02% 73.30%
JubelFeste 88.52% 91.81% 90.59% 91.45% 90.04% 88.52%
Gottesdienst 95.46% 95.73% 95.66% 95.87% 94.98% 89.19%

Table 15: Normalization accuracy per text using combinations of normalization methods,
training on the first 500 tokens and evaluating on the rest, ignoring punctuation and
foreign words; M = Wordlist mapper, R = Rule-based method, W1 = WLDuni, W3 =
WLDtri; “Best Single” refers to the previously best result (bold number from Table 5)
using a single normalization method; best result for each row is highlighted in bold,
differences to the best result that are not statistically significant (p > 0.05) are marked
in italics.

selection of normalization methods is called, and if the majority of algorithms produces
the same candidate wordform, this wordform is used as the final normalization. Some
kind of tie resolution can still become necessary, though, if each normalizer produces
a different output string. In this evaluation, ties are resolved by defining an order of
preference. The order of “Mapper, WLDtri, Rule-based, WLDuni, Levenshtein” was
empirically found to be best; e.g., if there is a tie between WLDtri and the rule-based
method, the normalization of WLDtri is chosen as it comes first in the given ordering.

Table 15 shows the results for a selection of the possible combinations of normalizers.
Chain combinations including Levenshtein normalization or the WLDuni method are
not shown as they always perform worse than the same combinations using the WLDtri

algorithm instead. Note that the WLDtri method can only appear at the end of a chain as
it cannot fail to produce a result; hence, subsequent normalizers in the chain would never
be called. For majority vote, only two scenarios are shown: using wordlist mapping,
WLDuni, and WLDtri, which is the best combination for majority vote for most texts;
and using all five normalization methods. For reasons of clarity, only the versions that
were trained on the first 500 tokens of the respective texts are shown; except for very
small training sizes, the general trend of the results is the same for other sizes of the
training corpora, too.

The first thing to note is that, especially for the Sermon texts, many differences in

47

normalization accuracy reported here cannot be shown to be statistically significant.
This being said, the chain combination of using wordlist mapping first, then rule-based
normalization, then WLDtri (column “M,R,W3”), gives the best accuracy in all cases but
one. It is conceivable that the differences can be shown to be significant only with larger
text sizes. In addition to that, chain combinations are always better than the best single
normalization method alone. Therefore, while these figures do not provide conclusive
evidence, they strongly suggest that this type of chain combination is the best for the
given set of normalization methods.15

The same tendency also holds when comparing chain combinations with the majority
vote approach. In all cases, the best result of a majority vote is still worse than that of
the best chain. The difference is larger for texts with lower baselines (e.g., 75.07% vs.
67.48% with Berlin (norm)) and tends to become less significant with more modern
texts (Sermon). Using majority vote with all five normalization methods discussed here
is yet considerably worse. These results show that a bias towards specific methods is
actually preferable to a majority vote where all methods are treated equally (as long as
there is no tie).

Example (39) shows an excerpt from the Melk text which is normalized correctly
by the best chain combination. The third line shows which normalization method
is responsible for the given normalization. It also demonstrates that all algorithms
actually get called during the normalization process. In the given passage, each of these
normalization methods on its own would have introduced at least one error, too: WLDtri

normalizes waz ‘was’ to was, while the other methods cannot handle the phrase symones
weissagueng ‘Simon’s divination’.

(39) es
es
MAP

waz
war
MAP

symones
simons
WLDtri

weissagueng
weissagung
WLDtri

dennoch
dennoch
RULES

nicht
nicht
RULES

volpracht
vollbracht
RULES

‘Simon’s divination was still not fulfilled/accomplished’

When evaluated in isolation (cf. Table 5), the wordlist mapper usually performs
worse than the rule-based method. Still, evaluation of chains shows that using the
mapper before the rules is actually better than the other way around. This is not a
contradiction, though, when taking into account how these algorithms work. The rule-
based approach has a higher granularity than the wordlist mapper, as both can be said
to learn replacement rules, but on different levels (character-based vs. word-based).
Consequently, if the rule-based method fails to find a normalization, the wordlist mapper
will also fail—if the wordlist included a suitable mapping, the rule-based method would
have learned the applicable rules, too. This is why in the combination of the rule-based
method, wordlist mapper, and WLDtri (column “R,(M,)W3” in Table 15), there is no

15For an evaluation of the best chain combination method (“M,R,W3”) with different training sizes and additionally
using cross-validation, see Bollmann (2013). For a training size of 500 tokens, the results obtained using cross-validation
are very similar to those reported here, and in case of the Berlin text even significantly better (approx. 79%).

48

difference in the accuracy score if the wordlist mapper is left out (hence it is given in
brackets).

On the other hand, using the wordlist mapper before applying rewrite rules is still
better than leaving it out completely. This also follows from the properties mentioned
above. As wordlist mapping has the lowest granularity, it will fail most often, but
normalize those wordforms that it has learned with a relatively high accuracy. The
rule-based approach is more fine-grained as it operates on character n-grams, and will
be able to produce a normalization more often. Finally, the WLDtri method has the
highest granularity by comparison, as it does not impose the strict context restrictions
that are used by the character rewrite rules. Hence, what the results actually imply
is that going from lower to higher granularities of normalization methods—i.e., from
larger to smaller units of operation—is the most promising way of approaching the
normalization problem. Further research could try to utilize this assumption by using
even more gradations of input string length (e.g., considering n-grams with decreasing
values for n, starting with the length of the input wordform) in the normalization process.

4 Part-of-speech tagging

This section discusses aspects and results of part-of-speech (POS) tagging on historical
data. Normalization as discussed in the previous section can be useful by itself, e.g., for
purposes of information retrieval: it allows the user of a corpus to perform easier and
more reliable search queries on historical data. If, on the other hand, the ultimate goal
of a research project is to create a morphologically or syntactically annotated resource,
normalization might only be seen as an intermediate step to achieve this result. The
evaluation of POS tagging performance on normalized data therefore serves to analyze
how useful normalization actually is for this purpose. Additionally, even gold standard
normalizations of historical data feature some characteristics which complicate the
tagging process. Those will also be analyzed here in more detail.

Section 4.1 first presents the POS taggers included in the evaluation and gives more
information about the evaluation procedure. Section 4.2 tests the impact of removing
capitalization and punctuation—a common handicap for processing historical texts—on
modern data. Section 4.3 discusses POS tagging results on the original texts and the gold
standard normalizations, while Section 4.4 presents an evaluation on the automatically
normalized data.

4.1 Methods and procedure

Most POS taggers are able to annotate modern German data with high accuracy; e.g.,
Schmid (1995) reports an accuracy of 97.5% for an optimized version of TreeTagger.
However, it is not clear whether better performance on modern data equals better

49

performance on historical data, or data that has been automatically normalized. Hence,
different POS taggers are included and compared in this evaluation. The taggers that
were chosen for the evaluation are:

1. TreeTagger16 (Schmid, 1994, 1995), a probabilistic hidden Markov model (HMM)
tagger using binary decision trees to estimate transition probabilities;

2. RFTagger17 (Schmid and Laws, 2008), a fine-grained HMM tagger using mor-
phological features and decision trees to estimate probabilities separately for each
feature value; and

3. MBT18 (Daelemans et al., 1996), version 3.2.9, a tagger using memory-based
learning techniques.

TreeTagger belongs to the family of statistical POS taggers based on Markov models.
Its name derives from the fact that it uses decision trees to estimate the transition
probabilities of POS tags, i.e., the probability of a given POS tag with respect to the
tags immediately preceding it. By default, TreeTagger uses a trigram model for this
estimation, i.e., it considers two preceding POS tags to calculate the probability for a
POS tag of any given word. A fullform lexicon is stored which provides the candidate
tags for a wordform. For unknown words, TreeTagger additionally uses prefix and suffix
lexicons to match them to known wordforms. All lexicons are directly built from a
training corpus. POS tags are treated as atomic units, i.e., the tagger does not distinguish
between the base POS (e.g., NN) and its morphological attributes (e.g., Masc.Nom.Sg).
The supplied parameter file for German only tags base POS without morphological
attributes; therefore, the training corpus (cf. Sec. 2.2) is also stripped down to base
POS tags before training with TreeTagger.

RFTagger is based on the same theoretical concepts as TreeTagger, but uses more
fine-grained techniques as it takes morphological attributes into account. POS tags
are split up at dot symbols to create attribute sets; the first element is treated as the
base POS, while all other elements are treated as attributes dependent on that base
POS tag. Similarly to TreeTagger, RFTagger makes use of decision trees for probability
estimation, but builds separate trees for each possibly feature value of each attribute. In
addition to that, it differs from TreeTagger with respect to the treatment of unknown
words. Words are separated into disjunct word classes: by default, these are numeric
expressions, capitalized words, lowercase words, and a fourth class for all other tokens.
Suffix tries with a maximum suffix length of 7 are built separately for each word class,
and unknown words during tagging are only matched against the suffix trie of their
respective word class. RFTagger also uses a trigram model (i.e., two precedings tags as
context information) by default, but Schmid and Laws (2008) report a higher accuracy

16http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/
17http://www.ims.uni-stuttgart.de/projekte/corplex/RFTagger/
18http://ilk.uvt.nl/mbt/

50

when increasing the context size to 10 preceding POS tags: up to 97.97% on data from
the TIGER corpus.

The Memory-Based Tagger (MBT) uses a different approach than the previously
presented taggers: it uses memory-based learning, i.e., “supervised, inductive learning
from examples” (Daelemans et al., 1996, p. 15). Instead of trying to derive a statistical
model from a training corpus, MBT stores the training data as feature vectors in a kind
of internal “memory”. For the tagging process, similarity metrics are used to compare
the data to already known examples in the memory; the least distant example is then
used as the tagging hypothesis. Similarly to TreeTagger and RFTagger, MBT also
considers token context, but is not restricted to looking only at the preceding tags: right
context can also be taken into account by assigning “ambiguous tags” to these tokens,
consisting of the set of possible tags they can be assigned according to the lexicon. The
type and amount of context information to use can be freely configured. For unknown
words, affixes can be used to relate them to known words. The default settings, which
were found to be best by Daelemans et al. (1996), are to use two tags to the left and
one (ambiguous) tag to the right as context for known words, and one tag to both sides
plus the first and the final three letters of unknown words. MBT claims to have an
especially good performance on unknowns: on a Wall Street Journal corpus, an accuracy
above 90% for unknown words was achieved (Daelemans et al., 1996).

Accuracy

RFT 97.04%
RFT10 97.26%
TREE 96.48%
MBT 96.78%

Table 16: Tagging accuracy of different
taggers on modern data (average of 10-
fold CV)

For the experiments below, all taggers are
used with their default settings, with one ex-
ception: the RFTagger is additionally tried
with a context size of 10 (instead of the de-
fault 2). The TIGER/Tüba corpus described in
Section 2.2 is always used to train the taggers.
For TreeTagger and MBT, only base POS is
used, while RFTagger is trained with the full
POS annotation, as the decomposition of tags
and use of morphological attributes is a dis-
tinctive feature of the tagger. Only base POS
is used for the evaluation, though, as neither the Anselm nor the Sermon texts are
annotated with morphological information. Table 16 shows the average accuracy of
tenfold cross-validation on the TIGER/Tüba corpus using the different taggers.

In addition to the different POS taggers, different gradations of the tagset will be con-
sidered. The tagset used by all corpora in this thesis closely follows the STTS (Schiller
et al., 1999), which is a relatively fine-grained tagset containing 54 tags. Tags in
the STTS sometimes already encode complex information. Consider, for example, the
tag VAFIN: it contains information about word class (V = verb), subtype (A = auxiliary),
and grammatical category (FIN = finite). When these distinctions are already made

51

STTS STTSred Universal

ADJA, ADJD ADJ ADJ
ADV ADV ADV
APPO, APPR,
APPRART, APZR

AP ADP

ART ART DET
CARD CARD NUM
FM FM X
ITJ ITJ X
KOKOM KOKOM CONJ
KON KON CONJ
KOUI, KOUS KOU CONJ
NE NE NOUN
NN NN NOUN
PDAT, PDS PD PRON
PIAT, PIS PI PRON
PPER PPER PRON
PPOSAT, PPOSS PPOS PRON
PRELAT, PRELS PREL PRON
PRF PPER PRON
PAV PAV PRON
PTKA PTKA PRT
PTKANT PTKANT PRT
PTKNEG PTKNEG PRT
PTKVZ PTKVZ PRT
PTKZU PTKZU PRT
PWAT, PWAV, PWS PW PRON
TRUNC TRUNC X
VAFIN, VAIMP,
VAINF, VAPP

VA VERB

VMFIN, VMINF, VMPP VM VERB
VVFIN, VVIMP,
VVINF, VVIZU, VVPP

VV VERB

XY XY X
$($(PUNCT
$, $, PUNCT
$. $. PUNCT

Table 17: Mappings from the STTS tagset (Schiller et al., 1999) to the reduced STTS
tagset (STTSred) and Universal tagset (Petrov et al., 2011).

52

in the base POS tag, there is typically a difference in inflectional form or syntactic
distribution which distinguishes elements of that POS tag from those of other, similar
tags. Historical language, however, can follow different rules in this regard, and might
not always allow the same distinctions to be made. Still, if a tagger confuses the finite
and the imperative form (VAFIN vs. VAIMP), this is counted as an error in the same
way as confusing VAFIN with a completely unrelated category, e.g., NN (for common
nouns). As tagging on normalized historical data introduces more potential sources of
errors compared to modern data (e.g., wrong normalizations), knowing the type of these
tagging errors becomes much more relevant.

To account for the above-mentioned issue, the STTS tagset is mapped to two smaller
tagsets which are considered in the evaluation. Table 17 gives an overview of the
mappings from standard STTS to the reduced tagsets. The first tagset is a reduced
version of the STTS, referred to as STTSred, which takes away one level of distinction
from the majority of POS tags. As an example, auxiliary verbs all receive the POS tag
VA, removing the distinction of finite, imperative, or infinitive form. The second tagset
takes this one step further, including only one base category VERB for all types and
forms of verbs. This “universal” tagset has been proposed by Petrov et al. (2011),
who also provide a mapping from STTS to their tagset (from now on referred to as
“Universal”). Comparing accuracy on STTS with accuracy on the Universal tagset
allows for a better evaluation of the types of errors the tagger makes, as outlined above.
Both the mapping to STTSred and Universal are only made for the accuracy evaluation,
though; the tagging process itself is always performed using models trained on STTS.
Petrov et al. (2011) found this to increase accuracy compared to directly using a model
trained on the reduced tagset.

Finally, contrary to standard practice, punctuation marks are always excluded when
evaluating tagging accuracy in the following sections. Historical texts do not feature
consistent punctuation marks; as a result, texts with and without punctuation marks
will be tagged and compared. This is only meaningful if the accuracy calculations are
based on the same data, especially since punctuation is often unambiguous regarding
its POS tag, causing accuracy with punctuation to always be higher than that without
punctuation. Hence, punctuation marks19 are never counted for POS tagging accuracy.

4.2 Tagging on modern data

Normalization tries to handle the problem of spelling inconsistencies found in historical
language data. However, this is not the only challenge for processing the data with
POS taggers: another problem lies in the fact that there is often no consistent capital-
ization, or at least not in the way that it is used in modern German. As a consequence,
POS taggers cannot use capitalization as a reliable clue to detect nouns. Normalization

19More precisely: tokens that are tagged as punctuation in the gold standard POS annotation.

53

already ignores capitalization and only operates on lowercased data; for the reasons
stated above, the same will be done for POS tagging.

Another challenge is the missing or inconsistent use of punctuation marks. In con-
trast to modern German, full stops are rarely used in the Anselm corpus; the Melk
manuscript, for example, mostly uses virgules (visually resembling a modern slash ‘/’)
for punctuation. Virgules are often placed where modern German would use a full stop
(cf. Sec. 2.3.2), however, this is far from a definite rule. Furthermore, large parts of the
Anselm texts feature no punctuation marks at all.

As both capitalization and punctuation can provide clues for POS tagging, the lack
of these features can potentially have a negative impact on tagging performance. To
study the magnitude of this effect, tagging experiments are performed on modified
versions of the modern TIGER/Tüba corpus (cf. Sec. 2.2). Three different scenarios are
considered: (1) all data is lowercased; (2) all punctuation marks and sentence boundaries
are removed; and (3) the combination of both.

Sentence boundaries in particular are usually taken into account by the POS tagger in
some way. TreeTagger explicitly requires the identification of one POS tag as marking
sentence boundaries, while RFTagger expects an empty line between sentences. MBT
requires a similar, configurable marker. For the purpose of evaluating without sentence
boundaries, all punctuation marks are stripped from the corpus, and all boundary markers
are removed. TreeTagger is given a non-existent tag to be used as the boundary POS tag.

Evaluation is done as tenfold cross-validation for each combination of testing scenario
and tagger. The tenfold partition of the TIGER/Tüba corpus was created randomly using
sentences as the basis for splitting; the same partition is used for all evaluation scenarios.
While no noticeable performance loss in terms of tagging speed was observed with
RFTagger and TreeTagger for any scenario, MBT took considerably longer when training
on data without sentence boundaries, averaging about 7 hours of computing time for
processing just one fold of training and evaluation data.20 Therefore, an exception to the
cross-validation approach is made for MBT without sentence boundaries, and only the
first fold is processed in these cases.

The full evaluation results for these tagging experiments are presented in Table 18,
given both for all (non-punctuation) tokens and for unknowns only, i.e., wordforms that
were not seen during training. The results show that lowercasing all words reduces
STTS accuracy by 0.35–0.42 percentage points for the RFTagger and TreeTagger; MBT
takes a slightly larger performance hit of about 0.7 percentage points. The average size
of the evaluation parts is slightly below 190,000 tokens—at that size, these differences
can be found to be statistically significant (p < 0.05).

Removing all punctuation marks and sentence boundaries is an even bigger challenge
for all taggers; accuracy is significantly lower than with the lowercased version. This is

20The system used for the tagging experiments was the same as for the normalization: Intel i7-870 @ 2.93 GHz, 16 GB
RAM, Linux 3.6.4

54

All Unknowns

STTS STTSred Univ STTS STTSred Univ

Original

RFT 96.59% 97.36% 97.95% 89.60% 91.22% 94.96%
RFT10 96.85% 97.40% 97.99% 90.22% 91.31% 95.05%
TREE 95.91% 96.77% 97.41% 90.01% 91.38% 95.43%
MBT 96.26% 97.18% 97.94% 84.36% 86.67% 92.80%

Lowercased

RFT 96.24% 97.00% 97.59% 89.47% 90.93% 94.53%
RFT10 96.50% 97.04% 97.62% 90.21% 91.18% 94.72%
TREE 95.49% 96.32% 96.97% 88.11% 89.25% 93.44%
MBT 95.57% 96.53% 97.24% 81.36% 83.16% 88.79%

No punct.

RFT 95.90% 96.87% 97.53% 88.51% 90.38% 94.41%
RFT10 96.22% 96.97% 97.63% 88.89% 90.38% 94.42%
TREE 95.04% 96.18% 96.93% 88.62% 90.22% 94.36%

MBT† 95.20% 96.46% 97.29% 82.77% 85.16% 91.67%

RFT 95.39% 96.35% 97.01% 88.01% 89.59% 93.36%
Lowercased RFT10 95.74% 96.48% 97.14% 88.58% 89.78% 93.52%
+ no punct. TREE 94.44% 95.55% 96.33% 86.84% 87.94% 92.28%

MBT† 94.45% 95.76% 96.54% 80.29% 82.39% 88.06%

Table 18: Tagging accuracy of different taggers on modern data, without capitalization
(= Lowercased) and punctuation marks (= No punct.); scores are the average of tenfold
cross-validation, except rows marked with ‘†’, where only one training and evaluation
step was performed; accuracy is always evaluated without punctuation marks; best result
for each column and tagging scenario highlighted in bold.

not too surprising, though. While capitalization in German provides an important clue
for the detection of (all types of) nouns, most other languages restrict capitalization to
proper nouns and sentence-initial words, yet can still be POS tagged with high accuracy.
Furthermore, wordforms of nouns are often not confusable with other parts of speech
even when lowercased. Removal of punctuation marks, on the other hand, is much
more likely to create ambiguity and/or raise the difficulty of disambiguation. As an
example, the function word das can be used as an article, a demonstrative pronoun, and
a relative pronoun—in the latter case, it typically follows a comma, which is a strong
clue for the tagger which is lost after removing punctuation. Indeed, a statistical analysis
reveals that the error rate for the category PRELS (substituting relative pronouns, such
as das) doubles when removing punctuation. This is true for all taggers, though the

55

exact figures vary: error rate using RFT10 increases from 4% (with punctuation) to 8%
(without punctuation), while with MBT, it rises from 11% to about 22%. In all cases, it
was most often confused with an article (ART), suggesting that the ambiguous forms
der/die/das indeed make up the majority of these cases.

Interestingly, when comparing accuracy using the Universal tagset, there is no signifi-
cant difference between the lowercase version and the “no punctuation” version, while
a slight difference can still be observed with the reduced STTS. This suggests that a
significant part of errors when tagging without punctuation marks is made within the
same category of the Universal tagset, but less often within one category of STTSred.
Error analysis provides a clue that pronouns are largely responsible for this: with RFT10,
22% of all occurrences of PWAV and 11% of PWS, PDS, PRELAT, and PIS were tagged
incorrectly. If a large number of these occurrences are confused with other pronouns,
this could lead to the observed results. Again, confusion between das as a demonstrative
and a relative pronoun is one possible example for this.

A further result of Table 18 is that using RFTagger with a context size of 10 (RFT10)
achieves the highest score in almost every scenario. Compared to the “standard” RFTag-
ger using a context size of 2, the increase in performance also comes with a considerable
increase in tagging time. The exact difference fluctuated strongly during the tests, but
time required to tag the Berlin text typically ranged from a few seconds (with context
size 2) to 5–8 minutes (with context size 10). Still, the numbers suggest that RFT10

not only has the highest overall accuracy for modern German with the given test and
training corpus, but is also best for tagging data with the handicaps of no capitalization
and/or punctuation marks.

A surprising result is the comparatively bad performance of MBT on unknown tokens,
which is always about 6 percentage points below that of the other taggers. This is
a remarkable difference, especially considering the high performance on unknowns
reported for MBT with English corpora (Daelemans et al., 1996). It is conceivable that
the results can be improved by tuning the various parameters of both the tagger and the
memory-based learning framework utilized by it. Experiments with parametrization
were not tried for this thesis, however, a study by Ivanova and Kübler (2008) found that
tagging results on German using MBT were best when setting the context information
to two tokens on both sides of the input word. The default setting used here differs
from this optimum by using only one token to the right, which the study found to have
only a marginal effect on the result, though. Another possible factor is the prefix length
taken into account for unknown words, which is one by default, but three in the study
by Ivanova and Kübler (2008). The differences in accuracy reported there by changing
the tagger’s settings are all comparatively minor, though, letting it appear questionable
whether these settings can actually close the gap of about 6 percentage points to the
other taggers.

56

Finally, combining both handicaps and evaluating on lowercased data without punc-
tuation gives another decrease in accuracy. This is the most relevant result, as this
configuration is used the most often during evaluation of Anselm and Sermon texts.
As with all other scenarios, comparing STTS accuracy, RFT10 performs best, followed
by standard RFTagger, MBT, and TreeTagger in that order. The difference between
this scenario and the unmodified corpus is about 1.1 percentage points using RFT10,
which means that overall tagging accuracy is still very high even with both drawbacks
combined (95.74%). On the other hand, this decrease in accuracy should not be under-
estimated, either, as it translates to an increase of the error rate by about 35%. Thus,
it is possible that the negative effect of lowercasing words and removing punctuation
is magnified when POS tagging data with generally lower accuracy scores. Still, for
historical data without reliable capitalization or punctuation, there is no obviously better
alternative to this approach.

4.3 Tagging on historical and gold standard data

Before comparing POS tagging accuracy on automatically normalized texts, tagging is
performed both on the original, unmodified data and on the gold standard normalizations.
The former can serve as a reference for the improvement of tagging accuracy with
normalization, while the latter is likely to be the upper bound for such an approach. For
the gold standard normalization, three different variants are considered: (1) including the
original punctuation marks for tagging; (2) using modern punctuation; and (3) tagging
without any punctuation at all. The first two variants were tested on a tagger model
that has been trained on the TIGER/Tüba corpus with modern punctuation, while the
TIGER/Tüba corpus without punctuation has been used to train the tagger for the last
variant. Again, tagging accuracy is only evaluated on the non-punctuation tokens in
each case for better comparability of the results.

“Modern punctuation” for the Sermon texts refers to the normalization of historical
punctuation marks. This also means that historical and modern punctuation marks
always coincide. For the Anselm texts, modern punctuation was annotated separately
from the normalization and therefore does not have this limitation. While this is a
conceptual difference, the Sermon texts might already be close to modern conventions
with regard to punctuation due to the time at which they were written. Hence, they do
not require such an elaborate approach. Supporting this argument is the fact that in
JubelFeste and Gottesdienst, there is no difference at all in punctuation between the
original and the normalization layer. Section 4.3.4 will present a counterexample to this
theory, though.

Table 19 shows the results of this evaluation, reporting accuracy on the STTS tagset
only. For tagging on the original, historical data, accuracy scores are almost always
higher than the normalization baseline, the LeichSermon text being the only exception.

57

Original GS normalization

OrigP NoP ModP

Berlin
(norm)

RFT 27.95% 86.06% 87.16% 87.58%
RFT10 28.65% 85.78% 87.07% 87.29%
TREE 26.57% 85.29% 86.14% 86.44%
MBT 27.65% 84.42% 84.89% 85.89%

Berlin
(mod)

RFT 27.95% 86.80% 88.09% 88.30%
RFT10 28.65% 86.73% 88.37% 88.20%
TREE 26.57% 86.12% 87.07% 87.18%
MBT 27.65% 85.42% 85.93% 86.88%

Melk
(norm)

RFT 44.75% 86.04% 87.47% 88.00%
RFT10 44.70% 85.21% 87.74% 87.76%
TREE 41.45% 85.76% 86.70% 87.14%
MBT 44.29% 84.70% 86.26% 86.84%

Melk
(mod)

RFT 44.75% 87.38% 89.21% 89.32%
RFT10 44.70% 87.01% 89.63% 89.32%
TREE 41.45% 87.23% 88.00% 88.33%
MBT 44.29% 86.02% 87.60% 88.12%

LeichSermon

RFT 67.95% 79.95% 81.31% 80.05%
RFT10 67.95% 81.22% 81.04% 80.59%
TREE 66.55% 80.05% 80.23% 80.32%
MBT 66.77% 78.74% 78.96% 79.19%

JubelFeste

RFT 81.24% 89.56% 89.94% 89.56%
RFT10 82.26% 90.41% 90.03% 90.41%
TREE 79.74% 89.14% 88.39% 89.14%
MBT 80.35% 88.96% 87.41% 88.96%

Gottesdienst

RFT 86.84% 92.58% 91.55% 92.58%
RFT10 88.07% 93.24% 92.27% 93.24%
TREE 84.90% 92.01% 89.86% 92.01%
MBT 84.23% 90.17% 88.68% 90.17%

Table 19: Tagging accuracy of different taggers on the original historical data and
gold standard normalizations (OrigP = original punctuation, NoP = no punctuation,
ModP = modern punctuation), using STTS tags; accuracy is always evaluated without
punctuation marks; best result for each text is highlighted in bold, differences to the best
result that are not statistically significant (p > 0.05) are marked in italics.

58

As an example, the normalization layer of the Berlin text has a (normalization) baseline
of 23.40%, yet can achieve a tagging accuracy of 28.65%. This is especially remarkable
as that number refers to the STTS tagset; with the Universal tagset, the score goes up to
38.89%. Apparently, a certain amount of tokens can be tagged correctly even though
they are not identical to their normalized counterparts.

(40) an
an
APPR

sotane
solche
ADJA

wirdekeit
würde
NN

‘to such dignity’

(41) von
von
APPR

den
dem
ART

ewigen
ewigen
ADJA

tod
tod
NN

‘from eternal death’

Example (40) is from the Berlin manuscript, showing two extinct wordforms (sotane
wirdekeit) along with their modernizations. Even though these words do no longer exist
in modern German, they are correctly tagged by the RFTagger in the historical text. This
is possibly the result of suffix analysis: –keit is a very common derivational suffix in
modern German, resulting in a noun (NN), while –tane can be found in some inflected
adjective (ADJA) wordforms (e.g., spontane ‘spontaneous’). An even simpler case
is Example (41): here, only the inflection of the definite article changes between the
original and its modernization (den/dem). As this does not influence the base POS tag,
the whole sequence can be tagged correctly. Examples like these demonstrate that
perfect normalization accuracy is not always needed for correct POS tagging, which is
also highly relevant for the tagging of automatically normalized data.

Tagging on the gold standard normalization shows slightly varying results. Using
modern punctuation or no punctuation at all is always best21; however, as the texts
are comparatively short, the difference between these two versions is almost never
statistically significant (p < 0.05; Gottesdienst with TreeTagger is the only exception).
The same cannot be said for tagging with the original punctuation, though, which is
almost always worse22, and often significantly so. However, this is to be expected, as
punctuation marks in historical texts often have a different distribution as the modern
punctuation marks on which the tagger was trained (e.g., a virgule ‘/’ is used for modern
comma or full stop, but rarely for a modern slash). In order to achieve better results with
original punctuation marks, they would probably have to be converted to the respective
modern tokens (e.g., replacing virgules with full stops). However, the correlation of
historical and modern punctuation analyzed for Anselm in Section 2.3.2 showed that this
is not a trivial thing to do. Also, the results of tagging with correct modern punctuation

21As there is no difference between original and modern punctuation in JubelFeste and Gottesdienst, the original
punctuation is assumed to be already “modern” in these cases.

22In the only counterexample where original punctuation is better than the other options, LeichSermon with RFT10, the
difference is again not statistically significant.

59

are not significantly better than those without punctuation at all. Hence, it is doubtful
whether this approach would lead to improved results.

In general, the results suggest that the best course of action is to remove all punctuation
marks for tagging. One reason for this is that enriching a text with modern punctuation
is another annotation step which has to be performed manually. As the accuracy does not
improve significantly over tagging without punctuation, though, this is an effort which
does not pay off (at least if it is done exclusively for the purposes of POS tagging). On
the other hand, if information about modern punctuation is available, it does not hurt the
tagging process either—depending on the characteristics of the text, it might be able to
produce minimally better results. Historical punctuation marks should never be included
for tagging as their distribution cannot be learned from modern data, which negatively
affects tagging accuracy. Of course, newer texts such as JubelFeste and Gottesdienst
constitute an exception to this rule: if punctuation in the original text can be assumed to
be already close to modern, it is reasonable to retain it in the tagging process.

For all texts, the accuracy scores on gold standard normalizations are comparatively
low. Evaluation on lowercased, modern data without punctuation still achieved an aver-
age accuracy of over 95%, while the gold standard normalizations only give around 88%
for the Anselm texts, 90–93% for JubelFeste/Gottesdienst, and an exceptionally low 81%
for LeichSermon. These lower accuracies might also be the reason for the fact that
using RFTagger with a context size of 10 is sometimes worse here than using it with the
default size of 2 (in contrast to the results in Table 18): with a larger context size, tagging
errors will negatively influence more of the following wordforms. This is consistent with
the observation that standard RFT is better with LeichSermon and the normalization
layer of Berlin and Melk, which always have accuracies of at most 88%, whereas RFT10

performs better for the other texts that show slightly higher accuracies.
The remainder of this section will try to highlight some of the reasons for the

comparatively low accuracy scores on gold standard normalizations. As they represent a
kind of upper bound, POS tagging on automatically normalized data can be expected
to face very similar problems, mainly augmented by potential normalization mistakes.
Therefore, the focus of the qualitative analysis of tagging errors in this thesis is on the
gold standard data.

4.3.1 Semantic and morphologic variation

An important observation is that even perfectly normalized historical data has different
characteristics than modern data. This is because normalization as it is done for the
Anselm and GerManC-GS corpora only affects the spelling of the wordforms. Ad-
ditionally, the transcriptions of the Anselm texts already account for differences in
modern word boundaries (e.g., one historical word that would be written as two words
in modern German, and vice versa), which can be used for further processing. However,

60

one factor that is not considered in the normalization layer of Anselm is the change of
semantics or syntactic function. A prominent example is the wordform so, which is an
adverb in modern German (and sometimes also tagged as KOUS in TIGER/Tüba in the
combination so dass ‘so that’), but is frequently used as a relative pronoun in ENHG, as
in Example (42) from LeichSermon.

(42) die
die
ART

faelle
fälle
NN

/
,
$,

so
so
PRELS

aus
aus
APPR

schwacheit
schwachheit
NN

geschehen
geschehen
VVPP

‘the cases which occur out of weakness’

As the wordform so is never annotated as PRELS in the TIGER/Tüba corpus, the
POS taggers have never seen this combination in the training data and will hardly, if
ever, choose the tag for this wordform. GerManC-GS annotates these occurrences
with a new tag PTKREL (cf. Sec. 2.4), however, this does not solve the issue of the
annotation not being found in modern training data. Extinct wordforms pose a similar
problem, as they cannot be learned from the training corpus either. In Example (43) from
LeichSermon, the historical dannenhero has been normalized as dannenher ‘therefore’.
While this normalizes the spelling, it creates a wordform which does not exist in New
High German either; the modern equivalent is daher. Similarly, in Example (44), the
normalization layer of Anselm maps the wordform czuhant to the artificial lemma zehant
‘immediately’, which also no longer exists in NHG.

(43) und
und
KON

dannenhero
dannenher
ADV

das
das
ART

guthe
gute
NN

[. . .]
[. . .]

nicht
nicht
PTKNEG

thun
tun
VVFIN

‘and [they] therefore do not do the good (deeds)’

(44) czuhant
zehant
ADV

chust
küsst
VVFIN

iudas
judas
NE

mein
mein
PPOSAT

chint
kind
NN

‘Immediately, Judas kissed my child’

In these cases, a POS tagger has to resort to its algorithms for dealing with unknown
words, which may or may not be able to correctly identify the word class. For dannenher,
this might be possible with suffix analysis. The most common words in TIGER/Tüba
ending in –her are bisher ‘so far’ and eher ‘rather’, which are both adverbs (ADV).
The modern daher also shares this suffix, but is actually tagged as PAV (pronominal
adverb) rather than ADV, which the manual annotators chose in this case. For zehant,
suffix analysis is unlikely to be successful. In TIGER/Tüba, the most common words
ending in –nt are nouns (e.g., Prozent ‘percent’), while those ending in –ant often are
verb forms (e.g., geplant ‘planned’). In fact, RFTagger correctly identifies dannenher as
ADV, while zehant is mostly tagged as a noun or a predicative adjective (ADJD), the
latter probably in analogy to the modern interessant ‘interesting’.

61

(45) (a) do
da
ADV

quam
kam
VVFIN

eyn
ein
ART

blynt
blind
ADJA

ritter
ritter
NN

‘There came a blind knight’
(b) NORM:

RFT & MBT:
TREE:

ein
ART
ART

blind
ADJD
NE

ritter
NN
NE

Inflectional differences pose a similar problem for tagging. Adjectives, for example,
are sometimes used in ENHG without an explicit inflectional ending, such as in Ex-
ample (45) from the Berlin text. As the adjective form blind is missing an inflectional
suffix, which is mandatory for the attributive use (ADJA) in front of a noun, RFTagger
and MBT do not recognize it as such and tag it as a predicative adjective (ADJD)
instead. TreeTagger instead treats the whole phrase blind ritter ‘blind knight’ as a proper
noun, possibly because the predicative use of the adjective is very unlikely in the given
syntactic context. Examples like these are one of the reasons why the Anselm corpus
distinguishes two layers; in the modernization layer, the historical wordform blynt is
also corrected for inflection. Still, in automatically normalized data, it is likely that such
cases are still included and must be dealt with during POS tagging.

Besides inflectional changes, the modernization layer of the Anselm corpus also
accounts for semantic change and extinct wordforms discussed above. In Example (44),
zehant is replaced in the modernization layer by the existing modern word sogleich,
which has a similar meaning and the same part-of-speech tag. However, tagging results
are only slightly better on the modernization than on the normalization layer. The
difference between the highest accuracy scores is in fact only significant (p < 0.05) for
the Melk text, but not for the Berlin text. A possible explanation is that Berlin contains
fewer extinct wordforms (1.1%) than Melk (1.8%), while the amount of wordforms with
semantic changes is about the same. In any case, even the results for the modernization
layer are still considerably worse than those achieved on modern data, showing that
while the mentioned problems can be an issue for tagging accuracy, they are not the
most important factor.

4.3.2 Syntactic variation

Another issue with normalized data is that syntactic peculiarities of the historical text
are not in any way modified. Syntactic constructions that do not occur in modern data
cannot be handled by the tagger, though.

(46) lat
lasst
VVIMP

die
die
PDS

[,
[$,

die]
PRELS]

pey
bei
APPR

mir
mir
PPER

sint
sind
VAFIN

[,]
[$,]

gen
gehen
VVINF

‘Let those who are with me go’

In Example (46), the original Melk manuscript only has one wordform die where
modern German typically has two: the first as a demonstrative pronoun, and the second

62

as the relative pronoun introducing the clause which specifies the first pronoun. Alterna-
tively, the example could be analysed as a free relative clause, where the antecedent die
is not needed—however, at least with the given constituent ordering, this construction
would be rather unusual in modern German23 and is unlikely to be recognized by a
tagger. In any case, commas are required to separate the relative clause from the main
clause.

In the automatically tagged version, die is annotated as an article (ART) by all four
taggers (while the rest of the phrase is annotated correctly). The POS taggers have
no way to detect the elision of a wordform and recognize the ambiguity between PDS
and PRELS, and therefore choose the most probable tag ART in this case. Interestingly,
this tag is selected even though no adjective or noun—which is typically expected after
an article—is following; this is true even for MBT, which explicitly takes right context
into account.

(47) (a) daz
dass
KOUS

her
er
PPER

cruczegete
kreuzigte
VVFIN

den
den
ART

vorreter
verräter
NN

.
,
$,

der
der
PRELS

sich
sich
PRF

nennet
nennt
VVFIN

gotis
gottes
NE

son
sohn
NN

‘that he crucify the traitor who calls himself the son of God’
(b) dass er den verräter kreuzigte, der sich gottes sohn nennt

Unusual word order can be another problem for automatic tagging, but is often han-
dled relatively well. Consider Example (47), which shows that the normalization retains
the original word order. Here, contrary to modern German, the finite verb is not placed
at the end of the subordinate clauses. Example (47b) shows the normalization corrected
for modern ordering of the constituents. Even though the word order in (47a) would
be considered ungrammatical and is unlikely to be covered by TIGER/Tüba, RFTagger
gives the correct tags for this example. This can happen due to the fact that while
the given word ordering is not grammatical in relative clauses, it resembles the order
found in main clauses. A statistical n-gram model that does not know about syntactical
structure might therefore still assign high probabilities to the given POS tag sequence.
Additionally, lexicon entries play an important role for tagging, and the wordforms
in the example are mostly unambiguous in this regard, increasing the likelyhood of a
correct result.

(48) (a) wo
wo
PWAV

[. . .]
[. . .]

meine
meine
PPOSAT

seele
seele
NN

wird
wird
VAFIN

fahren
fahren
VVINF

hinn
hin
PTKVZ

‘where my soul will be going’
(b) wo [. . .] meine seele hinfahren wird

When there is ambiguity in addition to unusual word order, tagging performance can
get worse. In Example (48), there is an inversion of the verb cluster; Example (48b)

23It is less unusual with the relative clause in front position: Die bei mir sind, lasst gehen. Furthermore, the part-of-speech
tag for die should be PRELS instead of PDS in Ex. (46) when using this analysis.

63

shows the unmarked modern word order for comparison. Verb cluster inversion is still
possible in modern German, but often marked, and primarily found in constructions with
modal verbs. In addition to that, the verb particle (here: hin) is typically not affected by
the inversion, and not split off from the verb in the infinitive form (hinfahren). While
MBT still tags Example (48) correctly, RFTagger interprets the infinitive fahren ‘to drive’
as as being the derived noun (NN; ‘the driving’). Note that this tagging error does not
only stem from the unusual word order, but also from the lowercasing of all words—
tagging with proper capitalization would have made this type of error very unlikely, as
the tag NN would not have been seen in the training data with the lowercased form of
the word.

4.3.3 Limits of the training corpus

Besides the differences between normalized text and NHG text discussed above, specific
properties of the TIGER/Tüba corpus can be the cause for some of the tagging mistakes.
The corpus, which is used to train all POS taggers, is made up of collections of newspaper
texts. One property of this text type is that direct speech occurs only infrequently
when compared to certain other genres, such as letters. The Anselm texts consist of
question/answer sets, with Saint Anselm and the Virgin Mary regularly addressing
each other in direct speech. Similarly, the Gottesdienst text is a religious speech which
addresses its audience right from the very beginning and continues to do so for large
parts of the speech. Additionally, newspaper text is usually written in a rather formal
style. Both factors combine in a common tagging mistake found in Example (49) from
the Berlin text:

(49) NORM:
GOLD:
RFT:

sieh
VVIMP
NE

anselm
NE
NE

,
$,
$,

da
KOUS
KOUS

es
PPER
PPER

da
ADV
ADV

mittag
NN
ADV

ward
VAFIN
VAFIN

[. . .]

‘Look, Anselm, as it was noon . . . ’

Here, at the beginning of the sentence, the Virgin Mary addresses Anselm directly.
The phrase sieh anselm (‘Look, Anselm’) is used 19 times in the Berlin manuscript; the
imperative sieh, which is a shortened form of siehe common especially in colloquial
and/or direct speech, is used 24 times. RFTagger wrongly identifies this phrase as a
proper noun, though, reducing the overall accuracy through the same recurring error.
All other taggers produce similar mistakes, too. A look at the TIGER/Tüba training data
reveals the cause for this: the wordform sieh does not occur there at all; only the standard
form siehe was learned 113 times. Suffix analysis is not likely to lead to the correct
POS tag, either, as imperative forms in general are very uncommon in TIGER/Tüba:
they only make up 397 tokens out of its 1.6 million total size (0.02%), disregarding
punctuation. In comparison, the gold standard POS annotation of the Berlin text already
contains 43 imperative verb forms (0.91%).

64

Unknowns Accuracy

RFT RFT10 TREE MBT

TIGER/Tüba 8,880 (5.54%) 88.01% 88.58% 86.84% 80.29%

Berlin (norm) 272 (4.98%) 54.78% 54.78% 44.85% 37.50%
Berlin (mod) 222 (4.70%) 59.91% 61.71% 49.55% 41.44%
Melk (norm) 269 (5.91%) 54.28% 57.62% 52.79% 51.30%
Melk (mod) 218 (4.79%) 65.60% 72.48% 65.14% 61.93%

LeichSermon 195 (8.80%) 54.36% 54.36% 50.26% 43.08%
JubelFeste 134 (6.27%) 82.84% 82.09% 76.87% 74.63%
Gottesdienst 107 (5.48%) 80.37% 85.98% 82.24% 71.03%

Table 20: Tagging accuracy of different taggers on unknown tokens in the gold standard
normalizations (without punctuation), using STTS tags; average of 10-fold CV with
TIGER/Tüba data given for comparison; best result for each text is highlighted in bold,
differences to the best result that are not statistically significant (p > 0.05) are marked
in italics.

In the gold standard annotation, this problem could be easily rectified if all instances
of the respective wordforms would be normalized as siehe by convention. This is not a
satisfactory solution, though, if the normalization algorithms are still able to produce the
shorter sieh. If this was disallowed (e.g., by removing the entry from the lexicon), the
baseline of a historical text containing the wordform sieh would be artificially lowered,
since the wordform would have to pass through the normalization algorithms even
though it is already a valid modern form. This does not yet take into account the fact
that this problem is certainly not restricted to a single wordform, but a more systematic
issue resulting from the highly different text genres used for training (newspaper text)
and evaluation (religious text, speeches, dialogues). Further issues raised by this genre
difference can certainly be found.

Note that the second tagging error in Example (49), mittag ‘noon’ annotated by all
taggers as ADV, results from missing capitalization again: mittag is only ambiguous
between ADV and NN in the lowercased version of the TIGER/Tüba corpus.

Genre-specific differences can also manifest themselves in the vocabulary of the texts.
POS taggers try to cover this problem “by design” through their integrated handling
of unknown wordforms, i.e., wordforms that do not appear in the training corpus and
could therefore not have been learned. For modern texts including punctuation, they
typically achieve accuracies around 90% on unknown tokens (cf. Table 18). Table 20
shows that tagging unknowns is more difficult with the gold standard normalizations,

65

with some texts only achieving accuracies as low as 54%. These numbers, of course, do
not only include changes in vocabulary, but are also affected by occurrences of extinct
wordforms, which were already discussed in Section 4.3.1. Extinct wordforms also
explain the large gap between the results for normalization vs. modernization of the
Anselm data.

(50) do
da
ADV

wart
ward
VAFIN

dy
die
ART

prophetie
prophetie
NN

an
an
APPR

myr
mir
PPER

wor
wahr
ADJD

‘Then the prophecy became true for me’

(51) (a) der
der
ART

selb
selbe
PDAT

chnecht
knecht
NN

hies
hiess
VVFIN

malichus
malchus
NE

‘The same servant was called Malchus’
(b) NORM:

RFT & RFT10:
TREE & MBT:

der
PDS
ART

selbe
PDAT
ADJA

knecht
ADJD
NN

hiess
VVFIN
VVFIN

malchus
NE
NE

Example (50) shows the unknown word prophetie ‘prophecy’, which can be argued
to be very specific to religious types of text. Still, all taggers correctly identify it as NN,
likely through a combination of the preceding article and suffix analysis (e.g., from
modern Demokratie ‘democracy’). Example (51) appears to be more difficult; both
knecht ‘servant’ and the name malchus are unknown words for the taggers. The name
malchus is unanimously tagged as NE, which is likely triggered by the preceding verb
that typically introduces a proper name (er hieß . . . ‘he was called . . . ’). The noun
knecht, on the other hand, is tagged incorrectly as ADJD by the RFTagger. Note that the
difficulty of tagging der selbe ‘the same’ arises from a problem of the transcription here,
as this combination is written as one word (derselbe) in modern German, which should
have been noted in the transcription. It is supposable that this factor contributes to the
mis-tagging of the following noun.

(52) (a) do
da

vorbunden
verbanden

sy
sie

ym
ihm

syne
seine

ougen
augen

vnd
und

vorsmeten
verschmähten

yn
ihn

‘Then they blindfolded and despised him’
(b) NORM:

GOLD:
AUTO:

und
KON
KON

verschmähten
VVFIN
ADJA

ihn
PPER
PPER

The wordform verschmähten ‘despised/spurned’ in Example (52) is not unknown,
but was learned only once from the TIGER/Tüba corpus. In this occurrence, it was used
as an adjective (dem gern verschmähten DFB ‘the gladly spurned DFB’). Consequently,
all taggers choose the same tag (ADJA) for this occurrence in the Berlin text, despite it
being clearly and unambiguously used as a finite verbform. While this wordform does
not count as unknown, its low frequency in the training corpus is still responsible for
this problem.

66

Finally, the unusually low accuracy of the LeichSermon text in Table 19 can be at
least partly explained by the comparatively high ratio of unknowns (8.8%) and the
low accuracy reported for them. In addition to that, there appear to be differences in
tagging conventions: LeichSermon has an unusually high number of numerals followed
by a dot (130 occurrences), which are typically used as ordinal numerals in modern
German. As such, they are tagged as ADJA in the TIGER/Tüba data, as in Example (53).
In LeichSermon, they mainly refer to bible verses (cf. Example (21)) and are tagged
as CARD, which is shown in Example (54).

(53) am
APPRART

30.
ADJA

Januar
NN

‘on January 30’

(54) jesaja
NE

66.
CARD

13.
CARD

joel
NE

2.
CARD

14.
CARD

‘Isaiah 66,13, Joel 2,14’

This discrepancy is responsible for a large part of tagging errors in the LeichSermon
text. Possible solutions are to alter the normalization of bible verse numbers to exclude
the dot, or to add a postprocessing step for POS tagging which corrects these cases. In
any case, this is another example of lowered accuracy due to significant differences
between the training and the test corpora, which should always be accounted for when
processing any kind of non-standard data.

4.3.4 Punctuation

While the data in Table 19 shows that adding modern punctuation does not significantly
increase tagging accuracy, the discussion has not yet touched upon the possible reasons
for this. After all, the tagging experiments on modern data in Section 4.2 gave the
opposite result: removal of punctuation led to significantly worse accuracy scores. A
possible explanation is that the difference is only relatively minor, and the evaluated
texts are simply too short for a significant difference to be detected. Additionally,
annotation errors in the Anselm data can also be responsible for this, as the annotation
of punctuation marks was carried out by a single annotator only without any further
verification.

For the Sermon texts, there is a 1:1 relation between historical and modern punctuation
marks, which can turn out to be problematic. Example (55) shows an excerpt from
the Gottesdienst text which contains a comma at a position where none is expected in
modern German. The original text and the normalization are identical for this passage.

(55) stellen
VVFIN

wir
PPER

uns
PRF

die
ART

gottheit
NN

,
$,

als
KOKOM

ein
ART

wesen
NN

vor
PTKVZ

‘Let us imagine the deity as a being . . . ’

67

(56) und
KON

nichts
PIS

ist
VAFIN

schwerer
ADJD

,
$,

als
KOUS

ihnen
PPER

zu
PTKZU

widerstehen
VVINF

‘And nothing is harder than to resist them’

The KOKOM tag is reserved for particles used for a comparison within a clause;
in the above example, ‘the deity’ is compared with ‘a being’, which is specified more
closely in the clause that is following. The comparison particle als can also be used to
introduce a subordinate clause, though, as in Example (56). As a subordinate clause
is introduced with a comma in modern German, but a comparison within a clause is
not, both instances of als are tagged as a subordinating conjunction (KOUS) by all
taggers. While Gottesdienst still performs better with punctuation than without it, similar
examples can be found for the LeichSermon text, too. This is a conceptual problem of
the normalization layer in GerManC-GS and can only be circumvented completely by
ignoring the punctuation marks for POS tagging.

4.4 Tagging on automatically normalized data

In this section, automatic normalization and POS tagging are finally evaluated in combi-
nation. For the comparison of tagging accuracies, all normalization methods described in
Section 3.1 are considered. Additionally, the chain combination of wordlist mapper, rule-
based method, and weighted Levenshtein distance with trigrams (WLDtri) is included,
as it was shown in Section 3.3 to be the best-performing combination. For the Anselm
texts, only the results for the normalization layer are provided. This is because the
evaluation on gold standard data (cf. Sec. 4.3) showed only a minor advantage of using
modernization versus normalization, while the modernization layer is much harder to
generate with automatic normalization methods (cf. Sec. 3.2.1). Regarding the issue of
punctuation, all POS tagging evaluation is done on texts without any punctuation marks.
Section 4.3 showed that using modern punctuation does not always improve the results
over using no punctuation at all; furthermore, the concept of “modern” punctuation has
been shown to be different between the Anselm corpus and the Sermon texts, making a
direct comparison more difficult. Finally, using no punctuation for tagging also lends
more focus to the “automatic” aspect of the process, as modern punctuation requires yet
another manual annotation step.

Table 21 shows the POS tagging accuracy for all texts, using the automatical normal-
izations generated by using the first 500 tokens for training, and evaluating on the full
STTS tagset. The normalization accuracy for each text and method is always shown for
comparison. Note that these figures are higher than the accuracies reported in Tables 5
and 15 as they include the 500 training tokens that were manually normalized (and are
therefore always correct), while the normalization accuracies given in Section 3 did not.

Using the chain normalization technique always results in the best POS tagging
accuracy, except for JubelFeste, where it is slightly but insignificantly worse than using

68

Mapper Rules Leven WLDuni WLDtri Chain

Berlin
(norm)

NORM 66.84% 67.47% 37.70% 56.50% 65.01% 77.77%

RFT 68.62% 67.64% 40.07% 55.73% 63.19% 76.27%
RFT10 69.04% 67.64% 39.80% 55.73% 63.25% 75.95%
TREE 65.88% 66.20% 40.43% 55.22% 63.45% 75.50%
MBT 67.49% 67.47% 39.65% 55.75% 62.83% 75.46%

Melk
(norm)

NORM 67.25% 68.11% 54.46% 69.10% 72.59% 77.14%

RFT 69.19% 69.14% 56.29% 67.05% 69.91% 76.24%
RFT10 69.65% 69.32% 56.00% 67.80% 70.37% 76.24%
TREE 67.08% 66.59% 56.99% 67.58% 70.29% 75.87%
MBT 69.16% 68.88% 57.03% 67.91% 70.37% 76.44%

LeichSermon

NORM 81.81% 83.43% 70.34% 80.36% 80.95% 83.25%

RFT 73.14% 73.68% 69.53% 75.08% 75.40% 75.89%
RFT10 73.72% 74.18% 69.84% 75.08% 75.17% 75.85%
TREE 72.73% 73.36% 68.31% 73.59% 73.59% 74.67%
MBT 71.69% 72.33% 68.44% 74.04% 74.40% 74.45%

JubelFeste

NORM 88.68% 91.20% 83.81% 89.33% 90.92% 93.73%

RFT 85.73% 86.38% 80.58% 83.39% 85.21% 86.57%
RFT10 85.87% 86.66% 81.00% 83.72% 85.17% 86.52%
TREE 82.50% 83.72% 79.36% 82.36% 83.67% 84.79%
MBT 82.69% 84.09% 79.83% 81.66% 83.01% 84.00%

Gottesdienst

NORM 90.02% 92.93% 88.07% 94.83% 96.62% 96.83%

RFT 89.25% 90.68% 85.15% 88.94% 90.37% 90.68%
RFT10 90.12% 91.30% 84.79% 89.71% 90.99% 91.30%
TREE 86.64% 88.12% 83.67% 87.35% 88.58% 88.84%
MBT 85.82% 86.89% 82.74% 86.79% 87.97% 88.02%

Table 21: Tagging accuracy on automatically normalized texts using the first 500 tokens
as training data (cf. Table 5); normalization accuracy per text and method is given for
comparison in lines “NORM”; “Chain” refers to the chain combination of Mapper→
Rules → WLDtri. Tagging was performed without punctuation marks; accuracy is
evaluated on STTS tags. Best result for each text is highlighted in bold, differences to
the best result that are not statistically significant (p > 0.05) are marked in italics.

69

Original GS Auto

Berlin (norm) 28.65% 87.16% 76.27% Chain
Melk (norm) 44.75% 87.74% 76.44% Chain

LeichSermon 67.95% 81.31% 75.89% Chain
JubelFeste 82.26% 90.03% 86.66% Rules
Gottesdienst 88.07% 92.87% 91.30% Chain

Table 22: Comparison of POS tagging accuracy between the original historical data,
gold standard normalizations (GS), and the best automatically normalized version using
the first 500 tokens as training data (method given in last column); numbers always
represent the best result from all POS taggers.

the rule-based method alone. The JubelFeste text aside, this is not a surprising result,
as it shows that using the best normalization technique generally results in the best
POS tagging performance. Similarly, the results confirm the tendency from the previous
sections that the RFTagger usually performs best on the given data. With the Melk text,
MBT sometimes achieves a slightly better accuracy, but as the difference is too small
to be statistically significant, this cannot be argued to conflict with the general trend in
favor of RFTagger. Finally, tagging accuracy is usually below normalization accuracy.
This is to be expected, though, as even the gold standard normalizations (which can
be seen as having a normalization “accuracy” of 100%) do not achieve a perfect (or
near perfect) POS tagging score. This effect is more pronounced with the Sermon texts,
while the Anselm texts achieve a better tagging result compared to the normalization.

Table 22 gives an overview of the best POS tagging results for the automatically
normalized texts in comparison to the unmodified data and the gold standard normaliza-
tion (without punctuation). The factor of the POS tagger is ignored here, and the best
result from all four POS taggers is given to show the maximum accuracy that can be
reached in each case. For the Anselm texts, the accuracy achieved by using automatically
normalized data is significantly lower than using the gold standard, differing by more
than 10 percentage points. However, the increase from the tagging baseline is still
remarkable, especially considering that only 500 manually normalized tokens were used
for training: from 28.65% to 76.27% for Berlin, and from 44.75% to 76.44% for the
Melk text.

4.4.1 Correlation between normalization and tagging performance

In Table 21, looking at the connection between normalization and tagging accuracies for
each of the evaluated normalization methods, there is a rough tendency for these two

70

accuracies to correlate. Standard Levenshtein distance, which always has the lowest
normalization accuracy, also results in the worst tagging performance. On the other
hand, the chain combination of normalizers, which produces the best normalization
results, usually gives the best tagging accuracy, too. However, some exceptions to this
tendency can be found; e.g., the WLD methods on their own result in slightly worse
tagging accuracy than other methods when compared to their normalization score. As
an example, while normalization with WLDuni is slightly better than using the wordlist
mapper for Melk, JubelFeste, and Gottesdienst, the texts normalized with wordlist
mapping perform slightly better during POS tagging. LeichSermon suggests that this
is not a definite rule, though, as it shows the opposite tendency. Still, especially for
the newer texts, the rule-based method gives a similar POS tagging accuracy as the
best chain method, despite being significantly worse at normalization: e.g., 92.93%
for rule-based vs. 96.83% for the chain with Gottesdienst, but an equal POS tagging
accuracy of 91.30%. This confirms the hypothesis that there are cases where better
normalization accuracy does not equal better POS tagging, even though this is still the
general tendency.

Section 4.3 already discussed many examples of what can go wrong during POS tag-
ging even with perfect normalization. All issues mentioned there also apply to the
tagging of automatically normalized text, of course, and can be responsible for the
observed fluctuations in tagging accuracy. The issue of vocabulary appears to be partic-
ularly relevant, though. Example (57) shows that it is not necessarily unknown words
which can cause problems, but also very infrequent ones.

(57) . . .
. . .

aller
aller
PIAT

menschen-furcht
menschenfurcht
NN

und
und
KON

zaghafftigkeit
zaghaftigkeit
NN

vorbeugen
vorbeugen
VVINF

‘Prevent all of humanity’s fear and timidity’

(58) (a) RULES: aller
PIAT

menschen-furcht
NN

und
KON

zaghaftigkeit
NN

vorbeugen
NN

(b) CHAIN: aller
PIAT

menschenwort
NN

und
KON

zaghaftigkeit
NN

verbeugen
VVINF

Both the rule-based method and the chain normalizer fail to normalize menschen-
furcht (lit. ‘humanity-fear’) correctly; the former leaves it unchanged, while the latter
produces the inappropriate menschenwort (lit. ‘humanity-word’). As both versions are
compound nouns with relatively common base nouns (furcht ‘fear’ and wort ‘word’),
though, they can be tagged correctly. The verb vorbeugen ‘to prevent’, on the other hand,
is mistakenly tagged as a noun. Curiously, only the wrong normalization verbeugen
‘to bow’ is correctly tagged as VVINF. The problem here is a combination of vocabulary
and training corpus size: the correct vorbeugen only appears once in TIGER/Tüba and
was used there as a noun. Consequently, the taggers do not consider any POS tag for
this word except NN. This example displays the same core problem already seen in

71

Example (52), and serves to illustrate that such cases are not uncommon at all in the
evaluation data.

(59) sie
sie
PPER

haben
haben
VAFIN

gejauchtzet
gejauchzt
VVPP

‘They rejoiced’

(60) (a) RULES: sie
PPER

haben
VAFIN

gejauchtzet
NN

(b) CHAIN: sie
PPER

haben
VAFIN

gejauchzt
ADJD

Vocabulary also plays a role in Example (59). Here, the wordform gejauchtzet
‘rejoiced’ needs to be normalized, which the rule-based method in Example (60a)
fails to do. As a result, RFT10 incorrectly tags it as a noun (NN) instead of a verb
particle (VVPP). The chain normalizer, on the other hand, normalizes it correctly, which
still does not lead to the correct POS tag, though: it is wrongly tagged as an adjective
form (ADJD) here (Example (60b)). From this passage alone, it is not clear where this
error results from. One factor certainly is that the correct gejauchzt does not occur in
the TIGER/Tüba corpus; however, there are many other VVPP wordforms ending in
–zt (verletzt, gesetzt, unterstützt, etc.). As the RFTagger with a trigram model does not
make this error, the large context size of RFT10 (and therefore some wordform before
the passage shown in the example) is at least partially responsible for this. The same
can be said for the excerpt in Example (61):

(61) ihr
ihr
PPER

seyd
seid
VAFIN

das
das
ART

auserwehlte
auserwählte
ADJA

geschlecht
geschlecht
NN

‘You are the chosen lineage’

(62) (a) RULES: ihr
PPOSAT

seyd
NN

das
ART

auserwehlte
ADJA

geschlecht
NN

(b) CHAIN: ihr
PPER

seid
VAFIN

das
PDS

auserwählte
NN

geschlecht
NN

Just as in the previous example, the rule-based method does not normalize anything
here, whereas the chain normalizer produces the perfectly correct normalization. How-
ever, the correctly normalized auserwählte ‘chosen’ is still mistakenly annotated as NN
by RFT10. The direct cause for this is likely the mis-tagging of the preceding article
das as PDS, which reduces the probability of an adjective following. The cause of this
mistake, in turn, can only be found outside the scope of this example, as the preceding
wordforms were tagged correctly. In Example (62a), ihr seyd ‘you are’ is annotated
wrongly, yet the following noun phrase is tagged correctly although it even contains an
incorrect normalization. All in all, these examples show that correct normalization and
correct POS tagging do not always coincide, and all combinations of wrong and correct
normalizations and POS tags occur in practice.

72

4.4.2 Bridging the gap

Table 22 already showed that tagging accuracy on the best automatic normalization is
still considerably lower than on the gold standard, which in turn stays behind the tagging
results on modern data. Besides the qualitative analysis of tagging mistakes, this raises
the question of what can be done to close this gap.

So far, the analysis of tagging errors has not considered the reduced versions of the
STTS tagset introduced in Section 4.1. Table 23 gives the accuracies for the Berlin and
the Gottesdienst text for all three tagsets when processed with RFTagger. In the Berlin
text, there is a clear correlation between the different tagsets: the ranking of the different
normalization methods is the same regardless which tagset is used for the comparison
(with only one minor deviation for the Universal tagset on unknowns). This shows
that the types of mistakes that are made during POS tagging are roughly the same for
each version of normalized text; i.e., it is not the case that any particular normalization
method is more likely to lead to errors within the same category of the STTSred or
Universal tagset. Roughly the same tendency can be observed for Gottesdienst, too,
with one exception: on unknown tokens, there are almost no differences between
STTSred and Universal with some methods (Levenshtein, WLDtri, the chain, and the
gold standard), but differences of 4–5 percentage points for others (wordlist mapping,
rule-based method, WLDuni). This discrepancy mainly arises from auxiliary and modal
verbs that contain umlauts, which are not normalized correctly by some methods and
then tagged as full verbs (e.g., muessen/VVFIN vs. müssen/VMFIN). These verb types
have different categories in STTSred (VV vs. VM), but not in Universal (VERB). In any
case, with the low number of unknowns in Gottesdienst, the difference between these
results is not significant.

In general, tagging accuracy on the Universal tagset is higher by about 5–8 percentage
points compared to standard STTS. This is not a big difference compared to the relative
accuracy, though, showing that the majority of tagging mistakes is made across different
categories of the Universal tagset. This comes as no surprise when considering the
examples of tagging errors discussed so far: Examples (42), (44), (46), (48–49), (51–54),
and (57–62) all feature POS tags that also count as errors in the Universal tagset, e.g.,
NN vs. VVINF (in Universal: NOUN vs. VERB) or ADJD vs. VVPP (ADJ vs. VERB).
In fact, only Example (45) represents a mistake made within the same category of ADJ.

On unknown tokens, the differences between tagsets are greater: up to 20 percentage
points for the Berlin text. However, the overall accuracy is much lower at the same
time, revealing another major problem of tagging normalized data. With Berlin, only
46.79% of unknown tokens resulting from the chain normalization can be POS tagged
correctly. Compared to the accuracies of about 90% on modern data, this is a disappoint-
ing result. It also suggests that improving tagging accuracy on unknowns is an important
aspect in improving the overall accuracy for these types of texts. Of course, this is at

73

All Unknowns

STTS STTSred Univ Count STTS STTSred Univ

Original 27.95% 29.79% 38.59% 2,915 15.09% 16.91% 29.23%
Gold 87.16% 89.40% 91.88% 272 54.78% 60.29% 69.49%

Mapper 68.62% 70.74% 75.06% 1,299 33.56% 37.18% 47.81%
Rules 67.64% 70.06% 74.17% 989 37.01% 41.35% 51.67%
Leven 40.07% 42.55% 48.19% 946 22.62% 25.90% 33.93%
WLDuni 55.73% 58.06% 62.60% 603 33.83% 37.31% 47.60%
WLDtri 62.19% 65.78% 70.14% 566 37.99% 42.58% 56.71%
Chain 76.27% 78.64% 81.39% 436 46.79% 50.92% 60.32%

(a) Berlin (norm)

All Unknowns

STTS STTSred Univ Count STTS STTSred Univ

Original 86.84% 90.53% 93.39% 345 60.87% 70.14% 80.58%
Gold 91.55% 94.98% 95.70% 107 80.37% 86.92% 86.92%

Mapper 89.25% 93.19% 94.57% 249 67.87% 77.51% 82.73%
Rules 90.68% 94.27% 95.34% 211 74.88% 81.99% 85.78%
Leven 85.15% 88.74% 90.63% 157 66.88% 74.52% 75.80%
WLDuni 88.94% 92.47% 93.75% 132 67.42% 73.48% 78.79%
WLDtri 90.37% 93.70% 94.62% 119 73.95% 78.99% 78.99%
Chain 90.68% 94.01% 94.88% 113 76.99% 81.42% 81.42%

(b) Gottesdienst

Table 23: Comparison of tagging accuracy using RFTagger, with different tagsets,
evaluated separately for all tokens and for unknowns; “Count” gives the absolute number
of unknown tokens for the respective text, “Chain” refers to the chain combination of
Mapper→ Rules→WLDtri. Tagging was performed without punctuation marks; best
result for each column (disregarding the gold standard normalization) is highlighted in
bold.

74

least partly equivalent to improving the accuracy of the normalization, as many words
that are unknown to the tagger result from errors made by the normalizer. Apart from
unknowns, the problems of context-free normalization can also have a big effect on
tagging results: e.g., in the WLDtri normalization of the Melk text, 11.9% of all tagging
mistakes result from the three highly ambiguous wordforms in, im, and daz, which can
only be properly normalized using context information.

Still, there are some aspects of the POS tagging step which could also be improved
in this regard. A part of the problem is that POS taggers for modern language data
sometimes employ strategies which are not well-suited for processing normalized
historical texts. Tagging of unknowns is a good example here. The default settings of
MBT, for example, are based on the idea that “unknown words will behave similarly
to infrequent known words” (Daelemans et al., 2010, p. 9). This is an assumption
which does not hold for normalized historical data, though, as unknowns which stem
from incorrect normalizations are just as likely to represent highly frequent words. In
particular, this can also include function words, which are normally considered a closed
class. For this reason, it is not a good idea to use a set of “open class tags”, either,
which restricts the POS tags that can be assigned to unknown words—a feature which is
offered, for example, by the RFTagger.

However, previous examples—such as Examples (52) and (58)—showed that it is not
only unknown words which can cause problems, but also words that are infrequent in
the training corpus for the tagger. These words might have only been seen with one of
several possible POS tags; however, as taggers typically use a derived lexicon to restrict
the possible POS tags for known words, the other alternatives can never be generated.
Consider again Example (52b), repeated here for convenience:

(52b) NORM:
GOLD:
AUTO:

und
KON
KON

verschmähten
VVFIN
ADJA

ihn
PPER
PPER

The mis-tagging of verschmähten as ADJA is based upon a single occurrence of
that wordform in the TIGER/Tüba corpus. In addition to that, the tagging sequence
“KON ADJA PPER” is equally unlikely, also occuring only once in TIGER/Tüba. The
combination “ADJA PPER” only occurs 27 times; in contrast, there are 9,216 instances
of “VVFIN PPER”, and 244 instances of the exact tagging sequence “KON VVFIN
PPER”. These numbers suggest that a POS tagger for historical data should ideally put
less emphasis on the lexicon, but rather give more weight to the transition probabilities
of POS tags. As an alternative, enriching the lexicon of the tagger with additional
entries to compensate for the limits of the training corpus could also help to alleviate
this problem.

Finally, normalization was shown to benefit from the combination of several normal-
ization algorithms. It is conceivable to use a similar approach for POS tagging, too, by
comparing the suggestions of different POS taggers and choosing among them. Ideally,

75

such an approach could also learn the individual strengths of a POS tagger by analyzing
automatically tagged gold standard data, thereby trying to recognize contexts where a
particular tagger is more or less likely to make mistakes. It remains to be tested whether
such a combination would result in a comparable improvement of tagging accuracy.

5 Related work

There are many different approaches to normalization and annotation of historical
language data. Giving a detailed comparison between some of these approaches was
one of the goals of this paper, however, it is still only scratching the surface. In this
section, I will try to give an overview of related work in this area.

Some research on dealing with historical spelling variation has been done in the
field of information retrieval (IR). Here, the task is to find historical spellings that are
related to a given modern wordform. For this purpose, Ernst-Gerlach and Fuhr (2006)
derive rewrite rules from word pairs generated using a spellchecker, while Hauser and
Schulz (2007) learn n-gram mapping rules from a dictionary. Although these techniques
are similar to, e.g., the rule-based approach (Sec. 3.1.2), the nature of the task is quite
different. For information retrieval, the focus is on recall, as there are typically many
different spelling variants for a given modern wordform. For automatic annotation,
precision is most important, as only one normalization candidate can ultimately be
chosen for a given historical word. Therefore, mistakes are much more critical for the
annotation scenario than for IR.

For automatic spelling normalization, some variant of weighted Levenshtein distance
is often used. Strunk (2003) uses manually defined weights to generate wordform
variants for Low Saxon (again in an IR context). Adesam et al. (2012) derive weighted
substitution rules for Old Swedish; their approach is most similar to the WLDtri method
described here. However, they only report a pilot experiment on 249 tokens. For a
comparison of several distance measures, see Kempken (2005), who also describes
FlexMetric, a flexible distance measure similar to WLDuni. A slightly different approach
is used by Porta et al. (2013) for Old Spanish, who use edit transducers to model
context-aware rules in a similar way to the rule-based approach of Sec. 3.1.2.

VARD 2 (Baron and Rayson, 2008) is a software tool developed for Early Modern
English which combines different normalization techniques: wordlist mapping, character
replacement rules, phonetic similarity, and standard Levenshtein distance. It is notable
for providing a graphical user interface which allows for a semi-automatic normalization
approach: the software suggests several normalization candidates which the user can
accept—either for all identical tokens or for a specific instance only—or override with
another wordform. However, while the wordlist and character replacement rules can
easily be customized, the phonetic matching algorithm is specific to English. While

76

Hendrickx and Marquilhas (2011) successfully adapted VARD 2 to Portuguese, a first
experiment in Bollmann (2012) showed that it performed worse for German than the
chain-based approach described in Sec. 3.3.

A more recent approach is the application of character-based statistical machine
translation to historical data. For Slovene texts from the late 18th century, Scherrer and
Erjavec (2013) report an accuracy of 72.4% (from a baseline of 15.4%) using supervised
character-based SMT, and 48.9% using an unsupervised variant. Pettersson et al. (2013)
perform similar experiments for Icelandic and Swedish, achieving accuracies of up
to 92%. They also show that their technique can achieve notable results with sparse
training data, e.g., 76.5% accuracy on Icelandic texts after using 1,000 tokens for training.
Sánchez-Martínez et al. (2013) successfully use character-based SMT for historical
Spanish, and also show that the character error rate decreases by half compared to
the “naive” wordlist mapping approach (0.21% vs. 0.50%; the baseline error rate was
5.75%).

Almost all normalization methods discussed so far only operate on types, i.e., they do
not take context information into account at all. This effectively puts an upper limit on
the maximum accuracy they can achieve (see, e.g., Table 4). Jurish (2010) is a notable
exception; he uses hidden Markov models to choose between different normalization
candidates depending on token context. In principle, this approach can be used with any
of the aforementioned normalization techniques, as it does not rely on any particular
method to generate the candidate wordforms. However, to what extent other techniques
could benefit from this (or a similar) model remains open to future research.

Fewer studies have examined the effect of POS tagging on normalized data. Dipper
(2010) reports a tagging accuracy above 91% for data from Middle High German, but
normalization was done manually. POS tagging on parts of the GerManC-GS corpus
has been tried before with an average accuracy of 79.7% (Scheible et al., 2011b), but
again only manual normalization was considered. For Early Modern English, Rayson
et al. (2007) report an accuracy of 89–91% on gold standard normalizations and 85–89%
on texts automatically normalized using the VARD tool. A similar experiment for
Portuguese achieved 86.6% and 83.4% on gold standard and automatic normalizations,
respectively (Hendrickx and Marquilhas, 2011). Pettersson et al. (2013) also perform
tagging on their normalized data, achieving 56.6% for Icelandic and an F-score of 88.7%
for verb identification in Swedish.

There are some approaches for tagging historical texts that do not use spelling-
normalized data as their input. For 14th century Dutch, van Halteren and Rem (2013)
choose to expand the lexicon of the POS tagger instead. Using a form of weighted
Levenshtein distance, they automatically generate hypothetical spelling variants for all
lexicon entries, expanding the lexicon from 50,000 entries to about 1.25 million. They
achieve an accuracy of around 95% for both tagging and lemmatization. Sánchez-Marco

77

et al. (2010) use an open source library for Spanish and adapt tagger internals, e.g., an
affixation module, to historical data.

Finally, there is also active research on spelling variation for other types of non-
standard data, most notably internet and social media texts, e.g., from Twitter, Facebook,
or chat room conversations (van Halteren and Oostdijk, 2012; Derczynski et al., 2013;
Neunerdt et al., 2013, are only a few recent examples). Although some domain-specific
issues exist, there is a considerable overlap with problems found in historical data, e.g.,
inconsistent orthography, differences in tokenization, or syntactic variation. Zhang et al.
(2013) present an adaptive normalization approach which they evaluate on data from
Twitter, SMS, and call-center logs. However, while their method could conceivably be
applied to historical data as well, such experiments have not yet been performed. In
general, research on spelling variation in historical vs. social media data is still largely
disjoined.

6 Conclusion

This thesis presented several methods for spelling normalization of historical language
data and evaluated them on different texts in Early New High German (Anselm texts)
and Early Modern German (Sermon texts), originating from the 15th to the 18th century.
Additionally, it discussed several aspects of part-of-speech tagging applied to normal-
izations of historical data, and compared the performance of different POS taggers in
various scenarios.

For normalization, four different methods were presented: a simple wordlist mapping
approach, which learns word-based substitutions; the rule-based approach by Bollmann
et al. (2011) operating on a character level; a normalization algorithm based on Lev-
enshtein distance; and the same algorithm using a weighted variant of Levenshtein
distance (WLD). Evaluation of these methods on the Anselm and Sermon texts showed
that WLD with unigram, bigram, and trigram weights (WLDtri) performed best when
only a small amount of training data was available; e.g., using 100 tokens for training
resulted in an accuracy of 68.21% for one of the Anselm texts compared to a baseline
of 39.54%. When more training data was available, the rule-based method generally
performed better, though the exact threshold varied between the texts. A combination of
normalization methods in the form of a chain which starts with one algorithm, but calls
the next one in the chain if the previous algorithm failed to find a result, was shown to
improve results considerably. For the text which contained the most spelling variations
in this evaluation, it was able to improve the baseline of 23.05% to 75.07% after training
on only 500 manually normalized tokens from the same text.

The qualitative evaluation of normalization performance revealed several possible
ways to improve upon these results. First of all, most of the normalization methods

78

considered here require a lexicon of modern wordforms to work. Accuracy of nor-
malization naturally decreases if the correct normalization is not found in the modern
lexicon, which commonly happens with all types of proper nouns. It is therefore helpful
to compile a list of proper nouns referenced within a text or otherwise mark them in the
transcription, so that they can either be added to the modern lexicon or be excluded from
the normalization process. On the other hand, lexicons containing too many irrelevant
entries can also be detrimental to the normalization accuracy, as they lead to more “false
positives”, i.e., wordforms that are generated due to a high similarity to the historical
input wordform without being a correct normalization. This often concerns obscure
proper nouns and abbreviations, the latter because shorter words are especially suscep-
tible to this effect. To remedy this problem, lexical frequency could be factored into
the probability score of normalization candidates, reducing the likelihood of generating
very rare wordforms.

With regard to the combinations of normalization methods, the best results were
achieved by using the wordlist mapper first, followed by the rule-based method and
WLDtri. This way, the method operating on the largest units of input (i.e., whole
wordforms) is used first, followed by further methods of decreasing granularity: the
rule-based method always considers at least two characters at a time (and at least three
for non-insertion rules), while WLDtri can also modify single characters in isolation.
This property of this chain combination could be explored further, e.g., by trying an even
longer chain of normalizers operating on decreasing amounts of characters. Similarly,
an n-gram based normalization technique (e.g., based on the WLD algorithm) could be
tried that explicitly prefers larger n-gram substitutions over shorter ones. While it is
not guaranteed to produce better results, the evaluation at least suggests that such an
approach could be promising.

Finally, to overcome the maximum accuracy limit inherent to all of the evaluated
methods, integration of token context into the normalization process is ultimately
required. A method to achieve this has been suggested by Jurish (2010), which can
theoretically be extended to use the normalization algorithms presented here.

Part-of-speech tagging of historical German texts was shown to be more challenging
than POS tagging of modern data, even when using gold standard normalizations.
Reasons include the lack of consistent capitalization and punctuation, as well as semantic
and syntactic differences to New High German. Ignoring all punctuation marks for
POS tagging was shown to be better than using the original punctuation, and not
significantly worse than using manually annotated modern punctuation marks. For
this evaluation, POS taggers were retrained on a corpus of modern German in which
all punctuation marks and sentence boundary markings had been removed. Cross-
validation on the modern corpus revealed that removing punctuation and capitalization
(by lowercasing all words) reduces the average tagging accuracy from 96.85% to 95.74%.

79

Tagging accuracy on the historical text with the lowest baseline increased from 28.65%
(using the original data) to 87.16% using the gold standard normalization; with an
automatical normalization using the first 500 tokens as training data, a tagging accuracy
of 76.27% could be achieved. RFTagger proved to be better in most evaluation scenarios
than TreeTagger or MBT, although no experiments with different settings of the taggers
have been performed.

Semantic and syntactic peculiarities of Early New High German (ENHG) remain
difficult to handle, though. They cannot be learned from modern training corpora,
and spelling normalization does not cover these issues, either. For a corpus of Old
Spanish, this led Sánchez-Marco et al. (2010) to abandon the normalization approach
and use a customized POS tagger instead. Indeed, directly manipulating the suffix
handling, lexicon lookup, or syntactic coverage of a tagger could prove to be rewarding
for historical data, as some assumptions made by POS taggers that hold true for modern
data do not necessarily apply to automatically normalized historical texts. Handling of
unknown or infrequent wordforms was shown to be especially problematic in this regard,
often leading to incorrect POS tags even for correct normalizations. An ideal solution
would probably combine a normalization step to cover frequent spelling variations with
a modified POS tagger that is more sensitive to the problem of imperfect data, and/or
has been customized to cover specific syntactic or morphological features of ENHG.
Additionally, a combination of several POS taggers—similar to the combination of
normalization algorithms that was successfully employed—is also conceivable.

In conclusion, using automatic normalization for part-of-speech tagging of historical
data was shown to be a viable approach. If a human annotator manually normalizes
500 tokens of a text containing 2,000–5,000 tokens in total, automatic normalization
followed by POS tagging achieves a tagging accuracy between 75% and 91% depending
on the type and amount of spelling variation found in the text. While this is still
considerably worse than tagging on modern data, it can certainly be useful to aid the
annotation process of a historical corpus. Furthermore, several improvements both to
the normalization and the tagging process are conceivable, making further increases to
the accuracy scores appear realistic.

80

References
Yvonne Adesam, Malin Ahlberg, and Gerlof Bouma. bokstaffua, bokstaffwa, bokstafwa, bokstaua,

bokstawa. . . Towards lexical link-up for a corpus of Old Swedish. In Proceedings of the 11th
Conference on Natural Language Processing (KONVENS 2012), LThist 2012 workshop, pages
365–369, Vienna, Austria, 2012.

Alistair Baron and Paul Rayson. VARD 2: A tool for dealing with spelling variation in historical
corpora. In Proceedings of the Postgraduate Conference in Corpus Linguistics, 2008.

Alistair Baron, Paul Rayson, and Dawn Archer. Automatic standardization of spelling for historical
text mining. In Proceedings of Digital Humanities 2009, Maryland, USA, 2009.

Werner Besch. Die Rolle Luthers für die deutsche Sprachgeschichte. In Werner Besch, Anne Betten,
and Oskar Reichmann, editors, Sprachgeschichte. Ein Handbuch zur Geschichte der deutschen
Sprache und ihrer Erforschung, pages 1713–1745. de Gruyter, Berlin, New York, 2nd edition, 2000.

Marcel Bollmann. (Semi-)automatic normalization of historical texts using distance measures and the
Norma tool. In Proceedings of the Second Workshop on Annotation of Corpora for Research in the
Humanities (ACRH-2), pages 3–12, Lisbon, Portugal, 2012.

Marcel Bollmann. POS tagging for historical texts with sparse training data. In Proceedings of the 7th
Linguistic Annotation Workshop and Interoperability in Discourse, pages 11–18, Sofia, Bulgaria,
2013.

Marcel Bollmann, Florian Petran, and Stefanie Dipper. Rule-Based Normalization of Historical Texts.
In Proceedings of the International Workshop on Language Technologies for Digital Humanities and
Cultural Heritage, pages 34–42, Hissar, Bulgaria, 2011.

Marcel Bollmann, Stefanie Dipper, Julia Krasselt, and Florian Petran. Manual and semi-automatic
normalization of historical spelling – Case studies from Early New High German. In Proceedings of
the 11th Conference on Natural Language Processing (KONVENS 2012), LThist 2012 workshop,
pages 342–350, Vienna, Austria, 2012.

Sabine Brants, Stefanie Dipper, Silvia Hansen, Wolfgang Lezius, and George Smith. The TIGER
treebank. In Erhard Hinrichs and Kiril Simov, editors, Proceedings of the First Workshop on
Treebanks and Linguistic Theories (TLT 2002), Sozopol, Bulgaria, 2002.

Thorsten Brants. TnT — a statistical part-of-speech tagger. In Proceedings of the Sixth Conference on
Applied Natural Language Processing (ANLP 2000), pages 224–231, Seattle, USA, 2000.

Kenneth W. Church and Patrick Hanks. Word association norms, mutual information, and lexicography.
Computational Linguistics, 16(1):22–29, 1990.

Walter Daelemans, Jakub Zavrel, Peter Berck, and Steven Gillis. MBT: A memory-based part of
speech tagger-generator. In Proceedings of the Fourth Workshop on Very Large Corpora, pages
14–27, Copenhagen, Denmark, 1996.

Walter Daelemans, Jakub Zavrel, Antal van den Bosch, and Ko van der Sloot. MBT: Memory-based
tagger, version 3.2, reference guide, 2010. URL http://ilk.uvt.nl/downloads/pub/
papers/ilk.1004.pdf.

Leon Derczynski, Alan Ritter, Sam Clark, and Kalina Bontcheva. Twitter part-of-speech tagging for
all: Overcoming sparse and noisy data. In Proceedings of the ACL Workshop on Recent Advances in
Natural Language Processing (RANLP), pages 198–206, Hissar, Bulgaria, 2013.

Stefanie Dipper. POS-tagging of historical language data: First experiments. In Proceedings of the
10th Conference on Natural Language Processing (KONVENS 2010), pages 117–121, Saarbrücken,
Germany, 2010.

Stefanie Dipper and Bettina Schrader. Computing distance and relatedness for medieval text variants
from German. In Angelika Storrer, Alexander Geyken, Alexander Siebert, and Kay-Michael Würzner,
editors, Text Resources and Lexical Knowledge. Selected Papers from the 9th Conference on Natural
Language Processing (KONVENS-08), pages 39–51. Mouton de Gruyter, Berlin, 2008.

Tomaž Erjavec. The goo300k corpus of historical Slovene. In Proceedings of the Eighth International
Conference on Language Resources and Evaluation (LREC-2012), pages 2257–2260, Istanbul,

81

Turkey, 2012.
Andrea Ernst-Gerlach and Norbert Fuhr. Generating search term variants for text collections with

historic spellings. In Proceedings of the 28th European Conference on Information Retrieval
Research (ECIR 2006). Springer, 2006.

Andreas W. Hauser and Klaus U. Schulz. Unsupervised learning of edit distance weights for retrieving
historical spelling variations. In Proceedings of the First Workshop on Finite-State Techniques and
Approximate Search (FSTAS 2007), pages 1–6, Borovets, Bulgaria, 2007.

Iris Hendrickx and Rita Marquilhas. From old texts to modern spellings: an experiment in automatic
normalisation. Journal for Language Technology and Computational Linguistics (JLCL), 26(2):
65–76, 2011.

Steliana Ivanova and Sandra Kübler. POS tagging for German: How important is the right context?
In Proceedings of the Sixth International Conference on Language Resources and Evaluation
(LREC’08), pages 994–997, Marrakech, Morocco, 2008.

Bryan Jurish. More than words: using token context to improve canonicalization of historical German.
Journal for Language Technology and Computational Linguistics, 25(1):23–39, 2010.

Sebastian Kempken. Bewertung historischer und regionaler Schreibvarianten mit Hilfe von Abstands-
maßen. Diploma thesis, Universität Duisburg-Essen, 2005.

Vladimir I. Levenshtein. Binary codes capable of correcting deletions, insertions, and reversals. Soviet
Physics Doklady, 10(8):707–710, 1966.

Mitchell P. Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. Building a large annotated
corpus of English: The Penn Treebank. Computational Linguistics, 19(2):313–330, 1993.

Petar Mitankin, Stoyan Mihov, and Klaus U. Schulz. Deciding word neighborhood with universal
neighborhood automata. Theoretical Computer Science, 412(22):2340–2355, 2011.

Mehryar Mohri and Richard Sproat. An efficient compiler for weighted rewrite rules. In Proceedings of
the 34th annual meeting of the Association for Computational Linguistics (ACL ’96), pages 231–238,
Santa Cruz, California, USA, 1996.

Mehryar Mohri, Fernando Pereira, and Michael Riley. The design principles of a weighted finite-state
transducer library. Theoretical Computer Science, 231(1):17–32, 2000.

Melanie Neunerdt, Bianka Trevisan, Michael Reyer, and Rudolf Mathar. Part-of-speech tagging
for social media texts. In Iryna Gurevych, Chris Biemann, and Torsten Zesch, editors, Language
Processing and Knowledge in the Web, Lecture Notes in Artificial Intelligence (LNAI), pages
139–150, Heidelberg, 2013. Springer.

Slav Petrov, Dipanjan Das, and Ryan McDonald. A universal part-of-speech tagset. ArXiv:1104.2086,
2011.

Saša Petrović, Miles Osborne, and Victor Lavrenko. The Edinburgh Twitter Corpus. In Proceedings of
the NAACL HLT 2010 Workshop on Computational Linguistics in a World of Social Media, pages
25–26, Los Angeles, California, USA, 2010.

Eva Pettersson, Beáta Megyesi, and Jörg Tiedemann. An SMT approach to automatic annotation of
historical text. In Proceedings of the NODALIDA Workshop on Computational Historical Linguistics,
Oslo, Norway, 2013.

Jordi Porta, José-Luis Sancho, and Javier Gómez. Edit transducers for spelling variation in Old Spanish.
In Proceedings of the NODALIDA Workshop on Computational Historical Linguistics, Oslo, Norway,
2013.

Paul Rayson, Dawn Archer, Alistair Baron, Jonathan Culpeper, and Nicholas Smith. Tagging the bard:
Evaluating the accuracy of a modern POS tagger on Early Modern English corpora. In Proceedings
of Corpus Linguistics 2007, University of Birmingham, UK, 2007.

Martin Reynaert, Iris Hendrickx, and Rita Marquilhas. Historical spelling normalization. A comparison
of two statistical methods: TICCL and VARD2. In Proceedings of the Second Workshop on
Annotation of Corpora for Research in the Humanities (ACRH-2), pages 87–98, Lisbon, Portugal,
2012.

Eric Sven Ristad and Peter N. Yianilos. Learning string edit distance. IEEE Transactions on Pattern

82

Recognition and Machine Intelligence, 20(5):522–532, 1998.
Cristina Sánchez-Marco, Gemma Boleda, Josep Maria Fontana, and Judith Domingo. Annotation

and representation of a diachronic corpus of Spanish. In Proceedings of the Seventh Conference on
International Language Resources and Evaluation, pages 2713–2718, 2010.

Silke Scheible, Richard J. Whitt, Martin Durrell, and Paul Bennett. A gold standard corpus of Early
Modern German. In Proceedings of the ACL-HLT 2011 Linguistic Annotation Workshop (LAW V),
pages 124–128, Portland, Oregon, USA, 2011a.

Silke Scheible, Richard J. Whitt, Martin Durrell, and Paul Bennett. Evaluating an ‘off-the-shelf’
POS-tagger on Early Modern German text. In Proceedings of the ACL-HLT 2011 Workshop on
Language Technology for Cultural Heritage, Social Sciences, and Humanities (LaTeCH 2011), pages
19–23, Portland, Oregon, USA, 2011b.

Yves Scherrer and Tomaž Erjavec. Modernizing historical Slovene words with character-based SMT.
In Proceedings of the 4th Biennial Workshop on Balto-Slavic Natural Language Processing, Sofia,
Bulgaria, 2013.

Anne Schiller. Deutsche Flexions- und Kompositionsmorphologie mit PC-KIMMO. In Roland Hausser,
editor, Proceedings of the First Morpholympics, Tübingen, 1996. Niemeyer.

Anne Schiller, Simone Teufel, Christine Stöckert, and Christine Thielen. Guidelines für das Tagging
deutscher Textcorpora mit STTS, 1999.

Helmut Schmid. Probabilistic part-of-speech tagging using decision trees. In Proceedings of the
International Conference on New Methods in Language Processing, Manchester, Great Britain,
1994.

Helmut Schmid. Improvements in part-of-speech tagging with an application to German. In Proceed-
ings of the ACL SIGDAT-Workshop, Dublin, Ireland, 1995.

Helmut Schmid and Florian Laws. Estimation of conditional probabilities with decision trees and an
application to fine-grained POS tagging. In Proceedings of the 22nd International Conference on
Computational Linguistics (COLING ’08), Manchester, Great Britain, 2008.

Simone Schultz-Balluff and Stefanie Dipper. St. Anselmi Fragen an Maria – Schritte zu einer (digitalen)
Erschließung, Auswertung und Edition der gesamten deutschsprachigen Überlieferung (14.–16. Jh.).
In Anne Bohnenkamp-Renken, editor, Medienwandel/Medienwechsel in der Editionswissenschaft,
number 35 in Beihefte zu editio, Berlin/Boston, 2013. de Gruyter.

Jan Strunk. Information retrieval for languages that lack a fixed orthography. Seminar Paper, Stan-
ford University, 2003. http://www.linguistics.ruhr-uni-bochum.de/~strunk/
LSreport.pdf.

Felipe Sánchez-Martínez, Isabel Martínez-Sempere, Xavier Ivars-Ribes, and Rafael C. Carrasco. An
open diachronic corpus of historical Spanish: annotation criteria and automatic modernisation of
spelling. arXiv:1306.3692v1, 2013. URL http://arxiv.org/abs/1306.3692v1.

Heike Telljohann, Erhard Hinrichs, and Sandra Kübler. The Tüba-D/Z Treebank: Annotating German
with a Context-Free Backbone. In Proceedings of the Fourth International Conference on Language
Resources and Evaluation (LREC 2004), pages 2229–2235, Lisbon, Portugal, 2004.

Hans van Halteren and Nelleke Oostdijk. Towards identifying normal forms for various word form
spellings on Twitter. Computational Linguistics in the Netherlands, 2:2–22, 2012.

Hans van Halteren and Margit Rem. Dealing with orthographic variation in a tagger-lemmatizer
for fourteenth century dutch charters. Language Resources and Evaluation, 2013. doi:
10.1007/s10579-013-9236-1. URL http://link.springer.com/article/10.1007/
s10579-013-9236-1.

Justyna Walkowska. Gathering and analysis of a corpus of Polish SMS dialogues. Challenging
Problems of Science. Computer Science. Recent Advanced in Intelligent Information Systems, pages
145–157, 2009.

Martijn Wieling, Jelena Prokić, and John Nerbonne. Evaluating the pairwise string alignment of
pronunciations. In Proceedings of the EACL 2009 Workshop on Language Technology and Resources
for Cultural Heritage, Social Sciences, Humanities, and Education (LaTeCH – SHELT&R 2009),

83

pages 26–34, Athens, Greece, 2009.
Yorick Wilks and Mark Stevenson. Word sense disambiguation using optimised combinations of knowl-

edge sources. In Proceedings of the 17th International Conference on Computational Linguistics
(COLING’98), volume 2, pages 1398–1402, Montreal, Canada, 1998.

Congle Zhang, Tyler Baldwin, Howard Ho, Benny Kimelfeld, and Yunyao Li. Adaptive parser-centric
text normalization. In Proceedings of the 51st Annual Meeting of the Association for Computational
Linguistics (ACL), pages 1159–1168, Sofia, Bulgaria, 2013.

84

