Universität Paderborn

Mathematik

Veranstaltungs-Kommentar

Für

Mathematik ⊳ Bachelor/Master

▶ Lehramt GyGe

▶ Lehramt GHRGe

Technomathematik Bachelor/Master

Misc IX 15

Inhaltsverzeichnis

1	Wichtige Informationen	3
	1.1 Benutzerhinweise	3
	1.2 Literaturangaben	3
	1.3 Sprechstunden	
	1.4 Vollständigkeit	
	1.5 Internet	3
2	Mitarbeitende der Mathematik	4
3	Weitere wichtige Adressen	6
4	Veranstaltungen	7
	4.1 Übersicht	7
	4.2 Mathematik	
5	Raum für Notizen	30
6	Ergebnisse der Veranstaltungskritik	31

Impressum

Herausgeber: Fachschaft Mathematik/Informatik

Universität Paderborn, Raum E1.311

Warburger Straße 100 33098 Paderborn

E-Mail: fsmi@uni-paderborn.de

Telefon: 05251 60-3260 Fax: 05251 60-3978

V.i.S.d.P: Oliver Otte

ISSN: 1868-0690

Redaktion: Alex Wiens, Daniela Strotmann, Oliver Otte

Mitarbeitende: die Fachschaft (Korrekturlesen),

die Dozentinnen und Dozenten der Mathematik und der Informatik (Kommentare)

Auflage: 2^5 Exemplare

1 Wichtige Informationen

1.1 Benutzerhinweise

zum Kopf:

Name der Veranstaltung

Dozent: Name des Dozenten

Büro: Raum

Sprechstunde: Zeit

1.2 Literaturangaben

Die Bücher in diesem Abschnitt sind Empfehlungen der Dozenten. Einige davon hat die Fachschaft in ihrem Semesterapparat in der Bibliothek stehen, andere werdet ihr dort aber auch finden. Daher könnt Ihr Euch zuerst informieren bevor Ihr viel Geld dafür ausgebt (also nicht gleich alle kaufen, aber es lohnt vielleicht mal hinein zu sehen).

1.3 Sprechstunden

Ein Großteil der Dozentinnen und Dozenten gibt keine feste Sprechstunde mehr an, sondern ist nach Vereinbarung zu sprechen, sowie vor und nach den Veranstaltungen. Daher findet Ihr nicht überall die Angabe einer Sprechstunde.

1.4 Vollständigkeit

Da nicht alle Lehrenden einen Veranstaltungskommentar abgegeben haben, ist das Verzeichnis der Veranstaltungen nicht vollständig!

1.5 Internet

Elektronische Informationen zum Vorlesungsangebot gibt es unter folgenden Adressen:

- http://www.cs.upb.de/studierende/lehrangebot.html offizielle Webseite zum Lehrangebot der Informatik
- http://www2.math.upb.de/informationen-fuer-studierende.html offizielle Studiumsseiten für Mathematik
- http://webptool.cs.uni-paderborn.de/ aktuellster Stand der Vorlesungsplanung
- http://paul.uni-paderborn.de/ offizielles Vorlesungsverzeichnis der Uni

Die Seiten der Fachschaft findet Ihr hier: http://www.die-fachschaft.de/

Oliver Otte, Alex Wiens, Daniela Strotmann V-Kom-Redaktion für das WiSe 2014/2015

2 Mitarbeitende der Mathematik

Name	E-Mail	Telefon	Raum
Andreas, Olga	Olga. And reas@math. upb. de	60-2650	J2.305
Backe-Neuwald, Dorothea, Dr.	backe-n@math.uni-paderborn.de	60 - 3595	D3.235
Becher, Silvia	Silvia. Becher@math.upb.de	60 - 2653	J2.210
Bender, Peter, Prof. Dr.	bender@math.upb.de	60 - 2661	D2.247
Biehler, Rolf, Prof. Dr.	${ m Rolf.Biehler@math.upb.de}$	60 - 2654	J2.204
Borchert, Britta	Britta. Borchert@math.upb.de	60 - 2635	D2.320
Bornhorst, Kathrin	${\it kathrinb@math.upb.de}$	60 - 3223	D2.239
Brokemper, Dennis	${\it debrokem@math.uni-paderborn.de}$	60 - 2636	D2.323
Bruns, Martin, Prof. Dr.	bruns@math.upb.de	60 - 2241	D1.243
Dellnitz, Michael, Prof. Dr.	$\operatorname{dellnitz}@\operatorname{math.upb.de}$	60 - 2649	D3.210
Dietz, Hans-Michael, Prof. Dr.	${ m dietz@math.upb.de}$	60 - 2652	D3.247
Duddeck-Buijs, Birgit	${\rm duddeck@math.upb.de}$	60 - 2635	D2.320
Elsenhans, Stephan, Dr.	${\it elsenhan}@{\rm math.uni\text{-}paderborn.de}$	60 - 2647	D3.221
Eyni, Jan Milan	${ m janme@math.upb.de}$	60 - 2645	D2.326
Fiege, Sabrina	feudel@mail.uni-paderborn.de	60 - 5017	A3.332
Feudel, Frank	${ m sfiege@math.uni-paderborn.de}$	60 - 1842	J2.308
Fleischhack, Christian, Prof. Dr.	Christian.Fleischhack@math.upb.de	60-2628	D1.201
Frischemeier, Daniel	${\bf Daniel. Frischemeier@math. upb. de}$	60-3229	J2.238
Gill, Inga	$\operatorname{Gill-Didaktik@math.upb.de}$	60-2660	D3.318
	in gagill@math.uni-paderborn.de		
Glöckner, Helge, Prof. Dr.	${ m glockner@math.upb.de}$	60-2600	D2.228
Gorny, Anna	${ m ganna@math.upb.de}$	60 - 3487	D2.332
Güldenhöven, Anja	${\it a.gueldenhoeven@math.upb.de}$	60-3596	D3.244
Haase, Jürgen	jha ase@math.uni-paderborn.de	60 - 2638	D2.335
Hage-Packhäuser, Sebastian, Dr.	${\rm shage@math.upb.de}$	60 - 3774	D3.207
Hansen, Sönke, Prof. Dr.	${\rm soenke@math.upb.de}$	60 - 2604	D1.211
Hanusch, Maximilian	${\it mhanusch@math.uni-paderborn.de}$	60 - 2607	D1.220
Hartmann, Christian	${\it hartmann@math.uni-paderborn.de}$	60 - 2614	D1.239
Hesse, Kerstin, Dr.	${\it hessek}@{\it math.uni-paderborn.de}$	60 - 2605	D1.217
Hessel-von Molo, Mirko, Dr.	${\it mirkoh}$ ${\it @math.upb.de}$	60 - 5021	A3.326
Hilgert, Joachim, Prof. Dr.	${ m hilgert@math.upb.de}$	60 - 2630	D2.234
Hollendung, Katrin	${ m hollendung@math.upb.de}$	60 - 1843	J2.311
Hoppenbrock, Axel	axel.hoppenbrock@math.upb.de	60 - 2648	J2.202
Huang, Boqiang, Dr.	bhuang@math.upb.de	60 - 2714	A3.213
Husert, David	David.Husert@math.uni-paderborn.de	60-3440	D3.215
Indlekofer, Karl-Heinz, Prof. Dr.	k-heinz@math.upb.de		
Janzen, Sabrina	sjanzen@math.upb.de	60 - 3596	D3.244
Jurgelucks, Benjamin	bjurgel@math.upb.de	60 - 5015	A3.319
Kaiser, Cornelia, Dr.	${\rm ckaiser@math.upb.de}$	60 - 2622	D2.210
Kalle, Marianne	mkalle@math.upb.de	60 - 2658	D3.213
Kalthoff, Bodo, Dr.	kalthoff@math.upb.de	60 - 2634	D2.308
Kaniuth, Eberhard, Prof. Dr.	kaniuth@math.upb.de	60-2609	D1.225
Kempen, Leander	leander@math.uni-paderborn.de	60-3069	J2.319

Name	E-Mail	Telefon	Raum
Kiyek, Karl-Heinz, Prof. Dr.	karlh@math.upb.de	60-2241	$\overline{D1.243}$
Klüners, Jürgen, Prof. Dr.	${ m Juergen. Klueners@math.upb.de}$	60 - 2646	D3.218
Köckler, Norbert, Prof. Dr.	${\it norbert}$ @math.upb.de	60 - 2615	D1.243
Kolb, Martin, Prof. Dr.	${ m kolb@math.upb.de}$	60-2643	D3.227
Kortemeyer, Jörg	${\it Joerg.} Kortemeyer@math.upb.de$	60 - 2659	J2.314
Koskivirta, Jean-Stefan, Dr.	${\it jsk}@{ m math.uni-paderborn.de}$	60-2636	D2.323
Krötz, Bernhard, Prof. Dr.	bkroetz@math.uni-paderborn.de	60 - 2627	D2.225
Krüger, Katja, Prof. Dr.	${\it kakruege@math.upb.de}$	60 - 2632	D2.244
Kulshreshtha, Kshitij, Dr.	kshitij@math.upb.de	60 - 2723	A3.235
Kuzle, Ana, Dr.	${ m akuzle@math.uni-paderborn.de}$	60-2416	J2.207
$\operatorname{Lankeit}$, $\operatorname{Johannes}$	${\it jlankeit}$ @ ${\it math.uni-paderborn.de}$	60-2616	D1.241
Lau, Eike, Prof. Dr.	elau@math.upb.de	60-2610	D2.231
Lenzing, Helmut, Prof. Dr.	${\it helmut}@{\it math.upb.de}$	60 - 2241	D1.243
Liu, Gang	${ m gliu}@{ m math.uni-paderborn.de}$	60-3898	D2.311
Lünne, Steffen	luenne@math.uni-paderborn.de	60-1843	J2.311
Lusky, Wolfgang, Prof. Dr.	lusky@math.upb.de	60 - 2241	D1.243
Machuletz, Karina	kmachule@math.upb.de	60-2626	D2.222
Mai, Tobias	${ m tmai@math.upb.de}$	60 - 2651	J2.302
Meier-Hans, Theo Jonathan	${ m t.meier-hans@math.upb.de}$	60 - 5248	D3.323
Meyerhöfer, Wolfram, Prof. Dr.	Wolfram. Meyerhoe fer@math.upb. de	60 - 2631	D2.335
Nelius, Christian-Frieder, Dr.	${ m chris}@{ m math.upb.de}$	60 2622	D2.210
Ober-Blöbaum, Sina, JunProf. Dr.	Sina. Ober-Bloebaum@math.upb.de	60 - 2657	D3.201
Oberthür, Mareike	${\it mare ikeo @ math. uni-paderborn. de}$	60 - 2639	D2.329
Oesterhaus, Janina	janina.oester haus@math.uni-paderborn.de	60 - 2416	J2.207
Ostsieker, Laura	lost siek@math.uni-paderborn.de	60 - 2659	J2.314
Panse, Anja	apanse@math.uni-paderborn.de	60-1841	J2.244
Parthasarathy, Aprameyan, Dr.	${\it apram}$ ${\it apram}$ ${\it math.uni-paderborn.de}$	60-2621	D2.207
Pecher, Tobias, Dr.	$tpecher@math.uni\hbox{-paderborn.de}$	60 - 2637	D2.237
Peitz, Sebastian	speitz@math.uni-paderborn.de	60 - 5022	A3.335
Peter, Carolin	${\it cpeter@math.uni-paderborn.de}$	60-2638	D2.335
Podworny, Susanne	${\tt podworny@math.uni-paderborn.de}$	60 - 3229	J2.238
Püschl, Juliane	jpueschl@math.uni-paderborn.de	60 - 2653	J2.210
Rautmann, Reimund, Prof. Dr.	rautmann@math.upb.de	60 - 2615	D1.243
Remus, Dieter, PD Dr.	${\bf remus@math.upb.de}$	60 - 2615	D1.243
Rezat, Sebastian, Prof. Dr.	${\bf srezat@math.uni-paderborn.de}$	60 - 2629	D3.238
Rinkens, Hans-Dieter, Prof. Dr.	rinkens@math.upb.de	60 - 4979	D3.230
Rösler, Margit, Prof. Dr.	${\rm roesler@math.upb.de}$	60-3067	D2.201
Rüter, Karin	krueter@math.upb.de	60 - 2650	J2.305
Sallen, Jannik	${\it jsallen@math.upb.de}$	60 - 2636	D2.323
Schäfer, Anna	Anna. schae fer@math. upb. de	60 - 3487	D2.332
Schmied, Andreas	as chmied@math.uni-paderborn.de	60-2620	D2.204
Schock, Alexandra	$schock@math.uni\hbox{-paderborn.de}$	60 - 2601	D1.204
Schumacher, Jan	jan. schumacher@math. upb. de	60 - 3595	D3.235
Schütte, Maria	brunem@mail.upb.de	60-5017	A3.332

Name	E-Mail	Telefon	Raum
Schütt, Jakob	spoon@math.uni-paderborn.de	60-2606	D1.214
Schwarz, Benjamin, Dr.	bschwarz@math.uni-paderborn.de	60 2624	D2.216
Schwarz, Michael	michael. schwarz@math. uni-paderborn. de	60 - 5227	D2.308
Senske, Karin	senske@math.upb.de	60 - 2724	A3.238
Shaikh, Zain, Dr.	zain@math.uni-paderborn.de	60-1841	J2.244
Söbbeke, Elke, Prof. Dr.	${\bf soebbeke@math.uni-paderborn.de}$	60 - 2613	D1.236
Sohr, Hermann, Prof. Dr.	${\it hsohr}@{\it math.upb.de}$	60 - 2241	D1.243
Spiegel, Hartmut, Prof. Dr.	${\it hartmut}@{\it math.upb.de}$	60 - 4979	D3.230
Steffen, Eckhard, Apl. Prof. Dr.	es@upb.de	60-3261	Z1
Sulak-Klute, Nurhan	${\it nurhan@math.upb.de}$	60 - 2713	A3.211
Thiere, Bianca	thiere@math.upb.de	60 - 2656	D3.310
Vanflorep, Lara	larav@math.upb.de	60 - 2639	D2.329
van Pruijssen, Maarten, Dr.	vanpruijssen@math.upb.de	60 - 2624	D2.216
Walther, Andrea, Prof. Dr.	Andrea.Walther@upb.de	60 - 2721	A3.232
Wassong, Thomas	Thomas. Was song@math.upb.de	60 - 2651	J2.302
Wedhorn, Torsten, Prof. Dr.	${\it Wedhorn@math.upb.de}$	60 - 2619	D2.213
Weich, Tobias, Dr.	weich@math.uni-paderborn.de	60 - 2621	D2.207
Wermann, Marc, Dr.	Marc.Wermann@math.upb.de	60-2638	D2.335
Winkler, Michael, Prof. Dr.	winklerg@math.uni-paderborn.de	60 - 2612	D1.230
Wolf, Elke, PD Dr.	lichte@math.upb.de	60 - 2711	A3.215
Wolf, Paul	paul.wolf@math.upb.de	60 - 1842	J2.308
Wottawa, Barbara	bwottawa@math.upb.de	60-2602	D1.207
Ziessler, Adrian	${\it ziessler@math.upb.de}$	60 - 5022	A3.335

3 Weitere wichtige Adressen

Name	E-Mail	Telefon	Raum
Fachschaft Mathematik/Informatik	fsmi@upb.de	3260	E1.311
Mathe-Treff		3775	D3.331
Mathe-Lernzentrum		1856	J2.324
Prüfungssekretariat Mathematik:			
Stephanie Besler	besler@zv.upb.de	4230	C2.315
Prüfungssekretariat Informatik:			
Manuel Leßmann	lessmann@zv.uni-paderborn.de	5207	C2.222
Rechnerbetreuung Didaktik	intermax@upb.de	3758	D2.339
Rechnerbetrieb Mathematik	pem@math.upb.de	3494	D2.301
Rechnerbetreuung Informatik	IRB-Support@upb.de	3318	E1.303

4 Veranstaltungen

4.1 Übersicht

Vorlesungen, für die uns bis Redaktionsschluss keine Kommentare erreicht haben, sind in der folgenden Übersicht mit ?? gekennzeichnet.

Mathematik für die integrierten Studiengänge Mathematik und Technomathematik und für das Lehramt SII Mathematik

Basis- und Aufbaumodule des Bachelorstudiengangs N.N. Lineare Algebra 1 ?? ?? Rösler Analysis 1 Kalthoff ?? Programmierkurs N.N. Algebra ?? $Gl\ddot{o}ckner$ Reelle Analysis 10 Kaniuth Funktionentheorie ?? Numerische Mathematik 1 ?? Ober-Blöbaum Vertiefungsmodule des Bachelorstudiengangs Kliiners Algebraische Zahlentheorie 11 Winkler Höhere Analysis 12 Fundamente der Stochastik Kolb 13 Numerische Mathematik 2 Walther 14 Seminare Kolb Proseminar: Endliche Markovketten 15 Hansen Seminar: Reelle Analysis 16 Remus Seminar: Funktionentheorie ?? Masterstudiengang Glöckner Grundlagen der Differentialgeometrie 17 ?? Lau Algebraische Geometrie 3 Wedhorn Algebraische Gruppen 1 18 Rösler Banach- und C^* -Algebren ?? Kaiser Unbeschränkte Operatoren 19

Dellnitz	Computational Dynamics 1	??
Seminare		
Winkler	Seminar: Partielle Differentialgleichungen	??
Ober-Blöbaum	Seminar: Optimalsteuerung	??
Oberseminare		
${ m Hilgert}\ /\ { m Kr\"{o}tz}$	Oberseminar Lie-Theorie	??
Wedhorn / Lau	Oberseminar Arithmetische Geometrie (Bielefeld, Hannover, Paderborn)	??
Krötz / Lau / Wed- horn	AG Geometrie	??
${\rm Wedhorn}\ /\ {\rm Lau}$	AG Arithmetische Geometrie	??
Klüners	Oberseminar Algorithmische Algebra und Zahlentheorie	??
$\operatorname{Gl\"{o}ckner}$	Oberseminar Analysis und Geometrie	??
Dellnitz	Oberseminar Angewandte Mathematik	??
Die Mitglieder des IFIM	IFIM Oberseminar	??
Die Mitglieder des PaSCo	PaSCo Oberseminar	??
Mathematik für a	ndere Studiengänge	
Dietz	Mathematik für Wirtschaftswissenschaftler 1	??
Dietz	Mathematik für Wirtschaftswissenschaftler 3	??
Hilgert	Mathematik für Physiker A	20
N.N.	Mathematik für Physiker C	??
N.N.	Mathematik für Chemiker C	??
Walther	Mathematik 1 für Maschinenbauer	??
Winkler	Mathematik 3 für Maschinenbauer	22
Hesse	Höhere Mathematik A für Elektrotechniker	??
Kaiser	Höhere Mathematik C für Elektrotechniker	23
Krötz	Analysis für Informatiker	??
Kolb	Stochastik für Informatiker und Lehramtsstudierende	??
Mathematik für d	as Lehramt GHRGe und das	
	llagenstudium (DGS)	
Bender	Elemente der Geometrie für G	24

N.N.	Modellieren, Größen, Daten und Zufall 2	??
Nelius	Graphentheorie	25
Rinkens	Pi, i, e	26
Söbbeke	Didaktik der Arithmetik in Frühförderungen und Anfangs- unterricht	??
Krüger	Didaktik der Arithmetik und Algebra	??
Didaktik der 1	Mathematik für alle Lehrämter	
N.N.	Veranstaltung an der Schnittstelle von Mathematik und ihrer Didaktik	??
Veranstaltung	en nur für Studierende im	
Lehramtsstudi	${f engang~GyGe/BK}$	
Biehler	Didaktik der Sekundarstufe 2, Teil 1 (Analysis)	??
Krüger	Didaktik der Arithmetik und Algebra	??
Bachelorstudie	engang Lehramt an Haupt-Real- und Ges	\mathbf{samt}
schulen		
Biehler	Einführung in die Kultur der Mathematik	28
Bender	Elemente der Geometrie für HRG	29
Rezat	Funktionen und Elemente der Analysis	??
Hessel-v.M.	Modellieren & Anwendungen: Angewandte Analysis	??
Rezat	Didaktik der Arithmetik für HRG	??
Krüger	Didaktik der Stochastik	??
Krüger	Didaktik der Arithmetik und Algebra	??
Allgemeine Ve	eranstaltungen der Mathematik	
Die Mitglieder IFIM	des IFIM Kolloquium	??
Die Mitglieder PaSCo	des PaSCo Kolloquium	??
N.N.	GSANS Kolloquium	??

4.2 Mathematik

Reelle Analysis

Dozent: Gloeckner

Büro: D2.228

Inhaltsangabe

Gewöhnliche Differentialgleichungen: Existenz- und Eindeutigkeitssatz von Picard Lindelöf, Theorie und Lösungsmethoden für lineare Differentialgleichungen (bzw. Systeme) sowie Differentialgleichungen mit getrennten Variablen.

Lebesguesche Integrationstheorie: u.a. Mess- und Massräume, messbare Abbildungen, Lebesguesches Integral, Lebesgue-Borel Mass, Bildmasse und Transformationsformel, Satz von Fubini.

Integration über Flächen im Raum oder \mathbb{R}^n , Integralsätze von Gauss und Stokes.

Literaturangaben

Literatur wird in der Vorlesung bekannt gegeben.

Verschiedenes

Hörerkreis:

nächster Wiederholungstermin:

WiSe 2015

Bachelor Mathematik; Master Lehramt

(Wahlpflicht)

Algebraische Zahlentheorie

Dozent: Klüners

Büro: D3.218

Sprechstunde: nach Vereinbarung

Inhaltsangabe

Diese Veranstaltung führt in die algebraische Zahlentheorie ein. Sie baut auf der Algebra-Vorlesung auf. In der algebraischen Zahlentheorie werden Eigenschaften von endlichen Körpererweiterungen von den rationalen Zahlen studiert. Zu Beginn der Veranstaltung werden endliche Körpererweiterungen eingeführt und untersucht. Dies mündet in der sogenannten Galoistheorie. Mit Hilfe der Galoistheorie kann gezeigt werden, dass alle Polynomgleichungen bis zum Grad 4 durch sukzessives Wurzelziehen gelöst werden können. Ein bekannter Spezialfall aus der Schule sind Gleichungen vom Grad 2, welche durch die p-q-Formel gelöst werden können.

Im 2. Teil der Veranstaltung werden weitere Eigenschaften von algebraischen Zahlkörpern studiert. So wird der Ring der ganzen Zahlen eingeführt, welcher ein Dedekindring ist. Wir werden die Einheitengruppe des Rings der ganzen Zahlen studieren (Dirichletscher Einheitensatz) und zeigen, dass die sogenannte Klassengruppe eines Zahlkörpers eine endliche Gruppe ist.

Literaturangaben

- Jürgen Neukirch : Algebraische Zahlentheorie , Springer Verlag, ISBN 78-3-540-37547-0
- Christian Karpfinger und Kurt Meyberg : Algebra, Gruppen Ringe Körper , Spektrum Verlag, ISBN 978-3-8274-2018-3
- Gerd Fischer: Lehrbuch der Algebra, Vieweg, ISBN 978-3-8348-0226-2

Verschiedenes

Prüfungsgebiet:

Vertiefungsmodul 3.1.4 bzw. 3.A.1 (Algebraische Zahlentheorie) für Bachelor Mathematik

Scheinerwerb:

mündliche Prüfung

vorausgesetzte Kenntnisse:

Lineare Algebra, Algebra

Homepage:

https://www2.math.uni-paderborn. de/ags/ag-klueners/lehre/ws14-15/ algebraische-zahlentheorie.html

Höhere Analysis

Dozent: Winkler

Büro: D1.230

${\bf Inhalt sangabe}$

Speziele Kapitel der Analysis, insbesondere der Theorie gewöhnlicher Differentialgleichungen (z.B. qualitative Theorie, Stabilität, ω -Limesmengen, Vergleichssätze)

Literaturangaben

• H. Heuser: Gewöhnliche Differentialgleichungen, B.G. Teubner

• H. Amann : Gewöhnliche Differentialgleichungen , De Gruyter-Lehrbuch

Verschiedenes

Hörerkreis:

Mathematik Bachelor, Mathematik Lehramt GyGe/BK

Scheinerwerb:

Aktive Teilnahme am Übungsbetrieb; Klausur

nächster Wiederholungstermin:

evtl. WiSe 2015/16

Prüfungsgebiet:

Modul 3.2.2 (Modulhandbuch Mathematik Bachelor)

Vorausgesetzte Kenntnisse:

Schulmathematik, Analysis 1,2; Reelle Analysis

Fundamente der Stochastik

Dozent: Kolb

Büro: D3.227

Inhaltsangabe

Methoden und Konzepte aus der Stochastik spielen in vielen Bereichen der Naturwissenschaften, der Wirtschaftswissenschaften sowie der Informatik eine zentrale Rolle. Die Vorlesung Fundamente der Stochastik gibt eine Einführung in die maßtheoretische Wahrscheinlichkeitstheorie. Ziel der Vorlesung ist es, die zentralen Objekte und Konzepte der Wahrscheinlichkeitstheorie vorzustellen. Nach Entwicklung einiger für die Wahrscheinlichkeitstheorie wesentlichen Grundlagen der Maßund Integrationstheorie werden zentrale Ideen und Resultate der Wahrscheinlichkeitstheorie vorgestellt: Zufallsvariablen, Unabhängigkeit, Gesetze der großen Zahlen, zentrale Grenzwertsätze. Höhepunkt der Vorlesung wird die Einführung von Martingalen und ein Ausblick auf die Theorie der stochastischen Prozesse sein.

Literaturangaben

• Achim Klenke: Wahrscheinlichkeitstheorie, Springer, 2005

Verschiedenes

Hörerkreis:

Bachelor Mathematik, Technomathematik

qualifizierender Studiennachweis:

Klausur oder mündliche Prüfung

Scheinerwerb:

Klausur oder mündliche Prüfung

vorausgesetzte Kenntnisse:

Vorlesung "Grundlagen der Stochastik" und Kenntnisse der elementaren Maßtheorie, wie sie in der Vorlesung Reelle Analysis vermittelt werden, sind hilfreich

Numerische Mathematik 2

Dozent: Walther

Büro: A3.232

Sprechstunde: einfach vorbeischauen

Inhaltsangabe

Diese Veranstaltung bildet die Fortsetzung der Vorlesung "Numerische Mathematik 1". Zur Lösung linearer Gleichungssystem werden als Ergänzung zu bekannten Techniken iterative Verfahren im Detail vorgestellt und analysiert. Desweiteren wird auf die Lösung von Eigenwertproblemen eingegangen. Einen erheblichen Umfang der Vorlesung wird die Vorstellung von numerischen Lösungsverfahren von gewöhnlichen Differentialgleichungen einnehmen. Dabei werden zentrale Begriffe wie Stabilität und Kondition eingeführt, grundlegende Klassen von Lösungsmethoden eingeführt und analysiert. Die Veranstaltung richtet sich an Masterstudenten, kann aber auch für Bachelorstudenten als Numerische Mathematik 2 anerkannt werden.

Verschiedenes

Hörerkreis:

Master- und Bachelorstudenten Mathematik und Technomathematik

vorausgesetzte Kenntnisse:

Numerische Mathematik 1

nächster Wiederholungstermin:

WS 2015/2016

Scheinerwerb:

Abgabe von Übungsaufgaben und mündliche Prüfung

weiterführende Veranstaltungen:

Wissenschaftliches Rechnen I im SS 2015

Homepage:

http://www2.math.uni-paderborn.de/people/andrea-walther/lehrveranstaltungen.html

Proseminar "Endliche Markovketten"

Dozent: Kolb

Büro: D 3.227

Inhaltsangabe

Markovketten sind eine Klasse stochastischer Prozesse, die durch eine gewisse Form der Gedächtnislosigkeit charakterisiert sind. Markovketten sind zum Beispiel in der Theorie der randomisierten Algorithmen von fundamentaler Bedeutung. In diesem Proseminar werden wir uns auf den Fall eines endlichen Zustandsraumes beschränken. In diesem Fall lassen sich Eigenschaften der Markovkette mit Hilfe von Eigenschaften einer gewissen Matrix, der sogenannten Übergangsmatrix, verbinden und somit ein Bezug zur Linearen Algebra herstellen.

Literaturangaben

- David A. Levin, Yuval Peres, Elizabeth L. Wilmer: Markov Chains and Mixing Times, American Mathematical Society 2008
- Olle Häggström: Finite Markov Chains and Algorithmic Applications, London Mathematical Society, 2002
- Laurent Saloff-Coste : Lectures on finite Markov chains , Lecture Notes in Mathematics Volume 1665, 1997

Verschiedenes

Scheinerwerb:

vorausgesetzte Kenntnisse:

Seminarvortrag und Vortragsausarbeitung

Lineare Algebra, Analysis

Seminar Reelle Analysis

Dozent: Hansen

Büro: D1.211

Sprechstunde: siehe meine Webseite

 ${\bf Inhalts angabe}$

Vorträge zu ausgewählten Themen.

Verschiedenes

Hörerkreis: vorausgesetzte Kenntnisse:

Bachelor (Techno-)Math., GyG/BK

Inhalte der Module Lineare Algebra, Analy-

sis und Reelle Analysis

nächster Wiederholungstermin: Homepage:

k.A. http://www.math.upb.de/~soenke

Geometrie I (Grundlagen der Differentialgeometrie)

Dozent: Gloeckner

Büro: D2.228

Inhaltsangabe

Unter anderem: Differenzierbare Mannigfaltigkeiten; Untermannigfaltigkeiten; Immersionen und Submersionen; Vektorfelder, ihre Lieklammer und Flüsse; Vektorbündel und Hauptfaserbündel; Integration von Differentialformen und der Satz von Stokes; affine Zusammenhänge, Riemannsche Metriken und Geodätische, Anwendung auf Liegruppen.

Literaturangaben

Literatur wird bekannt gegeben.

Verschiedenes

Hörerkreis:

nächster Wiederholungstermin:

Master Mathematik, auch Bachelor Mathematik

unregelmäßig

Algebraische Gruppen I

Dozent: Wedhorn

Biiro: D2.213

Sprechstunde: nach Vereinbarung

Inhaltsangabe

Algebraische Gruppen sind Schemata über einem Körper versehen mit einer Gruppenstruktur. Sie spielen eine zentrale Rolle in verschiedensten Gebieten der Mathematik, wie etwa Analysis (über den Körpern der reellen oder komplexen Zahlen sind sie eng mit der Theorie der Lie-Gruppen verknüpft), Algebraische Geometrie oder Zahlentheorie.

Diese Vorlesung ist die Einleitung zu einem mehrsemestrigen Zyklus von Master-Vorlesungen zum Thema "Algebraische Gruppen".

Literaturangaben

siehe Homepage der Veranstaltung

Verschiedenes

Hörerkreis:

Master Mathematik/Technomathematik

Scheinerwerb:

wird noch bekanntgegeben

vorausgesetzte Kenntnisse:

Anfänge der algebraischen Geometrie, insbesondere Theorie der Schemata

nächster Wiederholungstermin:

Homepage:

http://www2.math.uni-paderborn.de/ people/torsten-wedhorn.html

Prüfungsgebiet:

Master Mathematik/Technomathematik: Algebra/Geometrie

qualifizierender Studiennachweis:

weiterführende Veranstaltungen:

Algebraische Gruppen II (im SS15)

Vorbesprechung:

Spektraltheorie unbeschränkter Operatoren

Dozent: Kaiser

Büro: D2.210

Sprechstunde: Di, 13-14 Uhr

Inhaltsangabe

- unbeschränkte Operatoren auf Banachräumen; Beispiel Laplace-Operator
- Symmetrie und Selbstadjungiertheit bei unbeschränkten Operatoren auf Hilberträumen
- Spektraltheorie selbstadjungierter Operatoren: Spektralzerlegung, Spektralmaß

Klassische Anwendungsgebiete der Theorie unbeschränkter Operatoren finden sich unter anderem in der mathematischen Physik und bei partiellen Differentialgleichungen.

Verschiedenes

Hörerkreis:

Master Mathe / Technomathe

vorausgesetzte Kenntnisse:

Funktionalanalysis I

weiterführende Veranstaltungen:

bei Interesse Fortsetzung im SoSe 15

Prüfungsgebiet:

Analysis / Stochastik

nützliche Parallelveranstaltungen:

Banach- und C^* -Algebren

Mathematik für Physiker A

Dozent: Hilgert

Büro: D2.234

Sprechstunde: nach Vereinbarung

Inhaltsangabe

Grundlagen der reinen und angewandten Mathematik. Im Rahmen der Vorlesung werden insbesondere die für physikalische Anwendungen wichtigen Themen und Konzepte der Mathematik vermittelt.

- 1. Reelle Zahlen
- 2. Vollständige Induktion
- 3. Komplexe Zahlen
- 4. Elementare Funktionen sin, cos, tg, ctg, log, ln, exp
- 5. Polynome und Nullstellen
- 6. Grenzwerte
- 7. Reihen
- 8. Exponentialreihe
- 9. Vektor- und Matrizenrechnung
- 10. Eigenwerte und Eigenvektoren
- 11. Differentialrechnung in einer Variablen
- 12. Integralrechnung in einer Variablen
- 13. Taylorentwicklung
- 14. Differentialgleichungen

Literaturangaben

- Goldhorn, K.-H., Heinz, H.-P.: Mathematik für Physiker 1, Springer, 2007 (nach diesem Buch gehe ich vor)
- Fischer, H., Kaul, H.: Mathematik für Physiker, Band 1, Grundkurs, B.G. Teubner, 2005
- Penrose, R.: The Road to Reality, Vintage Books, 2007

Verschiedenes

Hörerkreis:

Scheinerwerb:

Physiker im ersten Studiensemester

Klausur

vorausgesetzte Kenntnisse:

Schulmathematik um Umfang der Kernlernlehrpläne NRW:

 $\verb|http://www.standardsicherung|.$

schulministerium.nrw.de/

lehrplaene/lehrplannavigator-s-i/

gymnasium-g8/mathematik-g8/

kernlehrplan-mathematik/

http://www.standardsicherung.

schulministerium.nrw.de/

lehrplaene/lehrplannavigator-s-ii/

gymnasiale-oberstufe#endfassung

nächster Wiederholungstermin:

WS 2015/2016

weiterführende Veranstaltungen:

Mathematik für Physiker B

Homepage:

 $\verb|https://www2.math.uni-paderborn.|$

de/ags/ag-hilgert/

lehre/winter-20142015/

mathematik-fuer-physiker-a.html

Mathematik 3 für Maschinenbauer

Dozent: Winkler

Büro: D1.230

Inhaltsangabe

Integralrechnung in mehreren Variablen (Methode der sukzessiven Integration, Substitutionsregeln für Integrale mehrerer Variablen);

Vektoranalysis (Kurven- und Flächenintegrale, Vektorfelder, Divergenz, Rotation, Gradient, Gauß'scher Integralsatz);

Lineare Differenzialgleichungssysteme (Fundamentalsysteme, Lösung von Systemen mit konstanten Koeffizienten durch Lösung der zugehörigen Eigenwertprobleme, Methode der Variation der Konstanten, Laplace-Transformation)

Literaturangaben

- Meyberg, K., Vachenauer, P. : Höhere Mathematik
- Papula, L.: Mathematik für Ingenieure und Naturwissenschaftler

Verschiedenes

Hörerkreis:

Studierende des Studienganges Maschinenbau (Bachelor)

Scheinerwerb:

Aktive Teilnahme an den Übungen. Klausur

Pflichtmodul Grundstudium

Prüfungsgebiet:

nächster Wiederholungstermin:

Wintersemester 2015/16

Vorausgesetzte Kenntnisse:

Schulmathematik, Mathematik 1,2 für Maschinenbauer

Höhere Mathematik C für Elektrotechniker

Dozent: Kaiser

Büro: D2.210

Sprechstunde: Di, 13-14 Uhr

 ${\bf Inhalts angabe}$

siehe Modulhandbuch.

Verschiedenes

vorausgesetzte Kenntnisse: Höhere Mathematik A & B nächster Wiederholungstermin:

WiSe 15/16

Elemente der Geometrie für G

Dozent: Prof. Dr. Peter Bender

Büro: D2.247

Sprechstunde: 18:15-19:00

Inhaltsangabe

Bachelor-Studierende müssen als Studienleistung regelmäßig erfolgreich Hausaufgaben erledigen und regelmäßig aktiv an der Übungsgruppe teilnehmen. Für sie findet die Modulprüfung in Form einer Klausur voraussichtlich im Juli/August 2015. Diese Klausur besteht je zur Hälfte aus Aufgaben zu "Elemente der Geometrie" und "Didaktik der Geometrie". Die nächste Modulprüfung danach findet voraussichtlich im Februar 2016 statt. Studierende nach der LPO von 2003 müssen als Studienleistung im fachinhaltlichen Modul zu dieser Veranstaltung eine Klausur schreiben. Diese findet voraussichtlich im Februar 2015 statt.

Es wird ein Skript ausgegeben.

Verschiedenes

Hörerkreis:

Bachelor-Studiengang "Mathematik für G" im Modul "Geometrie und ihre Didaktik", Didaktisches Grundlagenstudium Mathematik für den Studiengang GHRG nach der LPO 2003, und zwar für beide Schwerpunkte "G" und "HRG"

Vorausgesetzte Kenntnisse:

Abitur

Scheinerwerb:

Klausur

nächster Wiederholungstermin:

voraussichtlich im WS 2015/16

Graphentheorie

Dozent: Nelius

Büro: D2.210

Sprechstunde: s. Homepage

Inhaltsangabe

Ein Graph ist ein recht einfaches mathematisches Objekt, zu dessen Verständnis nur wenige mathematische Vorkenntnisse erforderlich sind. Er besteht aus einer endlichen Menge von Punkten und aus Verbindungen zwischen einigen dieser Punkte.

Graphen eignen sich besonders gut zur Untersuchung netzartiger Strukturen, die in der Praxis sehr häufig vorkommen. Dazu gehören etwa

- Straßennetze
- Energieleitungssysteme
- elektronische Schaltungen
- Funknetze
- wirtschaftliche Verflechtungen
- soziale Netze

Auch viele mathematische Knobeleien (wie z.B. das Königsberger Brückenproblem, das Fährmannsproblem oder Irrgärten) lassen sich mit graphentheoretischen Methoden lösen. Im Zusammenhang mit planaren Graphen (das sind Graphen, die sich in der Ebene überschneidungsfrei zeichnen lassen) werden u.a. die Euler'sche Polyederformel und die Färbung von Landkarten (Vierfarbensatz) behandelt.

Literaturangaben

Peter Tittmann : GraphenteorieOystein Ore : Graphs and Their Uses

Verschiedenes

Hörerkreis:

Scheinerwerb:

Hauptstudium GHRGe

Klausur (es können Bonuspunkte durch die Hausaufgaben erworben werden)

vorausgesetzte Kenntnisse:

nächster Wiederholungstermin:

Allgemeine mathematische Kenntnisse aus den Grundvorlesungen

unklar

Homepage:

math-www.uni-paderborn.de/~chris

pi i e

Dozent: Rinkens

Büro: D3.230

Inhaltsangabe

Es geht um die fünf wichtigsten Zahlen: Außer 0 und 1 gibt es kaum noch wichtigere Zahlen als pi, i und e.

- 1. Die KREISZAHL pi ist nicht nur eine Sache der Geometrie: Bekanntes wird aufgefrischt und Erstaunliches (hoffentlich) hinzugelernt.
- 2. Die IMAGINÄRE EINHEIT i befreit uns von der Rechenstörung, aus negativen Zahlen nicht die Wurzel ziehen zu dürfen / zu können.
- 3. Die EULER-ZAHL e liegt fast allen Wachstums- und Zerfallsprozessen zugrunde: Die e-Funktion ist wohl die wichtigste mathematische Funktion überhaupt.

Und es geht um eine Formel, in der nur pi, i und e sowie 0 und 1 vorkommen, die schönste Formel der Mathematik, wie mal ein Mathematiker gesagt hat, und eine verblüffende Formel: Die Potenz einer positiven Zahl soll negativ sein!?!

$$e^{i\pi} + 1 = 0$$

Zum Ziel der Veranstaltung:

Diese Veranstaltung soll den Weg zum Verständnis der geheimnisvollen Formel beschreiben. Dieser Weg führt durch zentrale Gebiete der Mathematik: Geometrie einschließlich der Trigonometrie, Arithmetik und Algebra sowie Analysis mit einem Blick in wissenschaftliches Rechnen. Nicht die Systematik dieser Gebiete steht im Vordergrund, sondern ihre fundamentalen Ideen als Beitrag zum Entstehen der Formel.

Diese Veranstaltung will Wissenswertes, auch Historisches, vermitteln, sie soll aber vor allem Ihr Bild von Mathematik prägen. Ihr Bild von Mathematik wird großen Einfluss auf die Art und Weise haben, mit der Sie als Mathematiklehrerin oder Mathematiklehrer Ihren Beruf ausüben werden.

Zur Rolle im Studium:

Im Studiengang Lehramt Mathematik für Grund-, Haupt-, Real- und Gesamtschulen nach LPO2003:

Die Veranstaltung gehört zu den Wahlpflichtveranstaltungen des Hauptstudiums.

Sie kann als Bestandteil des Aufbaumoduls studiert werden; dann wird sie mit einer Klausur abgeschlossen, deren Erfolg mit einem Leistungsnachweis bescheinigt wird.

Oder sie wird als Bestandteil des Vertiefungsmoduls studiert, dann ist sie Thema der mündlichen Prüfung (Modulprüfung) zum Abschluss des Studiums.

Im Masterstudiengang Lehramt an Grundschulen mit dem Lernbereich mathematische Grundbildung:

Diese Veranstaltung kann im Rahmen des Moduls Ma3 oder Ma4(Vertiefung) studiert werden.

Im Masterstudiengang Lehramt an Haupt-, Real- und Gesamtschulen mit dem Unterrichtsfach Mathematik:

Diese Veranstaltung kann im Rahmen des Moduls Ma3 studiert werden.

Verschiedenes

Hörerkreis: Prüfungsgebiet:

LPO2003(Aufbaumodul);

s.o.

offen

LPO2003(Vertiefungsmodul); Masterstudiengang Lehramt Mathematik G: Ma3, Ma4; Masterstudiengang: Lehramt

Mathematik HRGe: Ma3

Scheinerwerb: qualifizierender Studiennachweis:

S.O.

vorausgesetzte Kenntnisse: nächster Wiederholungstermin:

Elemente der Geometrie, Elemente der Analysis

27

Einführung in die Kultur der Mathematik

Dozent: Biehler

Büro: J2.204

Sprechstunde: s. Homepage

Inhaltsangabe

Die Veranstaltung "Einführung in die Kultur der Mathematik" ist eine neu entwickelte Lehrveranstaltung für Erstsemester im Bachelor-Studiengang für das Lehramt an Haupt- und Realschulen und wurde im Wintersemester 2011/12 zum ersten Mal durchgeführt.

An ausgewählten Beispielen der Elementarmathematik (Arithmetik und Zahlen, Algebra und Funktionen) sollen die Studierenden in mathematische Denk- und Arbeitsweisen und in das mathematische Problemlösen eingeführt werden.

Die Studierenden lernen Unterschiede zwischen Hochschul- und Schulmathematik verstehen und bewerten.

Die besondere Rolle des Beweisens für das Begründen mathematischer Aussagen und die verschiedenen Formen des Beweisens sollen verstanden und an ausgewählten Problemen angewendet werden.

Am Ende solcher Prozesse steht dann mathematisches Wissen in Form von Sätzen. Damit gehört zu einer "Kultur der Mathematik" auch das mathematisch korrekte Aufschreiben von Sätzen und Beweisen mit Hilfe der formalen Sprache und in einer logischen Genauigkeit, die sich von schulischen Darstellungsweisen unterscheidet.

Verschiedenes

Hörerkreis:

Scheinerwerb:

Erstsemester im Studiengang BA Hauptund Realschule erfolgreiche Teilnahme an der Klausur

nächster Wiederholungstermin:

in einem Jahr

Elemente der Geometrie für G

Dozent: Prof. Dr. Peter Bender

Büro: D2.247

Sprechstunde: 18:15-19:00

Inhaltsangabe

Bachelor-Studierende müssen als Studienleistung regelmäßig erfolgreich Hausaufgaben erledigen und regelmäßig aktiv an der Übungsgruppe teilnehmen. Für sie findet die Modulprüfung in Form einer Klausur voraussichtlich im Juli/August 2015. Diese Klausur besteht je zur Hälfte aus Aufgaben zu "Elemente der Geometrie" und "Didaktik der Geometrie". Die nächste Modulprüfung danach findet voraussichtlich im Februar 2016 statt. Studierende nach der LPO von 2003 müssen als Zwischenprüfungsleistung zu dieser Veranstaltung eine Klausur schreiben. Diese findet voraussichtlich im Februar 2015 statt.

Es wird ein Skript ausgegeben.

Verschiedenes

Hörerkreis:

Bachelor-Studiengang "Mathematik für HRG" im Modul "Geometrie und ihre Didaktik"; Lehramtsstudium für GHRG (einschließlich G!) mit Mathematik als Unterrichtsfach nach der LPO von 2003 im Grundstudium; kann auch von Bachelor-Grundschullehramt-Studierenden für deren Modul "Geometrie und ihre Didaktik" gewählt werden, wenn sie ihr Studium vor dem SS 2013 aufgenommen haben

Vorausgesetzte Kenntnisse:

Abitur

Scheinerwerb:

Klausur

nächster Wiederholungstermin:

voraussichtlich im WS 2015/16

5 Raum für Notizen

6 Ergebnisse der Veranstaltungskritik

Hallo,

üblicherweise findet Ihr hier an dieser Stelle eine Übersicht über die Ergebnisse der Veranstaltungskritik.

Diese werden, aus datenschutzrechtlichen Gründen, nur in der gedruckten Fassung des V-Koms veröffentlich. Wenn euch die Ergebisse interessieren, könnt Ihr diese jeder Zeit bei uns im Fachschaftsbüro E1.311 ansehen.

Stundenplan

Uhrzeit	Montag	Dienstag	$\dot{ ext{Mittwoch}}$	Donnerstag	Freitag
7 - 8					
8 - 8					
9 - 10					
10 - 11					
11 - 12					
12 - 13					
13 - 14					
14 - 15					
15 - 16					
16 - 17					
17 - 18					
18 - 19					
19 - 20					