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Oil Prices – Big Data Evidence from

the German Gasoline Market

Abstract

This note investigates the pass-through of global Brent oil notations to fuel prices across 
the oligopoly of retail majors in Germany. We assemble a high-frequency panel data 
set that encompasses millions of price observations and allows us to distinguish eff ects 
by brand. Upon establishing a cointegrating relationship between fuel and crude-oil 
prices using daily data, we estimate an error-correction model (ECM) and fi nd that (1) 
the pass-through of oil prices critically depends on the number of time lags included in 
the ECM, (2) strict adherence to classical information criteria for determining lag length 
yields extremely long pass-through durations, and (3) the estimated impulse response 
functions are virtually identical across brands, irrespective of the lag count, suggesting 
a high degree of competition among brands.
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1 Introduction

Drawing upon a huge panel data set originating from a recently established census of

retail prices covering virtually all fuel stations in Germany, this note investigates the

pass-through of global Brent oil notations to gasoline prices, thereby distinguishing

between retail majors, minors, and independents. Gasoline markets are well-known

to exhibit retail price evolutions that resemble the Edgeworth price cycle equilibria

formalized by MASKIN and TIROLE (1988), which can have implications for the speed

of gas price responses (LEWIS, NOEL, 2011). Such cycles have been found for the US

(LEWIS, 2009; DOYLE, MUEHLEGGER, SAMPAHANTHARAK, 2010), Canada (ECKERT,

2003; NOEL 2007a,b), and Australia (WANG 2008), with a typical cycle lasting one to

two weeks (LEWIS, NOEL, 2011:672).

Fluctuations in German fuel prices are likewise characteristic of an Edgeworth

Cycle, but one that takes place over a 24 hours period, rather than weeks. Figure 1

presents this pattern for E5 gasoline and the retailers Aral and Jet, but is also represen-

tative for the other fuel types and retailers. The fuel price reaches a trough each day

at about 6:00 p. m. , after which it rises rather sharply until 11:00 p. m. , stagnating

until 5:00 a. m. , and thereafter falling gradually over the course of the day until 6:00

p. m. When averaging the prices on a daily basis, however, the evidence for a cyclical

Edgeworth pattern vanishes.

Moreover, using an error-correction based cointegration test for panel data (WES-

TERLUND, 2007; PERSYN, WESTERLUND, 2008), a cointegrating relationship between

fuel and Brent prices is not rejected with the daily data, contrasting with a rejection

of cointegration using the hourly data. In what follows, we use this result to apply the

standard error-correction model (ECM) of ENGLE and GRANGER (1987) to the daily da-

ta to investigate both the critical role of the lag order in the pass-through of crude-oil

prices and the degree of competition among major brands. To compare the price pass-

through speed of different brands, impulse response functions (IRFs) are subsequently

estimated.
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Figure 1: Intra-Day Price Cycles for E5 Gasoline in Germany.

Three main results emerge. First, we find that the estimated pass-through of oil

prices critically depends on the number of time lags included in the ECM. Second, strict

adherence to classical model selection criteria, such as AKAIKE’s (1973) and SCHWARZ’

(1978) information criteria, yields an extremely long pass-through period, leading us

to advocate discretionary limits on the number of lags included. Lastly, irrespective of

the number of lags included in the model, the differences in the associated IRFs across

brands is negligible, which is interpreted as evidence for a competitive retail market.

The following section describes the panel data set. Section 3 provides a descripti-

on of the estimation method, followed by a derivation of the formula for the impulse

response function (IRF). The presentation and interpretation of the results is given in

Section 4. The last section summarizes and concludes.
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2 Data

The German retail market for gasoline and other fuels is dominated by an oligopoly of

five vertically integrated oil companies that have a large network of stations and direct

access to refining capacities: Aral, Shell, JET, Esso and Total (Table 1). These players

have long been a source of scrutiny by Germany’s Cartel Office (BUNDESKARTELLAMT,

2011:20-21). Increasing concern about collusion culminated in the establishment of the

so-called Market Transparency Unit for Fuel and an on-line portal that posts fuel prices

in real-time from each of Germany’s roughly 14,000 filling stations.1

Since September 2013, stations are legally obligated to post every price change,

the precise time stamp, the geographic coordinates of the station, the opening hours,

and the brand. To access this data, we wrote a script that continuously retrieves entries

on the site and stores these on a server. From the raw data, we create a balanced panel of

daily prices for E5 and E10 gasoline, as well as diesel, charged by each station covering

the period from May 17, 2014, to March 14, 2015, and resulting in millions of price

observations altogether.

Table 1: Mean Gasoline Prices (E5) Across Retailers in Germany (May 17, 2014 - March

10, 2015)

Mean (e/Liter) Std. Dev. # Stations # Days

Aral 1.505 (0.118) 2,270 298

Esso 1.490 (0.006) 1,023 298

Jet 1.465 (0.110) 575 298

Shell 1.508 (0.119) 1,774 298

Total 1.498 (0.116) 714 298

Minors and independents 1.470 (0.115) 6,511 298

Note: Average Brent Oil prices amounted to 0.42 e/liter over the same time interval.

1For more information on the Market Transparency Unit for Fuel (Markttransparenzstelle

für Kraftstoffe, MTS-K), see http://www.bundeskartellamt.de/EN/Economicsectors/MineralOil/

MTU-Fuels/mtufuels_node.html.
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For this period and the example of E5 gasoline, mean prices across brands are

presented in Table 1. The highest average price, at 1.508 eper liter, is to be observed for

Shell, whereas Jet exhibits the lowest average price of 1.46e/liter. Prices are in nominal

terms and include a 65 cents excise tax, as well as a 19% value-added tax. Following

standard practice, we estimate the ECM on the before-tax gas prices, using daily data

on Brent oil prices published by the U.S. Energy Information Administration (EIA).

3 Methodological Issues

To model the transmission of crude-oil prices, PC, to gasoline prices, PG, we follow

BACHMEIER and GRIFFIN (2003). These authors abstract from determinants other than

crude-oil prices, arguing that crude oil is the principal input to gasoline production and

that the purpose of their model is simply to examine the transmission of crude-price

shocks to gasoline prices. Furthermore, we exploit the fact that average daily gasoline

prices do not exhibit Edgeworth cycles, thereby allowing us to employ a standard ECM

(BACHMEIER, GRIFFIN, 2003:773):2

ΔPGt =
k

∑
i=0

βciΔPCt−i +
n

∑
i=1

βgiΔPGt−i + θzt−1 + εt, (1)

where βci and βgi measure the short-run impact of crude oil prices and lagged gasoline

prices, respectively, θ is the long-run equilibrium parameter and

zt = PGt − γ0 − γ1PCt (2)

measures the long-run disequilibrium between gasoline and crude-oil prices. γ1 re-

flects the long-run effect of a permanent change in crude-oil prices. As we have empi-

rically found that the PC and PG time series are cointegrated, the long-run relationship

follows a stationary process, as well as the other regressors in (1), which are found to

2Using a Markov switching regression framework, LEWIS and NOEL (2011:672) argue that in markets

that exhibit price cycles, distributed lag models, such as the ECM, are unable to capture the large and

periodic changes in retail margins.
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be integrated of order one. Hence, inference on functions of the coefficients, such as the

impulse response function (IRF), is standard.

The impulse response – or cumulated adjustment – function, recursively defined

by IRFt := PGt − PGt−1 + IRFt−1 = ΔPGt + IRFt−1, measures the t-period cumulative

response in gasoline prices to a one-time, but permanent unit change in the price of

crude oil at t = 0: PCt = 1 for t = 0, 1, 2, .... Our derivation of the IRF leads to a formula

very similar to that presented by BORENSTEIN, CAMERON, and GILBERT (1997). For

starters, for t = 0, we obtain

IRF0 = PG0 − PG−1 + IRF−1 = ̂βc0(PC0 − PG−1) + ̂βg1(PG−1 − PG−2) + θ̂z−1 = ̂βc0,

because IRF−1 = 0 = PC−1 = PG−1 = PG−2, z−1 = 0, as the one-unit shock occurs in

t = 0. For t = 1 and k, n ≥ 1, it is

IRF1 = PG1 − PG0 + IRF0 = ̂βc0ΔPC1 + ̂βc1ΔPC0 + ̂βg1ΔPG0 + θ̂z0 + IRF0

= ̂βc1 + ̂βg1 IRF0 + θ̂(IRF0 − γ1) + IRF0,

because ΔPC0 = PC0 − PC−1 = 1 − 0 = 1 and ΔPC1 = PC1 − PC0 = 1 − 1 = 0, as

the unit change in t = 0 is permanent, and ΔPG0 = IRF0. Furthermore, z0 results from

z0 = z0 − z−1 = ΔPG0 − γ1ΔPC0 = IRF0 − γ1, as ΔPC0 = 1 and ΔPG0 = IRF0.

Likewise, for t = 2 and k, n ≥ 2, because of ΔPC2 = ΔPC1 = 0 and ΔPC0 = 1, we

get

IRF2 = PG2 − PG1 + IRF1 = ̂βc0ΔPC2 + ̂βc1ΔPC1 + ̂βc2ΔPC0 +

̂βg1ΔPG1 + ̂βg2ΔPG0 + θ̂z1 + IRF1

= ̂βc2 + ̂βg1(IRF1 − IRF0) + ̂βg2 IRF0 + θ̂(IRF1 − γ1) + IRF1,

since, by definition, ΔPG1 = IRF1 − IRF0 and ΔPG0 = IRF0. In addition, z1 − z0 =

ΔPG1 − γ1ΔPC1 = IRF1 − IRF0 and, hence, z1 = z0 + IRF1 − IRF0 = IRF0 − γ1 +

IRF1 − IRF0 = IRF1 − γ1. Note that the formula for z1 can be generalized by recursive

induction to zt = IRFt − γ1 for all t ≥ 0.

In sum, as has been motivated by calculating IRFt for t = 0, 1, 2, the general
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formula for t = j reads:

IRFj = ̂βcj +
j

∑
i=1

̂βgi(IRFj−i − IRFj−i−1) + θ̂(IRFj − γ1) + IRFj−i. (3)

It bears noting that ̂βcj = 0 if j > k and
j

∑
i=1

̂βgi(IRFj−i − IRFj−i−1) =
n
∑

i=1
̂βgi(IRFj−i −

IRFj−i−1) if j > n. Finally, the long-term equilibrium IRF := limk→∞ IRFk is given by

IRF = γ1, as can be seen from formula (3) by setting IRFj = IRF for all j.

4 Empirical Results

An important step in estimating an ECM is the specification of the lag lengths k and n:

employing too few lags risks biased estimates, while including too many lags compro-

mises precision and may lead to an over-fitted model that generalizes poorly. Various

techniques have been employed for determining lag length, including direct testing

of the statistical significance of the lagged terms (BORENSTEIN, CAMERON, GILBERT,

1997), expert discretion (LEWIS, 2011) and, perhaps most commonly, the application of

information criteria (BACHMEIER, GRIFFIN, 2003), such as the Akaike and Bayes Infor-

mation Criterion (AIC and BIC, respectively).

As HAN, PHILLIPS, and SUL (2015) demonstrate, the application of the BIC in the

context of dynamic panel models can be problematic, leading to considerable overe-

stimation of the lag order. These authors propose alternative model selection methods,

two of which modify the BIC by increasing the penalty, whereas another approach, cal-

led the truncated sample method, truncates the sample based on the highest lag order,

with the consequence that the comparison of the BIC references the same sample.

We have explored alternative techniques for determining lag lengths, finding that

all methods using information criteria, including those suggested by HAN, PHILLIPS,

and SUL, result in extremely long – and seemingly implausible – lag orders for the

cost variable, i. e. the Brent crude oil price. Moreover, the shape of estimated IRFs is

found to be highly sensitive to the lag lengths. The degree of variation is illustrated by
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Figure 2, presenting select IRFs for the panel of Aral stations. The longest pass-through

duration, estimated at about 350 days, results from a model with 5 lags of retail prices

and 131 lags of Brent prices, determined using the truncated sample method.

Figure 2: Impulse Response Functions by Lag Length for Aral.

Reducing the oil price lag to 110, where the BIC reaches a local minimum, results

in a markedly different path whose pass-through time is considerably shorter, at about

200 days. We have also estimated two IRFs based on ECM specifications taken from

the literature, yielding much shorter, more plausible pass-through times: First, a parsi-

monious variant specified by BACHMEIER and GRIFFIN (2003) using the BIC, includes

one lag of the oil price and one retail price lag, resulting in a pass-through of 30 days.

A second specification includes 4 retail price lags and 7 oil price lags, a selection used

by LEWIS (2011) in citing its similarity with previous studies. This results in a longer

pass-through of about 60 days.

Notwithstanding the heterogeneity evident in Figure 2, we find a high degree

of stability in the estimated IRFs across brands. Figure 3 presents the IRFs generated

by the model with 4 price lags and 7 cost lags, documenting that the trajectories are
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statistically indistinguishable. We have explored a multitude of other specifications,

finding that the different brands always follow a similar convergence path, irrespective

of the specified lag orders. This result may reflect price setting close to marginal costs,

so that stations have limited leeway in absorbing oil price shocks and follow a highly

similar path of adjustment with their competitors.

Figure 3: Impulse Response Functions by Brand, 7 Cost Lags, 4 Price Lags.

5 Summary and Conclusion

Drawing upon a huge panel data set entailing millions of fuel price values that origina-

te from a recently established census of retail prices covering virtually all fuel stations

in Germany, this note has investigated the pass-through of Brent oil prices, the primary

cost factor not only for German fuel retailers. After deriving and estimating impulse

response functions for standard error-correction models, we have explored the conse-

quences of different lag specifications – selected on the basis of classical information

criteria – for the estimated pass-through time.
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Along the lines of LEWIS and NOEL (2011: 674), we find that statistical procedu-

res to determine the proper lag length do not work well in our application. Even when

using a penalized variant of the Bayes Information Criterion, as suggested by HAN,

PHILLIPS, and SUL to handle dynamic panel models, we obtain a model specificati-

on that results in an extremely long pass-through time of nearly one year. Following

shorter lag specifications that are established in the literature results in an estimated

pass-through time of 6 to 8 weeks, which is within the range identified in previous

studies (e.g. BORENSTEIN, CAMERON, and GILBERT, 1997; BACHMEIER, GRIFFIN, 2003;

LEWIS, NOEL 2011). Most notably, we find that the IRF trajectories are highly similar

across brands for given lag lengths, a likely reflection of competition.
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