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1 Introduction

The R programming language [1] is widely used in biostatistics with high-dimensional
data sets. Here, a vast amount of resources is needed. Our tool traceR |5] allows the user
to profile the resource usage of an R application to locate bottlenecks and develop new
optimizations [8, 7]. TraceR is a deterministic profiling tool. In contrast to existing R
language profiling tools, traceR is directly integrated with the R interpreter. This enables
the generation of more detailed and accurate data about memory and runtime behavior
of an R application. This profiling functionality was previously limited to sequential R
applications.

Parallel computing however is becoming more and more popular, since R is increasingly
used to process large data sets. We therefore have improved traceR to allow for profil-
ing parallel applications also. TraceR can be used for common cases like parallelization
on multiple cores or parallelization on multiple machines. For the parallel performance
analysis we added measurements like CPU utilization of parallel tasks and measurements
for analyzing the memory usage of parallel programs during execution |9, 10]. With our
parallel performance analysis we concentrate on applications that are embarrassingly par-
allel consisting of independent tasks. One example application which is embarrassingly
parallel and also has a high resource utilization is the model selection. Here the goal is
to find the best machine learning algorithm configuration for building a model for the
given data. Therefore one has to search through a huge model space.

Since the gain from parallel execution can be negated if the memory requirements of
all parallel processes exceed the capacity of the system, our profiling data can serve as a
constraint to determine the degree of parallelism and also to guide distribution of parallel
R applications. Our goal is to provide a resource-aware parallelization strategy. To de-
velop such a strategy we first need to analyze the performance of parallel applications. In
the following we therefore will describe different parallel example applications and show
how traceR is applied to analyze parallel R applications.



2 Parallel Performance Analysis

In the following we will illustrate the gain from analyzing parallel R programs with traceR
by presenting three example cases. Subsection 2.1 explains the parallel profiles produced
by traceR and shows the outcome of using too many machines for parallel execution.
Subsection 2.2 discusses the problem of high runtime variance of parallel processes and
load balancing options. An example of inefficient resource utilization caused by using too
many parallel processes is presented in Subsection 2.3.

2.1 Inefficient Resource Utilization

In this subsection we will first use traceR to analyze an R example program which runs
on multiple cores. To show how traceR can support the detection of inefficient resource
utilization for parallel R programs, we will extend this example program for execution
on multiple machines. Figure 1 shows the parallel parts of an R program that calculates

library("parallel")

5
6
7 # resolution and iteration count constants
8

XRES = 5000
9 YRES = 5000
10 BLOCKSIZE = 100

11 ITERS = 600

12 [CORES =4
13

14 # calculate C value for a given pixel (coordinates between 0 & 1)
15 calcC = function(imag, real) {

16 return((-1 + 2 * imag) * 1i + (-2.3 + 3.0*real))

17 }

18

19 # calculate a single line of the final image

20 |calcBlock |= function(line) {

21 image = matrix(0+0i, ncol = XRES, nrow = BLOCKSIZE)

22 pixelC = outer(seq(line, line + BLOCKSIZE - 1) / YRES,
23 (1:XRES) / XRES, calcC)

24 for (i in 1:ITERS) {

25 image = image * image + pixelC

26 }

27 t(image)

28 }

29 lines = do.call(c, [mclapply|seq(1,YRES,BLOCKSIZE),

30 calcBlock, mc.cores = CORES))

Figure 1: Parallel code parts of an R program for calculating a Mandelbrot fractal on 4
cores on a single machine.

a Mandelbrot fractal. The important lines are marked in green. Here the function cal-
cBlock (line 20) is running in parallel on 4 cores (line 12) on a single machine. Each
job calculates a block of lines of the final Mandelbrot image. For parallelization the
R function mclapply (line 29) of the parallel R package [3| is used. This function sets
up a pool of 4 worker processes with the fork mechanism, one per core. The jobs are
prescheduled by default. Therefore mclapply first splits the jobs into as many groups as
there are cores and sends them to the 4 worker processes, each covering more than one job.



For analyzing the resource consumption of this parallel example code our traceR tool
produces a profile that visualizes the relative CPU utilization and memory consumption
which is shown in Figure 2. Besides this profile traceR also generates more detailed run-
time profiles and memory profiles for each parallel process (for a detailed description see
[6]). This data is especially useful to support efficient distribution of parallel processes
on heterogeneous machines or cores, a manual for installing and configuring traceR can

be found in [5].

The x-axis of Figure 2 represents the runtime in seconds for the R program example.
The runtime and the CPU utilization of the parallel processes are illustrated by a hor-
izontal line for each process. The length of the line represents the runtime. The color
can vary from blue via purple to orange and indicates the relative CPU utilization of a
process, calculated over its entire runtime. The master process is shown on the top while
the worker processes are shown below it, sorted by starting time.
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Figure 2: Relative CPU utilization and memory utilization of a parallel R program for
calculating a Mandelbrot fractal on 4 cores on a single machine.

Since mclapply uses one worker process per core, Figure 2 shows 4 orange lines for the
worker processes and one blue line for the master process. The worker processes are
orange since there CPU utilization is high, this indicates that they did not have to wait
for CPU resources, instead they received the maximum amount of CPU time. If their
color would shift to purple or blue this would indicate that they had consumed less CPU
time than their wallclock-runtime. This could be caused by other concurrent processes
running on the same machine, by running more processes than CPU cores available or
just by processing delays that are for example caused by I/O operations. The measure-
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ments for the master process shown in the first horizontal line of Figure 2 indicate a low
CPU utilization (blue) since the master only waits for the workers to finish and gathers
the results at the end without running any calculations.

The y-axis on the right side of Figure 2 shows the memory utilization of the Mandelbrot
program. The memory behavior is indicated by two curves. The green curve shows the
amount of free main memory during program execution, reported by the Linux kernel.
The black curve shows the amount of memory allocated by all parallel processes over
time. The values for both curves are sampled once per second. For the Mandelbrot
example this profile indicates that we have more memory resources than needed.

A common way to further reduce the effective runtime of a parallel program is to execute
it on multiple machines. TraceR is also able to produce profiles for parallelization on
multiple machines and the R language supports this way of parallelization via several R
packages. We will therefore modify our R program example by using additional mech-
anisms of the parallel R package. This modification is shown in Figure 3. Again the
important parts of the code are marked in green.

11[HOSTS = c(rep("hostl", 4), rep("host2", 4))

13 # calculate C value for a given pixel (coordinates between 0 and 1)
14 calcC = function(imag, real) {

15 return((-1 + 2 * imag) * 1i + (-2.3 + 3.0*real))

16 }

18 # calculate a block of the final image
19 calcBlock = function(line) {

20 image = matrix(0+0i, ncol = XRES, nrow = BLOCKSIZE)

21 pixelC = outer(seq(line, line + BLOCKSIZE - 1) / YRES,
22 (1:XRES) / XRES, calcC)

23 for (i in 1:ITERS) {

24 image = image * image + pixelC

25 }

26 t(image)

27 }

28

29 clust <-[makePSOCKcluster(HOSTS)|

30 clusterExport(clust, c("XRES", "YRES", "BLOCKSIZE", "ITERS", "calcC"))
31 lines = do.call(c, |parLapply|(clust, seq(1l,YRES,BLOCKSIZE), calcBlock))
32 stopCluster(clust)

Figure 3: Parallel code parts of an R program for calculating a Mandelbrot fractal using
8 cores on 2 machines.

To run this example program the machines and cores that should be used for execution
first have to be specified. This is done by defining a list of machines (line 11). Here the
number of cores was increased by a factor of two. We are using 4 cores on each machine
(host1 and host2). The makePSOCKcluster function (line 29) and the parLapply func-
tion (line 31) are launching further copies of R interpreters by using the Rscript front
end, which is an alternative front end for using R in scripts. This mechanism creates a
cluster of workers based on sockets. Here again the jobs are prescheduled and therefore
evenly split into groups and send to the worker processes. If the calculation of a program
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was distributed over multiple hosts, traceR generates one sub-profile for each machine.
In this case the master process is only shown in the sub-profile for the machine it was
running on, here on host2.

Compared to the profile in Figure 2 where the program was executed only on 4 cores
this profile shows the parallel execution on 8 cores on 2 machines. But by doubling the
number of cores only minor runtime savings were realized. This indicates an inefficient
resource utilization. One reason for this is the overhead of using the Rscript to launch
futher copies of the master process. Another reason is indicated by the CPU utilization
of the worker processes on host2 where the master process is executed. In the previous
profile where the program was executed on a single machine all worker processes had a
high CPU utilization and also a variance in runtimes. Now the single runtimes of the
worker processes are very similar to each other and their CPU utilization is lower (purple
color). The reason for this is that the worker processes are not able to stop execution
when their computation is finished, they have to wait for the master process and the
master first waits for all computations to be finished and then shuts down the worker
processes.
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Figure 4: Relative CPU utilization and memory utilization of an R program for calculat-
ing a Mandelbrot fractal using 8 cores on 2 machines.

In summary the parallel profile in Figure 4 shows that using two machines for the Mandel-
brot example produces overhead and thus does not lead to an efficient runtime reduction.
For a runtime reduction the execution on a single machine with more cores would be
more efficient and would avoid inefficient resource utilization. In the next subsection we
will introduce a real world code example running on a single machine, were the runtime
variance between jobs is higher compared to this Mandelbrot program example.



2.2 Runtime Variance and Load Balancing

If parallel executed jobs have a high variance in runtime, load balancing is recommended
to reduce inefficient resource utilization. In this subsection we want to discuss the problem
of high runtime variance of parallel processes by analyzing a real world code example with
traceR. Figure 5 therefore shows the parallel parts of an R program for evaluating different
parameter configurations of a SVM classification task based on the mir library [2]. Again
the important parts of the program are marked in green. The performance of a SVM
classification highly depends on its parameter configurations, therefore it is important to
tune those parameters by evaluating the performance of different configurations.

2 data = libsvm.read(data file)

3 task = makeClassifTask(data = data, target = "Y")

4

5 # evaluate different parameter configurations for SVM classification

6 library(parallelMap)

7 |[parallelStartMulticore(cpu cores = 4, mc.preschedule = TRUEH

8

9 lrn = makeLearner("classif.LiblineaRMultiClass")

10 par.set = makeParamSet (

11 makeNumericParam("cost", lower = -15, upper = 15, trafo = function(x) 27x),
12 makeNumericParam("epsilon", lower = -15, upper = 15, trafo = function(x) 27x))

13 rsi = makeResampleDesc(method = "Holdout", stratify = TRUE)
14 tune.ctrl = makeTuneControlGrid(resolution = 10)

15

16 t.res =[tuneParams|learner = lrn, task = task, resampling = rsi,
17 measures = list(mmce, timetrain, timepredict, timeboth),
18 par.set = par.set, control = tune.ctrl)

19 op.df = as.data.frame(t.res$opt.path)

20

21 |parallelStop()

Figure 5: Parallel code parts of an R program for evaluating different parameter config-
urations of a SVM classification using 4 cores on a single machines.

For parallelization of the SVM program in Figure 5 the parallelStartMulticore function
(line 7) from the parallelMap R library [4] is used. This library utilizes the mechanisms
of the parallel package. Here the master process is copied via fork and the parameter
mc.preschedule is passed for splitting the jobs into groups and sending them to the worker
processes. Here again 4 cores on a single machine (line 7) are used. Each job evaluates
the performance of the SVM with another parameter configuration, this is triggered by
the function tuneParams (line 16). Figure 6 shows the corresponding traceR profile.

As can be seen from the black curve that indicates the memory allocation, here much
more memory is needed for computation compared to our previous Mandelbrot program.
Here all worker processes have a high CPU utilization (orange color). But the comple-
tion times of the worker processes have a high variance (length of the horizontal lines).
This indicates, that runtime could be saved and thus resources by distributing the jobs
more evenly on the worker processes. The parallel package supports such mechanisms
through its load balancing option. This option is recommended when the jobs of a par-
allel program have widely different computation times or the machines are heterogeneous.
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Figure 6: Relative CPU utilization and memory utilization of an R program evaluat-
ing different parameter configurations of a SVM classification using 4 cores on a single
machines.

Figure 7 shows the modification marked in green (line 7) needed to enable the load
balancing option of the parallel package. Therefore the mc.preschedule parameter is
passed with the FALSE argument. Figure 8 presents the corresponding profile for CPU
utilization and memory utilization of the SVM program that utilizes the load balancing
mechanism.

data
task

libsvm.read(data file)
makeClassifTask(data = data, target = "Y")

library(parallelMap)
parallelStartMulticore(cpu cores = 4,|mc.preschedu1e = FALSEH

2
3
4
5 # evaluate different parameter configurations for SVM classification
6
7
8

9 lrn = makeLearner("classif.LiblineaRMultiClass")

10 par.set = makeParamSet (

11 makeNumericParam("cost", lower = -15, upper = 15, trafo = function(x) 27x),

12 makeNumericParam("epsilon", lower = -15, upper = 15, trafo = function(x) 27x))
13 rsi = makeResampleDesc(method = "Holdout", stratify = TRUE)

14 tune.ctrl = makeTuneControlGrid(resolution = 10)

15

16 t.res = tuneParams(learner = lrn, task = task, resampling = rsi,
17 measures = list(mmce, timetrain, timepredict, timeboth),
18 par.set = par.set, control = tune.ctrl)

19 op.df = as.data.frame(t.res$opt.path)

20

21 parallelStop()

Figure 7: Parallel code parts of an R program for evaluating different parameter config-
urations of a SVM classification using load balancing on 4 cores on a single machine.
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Figure 8: Relative CPU utilization and memory utilization of an R program evaluating
different parameter configurations of a SVM classification using load balancing on 4 cores
on a single machine.

To visualize the load balancing option the traceR profile shows one horizontal line for
the CPU utilization of each job. All jobs are still processed on 4 cores. Load balancing
dynamically allocates jobs to the worker processes, it sends jobs one at a time to a core
(or machine). Compared to the profile from Figure 6 where load balancing was turned
off here we could save runtime and thus resources. However there is still a high vari-
ance of computation times that leads to an inefficient resource utilization. This indicates
that the load balancing mechanism of the parallel package is not sufficient for the SVM
program where most of the jobs have a high variance in computation times. This high
variance however is a common case for parameter tuning of machine learning algorithms.
Therefore our future work will concentrate on the development of an optimized schedul-
ing strategy for such use cases.

Inefficient resource utilization can not only be caused by insufficient load balancing. In
the next subsection we will discuss an example case where inefficient resource utilization
is caused by creating to many parallel processes.



2.3 Number of Parallel Processes

The gain from parallel execution can be negated if the memory requirements of all pro-
cesses exceed the capacity of the RAM. By triggering too many parallel processes the OS
starts to swap out memory which leads to inefficient resource utilization. An example
profile illustrating this case is shown in Figure 9. Here the same SVM program code from

Figure 7 was running, but this time on a system with lower memory resources (2GB of
RAM).
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Figure 9: Relative CPU utilization and memory utilization of an R program evaluating
different parameter configurations of a SVM classification using load balancing on 4 cores
on a single machine with 2 GB of RAM.

Compared to Figure 8 where all processes had a high CPU utilization this profile includes
more blue lines indicating a low CPU utilization. This low CPU utilization is caused by
processes that are waiting for processing their data because it was swapped out. This is
also represented by the green curve that indicates dthe free memory which is most of the
time close to zero. If only 2 instead of 4 cores would have been used the CPU utilization
would be high for all jobs since using less worker processes also reduces the data that
needs to be copied. The parallel processes are all independent. They are not aware of
each others memory usage, thus one job cannot trigger garbage collection in another and
free memory for it.

This example shows that the development of an optimized scheduling strategy for par-
allel R applications also has to consider the memory requirements of applications. Here
TraceR supports the development by generation those parallel profiles.



3 Conclusion

We presented the gain from analyzing parallel R applications with traceR by showing
three example cases. We presented the outcome of using too many machines for parallel
execution, we discussed the problem of high runtime variance of parallel processes includ-
ing load balancing and we presented how inefficient resource utilization can be caused by
using too many parallel processes.

Our parallel performance analysis with TraceR can steer the development of parallel R
programs aimed at overcoming inefficient resource utilizations we are currently facing.
Our long term goal is to realize an optimized scheduling strategy for parallel R programs
Therefore the information gathered by traceR could be used to guide the scheduling
decisions to allow for efficient resource utilization. Such decisions are especially important
if the hardware system is heterogeneous or if the jobs have varying resource requirements
depending on the input data.
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