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Riedel and Sass (2013) propose a framework for normal form games where

players can use imprecise probabilistic devices. We extend this strategic use of

objective ambiguity to extensive form games. We show that with rectangularity

of Ellsberg strategies we have dynamic consistency in the sense of Kuhn (1953):

rectangular Ellsberg strategies are equivalent to Ellsberg behavior strategies.

We provide an example for our result and define Ellsberg equilibrium in such

extensive form Ellsberg games.
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1 Introduction

Following the concept of strategic ambiguity in Ellsberg games introduced in Riedel and

Sass (2013), it is straightforward that imprecise probabilistic devices in form of Ellsberg
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urns can also be used as strategic instruments in dynamic games. In this paper we develop

the theoretical framework to analyze such extensive form Ellsberg games. In analogy to

mixed and behavioral strategies in classic extensive form theory, players can use such

imprecise probabilistic devices either over their set of pure strategies, or they can place

them at every single decision point in the process of the game. These strategies we call

Ellsberg strategies, or Ellsberg behavior strategies.

The players in our extensive form Ellsberg games are averse to objective ambiguity ac-

cording to Gajdos, Hayashi, Tallon, and Vergnaud (2008); they evaluate sets of probability

distributions using a maxmin rule, as in maxmin expected utility by Gilboa and Schmei-

dler (1989). Now, considering dynamic games with ambiguity-averse players leads directly

to the question of dynamic consistency of the players’ preferences. We decided to adapt

the notion of rectangularity by Epstein and Schneider (2003) to obtain Ellsberg strategies

for which the preferences are dynamically consistent.

Under the assumption of rectangularity, we prove the main result (Theorem 7) of this

paper, which is a generalization of Kuhn’s Theorem (Kuhn (1953)): for every rectangular

Ellsberg strategy there exists an Ellsberg behavior strategy that yields the same maxmin

expected utility; and for every Ellsberg behavior strategy there exists at least one Ellsberg

strategy with the same payoff. In a detailed example we provide intuition for rectangularity,

and calculate the equivalent strategies.

Moreover, we extend the notion of Ellsberg equilibrium defined in Riedel and Sass (2013)

to extensive form games. From Theorem 7 we have that Ellsberg equilibrium in Ellsberg

strategies and Ellsberg equilibrium in Ellsberg behavior strategies are equivalent.

The paper is organized as follows. We define extensive form Ellsberg games in Section

2. We discuss dynamic consistency in Section 3 and develop a formalism to translate

the notion of rectangularity by Epstein and Schneider (2003) to extensive form Ellsberg

games. This property of Ellsberg strategies is then used to prove a generalization of

Kuhn’s Theorem (Kuhn (1953)) for extensive form Ellsberg games in Section 4. We present

a detailed example to illustrate the result. In Section 5 thereafter, we define Ellsberg

equilibrium in extensive form Ellsberg games and finally, in Section 6, we compare Ellsberg

equilibria to other extensive form solution concepts. We conclude in Section 7.

2 Extensive Form Ellsberg Games

We focus on dynamic games that can be represented in finite game trees. This implies a

finite number n of players and a finite number of moves for each player. For simplicity,

we do not allow any chance moves. We use the model of Osborne and Rubinstein (1994)

for extensive form games with imperfect information, and extend it to allow for imprecise
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probabilistic devices.

Definition 1. A finite extensive form game is a tuple (N,H,W, l, (Ii), (ui)) whose com-

ponents are defined by:

• A finite set N of players i;

• A finite set H of sequences of actions (ak)k=1,...,K with ∅ ∈ H, which represent the

histories;

• A set W ⊂ H of terminal histories; for each h ∈ H \W , A(h) := {a | (h, a) ∈ H}
defines the set of actions available after history h;

• A player function l : H \W → N ;

• For each player i ∈ N an information partition Ii of {h ∈ H | l(h) = i} with the

property that A(h) = A(h′) whenever h, h′ ∈ Ii ∈ Ii. For Ii ∈ Ii we denote by A(Ii)

the set A(h) and by l(Ii) the player l(h) for any h ∈ Ii.

• For each player i ∈ N the preferences on lotteries over W can be represented by a

Von Neumann and Morgenstern expected utility function ui.

The set of pure strategies of a player i is denoted Si. The utility of a pure strategy

profile s ∈ S1 × . . . × Sn is simply ui(w), where w is the terminal history that results

when the profile s is played. The set of mixed strategies Pi is denoted ∆Si. We assume a

product structure on ∆S := ∆S1 × . . . × ∆Sn and thus have stochastic independence of

mixed strategies. Thus, if P = (P1, . . . , Pn) ∈ ∆S and s ∈ S, then

P (s) = P (s1, . . . , sn) =
n∏
i=1

Pi(si) for all s ∈ S .

The expected utility u = (u1, . . . , un) : S → Rn of a mixed strategy profile P (we use

the same notation as for the utility of a pure strategy) is ui(P ) =
∑

s∈S P (s)ui(s) . A

behavioral strategy of player i is a function θi = (θi(Ii))Ii∈Ii with θi(Ii) ∈ ∆A(Ii) that

assigns to each information set Ii of player i a probability distribution over the set of

actions available at Ii. The set of behavioral strategies of player i is denoted Oi, the set

of profiles θ = (θ1, ..., θn) of behavioral strategies by O = O1 × . . .×On.

We assume that in addition to classic randomizing devices, players can use imprecise

probabilistic devices to choose among their pure strategies or among their available actions

at each information set. Therefore, in addition to classical pure, mixed and behavioral

strategies, we define Ellsberg strategies and Ellsberg behavioral strategies as convex and

compact sets of mixed and behavioral strategies.
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Definition 2. An Ellsberg strategy of player i is a convex and compact set Pi of probability

distributions Pi : Si → R+, such that
∑

si∈Si
Pi(si) = 1.

Definition 3. An Ellsberg behavior strategy Θi of player i is a function that assigns to

each information set Ii of player i a convex and compact set of probability distributions θi

over the set of actions available at Ii.

A profile of Ellsberg behavior strategies is denoted Θ = (Θ1, . . . ,Θn), and Θ is consti-

tuted of profiles of behavior strategies θ = (θ1, . . . , θn). For any history h ∈ Ii ∈ Ii and

action a ∈ A(h) we denote by θi(h)(a) the probability θi(Ii)(a) assigned by θi(Ii) to the

action a.

For a profile P = (P1, ..., Pn) of mixed strategies, we define the outcome ΠP of P to

be the probability distribution over the terminal histories that results when each player

i follows the precepts of Pi. The probability that ΠP assigns to a terminal history w is∏
i∈N πi(w) where πi(w) is the sum of the probabilities according to Pi of all the pure

strategies of player i that are consistent (i.e. that result in the terminal history w) with w.

The same way we define Πθ for a profile of behavioral strategies. The probability that Πθ

assigns to w = (a1, ..., aK) is
∏K−1

k=0 θl(a1,...,ak)(a
1, ..., ak)(ak+1), where for k = 0 the history

(a1, ..., ak) is the initial history.

For a profile of Ellsberg strategies P or Ellsberg behavior strategies Θ, the outcomes ΠP

and ΠΘ are sets of probabilities defined as

ΠP(w) :=
{

ΠP (w)
∣∣∣ P ∈ P} , (1)

ΠΘ(w) :=
{

Πθ(w)
∣∣∣ θ ∈ Θ

}
.

Finally we specify players’ preferences over the new strategic devices. We assume that

the players are ambiguity-averse according to Gajdos, Hayashi, Tallon, and Vergnaud

(2008) in the special case φ = id. The utility of both an Ellsberg and Ellsberg behavior

strategy profile P , Θ is then evaluated with a maxmin rule using the worst case probability

distribution. We have stochastic independence of the Ellsberg strategies by assuming a

product structure for every mixed strategy profile P contained in P = (P1, . . . ,Pn).1 Thus,

1 In the definition of a normal form Ellsberg game we assume that the Ellsberg urns (Ωi,Fi,Pi) of all
players i ∈ N are stochastically independent. This is done by using product spaces as first suggested by
Gilboa and Schmeidler (1989) (instead of Ellsberg urns they speak of “non-unique probability spaces”
(Ω,F ,P), p. 150 therein). We define the product (Ω,F ,P) of n Ellsberg urns (Ωi,Fi,Pi), i = 1, . . . , n,
as follows: Ω := Ω1 × . . . × Ωn, F := F1 ⊗ . . . ⊗ Fn, and P is the closed convex hull of the set of
product measures, P := c̄o {P1 ⊗ . . .⊗ Pn | P1 ∈ P1, . . . , Pn ∈ Pn} . This way the Ellsberg urns are
stochastically independent. Different notions of stochastic independence in the context of ambiguity
aversion have been discussed in the literature, see for example Klibanoff (2001), Bade (2011b) and
Bade (2011a). In the present context of objective ambiguity in the form of Ellsberg urns the above
notion seems the most natural.
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the utility of an Ellsberg strategy profile P for player i is

Ui(P) = min
P∈P

∑
w∈W

ΠP (w)ui(w) . (2)

The utility of an Ellsberg behavior strategy profile Θ for a player i is then

Ui(Θ) = min
θ∈Θ

∑
w∈W

Πθ(w)ui(w) . (3)

With the ambiguity-averse preference representation at hand, we can now give the defini-

tion of an extensive form Ellsberg game.

Definition 4. An extensive form Ellsberg game with n players is a tuple (N,H,W, l, (Ii)(Ui))
whose components satisfy the conditions in Definition 1, and U = (U1, . . . , Un) is the

ambiguity-averse preference representation in (2) and (3).

By specifying in the definition how players evaluate Ellsberg strategies we allow players

to use Ellsberg urns as imprecise probabilistic devices. Of course, it is still possible to

play classic mixed and behavioral strategies. Then Ui reduces to the Von Neumann and

Morgenstern expected utility ui.

3 Rectangular Ellsberg Strategies and Dynamic

Consistency

Dynamic consistency requires that preferences over outcomes at some point in the game will

not be reversed or contradicted at a later point. A compelling feature of classic extensive

form games lies in the fact that for a rational player it does not matter whether he plans

his strategy in advance or executes it whenever one of his information sets is reached;

this means that additional information arriving at some point in the game does not ex

post influence the choice of his strategy. This equivalence is captured by Kuhn’s Theorem

which we discuss and extend to Ellsberg games in the next section. When players are

expected utility maximizers, Kuhn’s Theorem establishes a connection between conditional

preferences at different points in the game tree via Bayes’ updating rule: when players

update in that way, their choices following the expected utility model are dynamically

consistent.

Updating of ambiguity-averse preference representations and its relation to dynamic

consistency has been extensively analyzed. Gilboa and Schmeidler (1993) propose two

updating rules for multiple-prior expected utilities, full Bayesian updating and maximum
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likelihood updating, which are in general not dynamically consistent. Epstein and Schnei-

der (2003) characterize a particular set of priors which they call rectangular, for which full

Bayesian updating is dynamically consistent. They show, more precisely, that multiple-

prior utilities like those used in Ellsberg games are dynamically consistent if and only if

each set of priors is rectangular and it is updated by Bayes’ Rule applied prior by prior.

Riedel (2004) uses rectangularity to prove dynamic consistency of dynamic coherent risk

measures. Later Hanany and Klibanoff (2007) use a weaker notion of dynamic consistency

to obtain a larger set of dynamically consistent updating rules for maxmin expected utili-

ties.

We translate the property of rectangularity in Epstein and Schneider (2003) to Ellsberg

games and thus obtain dynamic consistency in our setting. We start by describing the

information structure of an extensive form Ellsberg game (N,H,W, l, (Ii), (Ui)) with the

help of a filtration {Wt}T0 on a state space W . This is only possible, when the game

satisfies perfect recall, see Osborne and Rubinstein (1994) Definition 203.3. Thus, we

assume that the games in this section satisfy perfect recall. The information structure of

the game is captured in form of a tree with root ∅ ∈ H. The root ∅ represents time 0, when

the game has not yet started. The sequence of decisions taken by the players defines the

information available: at every time t there is a finite information partition Jt consisting

of the information sets Jt available at that time.

Let now the set W of terminal histories be the state space. Then, staying with the

model of Epstein and Schneider (2003), we assume thatW0 is trivial (that is, consists only

of W and ∅) and that for each t, Wt is generated by the finite information partition Jt
at time t. Then Wt(w) denotes the partition component Jt at which the terminal history

w is still possible, along with a number of other terminal histories. At t + 1, the number

of possible terminal histories is narrowed down again. At time T , WT (w) is the unique

terminal history that has materialized.

Epstein and Schneider (2003) consider lotteries over adapted consumption processes,

and preferences over Wt-measurable acts from W into such lotteries. Then, for simplicity,

they assume full support (Axiom 5 therein): every non-empty event in WT is considered

possible at time 0. To apply the result by Epstein and Schneider (2003) we assume the

same condition. For the game (N,H,W, l, (Ii), (Ui)) this implies that we only consider

strategies with full support. This is without loss of generality. To allow for strategies

without full support, we apply the construction to a suitable subset of plays. It is up

to further research to determine whether this procedure has implications for the strategic

analysis of extensive form Ellsberg games.

In the description of the information structure {Wt}T0 , we drop the information of who
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takes the decision in some information set Jt at some time t. The filtration only represents

what is known to all players at some time t, therefore it does not define a game, but only

an event tree. When we define a rectangular Ellsberg strategy profile P , we therefore only

impose restrictions on the set of induced distributions over plays: as long as the set of

induced realization probabilities ΠP (see (1)) is rectangular, any Ellsberg strategy profile

P which induces ΠP is admissible. We specify this in Definition 5. For the extension of

Kuhn’s theorem to extensive form Ellsberg games this leaves some degree of freedom for

the choice of an Ellsberg strategy profile P given some set of realization probabilities ΠP .

We have already found a way to describe Ellsberg strategy profiles, that is, “the big urn”

over all pure strategies, in the setting of Epstein and Schneider (2003): they are represented

by the outcomes ΠP . Now we see how Ellsberg behavior strategies are described in this

setting. Define the set of Wt-conditionals of measures π on (W,WT ) as

Πt
P(w)(·) =

{
πt(w)(·) := π(·|Wt)(w)

∣∣ π ∈ ΠP
}
,

this is the set of Bayesian updates at a time t. The set of conditional one-step-ahead

measures is defined by

Πt
P,+1(w) =

{
πt+1(w)

∣∣ π ∈ ΠP
}
,

where πt+1 is the restriction of πt to Wt+1. The sets Πt
P and Πt

P,+1 can be viewed as

realizations of Wt-measurable correspondences into ∆(W,WT ) and ∆(W,Wt+1), respec-

tively. The name “conditional one-step-ahead measures” has the following intuition. Each

measure in Πt
P,+1(w) is a measure on Wt+1, thus one can think of Πt

P,+1(w) as the set of

measures describing beliefs about the “next step”: the belief at time t about what will

happen at time t + 1. Think of it as cutting the tree at time t and time t + 1, then one

is only left with distributions over the choices at the information sets at time t, and the

distributions are induced by ΠP . From this explanation it is clear that the conditional one-

step-ahead measures are the induced Ellsberg behavior strategies. Epstein and Schneider

(2003) explain further that from any set of one-step-ahead conditionals, e.g. some set Πt
+1,

a rectangular set Π can be constructed with backward construction via

Π = {π ∈ ∆(W,Wt) | πt+1 ∈ Πt
+1(w) for all t and w} .

We see that Π is the set of all measures π whose one-step ahead conditionals conform with

the Πt
+1.

When is an Ellsberg strategy dynamically consistent (rectangular)? The Bayesian theory
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says, a probability distribution π on (W,WT ) can be for every t decomposed into its

conditionals and marginals in the form

πt(w) =
∑
w′∈W

πt+1(w′) · πt+1(w) . (4)

The set ΠP of probability distributions (and thus P) on (W,WT ) is rectangular if it admits

a corresponding decomposition. Details are explained in the proof of Theorem 7 and in

Epstein and Schneider (2003). First, we define rectangularity precisely.

Definition 5. Let (N,H,W, l, (Ii), (Ui)) be an extensive form Ellsberg game. An Ellsberg

strategy profile P is rectangular, if the set of realization probabilities ΠP is rectangular in

the following sense. Let the information structure of the game be described by the filtration

{Wt}T0 . Then ΠP is {Wt}-rectangular, if for all w and all t

Πt
P(w) =

{∑
w′∈W

πt+1(w′) · πt+1(w)
∣∣∣

πt+1(w′) ∈ Πt+1
P (w′) for all w′ ∈ W,πt+1(w) ∈ Πt

P,+1(w)

}
. (5)

An Ellsberg strategy Pi for player i is rectangular if it is part of a rectangular Ellsberg

strategy profile P. When necessary, we denote the restriction of a set X to its rectangular

subset with XR.

Remark 6. Definition 5 also applies to the outcome ΠΘ. ΠΘ is rectangular, if it has an

analog decomposition as in (5). In difference to Definition 5 this is not a property of the

Ellsberg behavior strategy profile Θ.

Observe that the inclusion ⊂ in Definition 5 is always satisfied by applying (4) for every

π ∈ ΠP . In order to assure the inclusion in the other direction, ΠP is required to have the

special “rectangular” form. Combinations of conditionals and marginals that arise from

different π, π′ ∈ ΠP have to lie in Πt
P . In Example 9 in the following section, we explain

the geometric representation of a rectangular Ellsberg strategy. Epstein and Schneider

(2003) point out some features of rectangularity. One of these is particularly important

in the setting of extensive form Ellsberg games: rectangularity imposes no restrictions

on one-step-ahead conditionals. This means that players can use any Ellsberg behavior

strategy they wish. Only when one wants to represent this Ellsberg behavior strategy by

an outcome-equivalent Ellsberg strategy one has to use the induced rectangular Ellsberg

strategy. We show this in detail in the following section.
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4 Kuhn’s Theorem for Extensive Form Ellsberg

Games

Kuhn (1953) proves that an extensive form satisfies perfect recall if and only if, for every

probability distribution on terminal histories that is induced by some mixed strategy pro-

file, there is a behavior strategy profile that induces the same distribution, and for every

probability distribution on terminal histories that is induced by some behavior strategy

profile, there is a mixed strategy profile that induces the same distribution. Under ex-

pected utility this implies that the strategies yield the same utility. We show that under

the assumption of perfect recall and the condition that the Ellsberg strategies are rectan-

gular we get an equivalent result of Kuhn’s theorem for extensive form Ellsberg games,

namely:

Theorem 7 (Generalization of Kuhn’s Theorem). In an extensive form Ellsberg game

(N,H,W, l, (Ii), (Ui)) satisfying perfect recall, every rectangular Ellsberg strategy profile P
induces an Ellsberg behavior strategy profile ΘP via prior-by-prior updating; every Ellsberg

behavior strategy profile Θ induces a rectangular Ellsberg strategy profile PΘ such that

prior-by-prior updating of PΘ yields Θ. The induced strategy profiles are payoff-equivalent,

i.e.,

Ui(P) = Ui(Θ
P) and Ui(Θ) = Ui(PΘ) .

Proof. We construct the induced strategies as follows. Note that we only consider strategies

with full support according to Axiom 5 in Epstein and Schneider (2003). This is without

loss of generality. To allow for strategies without full support, we apply the construction

to a suitable subset of plays.

A rectangular Ellsberg strategy profile P has by definition a rectangular set of real-

ization probabilities ΠP . Due to rectangularity, ΠP possesses at any point in time t a

decomposition into marginals and one-step-ahead conditionals according to (5). The set

of conditional one-step-ahead measures at t, Πt
P,+1, defines the induced Ellsberg behavior

strategy profile ΘP by setting

ΘP,αi := Πt
P,+1 , (6)

when player i is at information set α at time t. The construction is graphically captured

in the diagram in Figure 1.

The construction of an induced rectangular Ellsberg strategy profile PΘ is similar. Any

Ellsberg behavior strategy profile Θ has a set of realization probabilities ΠΘ. This set can

be restricted to its rectangular subset ΠR
Θ by requiring that the conditional one-step-ahead
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P ΘP

ΠP Πt
P,+1

realization
probabilities

induces

rectangular set

decomposition of

conditional
one-step-
ahead
measures
correspond to

Figure 1: Rectangular P induces Ellsberg behavior strategy ΘP .

measures are again the Ellsberg behavior strategy profile Θ in the sense that

ΠR,t
Θ,+1 = Θα

i (7)

when player i is at information set α at time t (dashed line in Figure 2). Then we define

ΠR
P := ΠR

Θ. ΠR
P is uniquely determined by the process of conditional one-step-ahead corre-

spondences ΠR,t
Θ,+1. The rectangular set is the set of realization probabilities of the induced

rectangular Ellsberg strategy profile PΘ. The construction is graphically captured in the

diagram in Figure 2.

Θ PΘ

ΠΘ ΠR
Θ =: ΠR

P

realization
probabilities

induces

rectangular set

restriction to

realization
probabilities
(backwards
construction)

ΠR,t
Θ,+1 = Θα

i

Figure 2: Θ induces rectangular Ellsberg strategy PΘ.

It remains to show that P and ΘP , as well as Θ and PΘ, yield the same payoff. Recall

that

Ui(P) = Ui(ΠP) = min
P∈P

∑
w∈W

ΠP (w)ui(w) ,

where ΠP (w) =
∏

i∈N πi(w) with πi(w) the sum of all probabilities according to PI of all

the pure strategies of player i which are consistent with some terminal history w ∈ W .
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Let w = (a1, ..., aK). Now consider the payoff of ΘP .

Ui(Θ
P) = min

θ∈ΘP

∑
w∈W

Πθ(w)ui(w)

= min
θ∈ΘP

∑
w∈W

(
K−1∏
k=0

θl(a1,...,ak)(a
1, .., ak)(ak+1)

)
ui(w) (8)

= min
πt
+1∈Πt

P,+1

∑
w∈W

(
T−1∏
t=0

πt+1(w)

)
ui(w) (9)

= min
P∈P

∑
w∈W

ΠP (w)ui(w) . (10)

From (8) to (9) we get by definition of θi in the construction of the proof, see (6). We

can replace
∏K−1

k=0 θl(a1,...,ak)(a
1, .., ak)(ak+1) by

∏T−1
t=0 π

t
+1(w). The equality of (9) and (10)

results from the rectangularity of P . Because of rectangularity,
∏T−1

t=0 π
t
+1(w) is an element

of ΠP , and
∏T−1

t=0 π
t
+1(w) = ΠP (w). The equality of Ui(Θ) and Ui(PΘ) is shown analogously.

Remark 8. Note that the induced Ellsberg behavior strategy profile ΘP is unique, but the

induced Ellsberg strategy profile PΘ is not. This is because the construction of PΘ from

the set of realization probabilities ΠR
P is in general not unique.

Theorem 7 says that for every Ellsberg behavior strategy profile there exists an Ellsberg

strategy profile that yields the same utility for all players. This induced Ellsberg strat-

egy profile has to be chosen rectangular if we want it to be dynamically consistent and

equivalent to the original Ellsberg behavior strategy. Note that this does not impose any

restriction on the choice of the Ellsberg behavior strategy profile (this is also pointed out

in Epstein and Schneider (2003), p. 10), but only allows a restricted set of Ellsberg strat-

egy profiles. Conversely, for every rectangular Ellsberg strategy, there exists an equivalent

Ellsberg behavior strategy.

To gain some intuition about the nature of rectangular Ellsberg strategies and the in-

ductions explained in the proof of Theorem 7, we now discuss a simple game.

Example 9. Consider the following example taken from Osborne and Rubinstein (1994),

p. 93. We believe this to be the simplest two-player information structure with which we can

illustrate the equivalence of rectangular Ellsberg strategies and Ellsberg behavior strategies.

The game is presented in Figure 3.
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B

d

A

1

D

c

C

2

F

b

E

a

1

1

Figure 3: Game where player 1 moves before and after player 2.

We assume that a, b, c, d ∈ R are payoffs for player 1 with d < a = b. To keep things

as simple as possible, we let player 2 choose C at all times, thus c will never be reached.

Player 1 has four pure strategies: (A,E), (A,F ), (B,E) and (B,F ), we denote the set of

pure strategies of player 1 by S1. Player 2 only has C and D as pure strategies.

First, we start with Ellsberg behavior strategies Θ1 = (Θ0
1,Θ

1
1) and Θ2 that specify a set

of probability distributions at every information set of player 1 and 2, respectively. Suppose

player 1 plays

Θ0
1 =

{
(θ0

1, 1− θ0
1) | θ0

1 ∈ [0, 1], 1/4 ≤ θ0
1 ≤ 3/4

}
,

Θ1
1 =

{
(θ1

1, 1− θ1
1) | θ1

1 ∈ [0, 1], 1/2 ≤ θ1
1 ≤ 2/3

}
,

with Θ0
1 the set of distributions over A and B, and Θ1

1 the set of distributions over E and

F . For the purpose of the example, let player 2 have an Ellsberg behavior strategy Θ2 that

chooses C with probability 1, without creating any ambiguity.

The set of terminal histories W is then given by W = {E,F,B} referring to the outcomes

a, b and d. We derive the set of outcomes ΠΘ of the Ellsberg behavior strategy Θ,

ΠΘ(E) = {θ0
1 · θ1

1 | θ0
1 ∈ Θ0

1, θ
1
1 ∈ Θ1

1} ,

ΠΘ(F ) = {θ0
1 · (1− θ1

1) | θ0
1 ∈ Θ0

1, θ
1
1 ∈ Θ1

1} ,

ΠΘ(B) = {1− θ0
1 | θ0

1 ∈ Θ0
1} .

Now we can calculate the maxmin expected utility for player 1 of the Ellsberg behavior
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strategy Θ.

U1(Θ) = min
θ∈Θ

∑
w∈W

Πθ(w)ui(w)

= min
θ∈Θ

Πθ(E) · a+ Πθ(F ) · b+ Πθ(B) · d

= min
θ∈Θ

θ0
1 · θ1

1 · a+ θ0
1 · (1− θ1

1) · b+ (1− θ0
1) · d

= 1/4 · 1/2 · a+ 1/4 · 1/2 · b+ 3/4 · d

= 1/8 · a+ 1/8 · b+ 3/4 · d . (11)

Now, what is the rectangular Ellsberg strategy profile PΘ induced by the Ellsberg behavior

strategy profile Θ? We follow the construction in Figure 2.

The set of induced realization probabilities ΠΘ is a hexagon (colored green in Figure 4),

given by the surface that lies in the intersection of ΠΘ(E) = [1/8, 1/2], ΠΘ(F ) = [1/12, 3/8]

and ΠΘ(B) = [1/4, 3/4]. It can be easily seen that ΠΘ is too large in the sense that it

induces conditional probabilities over E and F which lie outside the set Θ1
1 of original

Ellsberg behavior strategies. Take for example the distribution (1/8, 3/8, 1/2) (probability

distribution over E,F,B) at the lower right corner of the green hexagon. This distribution

yields a conditional one-step-ahead probability for E which is equal to 1/8
1/2

= 1/4, and 1/4

does not lie in the set Θ1
1(E). Hence we have to restrict ΠΘ to its rectangular subset ΠR

Θ,

this is exactly the set that yields the correct conditionals.

To apply the construction of Epstein and Schneider (2003) we represent the game in

Figure 9 by a state space W = {E,F,B} (the set of plays) and a filtration {Wt}2
0 where

W0 = {{E,F,B}} ,

W1 = {{E,F}, {B}} ,

W2 = {{E}, {F}, {B}} .

ΠR
Θ ⊂ ΠΘ is the set of distributions on (W,W2) that for all t ∈ {0, 1, 2} and all w ∈ W

admits a decomposition

ΠR,t
Θ (w) =

{∑
w′∈W

πt+1(w′) · πt+1(w)
∣∣∣

πt+1(w′) ∈ Πt+1
Θ (w′) for all w′ ∈ W,πt+1(w) ∈ Πt

Θ,+1(w)

}
. (12)

The set ΠR
Θ excludes exactly all those distributions in ΠΘ that yield conditionals outside

Θ1
1. The rectangular set ΠR

Θ is depicted as the blue rectangle in Figure 4.
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2/3

1/2

1/43/4B F

E

Figure 4: Set of realization probabilities ΠΘ (green hexagon), rectangular set of probabili-
ties ΠR

Θ (blue rectangle). The grey numbers indicate the set of probabilities for
B, the blue numbers the set of conditional one-step-ahead probabilities for E.

From the construction of ΠR,t
Θ , it follows that

ΠR,0
Θ,+1 = Θ0

1 ,

ΠR,1
Θ,+1 = Θ1

1 ,

that is, the induced conditional one-step-ahead measures are exactly the components of

the Ellsberg behavior strategy which we started with. The set ΠR
Θ can also be constructed

recursively as the set of all distributions π ∈ ∆(W,WT ) for which πt+1 ∈ ΠR,t
Θ,+1(w) for all

t and all w, see Epstein and Schneider (2003) p. 8 for details. Hence, to find the induced

Ellsberg strategy PΘ we first define

ΠR
P := ΠR

Θ

as in Figure 2. Then the rectangular set of realization probabilities ΠR
P is

ΠR
P =

{
π = (π1, π2, π3) ∈ ∆(W,WT )

∣∣ π1/(1− π3) ∈ [1/2, 2/3] = ΠR,1
P,+1(E) ,

π2/(1− π3) ∈ [1/3, 1/2] = ΠR,1
P,+1(F ), π3 ∈ [1/4, 3/4] = ΠR,0

P,+1(B)
}

=
{
π ∈ ∆(W,WT )

∣∣ π3 ∈ [1/4, 3/4], π1 ∈ [−π3/2 + 1/2,−2π3/3 + 2/3]
}
. (13)

The notation in (13) is derived as follows. Every point in the simplex is fully described by
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probabilities for B and E. The two lines passing through B = 1 and E = 2/3, B = 1 and

E = 1/2 are functions of B and E with equations

π1 = π3/2 + 1/2 ,

π1 = 2π3/3 + 2/3 .

Now, finally, we construct PΘ from the rectangular set of realization probabilities ΠR
P . We

find

PΘ
1 =

{
P ∈ ∆S1

∣∣ P (A,E) = π1, P (A,F ) = π2, P (B,E) =
π1

π1 + π2

π3,

P (B,F ) =
π2

π1 + π2

π3, for all (π1, π2, π3) ∈ ΠR
P

}
.

We calculate the maxmin expected utility of player 1 of the Ellsberg strategy profile PΘ.

U1(PΘ) = min
P∈P

∑
w∈W

ΠP (w)ui(w)

= min
P∈P

P (A,E) · a+ P (A,F ) · b+ (P (B,E) + P (B,F )) · d

= 1/8 · a+ 1/8 · b+ (3/8 + 3/8) · d

= 1/8 · a+ 1/8 · b+ 3/4 · d . (14)

Player 1 uses P = (1/8, 1/8, 3/8, 3/8) as his worst case probability distribution, because it

puts the greatest available probability to the worst outcome d. We thus find that the Ellsberg

strategy profile PΘ induced by Θ yields the same maxmin expected utility as Θ:

U1(PΘ)
(14)
= 1/8 · a+ 1/8 · b+ 3/4 · d (11)

= U1(Θ) .

Furthermore, doing the reasoning backwards, one sees directly that with the rectangular

construction of ΠR
P = ΠR

Θ in (12), the Ellsberg strategy yields the correct one-step-ahead

conditionals for A,B and E,F .

Now, we start out from the rectangular Ellsberg strategy profile P (the blue rectangle in

Figure 4) and construct the induced Ellsberg behavior strategy profile ΘP . We proceed as

sketched in the diagram in Figure 1. The Ellsberg strategy profile has a set of realization

probabilities ΠP which are by definition also rectangular. Then from Definition 5, ΠP

possesses a decomposition of Πt
P for all t into marginals and one-step-ahead conditionals.

The rectangular set ΠP is constructed in the way to get exactly Π0
P,+1 = ΘP,01 and Π1

P,+1 =
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ΘP,11 as one-step-ahead conditionals, and hence

ΘP,01 =
{

(θ0
1, 1− θ0

1)
∣∣ θ0

1 ∈ [0, 1], 1/4 ≤ θ0
1 ≤ 3/4

}
,

ΘP,11 =
{

(θ1
1, 1− θ1

1)
∣∣ θ1

1 ∈ [0, 1], 1/2 ≤ θ1
1 ≤ 2/3

}
.

Obviously we have

U1(P) = U1(PΘ)
(14)
= 1/8 · a+ 1/8 · b+ 3/4 · d (11)

= U1(Θ) = U1(ΘP) .

5 Ellsberg Equilibrium in Extensive Form Ellsberg

Games

An Ellsberg equilibrium in an extensive form Ellsberg game is defined straightforwardly

as in the static case: a profile of Ellsberg strategies is an Ellsberg equilibrium profile, if no

player finds it profitable to deviate unilaterally.

Definition 10. Let (N,H,W, l, (Ii), (Ui)) be an extensive form Ellsberg game. An Ellsberg

equilibrium is a profile (P∗1 , . . . ,P∗n) of Ellsberg strategies such that for all i = 1, . . . , n and

every Pi ⊆ ∆Si

Ui(P∗i ,P∗−i) ≥ Ui(Pi,P∗−i) .

An Ellsberg equilibrium in Ellsberg behavior strategies is defined analogously. Given The-

orem 7, the two definitions are equivalent for extensive form Ellsberg games with perfect

recall.

Corollary 11 (of Theorem 7). If a rectangular Ellsberg strategy profile P is an Ellsberg

equilibrium of an extensive form Ellsberg game, then the Ellsberg behavior strategy profile

ΘP is an Ellsberg equilibrium in Ellsberg behavior strategies. If an Ellsberg behavior strategy

profile Θ is an Ellsberg equilibrium in Ellsberg behavior strategies, then the rectangular

Ellsberg strategy profile ΘP is an Ellsberg equilibrium.

Every Nash equilibrium is an Ellsberg equilibrium. Conversely, every Ellsberg equilibrium

in which P is a single probability distribution is a Nash equilibrium.

Note that Corollary 11 now allows to adapt notions such as subgame perfect equilibrium

and sequential equilibrium to extensive form Ellsberg games. However, in this paper we

do not aim at further characterizing Ellsberg equilibria and the strategic implications of

Theorem 7 for extensive form Ellsberg games.
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6 Relation to Other Extensive Form Solution

Concepts

We already discussed the peace negotiation example by Greenberg (2000) in Riedel and

Sass (2013): it is an example of an extensive form game in which one Ellsberg equilibrium

(of the corresponding normal form) lies outside the set of Nash equilibria of the game. We

will now analyze another example which has a similar structure. The example (see Figure

5), which Fudenberg and Kreps (1988) provided to show that mistakes about play off the

equilibrium path can lead to non-Nash outcomes, is used to discuss the relation of Ellsberg

equilibrium to other extensive form solution concepts.

Following Fudenberg and Kreps (1988), the “horse”-like game2 has been used as an

example in a number of papers (Battigalli, Gilli, and Molinari (1992), Fudenberg and

Levine (1993), Rubinstein and Wolinsky (1994), Groes, Jacobsen, Sloth, and Tranaes

(1998), Lo (1999)). The information structure is the same as in Greenberg (2000)’s peace

negotiation example, and also the incentive structure is very similar. We are in a situation,

where ambiguity can be used as a threat against deviation.3

D1A1

1

R

0, 3, 0

L

3, 0, 0 R

0, 3, 0

L

3, 0, 0

D2

1, 1, 1

A2

2

3

1

Figure 5: Fudenberg and Kreps’ three-player game.

Proposition 12. The proper Ellsberg equilibria of Fudenberg and Kreps’ Three-Player

game are of the form (A1, A2, [R0, R1]) where R ∈ [R0, R1] is the probability that player 3

plays L, and R0 < 1/3 and R1 > 2/3.

Proof. Let P,Q denote the probability that player 1 plays A1, player 2 plays A2, respec-

2 Selten (1975) is first to analyze this “horse”-like information structure. In his numerical example,
however, the possibility to use Ellsberg strategies does not lead to Ellsberg equilibria outside the Nash
equilibrium support, because the incentive structure is such that players 1 and 2 are not in opposition
to each other.

3 Kelsey and Spanjers (2004) observe that “Ambiguity can make threats more effective.” In the incentive
structure of the games considered here, this observation is confirmed.
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tively. Then we can calculate the minimal expected utility for each player.

U1(P,Q, [R0, R1]) = min
R0≤R≤R1

R(−3PQ+ 3) + PQ

= R0(−3PQ+ 3) + PQ for all P,Q ∈ [0, 1] .

U2(P,Q, [R0, R1]) = min
R0≤R≤R1

R(3PQ− 3)− 2PQ+ 3

= R1(3PQ− 3)− 2PQ+ 3 for all P,Q ∈ [0, 1] .

U3(P,Q, [R0, R1]) = min
R0≤R≤R1

PQR + PQ(1−R) = PQ .

Player 1 gets a payoff less than 1 if player 1 or 2 defect, when R0(−3PQ+ 3) +PQ < 1⇔
R0 < 1/3. Player 2 gets a payoff less than 1 if player 1 or 2 defect, when R1(3PQ− 3)−
2PQ + 3 < 1⇔ R1 > 2/3. This yields the equilibrium (A1, A2, [R0, R1]) where R0 < 1/3

and R1 > 2/3.

The information structure of the game has been characterized by Fudenberg and Levine

(1993) in the analysis of their concept of Self-confirming equilibrium. They define a prop-

erty of unobserved deviators which captures the fact that a player does not observe who of

his opponents leaves the equilibrium path at some point in the game. These games have

a natural property to allow for “wrong” beliefs on plays off the equilibrium path. There-

fore games with unobserved deviators can have Self-confirming or Conjectural (Battigalli

(1987), Battigalli and Guaitoli (1988), Battigalli and Guaitoli (1997)) equilibria which

are not Nash equilibria. Fudenberg and Levine (1993) show that games that have only

observed deviators do not have non-Nash equilibria. We suppose that a similar charac-

terization holds for Ellsberg equilibria as well. This is an interesting question for further

research.

We briefly present other extensive form solution concepts with Knightian uncertainty.

Battigalli, Cerreia-Vioglio, Maccheroni, and Marinacci (2012) define Self-confirming equi-

librium with model uncertainty. Their concept also incorporates Knightian uncertainty

into extensive form games, but is quite different from our extensive form Ellsberg games.

The differences lie especially in the fact that players may only play pure strategies in

Self-confirming equilibrium with model uncertainty, and that uncertainty is present in the

environment and not in the strategies. In Aryal and Stauber (2013) players, anticipat-

ing possible small mistakes (trembles), can have ambiguous beliefs about their opponents’

strategies. A further extensive form solution concept with Knightian uncertainty is Multi-

ple Priors Nash equilibrium by Lo (1999). Lo allows beliefs to be represented by multiple

priors and demands every distribution in the sets of beliefs to be a best response to the

beliefs on the other players. Players only have pure strategies at their disposition. Lo
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(1999) also looks at the example in Figure 5 and shows that the path (D1, D2) can be

supported by a Multiple Priors Nash equilibrium, that is, that there exist sets of beliefs

such that playing (D1, D2) is optimal. However, this equilibrium in beliefs is entirely sub-

jective and in that aspect differs fundamentally from Ellsberg equilibrium. In the same

way, Nash equilibrium with lower probabilities in Groes, Jacobsen, Sloth, and Tranaes

(1998) is distinguished from Ellsberg equilibrium. The Ellsberg equilibrium outcomes in

Fudenberg and Kreps’ game can also be achieved with subjective equilibrium by Kalai and

Lehrer (1995), but, again, the fundamentals of the two concepts differ.

σ∗- equilibrium by Ma (2000) is closest to our approach. In his model, players use

ambiguous plans modeled by sets of probability distributions over acts. The author also

mentions the possibility to create Knightian uncertainty. In difference to our approach he

relies entirely on subjective preference representations and focuses on belief systems and

thus on equilibrium in beliefs. An interesting aspect of his paper is that it models the

possibility to create ambiguity with pre-play communication.

7 Conclusion

We define extensive form Ellsberg games in which players can use imprecise probabilistic

devices; either over their pure strategies, or over the available actions at every decision

point. This is a generalization of classical mixed and behavioral strategies in extensive

form games. We show that when Ellsberg strategies (the generalized mixed strategies) are

rectangular in the sense of Epstein and Schneider (2003), they are equivalent to Ellsberg

behavior strategies (the generalized behavioral strategies). We thus prove a generalization

of Kuhn (1953)’s theorem for extensive form Ellsberg games.

When we apply the representation result by Epstein and Schneider (2003) we temporarily

ignore the strategic element of the extensive form game. The game is represented as an

event tree: this implies that which player decides when does not play a role. Thereby

we establish, that it is equivalent to calculate Ellsberg equilibrium in Ellsberg strategies

or Ellsberg behavior strategies. In classical extensive form theory this equivalence proved

crucial for equilibrium analysis. Naturally, the behavioral and strategic implications of

this equivalence in extensive form Ellsberg games are topic for further research.
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