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with the possibility of information acquisition on the consumer side. Infor-
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information does not necessarily bene�t the consumer but can instead rule
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1 Introduction

Along with the price, the quality of a product is one of the two major characteristics
relevant to a purchase decision. While price information can be tricky to obtain in
situations with negotiation possibilities or multiple retailers, it is usually even harder
to get a good idea about the quality of a product. This phenomenon occurs not only
in classical examples like second hand cars but is also present in almost every potential
purchase for goods with which you do not have much experience. Whether you have not
bought a TV for many years, want to buy wine in an unfamiliar supermarket, consider
to buy an upgrade of the operating system on your computer or to invest in a �nancial
product. You do not have full information about what you really get for your money if
you are not an expert for these products or at least inform yourself prior to the purchase.
On the other hand, the seller of a product usually has much better information about
the quality. A second hand car has been used by the owner for many years, giving him
the knowledge of any accident, repair or defects that occurred over the last years and
might still exist or be relevant. In the same way, a producer knows the characteristics
and weaknesses of the product for sale. While positive qualities might be advertised or
otherwise pointed out to the buyer, there is no incentive for the seller to do the same
for bad qualities or missing features if not mandated by law.1 If the consumer wants
this information, she usually has to acquire it on her own. And even the advertised
positive qualities may be exaggerated, untrue or not relevant to the consumer. In any
case, it takes e�ort of the consumer to either gather information or check and �lter the
information provided.
This asymmetry of quality information has been present in the literature ever since
George Akerlof's famous paper of 1970 and his previously mentioned second hand car
example. The question of how such quality uncertainty in�uences the market outcome
has since been discussed in many papers. There have been various attempts to mit-
igate between the extreme nature of Akerlof's model and the classical case of perfect
information. For instance, Bagwell and Riordan (1991) introduce multiple periods in
which �rms can set di�erent prices. High quality �rms can then acquire customers by
setting low prices in the �rst period and use this to charge highly afterwords. Milgrom
and Roberts (1986) allow the �rms to give an additional, costly advertising signal to
distinguish oneself and keep low quality sellers from imitating the high quality sellers'
behavior.
While these examples follow the idea of giving high quality �rms certain additional pos-
sibilities to signal their excellence, it is only natural to also look at the other side of the
market, namely the consumer. In the Akerlof model buyers do not have any other possi-
bility than either to trust the �rms or not, their posterior beliefs about quality depending
on the price and being determined by Bayes' law in an equilibrium. Having the examples
of the �rst paragraph in mind, the idea of the consumer having no further information
is obviously a very strong assumption and not true in most purchasing situations. A

1Dziuda (2011) shows that, in a game theoretic setting in which an expert might be biased or not, some
bad properties may be disclosed even by a biased expert. In our market setting, however, there is no
such ambiguity over the goal of the �rm.
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second hand car can be tested before buying, a bottle of wine can be bought and tried
out before you decide to serve it at your dinner party and for most products you can
�nd multiple tests, ratings and reviews online. Especially with the Internet, the amount
of quality information available to consumers has dramatically increased in recent years.
With more and more people owning smartphones, this information is available and can
be looked up even inside the shop.
Few papers have so far considered to relax this part of Akerlof's model. Bester and
Ritzberger (2001) let the consumer decide about buying a perfect quality signal and base
their decision on the additional information. In Voorneveld and Weibull (2011) the buyer
receives an additional, costless but noisy signal which is correlated to the true quality.
One can interpret this as an independent, non-perfect test review that is observed by the
consumer in any case. These two models of additional quality information do not quite
capture the real life situations, as it is usually not costless (in terms of money or time) to
acquire information and this information does not have to be perfect. Even if there are
free tests and reviews on the Internet, one has to take the time and put e�ort in �nding
and reading these sources. These tests, on the other hand, may not contain all relevant
information and can be incorrect, biased or based on a faulty product. The same holds
for the information from friends and experts. Testing a TV in the store can not fully
simulate the home environment and how the TV works together with other devices, etc.
All this adds some unreliability to the information acquisition procedure and suggests
some probability of false information.2

This chapter simultaneously covers both ideas of these two works; the consumer is able
to choose how much e�ort or costs she wants to invest in acquiring quality information
and this will result in a quality signal. This signal, on the other hand, will be more
precise when exerting more search e�ort to such an extend that one might even reach
perfect information.

Our analysis shows that in the market with imperfect information acquisition, di�erent
kinds of equilibria can occur. Under reasonable re�nements, the most important two
categories of equilibria are one in which the consumer does not spend e�ort on quality
information and one in which she does. Only in the �rst type of these equilibria she
has positive utility. Her ability to search, although not executed, lowers the price to
below the expected quality. In equilibria with search, on the other hand, the price of
the product is relatively high and all the consumer's possibility of acquiring information
provides market power for the �rm, not for the consumer.
Starting from these insights, we investigate how the existence and outcomes of these
equilibria develop when information is available more easily. We �nd that a higher ability
of acquiring quality information stops the existence of the consumer-friendly equilibrium
and thus takes away all consumer utility.
At last, we investigate the limit behavior of the model in the case when quality infor-

2It is worth noting that the work of Kihlstrom (1974) was motivated by the same ideas as this paper.
His analysis, however, solely focuses on the consumer side (the market for information) and does not
give any indication about the implications for market equilibria.
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mation is very expensive or very cheap. Surprisingly, making information acquisition
arbitrarily easy does not lead to convergence to the full information case in that the
error probability of the signal stays bounded away form zero and a non-vanishing share
of high quality products is not traded. Although the possibility of imperfect information
acquisition generally lowers adverse selection phenomena, it does not get rid of them
even in the limit of perfect information. Making the information very expensive can lead
to the outcomes of the classical models of quality uncertainty but often also, for a wide
range of parameters, converges to an equilibrium that was previously disregarded in the
literature.

The paper is structured as follows. The �rst section describes the model of quality in-
formation acquisition and the market participants. We then proceed by analyzing the
consumer behavior. This is embedded in a formally de�ned monopolistic market model
and the rational Bayesian equilibria are analyzed. Finally, we compare outcomes of dif-
ferent levels of search e�ciency to investigate the market impact of cheaper or more
expensive quality information.

2 The Model

We consider a monopolistic market with one product and one potential consumer (or
�buyer�)3. The quality of the product can take two �xed values and is drawn by nature
with a publicly know probability η of high quality.4 The realization is known only by
the �rm and will be denoted by its type θ ∈ {H,L}.
A high quality �rm faces production costs cH > 0 while the low quality �rm pays cL > 0
for producing one unit of the product. This cost is only incurred when the good is actually
sold. We assume cL < cH so that high quality production is at least marginally more
costly than for low quality. These costs can also be seen as losing an outside option. For
example, the seller of a second hand car could also bring the vehicle to a professional
dealer who would pay him the amount cθ. This option is lost in case of a successful sale.
The seller (or �rm) makes a take-it-or-leave-it o�er and is a risk-neutral payo� maxi-
mizer. Selling one unit of the good for a price p with probability δ yields the payo�

πθ(p, δ) = δ · (p− cθ), θ ∈ {H,L} .

Only observing the price p set by the �rm, not the quality of the product, the risk-
neutral consumer maximizes her expected gains from trade. After a purchase she learns
her valuation; her utility from having bought a product of quality q for price p then is
q − p.
We denote qH > qL the consumer's valuation for the high and the low quality product,
respectively. To always ensure possible gains from trade, we assume cL < qL and cH <

3The analysis would not change if we assumed multiple, identical buyers. For simplicity, we only speak
of one consumer.

4The assumption that quality is not a strategic decision of the �rm is crucial in lemon markets. While
quality uncertainty may also exist in equilibria under di�erent models, they allow for separation even
at the quality level. See Shaked and Sutton (1982) for an example of such a result.

3



qH .5

The buyer always has a certain, endogenous belief of the quality after observing a price.
Fix a price p and let µ̂ ∈ [0, 1] be the conceived probability of facing a high type �rm.
Then the consumer's expected utility from buying the good is

ub(p, µ̂) :=µ̂qH + (1− µ̂)qL − p

while the utility from not buying the good is un := 0.
She faces a third option, namely to pay a cost (or to exert e�ort) of a chosen level k ≥ 0
to then obtain a binary signal s ∈

{
sH , sL

}
about the product quality. This signal might

be incorrect with an error probability of ε(k) ∈ [0, 1
2 ]. Mathematically this means6

Prob(sH |θ = L) = Prob(sL|θ = H) = ε(k).

The exogenously given error function ε satis�es the following assumptions.

• ε : R+ → [0, 1
2 ] is continuous and non-increasing.

• ε(0) = 1
2

• Denote k̄ = inf {k ∈ R+|ε(k) = 0} the costs for a perfect signal where inf ∅ := ∞.
Then ε is twice continuously di�erentiable on (0, k̄).

• ε′(k) < 0, ε′′(k) > 0 ∀ k ∈ (0, k̄)

While the �rst and third points are of technical nature, the second assumption says that
the signal does not contain any information if the consumer exerts no e�ort. The last
point ensures that higher e�ort always leads to a strictly higher signal precision while
the marginal precision gain is diminishing. This accounts for the fact that information
acquisition, such as reading reviews, will often give redundant information and thus the
amount of new information gained via a certain increase of search e�ort is decreasing. Due
to the second point we can assume that the consumer also receives the (non-informative)
signal when she chooses k = 0.
Note that we allow for obtaining a perfect signal, i.e. there may be a �nite cost k̄ for
which the error probability is zero. Depending on the error function, this value might
also be in�nite so that perfect information would not be achievable. We do not restrict
attention to any of these cases.
By the last assumption the expression

ε′(0) := lim
k→0
k∈(0,k̄)

ε′(k) = inf
k∈(0,k̄)

ε′(k) ∈ [−∞, 0)

5Adriani and Deidda (2009) focus on a case in which trade would not always be bene�cial under full
information. They show that this leads to market breakdown in their setting under the D1-Re�nement
of Cho and Kreps (1987).

6The assumption of both error types being the same is certainly somehow restrictive but is not believed
to have a qualitative impact on the results. See Martin (2012) for the use of a more complex
information structure. In his analysis, however, the �rm can choose only between two exogenously
given prices.
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is well-de�ned. This value is important in the analysis. For illustrating results, we use

the simple function ε(k) = max
{

1
2 −
√
k, 0
}
which satis�es the assumptions above.

Naturally, agents on this market do not act simultaneously. At the time when the
consumer makes her decision, the price was already set by the �rm and this requires the
quality level to already be realized. Figure 1 outlines the timing of the market.

Firm’s type
θ is chosen
by nature.

The firm
learns its
type.

The firm
chooses
a pricing
strategy.

The consumer ob-
serves the price and
decides whether to
search and for which
costs.

The consumer
observes the
additional
signal.

She decides
whether to
buy or not.

Figure 1: The timing of the market

The consumer holds a belief system µ : R+ 7→ [0, 1], later determined by the equilibrium
de�nition, which assigns to each possible price p a belief µ(p) about the probability that
the product is of high quality conditional on the observed price. In the analysis it is
sometimes useful to consider a �xed price p and a �xed corresponding posterior belief
µ(p). In this case we abbreviate the latter by writing µ̂ instead of µ(p). We de�ne the
expected quality based on such beliefs by

q̄µ̂ := µ̂qH +
(
1− µ̂

)
qL.

In the same way, to avoid imprecisions, single values of other functions are denoted
similarly. Note that the true a priori probability of high quality is denoted by η while
the letter µ is reserved for posterior belief values.

3 Consumer Behavior

Since we analyze a multi-stage game, we proceed by backward induction, thus �rst dealing
with the buyer's decision problem. This problem itself has two stages. When observing
the price p ∈ R+, she has to decide about the search amount k ≥ 0. In the second
step, she receives the signal and decides whether to buy the good or not. We allow for
mixed strategies, so it is possible for the consumer to buy the good only with a certain
probability. Remember that the two possible quality valuations qL, qH as well as the a
priori probability η of facing a high type producer is known to the consumer.

3.1 After Receiving the Signal

Assume for now that k has been chosen. Let ε̂ := ε(k) be the corresponding error
probability and µ(p) ∈ (0, 1) the posterior belief that a product with price p has quality
qH . In this section, p and µ(p) can be viewed as �xed so that we write µ̂ for the posterior
belief.
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Conditional on observing the high signal sH , the probability of the quality being high
is

(1− ε̂)µ̂
(1− ε̂)µ̂+ ε̂(1− µ̂)

which follows from Bayes' law.
The expected utility from buying (not taking into account the sunk cost k), given this
situation is then

(1− ε̂)µ̂
(1− ε̂)µ̂+ ε̂(1− µ̂)

qH +
ε̂(1− µ̂)

(1− ε̂)µ̂+ ε̂(1− µ̂)
qL − p.

Note that with ε̂ = 1
2 this is the original utility from buying without the additional signal.

The case on observing sL is computed similarly. Clearly, the consumer will buy the good
if this utility is above zero and not buy it if it is strictly below this value. The interesting
insight here is that the signal is only relevant to her if not for all signals sH and sL the
utilities lie both above or both below zero. Remember that she made a rational choice to
pay an amount k > 0 and thus she can intuitively not be indi�erent between the signal
outcomes.

Lemma 3.1. Let a price p with corresponding posterior belief µ̂ be given. If the consumer

has optimally exerted positive search e�ort, she buys if and only if she receives the signal

sH .

This result may not come as a surprise. If it was optimal to ignore a signal, it would be
pointless to pay for its precision. The lemma is in the same spirit as the corresponding
statement in Bester and Ritzberger (2001). It shows that the two pieces of information,
namely the inherent information of the price given by the corresponding posterior belief
µ̂ and the additional signal, are essentially not considered simultaneously. The former is
used to decide about how much search e�ort to exert and if zero e�ort is chosen, it is
used to determine whether to buy the good or not. Once the consumer decides to pay
for signal precision, the buying decision only depends on the signal, not on the value µ̂
of the posterior belief. This, of course, does not occur in situations where an additional,
informative signal is received regardless of the decision of the consumer as in Voorneveld
and Weibull (2011).
While this e�ect also arises in Bester and Ritzberger (2001), consumers in their model
observe a perfect signal and it is natural to dismiss prior information after learning the
true state. In the situation at hand the reason is more subtle, basically lying in the
backward induction argument. The probable implications of receiving various signals of
a certain error probability are taken into account before the decision of costly acquiring
the information is formed. Essentially, also the choice to buy only at a high signal is
already made at that stage.
The proof of this lemma is straightforward. Like all others, it can be found in the
appendix.
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3.2 Choosing the Optimal Search E�ort

We proceed by determining the optimal search costs k. Assume therefore that the con-
sumer pays a cost k > 0 for search and that this level is optimal. We know by the
previous lemma that the only possible behavior after receiving the signal is to buy if and
only if the signal is sH , i.e. if the quality is high and the signal is correct or if the quality
is low and the signal is wrong. Then the expected utility, given price p and posterior
beliefs µ̂, is

us(p, µ̂, k) := µ̂(1− ε(k))(qH − p)︸ ︷︷ ︸
correct high signal

+ (1− µ̂)ε(k)(qL − p)︸ ︷︷ ︸
false high signal

−k.

This formula consists of three terms. The (possibly subjective) probability of facing a
high good is µ̂. The consumer then buys if she receives a correct signal which has the
probability 1 − ε(k). This yields the utility qH − p. The second term of the formula
re�ects the possibility and consequences of buying a low quality product because of a
false high signal. The search costs k have to be paid regardless of the quality and the
buying decision.
We want to stress that this is the expected utility after observing the price and before
receiving the signal, and only if the optimal search cost is positive. Lemma 3.1 allows us
to ignore the updated beliefs after observing the additional quality information.
Maximizing this utility with respect to search costs, we get the �rst order condition

µ̂(−ε′(k))(qH − p) + (1− µ̂)ε′(k)(qL − p) = 1

⇔ ε′(k) =
1

−µ̂(qH − p) + (1− µ̂)(qL − p)

=
−1

µ̂(qH − p) + (1− µ̂)(p− qL)
=: d(p, µ̂) =: d̂.

The parameter d̂ depends both on the price p and the posterior belief µ̂ and is always
negative in the relevant range of prices [qL, qH ] and when µ̂ ∈ (0, 1). Its value is roughly
an indicator of whether the price �ts the expected valuation given by the belief. If p and
µ̂ are both high or both low, ε must have an extreme slope and thus the optimal k is
low. If there is a discrepancy between p and µ̂, d̂ is closer to zero and thus k is higher.
This shows that search is used more extensively if the consumer has reason not to trust
the price. Figure 2 depicts this e�ect.
Note that we can rewrite the utility in the form

us(p, µ̂, k) =
[
µ̂(qH − p) + (1− µ̂)(p− qL)

]
(−ε(k))− k + µ̂(qH − p)

so that the function is strictly concave in k in the range (0, k̄) for all values µ̂ ∈ (0, 1)
and p ∈ [qL, qH ]. The �rst order condition thus provides the interior solution if and only
if there is one.
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It follows that the utility maximizing search cost for the consumer problem is

k∗(p, µ̂) :=


0 d̂ ≤ ε′(0)

(ε′)−1(d̂) ε′(0) < d̂ < ε′(k̄)

k̄ d̂ ≥ ε′(k̄).

(1)

This function is continuous and piecewise di�erentiable in both arguments. However,
its form presents some problem for the analysis, namely that there is a saddle point at

( q
H−qL

2 , 1
2). Figure 2 shows an example of this function. It also shows the e�ect that

search e�ort is high in the areas in which µ̂ and p do not correspond to each other.

Figure 2: The function k∗ for ε(k) = max
{

1
2 −
√
k, 0
}
.

As mentioned above, this analysis is based on Lemma 3.1 and thus gives a necessary

condition. If the consumer optimally pays a positive cost, it has to be given by the
function k∗. To ensure that paying this cost and then acting in accordance to the signal
(provided k∗ is positive) is optimal, the corresponding error probability must be low
enough to yield positive utility when the signal is sH and negative utility in case of
receiving sL. We thus have to test whether k∗ meets this condition. In general, this is
not the case for all pairs (p, µ̂) ∈ [qL, qH ]× (0, 1). The following lemma, however, shows
that this is never an issue when utility implied by the optimal search behavior exceeds
the one from not buying or from buying without extra information.

De�nition 3.2. Let

u∗s(p, µ̂) := us(p, µ̂, k
∗(p, µ̂))

denote the maximal achievable utility if the consumer was committed to buy if and only

if she receives signal sH .
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Lemma 3.3. Let (p, µ̂) ∈ [qL, qH ]× (0, 1) be given and denote k̂∗ := k∗(p, µ̂). Moreover,

assume

u∗s(p, µ̂) > max{0, q̄µ̂ − p} = max{un, ub(p, µ̂)}. (2)

Then we have k̂∗ > 0 and the error probability ε(k̂∗) is low enough so that the consumer

buys the product if and only if she receives the signal sH .

We denote the optimal utility, given a price p and a corresponding posterior belief µ̂ by

u∗(p, µ̂) := max {ub(p, µ̂), un, u
∗
s(p, µ̂)} .

Having the three options of searching, not buying and buying without search, the con-
sumer acquires information if the condition (2) of the previous lemma is met (while there
can be mixed strategies in case of equality). We continue by investigating when this is
the case and when the consumer prefers either of the two other options, depending on
the observed price p and the corresponding posterior belief µ̂. Note that, due to the
complicated behavior of the optimal search costs and hence the signal precision, the area
in which positive search e�ort occurs is not trivially well-shaped.

Lemma 3.4. For all µ̂ ∈ (0, 1) there are prices p
µ̂
, pµ̂ such that

qL < p
µ̂
≤ q̄µ̂ ≤ pµ̂ < qH

and the consumer strictly prefers buying without search whenever the price p is below p
µ̂
,

she strictly prefers searching whenever p ∈ (p
µ̂
, pµ̂) and she strictly prefers not buying

whenever p > pµ̂, provided that µ̂ is the corresponding posterior belief to p.

Figure 3 gives a graphical intuition for how the utility of each of the three options
depends on p for a �xed value of µ̂. There is a counter-intuitive e�ect when µ̂ > 1

2 . The
optimal search e�ort k∗ is then decreasing in the price and hence a price increase could
have a positive e�ect for the consumer's utility. The proof of Lemma 3.4 shows that this
e�ect is, however, negligible such that we indeed always have a decreasing behavior of
the search payo� in the price variable. The thicker line in Figure 3 depicts the function
u∗, the maximum utility value of all three options �search�, �buy� and �don't buy�. Note
that u∗s is not a linear function but the proof shows that its slope is always below zero
and above the slope of ub which leads to the result above.
Having this lemma, we are particularly interested in situations where the interval (p

µ̂
, pµ̂)

is not empty. As it turns out, this is always the case as long as the marginal gain of
signal precision from search e�ort is su�ciently high at zero.

Lemma 3.5. For all µ̂ ∈ (0, 1), the strict inequality p
µ̂
< pµ̂ holds if and only if

ε′(0) <
−1

2µ̂(1− µ̂)(qH − qL)
.

In this case, one even has p
µ̂
< q̄µ̂ < pµ̂.
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Figure 3: The utility development with p and determination of the prices p
µ̂
and pµ̂ for

�xed µ̂. The function u∗ is given by the thick upper contour line.

In other words: Every non-degenerate posterior belief can lead to search behavior if the
marginal bene�t from search is su�ciently high.
Note that search and hence a positive probability of trade exists even with prices above
expected quality q̄µ̂. It is of importance for the later analysis that the statement of this
lemma is always true if we have ε′(0) = −∞.
A similar result to Lemma 3.4 is true for the dependence of consumer's behavior on the
posterior belief µ̂. This follows from the following, stronger observation.

Lemma 3.6. The values p
µ̂
and pµ̂ are continuous and piecewise di�erentiable in µ̂.

Moreover, we have

∂

∂µ̂
p
µ̂
> 0 and

∂

∂µ̂
pµ̂ > 0

for each point in which the respective function is di�erentiable and

lim
µ̂→0

p
µ̂

= lim
µ̂→0

pµ̂ = qL lim
µ̂→1

p
µ̂

= lim
µ̂→1

pµ̂ = qH .

This relatively nice behavior of the lower and upper bound for prices for which search is
optimal comes as a surprise considering the shape of the optimal search e�ort function.
It is needless to say that these properties facilitate the following equilibrium analysis.

To give a better feeling for how the three options of �search�, �buy� and �don't buy� are
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distributed, we give a graphical example. Figure 4 shows the various areas for qH =

1, qL = .5, ε(k) = max
{

1
2 −

3
2

√
k, 0
}
. Note that this error function satis�es ε′(0) = −∞

and hence for every non-degenerate value of µ̂ there is a price for which search is strictly
optimal.

0 1µ̂

qH

qL

p

pµ̂

p
µ̂

search

buy

don’t buy

Figure 4: The areas of consumer behavior and the development of p
µ̂
and pµ̂.

4 The Market and Equilibrium Behavior

Having determined the behavior of the consumer, we investigate how this leads to var-
ious equilibria. We �rst need to formally de�ne the game, i.e. the strategies and the
equilibrium concept.

De�nition 4.1. A consumer strategy is a function b : R+ → R+×[0, 1]2 where, for every
price p, b(p) = (k, γH , γL) denotes the amount of search e�ort k and the probabilities

γH , γL of buying the product conditional on receiving the high or low signal.

A �rm's strategy a : {H,L} → ∆(R+) is a mapping that maps each type to a probability

distribution over the price space R+.

We write aH and aL instead of a(H) or a(L). Using Lemma 3.1 of the previous section,
we know that the consumer optimally either pays a positive search cost and then buys
if and only if a positive signal arises or she does not search and buys with a certain
probability γ ∈ [0, 1] independent of the signal that does not convey any information7.

7Of course, still having di�erent probabilities for each (meaningless) signal is possible. It is clear,
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Based on this behavior, it is convenient to narrow down the set of possible consumer
strategies.

De�nition 4.2. A consistent consumer strategy is a strategy where for all p ∈ R+ we

have b(p) = (k, 1, 0) or b(p) = (0, γ, γ) with k > 0 and γ ∈ [0, 1].

Having this, we give the formal de�nition of an equilibrium in this setting.

De�nition 4.3. Let (a, µ, b) be a tuple where a is the �rm's strategy, µ : R+ → [0, 1] is
a posterior belief system of the consumer and b is a consistent consumer strategy.

This tuple is an equilibrium if

• Every price in the support of aH and aL maximizes the pro�t of the respective type

• µ is determined by Bayes' law whenever possible8

• b maximizes the consumer's utility with respect to µ(p) for each prize p.

Note that this is similar to the classical weak Perfect Bayesian Equilibrium as used in
the text book by Mas-Colell et al. (1995) but adapted to the general strategy space of this
model. An equilibrium in which aH = aL is called a pooling equilibrium while a separating
equilibrium is one in which the supports of aH and aL have an empty intersection. We
call any other equilibrium a hybrid equilibrium.
For an equilibrium EQ = (a, µ, b), any price p that is in at least one of the supports
of aL or aH is called an equilibrium price of EQ. If additionally b(p) has the form
(k, 1, 0), we call p a search price of EQ, otherwise a no-search price. Abusing notation,
we denote u(p, µ(p), b(p)) the consumer's expected utility when observing a price p with
corresponding posterior belief µ(p) and playing strategy b(p). For each �rm type θ we
de�ne the equilibrium pro�t πθ(EQ) as the expected pro�t when setting a price in the
support of aθ. This value is well-de�ned by the �rst point in the equilibrium de�nition.

It is trivial to see that there can be a separating equilibrium in which the high type
always sets price qH , the low type sets the price qL, the consumer has the belief system
µ(p) = 1{p=qH} and only buys for prices smaller than or equal to qL. For this to actually

be an equilibrium, one must have cH ≥ qL so the high quality �rm has no strict incentive
to set the price qL. This equilibrium would also occur if one did not allow for information
acquisition and is present in many other models of markets with quality uncertainty. Note
that high quality is not traded at all in this setting. We thus refer to this constellation
as the total adverse selection (TAS) equilibrium.

however, that playing a strategy b(p) = (0, α, β) is equivalent to playing b(p) = (0, γ, γ) with γ =
1
2
α+ 1

2
β.

8This point is often not precisely formulated in the literature. Formally, we apply the classic version
of Bayes' law for every price p where aH({p}) + aL({p}) > 0. For prices that are in the support of
exactly one of the two distributions, we assume that the posterior belief is either 1 or 0, according to
the type that uses p. No restriction is made for prices that are in both supports but have probability
0.
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To emphasize the relation to the classical model of quality uncertainty and the perfect
information case, we brie�y discuss these two cases.
With full information, the situation is quite obvious. Since the consumer always knows
the type, the �rm can always demand the true value qθ and the buyer buys with proba-
bility one. Otherwise, any slightly lower price would lead to sure buying and thus causes
the �rm to deviate. There are no other equilibria.
If the consumer had no possibility of obtaining information about the product quality,
the described situation corresponds to a lemon market model in the spirit of Akerlof
that is similar but not quite equal to the analysis of Ellingsen (1997)9. It appears as
a boundary case of our model if we set ε(k) = 1

2 for all k (which, of course, would not
satisfy the assumptions). In that setting, if cH ≤ q̄η10, pooling equilibria exist for a price
in [max{qL, cH}, q̄η] while separating equilibria with prices qL and qH always exist in
which the low quality �rm sells with probability one and the high quality �rm with a
probability in [

max

{
0,
qL − cH

qH − cH

}
,
qL − cL

qH − cL

]
.

In particular, the total adverse selection equilibrium exists if and only if qL ≤ cH as
was already observed in the setting of this paper. There are other, hybrid equilibria in
Ellingsen's setting. While they are disregarded due to his re�nements and although his
analysis is not completely applicable to this setting, such equilibria also appear here.

4.1 Equilibrium Analysis

We start with observing some rather obvious and intuitive features that are quite stan-
dard and can be found in similar form in other models. They are nevertheless important
for the analysis of equilibria.

Lemma 4.4. In every equilibrium, the following statements hold.

i) The support of aL is a subset of [qL, qH ], the support of aH is a subset of [qL,∞).

ii) The low type does not set the price qH with positive probability.

iii) The low type's pro�t is weakly larger than qL − cL.

iv) Every price in (qL, qH) is either in both supports of aL and aH or in neither.

These points are not surprising considering the nature of an equilibrium. Any price
below qL would induce sure buying and thus always yield a lower pro�t than a higher
price with the same property. The low type thus always has the option to deviate to
a price arbitrarily close to qL and to receive a pro�t close to qL − cL which shows iii).

9Ellingsen assumes equal di�erences between valuation and production costs for each type, thus corre-
sponding to the case qH − cH = qL − cL.

10Although Ellingsen excludes this case in his paper, the set of pooling equilibria is easy to derive. The
separating equilibria are the same.
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For the low type, setting a price qH or higher with positive probability would lead to a
posterior belief below 1 and hence the consumer does not buy. The resulting pro�t is
zero and contradicts iii).
If a price is set by one type but not by the other, the equilibrium de�nition implies that
the consumer knows the true quality. If it was a low type and the price was above qL,
this would result in not buying at all, making it irrational for the low type to set this
price. On the other hand, a price below qH set by only the high �rm would result in sure
buying and this would attract the low quality �rm to imitate that behavior. The formal
versions of these arguments can be found in the appendix.
Since the consumer never buys a product for a price higher than qH , every such strategy
is at least weakly dominated by any price in (cH , qH ]. We thus assume that also the high
type does not set a price above qH .

We now know that, apart from the prices qL and qH , every price is either in both types'
support or in neither of them. However, there could in principal still be a large number of
such prices, making further analysis even more complicated by adding measure theoretic
obstacles. We show that this is in fact not the case and that there cannot be more than
two such non-boundary prices played in equilibrium.

Lemma 4.5. In an equilibrium, there are no two prices that are in both supports of aL
and aH and for which the consumer searches.

Lemma 4.6. In an equilibrium, there cannot exist two di�erent prices that are in both

supports and for which the consumer does not search.

For both of these lemmas, the �rst property of the equilibrium de�nition implies that
both types must be indi�erent between the prices in the support of their price distribu-
tion. In the proof, we show that this can not be the case for two search prices or two
no-search prices. It is, however, possible that both types are indi�erent between a search
price and a no-search price.
These observations already signi�cantly reduce the set of possible equilibrium strate-
gies. Although we put no a priori restrictions on the �rm's price-setting behavior, in
equilibrium, each type does not play more than two prices in the set (qL, qH).
If the error function ε satis�es an additional, Inada-like condition, we can rule out even
more equilibria. As seen in Lemma 3.5, the value of ε′(0) is of importance when it comes
to determining the consumer reaction. It has to be low enough to ensure the existence
of a search price for any given posterior belief µ̂ ∈ (0, 1). The bound itself depends
on this belief and hence may vary between di�erent equilibria or even between di�erent
equilibrium prices. It is hence convenient to de�ne the following property.

De�nition 4.7. An error function ε satis�es the assumption (I) if

ε′(0) = −∞.

Having this, we can even go further in narrowing down the set of equilibria.
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Lemma 4.8. Assume that ε satis�es assumption (I) and let p ∈ [qL, qH) be a no-search

equilibrium price. Then b(p) = (0, 1, 1) so that the consumer buys with probability one.

This statement follows from Lemma 3.5. If the consumer buys with a probability in
(0, 1), she is indi�erent between buying and not buying, hence qµ(p) = p. This price,
however, leads to search when ε′(0) is low enough. Having b(p) = (0, 0, 0) would give
zero pro�t to both �rms and thus violates Lemma 4.4 iii).
The previous lemmas now allow us to de�ne quite precisely the form of possible equilibria
in the model.

Proposition 4.9. If assumption (I) is satis�ed, in every equilibrium the inclusions

supp(aL) ⊂
{
qL, ps

}
supp(aH) ⊂

{
ps, q

H
}

or supp(aL) = {p1} supp(aH) ⊂
{
p1, q

H
}

hold where ps is a search price, qL and p1 induce sure buying and if qH is played, we

have b(qH) = (0, γ, γ) with γ low enough to not attract the low type �rm.

Summarized, these are the di�erent types of potential equilibria in the model

• Separating adverse selection equilibria

• Pooling equilibria without search in which both types set the same price p1 ≤ pη

• Pooling equilibria with search and a price ps ∈ [p
η
, pη]

• Hybrid equilibria in which the high type �rm demands a high search price ps and
the low type plays aL(ps) = α, aL(qL) = 1− α for some α ∈ (0, 1).

• Other equilibria with qH ∈ supp(aH) and b(qH) = (0, γ, γ), γ > 0.

All these equilibria exist provided the buyer and the high type �rm make non-negative
pro�t and the low type earns at least qL− cL. We denote the pooling search equilibrium
with the highest possible price pη as PEs and the pooling no-search equilibrium with
the price p

η
as PEb. If at least one hybrid equilibrium exists, the one with the highest

search price ps is denoted as HE. These are the important equilibria due to the following
robustness check.
The set of potential equilibria is signi�cantly narrowed down but still too large to draw
qualitative conclusions from the model. In what follows, we argue in which way some of
these equilibria, and in particular the belief systems by which they are supported, can
be disregarded.

4.2 Selection of Equilibria

There are various, well established re�nements to eliminate implausible equilibria in
signaling games. Bester and Ritzberger (2001) use a modi�cation of the well-known
Intuitive Criterion introduced by Cho and Kreps (1987). In this model, as well as in
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theirs, the original version of the Intuitive Criterion is not su�cient. The modi�cation
used by Bester and Ritzberger, however, is not well de�ned in our setting since the �rms'
pro�t functions are not monotone in beliefs. We thus follow another approach of arguing
which consumer beliefs are unconvincing and hence rule out the equilibria supported by
these beliefs.

1µ̂
u(qH , µ̂, (0, 0, 0))

u(qH , µ̂, (0, γ, γ))

Figure 5: Buying for the price qH leads to negative utility if µ̂ < 1

To illustrate the idea of the following re�nement, consider an adverse selection equilib-
rium in which the high type �rm makes positive pro�t, i.e. a separating equilibrium in
which the low type sets price qL, the high type price qH and the consumer buys the high
quality product with some probability γ > 0. From the equilibrium property we must
have µ(qH) = 1 so the consumer knows the quality when she sees the high price. Note
that she is then indi�erent between buying and not buying since the price matches her
valuation. If she had any doubts about her posterior belief µ(qH), i.e. if she admits that
there is even the smallest possibility to be wrong about her belief, �not buying� would
be strictly better than her strategy b(qH) = (0, γ, γ). Since �not buying� is optimal even
for her rational belief µ̂ = 1, her strategy is dominated in a certain sense. This idea is
depicted in Figure 5 and formally written down in the following re�nement.

De�nition 4.10. Let p, µ(p) be given. The action b ∈ R+ × [0, 1]2 is locally dominated
in beliefs if there exists another action b∗ ∈ R+ × [0, 1]2 and a δ > 0 such that

u(p, µ̂, b∗) ≥ u(p, µ̂, b) ∀ µ̂ ∈
(
µ(p)− δ, µ(p) + δ

)
∩ [0, 1]

and the inequality is strict for µ̂ 6= µ(p).
An equilibrium (a, µ, b) has belief-robust responses if for no equilibrium price p and

corresponding belief µ(p) the action b(p) is dominated in beliefs.

This condition re�ects some doubts about the posterior beliefs. A best response b which
violates this criterion is not a strict one, meaning that there is another best response b∗

to (p, µ(p)) that yields the same payo�. Moreover, choosing b over b∗ is not a robust
behavior and only rational if the buyer is absolutely con�dent about the �rm's strategy.
The criterion is one of local robustness of the strategy. Other criteria in the same spirit
can be found in the literature, for example the robust best reply de�nition in Okada
(1983).
Note that this condition does not in general rule out mixed strategies of the consumer.
In this case, however, it leads to eliminating all equilibria in which the buyer plays a
mixed strategy for the highest possible price qH , including the classic adverse selection
equilibria, mentioned above, in which the high type makes positive pro�ts.
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Lemma 4.11. Let assumption (I) be satis�ed. For an equilibrium, the following is equiv-

alent.

i) The equilibrium has belief-robust responses.

ii) The price qH is not an equilibrium price or the equilibrium is the separating equi-

librium with total adverse selection.

The reason why most adverse selection equilibria are ruled out is not speci�c to this
setting. In fact, a similar re�nement excludes these equilibria e.g. in Ellingsen (1997).11

In that paper, he uses another re�nement under which only the separating equilibrium
with the highest possible high type trade probability survives. While this is a legitimate
approach, the richness of equilibria in our setting allows us to exclude these equilibria
and still obtain interesting results.12

As one can see, a lot of the equilibria survive this re�nement. This gives us the oppor-
tunity to address another issue of implausible consumer behavior, namely the possibility
of extreme belief changes.

Imagine two situations in which the consumer observes a price p or a similar price that
is very close to p. It does not seem intuitive that the posterior beliefs should di�er too
much, especially if we let the di�erence of the two prices be arbitrarily small. Even if
one admits that real prices usually can not di�er by less than one cent, posterior beliefs
that assign µ(p) = 1 and µ(p + 0.01) = 0 seem quite extreme. In fact, marginal price
changes are often due to retailer behavior and may not even be perfectly perceived by
consumers.13 It is thus more realistic that the consumer acknowledges the closeness of
the prices by assigning a similar posterior belief. Formally, we postulate continuity of
beliefs in those prices that actually occur in equilibrium.

De�nition 4.12. An equilibrium (a, µ, b) satis�es the locally continuous beliefs condition
if for every equilibrium price p the function µ is continuous in p.

Local continuity is not a very strong assumption considering that it just excludes jumps
in beliefs but still allows for arbitrarily strongly increasing or decreasing posteriors. The
described behavior for the one-cent di�erence in the motivating example would actually
still be possible under locally continuous beliefs. However, this slight step has a big
impact on the number of equilibria.

11Compare Proposition 5 of Ellingsen (1997). Note that elimination of strategies that are locally dom-
inated in beliefs could be substituted by elimination of weakly dominated strategies in this paper
without changing the results.

12Interestingly enough, Ellingsen justi�es using his other re�nement by saying �in reality, a seller will
typically not know exactly the buyer's valuation� which is true. In the same spirit, however, the idea
that the consumer might not be perfectly con�dent about her posterior beliefs should not be ignored.
Ellingsen's idea of �elastic demand� is incorporated in the next re�nement and thus our approach
covers both aspects of imperfections to some extend.

13See Zeithaml (1988) for an overview on perception of price and other product characteristics by
consumers.
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Before we determine the consequences of this re�nement, note that it usually14 rules
out the pooling equilibrium without search (PEb) if we have ε(k∗(p

η
, η)) = 0 so that

there is perfect search for the border case of a pooling equilibrium price in which �buy�
and �search� yield the same outcome to the consumer. The reason for this is that,
with continuous beliefs, the high quality �rm would want to deviate to a slightly higher
price than p

η
which, because the consumer receives a perfect signal, also yields a selling

probability of one for high quality products.

Proposition 4.13. Let assumption (I) be satis�ed. The strategies (a, b) can form an

equilibrium with a posterior belief system that satis�es locally continuous beliefs and

such that it has belief-robust responses if and only if they are the strategies of one of the

following equilibria:

• the pooling no-search equilibrium PEb with price p
η
. This equilibrium exists if and

only if p
η
≥ cH and ε(k∗(p

η
, η)) > 0

• the pooling search equilibrium PEs with price pη. It exists if and only if pη ≥ cH

and πL ≥ qL − cL

• hybrid equilibria in which the high quality �rm sets a price p = pµ̂ and the low quality

�rm sets this price with probability α ∈ (0, 1) while setting qL with probability 1−α
and we have µ̂ = µ(p) = η

η+α(1−η) > η. This equilibrium exists if and only if

pµ̂ ≥ cH and πL = qL − cL.

• the total adverse selection equilibrium (TAS). It exists if cH ≥ qL.

While three of these equilibria are unique within their class if they exist, there may be
multiple hybrid equilibria. Every value µ̂ > η for which the equation

ε(k∗(pµ̂, µ̂)) · (pµ̂ − cL) = qL − cL

holds yields such an equilibrium if cH does not exceed the price pµ̂. The reason is that a

low quality �rm must be indi�erent between the prices pµ̂ and qL. Figure 6 shows such
a constellation in which not only multiple hybrid equilibria but also the pooling search
equilibrium PEs exist at the same time. It is useful to note that the existence of a hybrid
equilibrium implies

1

2
(qH − cL) > ε(k∗(pµ̂, µ̂)) · (pµ̂ − cL) = qL − cL

⇒ qL − cL < qH − qL.

14There can be cases in which the pair (p
η
, η) is exactly on the border de�ned by (1) so that there might

be a continuous �path� µ(p) of posterior beliefs under which the PEb equilibrium can be sustained.
Since this is a non-generic case, we omit the detailed analysis and just write ε(k∗(p

η
, η)) > 0 as

condition for the existence of PEb.
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Figure 6: The coexistence of PEs and multiple hybrid equilibria. The function depicts
the low type pro�t for each µ̂ when setting the price pµ̂. The values µ1 and µ2

are the posterior beliefs of search prices in hybrid equilibria.

It is a common result in lemon markets that all equilibria are not e�cient (so that some
goods are not traded with full probability) or the consumer has a chance of buying a good
for a higher price than his valuation. We also observe this, here. Note that, although we
focus on take-it-or-leave-it o�ers, the famous result of Myerson and Satterthwaite (1984)
suggests that this can not be overcome when using a di�erent mechanism.15

To give an overview over the qualitative implications of these equilibria, their properties
are summarized in the following table. The �&� symbol indicates generic strict inequal-
ities, i.e. the set of parameters for which equality occurs is a Lebesgue null set in the
parameter space.16

15Their formal result does not apply here. To give the connection, production costs c can be seen as the
seller's valuation, q as the buyer's value. In contrast to the original result, they are not independent
and not drawn from an interval [cL, cH ], [qL, qH ]. The only e�cient (unre�ned) equilibrium that
guarantees non-negative pro�ts and consumer surplus in every outcome is the pooling equilibrium on
the price qL. It exists if and only if cH ≤ qL which directly translated to a violation of the assumption
of Myerson and Satterthwaite that the intervals [cL, cH ] and [qL, qH ] overlap.

16For example, in the PEs equilibrium if pη happens to be exactly cH , the high type makes no pro�t.

The value of pη does not depend on cH so this is a Lebesgue null set.
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πH πL consumer utility existence condition

PEb & 0 > qL − cL > 0 p
η
≥ cH and ε(p

η
) > 0

PEs & 0 & qL − cL 0 pη ≥ cH and πL ≥ qL − cL
hybrid > 0 qL − cL 0 ∃µ̂ > η : pµ̂ ≥ cH and πL = qL − cL
TAS 0 qL − cL 0 cH ≥ qL

Table 1: The properties of equilibria surviving the re�nements

This table shows an interesting aspect especially about the consumer utility. There is
only one equilibrium in which she has positive utility and this does not involve search.
The possibility of search does not allow the PEb equilibrium to have a higher price than
p
η
. Remember that in the classic lemon market this price would be equal to q̄η so that

the consumer had zero expected utility if we apply the same re�nements to the pooling
equilibria of the classical case. Introducing search can thus bene�t the consumer but
only if she does not use this new �ability�. Naturally, this consumer friendly equilibrium
only exists if the price is still high enough for a high quality �rm to make positive pro�t.
It also shows, however, that if the optimal search e�ort on the pooling price leads to
perfect information, this equilibrium fails the re�nements. In this case, the consumer's
ability to search destroys her only chance of having positive utility. We elaborate on this
e�ect in the next section.

Quality uncertainty situations being famous for their adverse selection e�ects, we can now
investigate how the model behaves in this regard. The following shows that introducing
search, as one would assume, indeed reduces the advantage of low quality goods over
high quality goods in terms of traded amount.

Observation 4.14. In PEb and PEs, a high quality �rm has a weakly higher probability
of selling the good than the low type. In any hybrid equilibrium of Proposition 4.13, the
probability for a high �rm of selling the good is higher than in any separating adverse
selection equilibrium.

Note that in a hybrid equilibrium, the low type �rm can have a higher chance of selling
its good than the other type. This value is 1− α + αε̂ where α is the share with which
it sets the high search price and ε̂ is the error probability of that price.
To go even further, observe that there is a partial ranking in Pareto dominance between
the existing equilibria.

De�nition 4.15. An equilibrium (a, µ, b) Pareto dominates another equilibrium (ã, µ̃, b̃)
if the equilibrium payo�s satisfy

πH ≥ π̃H , πL ≥ π̃L and u∗ ≥ ũ∗

and at least one of these inequalities is strict.

This de�nition of Pareto dominance is taken after the quality of the �rm is revealed,
thus taking each type's pro�t into account separately. This gives a stricter version than
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an a priori Pareto dominance in which one would only consider the expected pro�t before
the �rm learns its type. However, an interesting dominance ranking holds even with this
stronger condition.

Lemma 4.16. Ignoring non-generic cases, the following items re�ect the full Pareto

dominance ranking between the equilibria of Proposition 4.13.

• If multiple hybrid equilibria exist, the one with the highest search price (HE) dom-
inates the others.

• TAS is dominated by PEb, PEs and HE whenever one of these equilibria exists.

• PEs and HE are dominated by PEb if and only if πH(PEs) ≤ πH(PEb) or

πH(HE) ≤ πH(PEb), respectively.

It is quite natural to observe that the equilibria PEs and HE are somehow similar. In
both equilibria, there is a search price on the upper border of the search area and the
consumer has zero utility. Indeed, the coexistence of these equilibria is rare and does
never occur if the probability of having high quality is su�ciently high.

Lemma 4.17. Let qL− cL < qH − qL. There is a lower bound η < 1
2 such that whenever

η > η, there exists either PEs or HE provided that the search price of one of these

equilibria exceeds cH .

The reason for having this lower bound lies in the pro�t of the low quality type. It
strictly increases when the posterior µ̂ goes from 1

2 to 1 and the price is pµ̂. Thus, the

PEs condition πL ≥ qL − cL implies that for all higher beliefs the low type's pro�t is
even larger. In HE, however, the pro�t must exactly attain this bound. The situation
in Figure 6 corresponds to a case in which η < η. In this �gure, η can be chosen to be
µ1.
Notice also that the actual value of η might be zero so that the negative pro�t e�ect
of losing customers never outweighs the positive e�ect of a higher price for the low type
�rm. The condition qL− cL < qH − qL of the lemma follows from the existence condition
of a hybrid equilibrium. If this is violated, a hybrid equilibrium can never exist.

The so far established results already shed some light on how the market outcome is
in�uenced by introducing information acquisition costs in the classical model of quality
uncertainty. It shows that if the cost for high quality production is low, a pooling
equilibrium without search exists. While this is also true in the classical model, there
are qualitatively di�erent aspects, namely that the actual price to pay in the pooling
equilibrium is strictly below the average quality valuation and hence the consumer has
strictly positive utility. Of course, this e�ect is caused by the same issue that rules out
these equilibria for high quality costs between p

η
and q̄η. In these cases, introducing

the possibility of information acquisition leads to search behavior but does not help the
consumer.
A di�erent phenomenon can be observed in the PEs and HE equilibria. They exist
whenever p̄ is high enough. Since these equilibria contain search prices, they do not
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occur in the classical model but dominate and thus eliminate the otherwise existing
separating equilibria. Although also the payo�s are di�erent, the main contribution of
these equilibria is the weakening or complete elimination of adverse selection phenomena.

5 Search E�ciency

The previous section investigates a market in which the search possibility for the con-
sumer is �xed by the function ε. As mentioned in the introduction, we are also interested
in comparing situations in which consumer might have higher or lower costs for searching.
Since the actual costs k are endogenously chosen by the consumer, we have to clarify
what �lower search costs� means in this setting. It is rather to be viewed as higher �search
e�ciency� which means that the consumer gets a more precise signal for the same search
e�ort. Think about someone who wants to buy a TV in 2013 or someone in the 1980s.
Getting information about a certain product is much easier now than it was back then,
due to the Internet, multiple test magazines and websites. It is safe to say that it is both
less time consuming and cheaper to get the same amount of information now than it was
back then.
To capture this e�ciency in the model we introduce a parameter a to the function ε.
The extended function satis�es the following properties.

• ε : R+ × R++ → [0, 1
2 ], (k, a) 7→ ε(k, a) is continuous.

• For every a > 0, ε(·, a) satis�es the assumptions from section 2 on page 4 and
assumption (I). Denote k̄(a) the perfect information cost for parameter a.

• The function is twice continuously di�erentiable on

K :=
{

(k, a)|0 < k < k̄(a)
}

=
{

(k, a)|0 < ε(k, a) < 1
2

}
,

the area in which information is neither perfect nor meaningless.

• εa(k, a) := ∂
∂aε(k, a) < 0 for all (k, a) ∈ K.

• For all k > 0 we have lima→∞ ε(k, a) = 0 and lima→0 ε(k, a) = 1
2 .

Having ε(·, a) satisfy the same conditions as before, one can use the results of the
previous model and perform comparative statics by varying parameter a. The fourth
point ensures that for increasing a, the signal precision for the same search e�ort becomes
higher. Finally, the last item ensures that in the pointwise limit, the error function re�ects
perfect information (for a → ∞) or the classical lemon market without information
acquisition (for a→ 0). Hence, it allows us to use the parameter as a mediator between
these two widely acknowledged models. One simple example for such a function is

ε(k, a) = max
{

1
2 − a

√
k, 0
}
. (3)

Most expressions of the previous sections now depend on the new parameter. We denote
them in the same way but adding the value a as the last argument of every function.
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The aim of this section is to compare the various types of equilibria and their level of
price, consumer utility, average quality etc. under a change of search e�ciency. Is is
also interesting to see whether the limit behavior of the error probability function, when
taking a → ∞ or a → 0, also leads to market behavior that converges to the equilibria
of the classical lemon market or the perfect information case as discussed above.
This analysis is necessarily di�erent from the one of Bester and Ritzberger (2001) since
their cost has an exogenously given value and could thus just be directly increased or
decreased. Here, the e�ort level is chosen by a rational consumer. A direct change of
the costs can thus not be done. We rather facilitate the access to information by giving
more signal precision for the same e�ort.

5.1 Analytical Results

The �rst result analyzes the price behavior under pooling equilibria where no search
occurs. Remember that the consumer is indi�erent between searching and buying without
search in the pooling price p

η
of these equilibria.

Proposition 5.1. The price p
η
(a) of the PEb equilibrium is continuous, piecewise dif-

ferentiable and non-increasing in a. Moreover,

lim
a→0

p
η
(a) = q̄η and lim

a→∞
p
η
(a) = qL

holds. If qL < cH < q̄η, there are values 0 < a ≤ a such that the pooling no-search

equilibrium PEb exists if a ≤ a and it does not exist for a ≥ a.

The reason why a 6= a can not be excluded despite the monotonicity of the price in
PEb is that the condition ε̂ > 0 for PEb to be an equilibrium might be violated for
some lower a but be true for a higher search e�ciency. This, however, appears for
rather special parameters and is not further investigated. A direct consequence of this
proposition is that the pro�t of both �rms decreases with increasing search e�ciency
while the consumer's utility rises in the pooling equilibrium without search. This can
be seen by just observing that neither the average quality nor the amount of trade is
di�erent between each of these equilibria.
Remember that in the end of the last section we conclude that the existence of PEb
is due to moderate production costs of high quality goods. The proposition provides a
similar statement in terms of search costs. Only when search costs are high, pooling
no-search equilibria can exist. However, as long as a < a, making search more e�cient
lets the equilibrium price decrease and thus gives a higher utility to the consumer. This
supports the �rst intuition that a more e�cient way of searching should increase the
consumer's power and thus increases her surplus. Note, however, that no search occurs
in these equilibria. Instead, all products are sold for a price that decreases with better
search e�ciency. Here, the possibility of search is rather used as a threat than as a tool. If
search gets too e�cient, there is no low-price equilibrium and thus only those equilibrium
can exist which provide zero consumer utility. In a sense, quality information is too cheap
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from the view of the consumer, the producer of a high quality product bene�ts from the
higher information level.17

One can deduce a similar proposition for the upper bound pη of the consumer's search
area.

Proposition 5.2. For every µ̂ ∈ (0, 1) the function pµ̂(a) is continuous, piecewise dif-

ferentiable and non-decreasing in a. Moreover, we have

lim
a→0

pµ̂(a) = q̄η and lim
a→∞

pµ̂(a) = qH .

Inferring to equilibrium behavior from this proposition is not as easy as it was before,
since both PEs and HE make use of search prices. It is not obvious which of these
equilibria exist for a given a. However, noticing that the high price of HE is always
higher than pη, it follows that the equilibrium search price behavior for a → ∞ is not
in�uenced by this question.

Corollary 5.3. Let cH > qL and qL − cL < qH − qL. For a → ∞, all undominated

equilibria converge to a separating state in which the high type sells with probability 1 −
qL−cL
qH−cL .

This result is quite interesting in the background of the Grossman-Stiglitz paradox
which stems from their 1980 paper. Essentially they argue that in situations in which all
arbitrage opportunities are eliminated because all available information is re�ected in the
prices, there is no incentive for any market participant to obtain this information. Hence
the assumption of freely available information would not be justi�ed anymore. While
their reasoning originally applied to �nancial markets, it is in the same way questionable
how (in the perfect information case) quality information can be public knowledge when
prices perfectly signal the quality and thus the consumer does not need to obtain this
information. Here, we see that even with arbitrarily easily accessible information, this
paradox does not occur since there is always an incentive for the consumer to obtain
information. However, this comes with the cost of the high type not being able to sell
with full probability.
If the condition cH > qL was violated, the pooling equilibrium without search PEb
would exist for all a. The second condition ensures the existence of HE even for high
values of a. If this inequality is not true, neither of the equilibria PEb, PEs and HE
exist for high values of a. It follows that the TAS equilibrium is the only equilibrium
and hence e�cient information would lead to an even worse outcome for the high quality
�rm. Since every equilibrium in this setting has only a �nite number of prices and we
are not interested in the out-of-equilibrium beliefs, convergence of equilibria is just taken
as convergence of the �rms' actions.
This result is striking in that even though the information costs approach zero, the
consumer still makes errors and does not get perfect information. The �rm's behavior

17In a related but weaker result, Bar-Isaak, Caruana and Cu nat (2012)[?] show, in a setting with quality
investments, �xed prices and an information acquisition procedure close to Bester and Ritzberger
(2001), that consumer utility can be non-monotone in the acquisition costs. The reason for this
e�ects are, however, quite di�erent from our setting.
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converges to the separating state that would appear in the perfect information case
but the probability of selling does not approach one. Note that there is an important
di�erence to the similar result by Bester and Ritzberger (2001). They show that in
their setting, letting the information costs k approach zero, a non-vanishing share of
consumers still acquires information but the high type still sells to all buyers that would
by the product under perfect information. In contrast, the limit behavior at hand shows
a sustainable loss in sales for the high quality type.
In the setting of Voorneveld and Weibull (2011), they show that for the limit of perfect
information there exists a continuum of limit equilibria between the perfect information
equilibrium and the one given in Corollary 5.3. Their result is thus similar but weaker.
Moreover, they argue that between these equilibria, the perfect information equilibrium
with full sales of high quality Pareto dominates all the other limit situations.
The analysis of equilibria in the direction of high search costs is quite tricky. When
search becomes ine�cient, the prices of PEb and PEs necessarily converge to q̄η and
the question if this is an equilibrium depends on whether the high quality production
costs exceed this value. If they do, PEb and PEs do not exist for low values of a but
TAS does. In other words, these equilibria converge to the two possible classic lemon
market equilibria with the exact same existence conditions. One might expect that this
price convergence is also true for HE since pµ̂(a) is the high quality price. The issue
here is that in HE, the posterior µ̂ for the search price itself depends on a so that the
convergence result from Proposition 5.2 does not apply and may, in fact, not be true for
the equilibrium price.

Proposition 5.4. Let η(qH − qL) < qL − cL < qH − qL and cH < 2qL − cL. Then,

for each value of a which is close enough to 0, HE exists and for a→ 0 these equilibria

converge to a semi-separating state with the high type setting p̂ := 2qL− cL while the low

type mixes between this price and qL.

The limit state of the HE equilibria involves a high price p̂ = 2qL − cL and a posterior

belief µ(p̂) = qL−cL
qH−qL while the probability of selling is 1

2 . If qH − cH = qL − cL, this
situation corresponds to one of the semi-mixed equilibria computed by Ellingsen (1997)
in his model without information acquisition. There, this equilibrium exists with many
others of a similar type and fails the D1 re�nement by Cho and Kreps (1987). However,
the behavior here shows that this equilibrium, if it exists, is robust with respect to costly
information acquisition.

5.2 A Numerical Example

To increase the understanding of what happens with various levels of search e�ciency,
we continue with a concrete example. Even with a relatively simple error function satis-
fying the assumptions, the model is too complex to solve for explicit expressions of the
various equilibria. We thus rely on numerical calculations to illustrate the results on the
development of the model outcomes.
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Figure 7: Price and error probability development for increasing search e�ciency

For these calculations we choose the error function (3) and set η = .6, qH = 1, qL = 1
2 ,

cH = 3
4 and cL = .45. Note that since cH < q̄η = .8, the existence of pooling no-search

equilibria is possible for small values of a. Choosing η ≥ 1
2 ensures, using Lemma 4.17,

that PEs and HE do not exist at the same time to obtain clearer pictures. Corollary
5.3 is applicable to this setting but Proposition 5.4 is not. We give a second example to
illustrate its result.
Figure 7 shows the development of the price and the corresponding error probability for
the various search prices. The thin black line is the price qL for the low quality in HE.
To show the convergence even of the dominated pooling search equilibria, their values
are displayed as dotted lines. One observes that for low values of a, the pooling no-search
equilibrium exists and that its price is decreasing. While at �rst the other equilibrium
is dominated, there is an interval of values of a in which both pooling equilibria exist at
the same time until the lower price falls under the production costs of the high type. As

search gets more e�cient, the error probability decreases and converges to qL−cL
qH−cL ≈ 0, 091

as predicted by Corollary 5.3.

Figure 8 illustrates the pro�t development of the di�erent types in these equilibria.
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Figure 8: The pro�ts of both types, depending on the search e�ciency and the equilib-
rium. Dotted Lines show Pareto dominated equilibria.

One can see very well how pro�ts decrease in PEb and how PEs stops being Pareto
dominated when its high type's pro�t catches up with the one from PEb. The low type's
pro�t never falls below qL − cL = .05 and attains this value in the hybrid equilibrium.

Figure 9: Utility and search e�ort of the consumer

We look at the consumer side of the market in Figure 9. The utility of the consumer
behaves exactly as predicted, dropping to zero when PEb does not exist anymore. An
interesting e�ect is observable for the search costs. Although search gets more e�cient
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with increasing a, the absolute e�ort increases in the pooling search equilibrium. This
e�ect has already been observed by Bester and Ritzberger (2001) and is reproduced
here under a di�erent model of search behavior. It shows how the power given to the
consumer by allowing for information acquisition can be exploited by the high type to
increase prices, search behavior and thus also the probability of selling the high quality
product.

Figure 10: The development of various market characteristics

Finally, Figure 10 depicts the development of some market �gures. Welfare here is simply
computed as a sum of the �rm's expected pro�t ηπH+(1−η)πL and the consumer utility.
The high welfare value in PEb stems not only from the higher consumer utility but mostly
from the fact that all products are traded with probability one and no utility is �wasted�
on search e�ort. All possible gains from trade are thus exploited and distributed among
the market participants.
In contrast to markets with quality uncertainty being famous for their adverse selection
phenomena, average traded quality in this setting is even higher than the o�ered one.
This is of course due to the higher trade probabilities for the high type on search prices
and thus occurs in PEs and HE (except for very high search e�ciency). As search gets
more e�cient, the low type shifts its price distribution more to qL and hence sells with an
overall higher probability which causes average traded quality to go down and, because
of the not vanishing error probability, to go even below the a priori expected quality.

To also give an example of Proposition 5.4, we consider the case where qH = 1, qH =
0.5, cH = 0.7, cL = 0.2 and η = .35. Note that this also implies that PEb and PEs
do not exist if a is close to 0 because of their low price close to qη = .675. The values
are explicitly chosen so that they �t the model of Ellingsen (1997) in which we have
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qH−cH = qL−cL. As mentioned before, his re�nements forecast a separating equilibrium
for this case without information acquisition. This result may serve as a hint that these
equilibria might not be disregarded, after all.

Figure 11: The convergence of HE for vanishing search e�ciency.

6 Conclusion and Possible Extensions

The paper shows the outcome of a monopolistic market with quality uncertainty in which
the consumer has the possibility to costly acquire information about the product quality.
This information could be perfect or imperfect, the exact precision depending on the
endogenous search e�ort exerted by the consumer.
Given the optimal consumer behavior, the market o�ers many possible equilibria, some
of which are already present in the classical model without information acquisition. After
eliminating implausible and Pareto dominated equilibria, we are left with three main
categories of market behavior. In pooling equilibria without search, the consumer has a
positive pro�t and the highest possible welfare was reached. Equilibria which comprise
search leave no utility to the consumer but, except for when information is extremely
cheap, have an average traded quality that is above the actual average and thus show
the opposite e�ect to the classical adverse selection results on lemon markets. The third
category of total adverse selection occurs when high quality production costs are high
and search is very e�cient. The analysis shows that information acquisition possibilities
only bene�t the consumer if she does not acquire any information. If she can use her
search abilities as a threat rather than actually acquire costly information, she forces
prices to be lower than the average quality and thus have positive utility. In contrast,
actual quality search in equilibrium leads to a higher market power of the high type and
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thus to higher prices. The consumer welfare is zero in these equilibria.
An important contribution of this paper is the comparison of situations with di�erent
search e�ciencies. We show that an increase in e�ciency can bene�t or hurt the consumer
and that the consumer's utility will with certainty drop to zero after a certain threshold
of search e�ciency.
At last, the analysis shows that the case of perfect information is not the limit case
of high search e�ciency. Even when making information acquisition arbitrarily cheap,
the probability of consumers receiving a false signal does not vanish. Moreover, this
limit error level does not depend on the error function. Making information acquisition
ine�cient can lead to the same behavior as predicted in the classical models but for a
substantial range of parameters the limit equilibrium is one that was previously disre-
garded.

Starting from this model, certain extensions come to mind to enrich the analysis and
lead to a more realistic behavior.
As most other papers in this �eld, this work does not incorporate competition between
multiple �rms. The consumer is always confronted with exactly one good and her only
choices are on how much to search and if to buy the product. In the same way the �rm
does not have to worry about actual competition. The type of �rival� it faces exists only
theoretically in the head of the consumer who has to �gure out which type she is facing.
Extending this setting to an oligopolistic market will certainly proof to be interesting.
We only look at one consumer. As we have pointed out, this could be extended to
multiple identical consumers without changing the analysis and thus the outcome. In
reality, this is not realistic. Besides di�erent valuations or outside options that people
might have, the relative e�ciency of today's quality information is mainly due to new
technologies which in return can not be assumed to be accessible for everyone with the
same e�ciency, even when restricted to single countries. Some people are more adapt or
have better access to these new technologies than others and this di�erence can be quite
severe from one person to another. It is hence important to account for this in a more
realistic model.
Other restrictive aspects of the model might be generalized such as the amount of quality
levels and signals. Especially this former aspect is important to obtain meaningful results
about the relationship between prices and quality in lemon markets with information
acquisition.

7 Appendix

Proof of Lemma 3.1. Fix a price p and a corresponding posterior belief µ̂ ∈ (0, 1), assume
that the consumer has paid a cost k ≥ 0 for the signal precision and denote ε̂ := ε(k)
the error probability. Receiving the high signal sH , the updated posterior belief is

µ̂H := Prob(qH |sH) =
µ̂(1− ε̂)

µ̂(1− ε̂) + (1− µ̂)ε̂

which is just Bayes' law applied.
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The expected quality with respect to this information is then

q̄µ̂H := µ̂Hq
H +

(
1− µ̂H

)
qL.

With similar calculations, let q̄µ̂L be the expected quality on receiving a low signal. We
have

µ̂H − µ̂L =
µ̂(1− ε̂)

µ̂(1− ε̂) + (1− µ̂)ε̂
− µ̂ε̂

µ̂ε̂+ (1− µ̂)(1− ε̂)

=
µ̂(1− ε̂) (µ̂ε̂+ (1− µ̂)(1− ε̂))− µ̂ε̂ (µ̂(1− ε̂) + (1− µ̂)ε̂)

(µ̂ε̂+ (1− µ̂)(1− ε̂)) (µ̂(1− ε̂) + (1− µ̂)ε̂)

=
µ̂(1− µ̂)(1− 2ε̂)

(µ̂ε̂+ (1− µ̂)(1− ε̂)) (µ̂(1− ε̂) + (1− µ̂)ε̂)
≥ 0.

The inequality follows from ε̂ ∈ [0, 1
2 ]. Thus

q̄µ̂L ≤ q̄µ̂H

where equality holds if and only if µ̂H = µ̂L which is equivalent to ε̂ = 1
2 .

There are now three cases that can occur, regarding the level of the price p.
First case: q̄µ̂L < p < q̄µ̂H
This implies that ε̂ < 1

2 , k > 0 and that the consumer only buys if she receives the high
signal.
Second case: p ≤ q̄µ̂L
The consumer would either by with each signal or mix between �buying� and �not buying�
in the case where p = q̄µ̂L and the low signal appears. In both cases, the payo� (with
search costs and before observing s) is

µ̂qH +
(
1− µ̂

)
qL − p− k

which clearly has a maximum at k = 0.
Third case: p ≥ q̄µ̂H
The consumer would not buy on any signal (while with equality she may buy on sH but
gets utility q̄µ̂H − p− k = −k) so also here optimality implies k = 0.
⇒ If k > 0, the consumer buys if and only if the signal is sH .

Proof of Lemma 3.3. We write k̂∗ := k∗(p, µ̂) and ε̂ := ε(k̂∗). Note �rst that with k̂∗ = 0
we would have ε̂ = 1

2 and thus

u∗s(p, µ̂) = 1
2 µ̂(qH − p) + 1

2(1− µ̂)(qL − p) = 1
2ub(p, µ̂) ≤ max {ub(p, µ̂), un}

which contradicts the assumptions. De�ne

EH :=
µ̂(1− ε̂)

µ̂(1− ε̂) + (1− µ̂)ε̂
qH +

(1− µ̂)ε̂

µ̂(1− ε̂) + (1− µ̂)ε̂
qL − p (4)

EL :=
µ̂ε̂

µ̂ε̂+ (1− µ̂)(1− ε̂)
qH +

(1− µ̂)(1− ε̂)
µ̂ε̂+ (1− µ̂)(1− ε̂)

qL − p (5)
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the expected utility from buying, disregarding the sunk search costs, when receiving a
high signal or a low signal, respectively.
The following two important relations are immediate from these formulas.

u∗s(p, µ̂) =µ̂(1− ε̂)(qH − p) + (1− µ̂)ε̂(qL − p)− k̂∗

=µ̂(1− ε̂)qH + (1− µ̂)ε̂qL − (µ̂(1− ε̂) + (1− µ̂)ε̂)p− k̂∗

(4)
=(µ̂(1− ε̂) + (1− µ̂)ε̂)EH − k̂∗ (6)

u∗s(p, µ̂) =µ̂(1− ε̂)(qH − p) + (1− µ̂)ε̂(qL − p)− k̂∗

=µ̂(qH − p) + (1− µ̂)(qL − p)− µ̂ε̂(qH − p)− (1− µ̂)(1− ε̂)(qL − p)− k̂∗

=q̄µ̂ − p−
[
µ̂ε̂qH + (1− µ̂)(1− ε̂)qL −

(
µ̂ε̂+ (1− µ̂)(1− ε̂)

)
p
]
− k̂∗

(5)
= q̄µ̂ − p−

(
µ̂ε̂+ (1− µ̂)(1− ε̂)

)
EL − k̂∗ (7)

Assume that the signal is not precise enough in the sense of the lemma. This can have
two reasons. Either the expected value from buying is below zero even when receiving a
high signal (EH ≤ 0) or it is above zero even on receiving a low signal (EL ≥ 0).
In the �rst case, equation (6) implies u∗s(p, µ̂) < 0 = un which contradicts the conditions
of the lemma.
In the second case, equation (7) implies

u∗s(p, µ̂) = q̄µ̂ − p−
((
µ̂ε̂+ (1− µ̂)(1− ε̂)

)
EL + k̂∗

)
︸ ︷︷ ︸

>0

< q̄µ̂ − p = ub(p, µ̂)

which is a contradiction for the same reason.
These contradictions prove that EL < 0 < EH . Hence the consumer buys if and only if
she receives the high signal.

Proof of Lemma 3.4. We begin by �nding values p
µ̂
≤ pµ̂ such that the strict inequalities

hold.

ub(p1, µ̂) > max
{
un, u

∗
s(p1, µ̂)

}
∀ p1 ∈ [qL, p

µ̂
)

u∗s(p2, µ̂) > max
{
ub(p2, µ̂), un

}
∀ p2 ∈ (p

µ̂
, pµ̂) (8)

un > max
{
ub(p3, µ̂), u∗s(p3, µ̂)

}
∀ p3 ∈ (pµ̂, q

H ].

It is obvious from µ̂ ∈ (0, 1) that the �rst inequality is satis�ed for p1 = qL and the last
inequality for p3 = qH . It is thus only left to show that there is monotonic behavior in p in
the pairwise di�erences between ub(p, µ̂), u∗s(p, µ̂) and un. We show that the inequalities

∂
∂pub(p, µ̂) < ∂

∂pu
∗
s(p, µ̂) < ∂

∂pun
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hold on the interval (qL, qH) wherever k∗ and thus u∗s is di�erentiable in p. The left and
right component of this expression are obvious from their de�nitions.

∂
∂pub(p, µ̂) = ∂

∂p(µ̂qH + (1− µ̂)qL − p) = −1 ∂
∂pun = 0

By the shape of the function k∗ (on page 8), we know that u∗s(p, µ̂) is continuous and
piecewise di�erentiable in p on some (possibly empty) intervals (qL, p′), (p′, p′′), (p′′, qH)
and we have

u∗s(p, µ̂) =


us(p, µ̂, 0) = µ̂1

2(qH − p) + (1− µ̂)1
2(qL − p) if p ∈ I1

us

(
p, µ̂,

(
ε′
)−1

(d̂)
)

if p ∈ I2

us(p, µ̂, k̄) = µ̂(qH − p)− k̄ if p ∈ I3.

In this expression we have I2 = (p′, p′′) and I1, I3 are the sets [qL, p′) and (p′′, qH ].18

While the �rst and third components are easy to di�erentiate, the middle one becomes

∂
∂pus

(
p, µ̂,

(
ε′
)−1

(d̂)
)

= ∂
∂p

(
µ̂
(
1− ε(k∗)

)
(qH − p) + (1− µ̂)ε(k∗)(qL − p)− k∗

)
=− µ̂(1− ε̂)− µ̂(qH − p) ∂∂pε(k

∗)− (1− µ̂)ε̂+ (1− µ̂)(qL − p) ∂∂pε(k
∗)− ∂

∂pk
∗

=− µ̂(1− ε̂)− (1− µ̂)ε̂+ 1
d̂
∂
∂pε(k

∗)− ∂
∂pk
∗

=− µ̂(1− ε̂)− (1− µ̂)ε̂+ 1
d̂
ε′(k∗) ∂∂pk

∗ − ∂
∂pk
∗

=− µ̂(1− ε̂)− (1− µ̂)ε̂+ 1
d̂
d̂ ∂
∂pk
∗ − ∂

∂pk
∗

=− µ̂(1− ε̂)− (1− µ̂)ε̂ ∈ (ε̂− 1,−ε̂),

using the chain rule, omitting the arguments of k∗ and writing ε̂ := ε(k∗).
Summarized, we end up with the following expression

∂
∂pu
∗
s(p, µ̂) =


−1

2 if p ∈ I1

−µ̂(1− ε̂)− (1− µ̂)ε̂ if p ∈ I2

−µ̂ if p ∈ I3.

which is always strictly between −1 and 0 and even continuous. This proves the inequal-
ities (8).

It follows from Lemma 3.3 that the consumer really searches in the region (p
µ̂
, pµ̂). Fi-

nally, the price p = q̄µ̂ implies

un = ub(p, µ̂)

so that we must have p
µ̂
≤ q̄µ̂ ≤ pµ̂ for (8) to be true.

18Their order depends on the value of µ̂ which determines whether search e�ort increases or decreases
in p. For µ̂ = 1

2
, search e�ort is constant and two of the intervals are empty.
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Proof of Lemma 3.5. Set p̂ = q̄µ̂. Clearly ub(p̂, µ̂) := q̄µ̂ − p̂ = 0 = us(p̂, µ̂, 0) holds.
Moreover, we have

∂

∂k
us(p̂, µ̂, k) =− ε′(k)µ̂(qH − p̂) + ε′(k)(1− µ̂)(qL − p̂)− 1

for all k ∈ (0, k) and thus, taking the limit k → 0

lim
k→0

∂

∂k
us(p̂, µ̂, k) =− ε′(0)

[
µ̂(qH − p̂) + (1− µ̂)(p̂− qL)

]
− 1

p̂=q̄µ̂
= − ε′(0)

[
µ̂
(
qH − (µ̂qH + (1− µ̂)qL)

)
+(1− µ̂)

(
(µ̂qH + (1− µ̂)qL)− qL

)]
− 1

=− ε′(0)(2µ̂(1− µ̂)(qH − qL))− 1.

This is positive by the assumption. Hence, u∗s(p̂, µ̂) > us(p̂, µ̂, 0) = ub(p̂, µ̂) = un which
proofs qµ̂ = p̂ ∈ (p

µ̂
, pµ̂).

Assume now that the inequality stated in the lemma is not true. Then, by the calcu-
lations above and the strict concavity of ε, us(p̂, µ̂, k) is decreasing in k so that k = 0 is
the optimal choice of search e�ort. Thus

u∗s(p̂, µ̂) = us(p̂, µ̂, 0) = ub(p̂, µ̂) = un.

From the proof of Lemma 3.4, we know that

∂
∂pub(p, µ̂) < ∂

∂pu
∗
s(p, µ̂) < ∂

∂pun

for all p ∈ (qL, qH) and thus ub(p, µ̂) > u∗s(p, µ̂) for all p < q̄µ̂ and un > u∗s(p, µ̂) for all
p > q̄µ̂. Hence we have pµ̂ = pµ̂ = q̄µ̂.

Proof of Lemma 3.6. We only show the claim for p
µ̂
since the other part is basically the

same proof with even simpler arguments. Note that, given µ̂ ∈ (0, 1), p
µ̂
is uniquely

determined19 by solving

ub(p, µ̂) =u∗s(p, µ̂)

⇔ µ̂qH + (1− µ̂)qL − p =µ̂(1− ε)(qH − p) + (1− µ̂)ε(qL − p)− k∗ (9)

and since these expressions are continuous and piecewise di�erentiable, the function p
µ̂

also has these properties. 20

19This is also true if p
µ̂

= qµ̂. From Lemma 3.4 it follows that in this case k∗(p, µ̂) = 0, ε(k∗(p, µ̂)) = 1
2

and the equation (9) holds.
20 For the di�erentiability, the only problem occurs on the set

{µ̂ ∈ [0, 1] | d(pµ̂, µ̂) = ε′(0) or d(pµ̂, µ̂) = ε′(k̄)}

in which the possible non-di�erentiable points of k∗ are touched. By continuity, this set is closed and
hence compact. It can thus be written as the union of �nitely many open intervals and �nitely many
singletons. Within these intervals, the di�erentiation for k∗(p, µ̂) = k̄ or k∗(p, µ̂) = 0 applies. The
singletons are the only candidates in which pµ̂ may not be di�erentiable in µ̂.
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In the areas of di�erentiability, we either have k∗(p, µ̂) = 0 (implying ε = 1
2), k

∗(p, µ̂) =
k̄ (with ε = 0) or k∗(p, µ̂) = (ε′)−1

(
d(p, µ̂)

)
. In the �rst two cases, (9) yields

p
µ̂

= qµ̂ = µ̂qH + (1− µ̂)qL or p
µ̂

= qL +
k̄

1− µ̂

which both induce a strictly positive derivative in µ̂.
In the third case, di�erentiating (9) with respect to µ̂ yields

qH − qL − p′
µ̂

=(1− ε̂)(qH − p̂) + ε̂(p̂− qL)− µ̂( ∂
∂µ̂ε)(q

H − p̂)

+ (1− µ̂)( ∂
∂µ̂ε)(q

L − p̂)− p′
µ̂
(µ̂(1− ε̂) + (1− µ̂)ε̂)− ∂

∂µ̂k
∗

=(1− ε̂)(qH − p̂) + ε̂(p̂− qL) + 1
d̂
( ∂
∂µ̂ε)

− p′
µ̂
(µ̂(1− ε̂) + (1− µ̂)ε̂)− ∂

∂µ̂k
∗

where we left out the arguments for d, ε and k∗ and wrote p̂ = p
µ̂
, ε̂ = ε(k∗(p̂, µ̂)).

Reordering this equation and using ∂
∂µ̂ε = ε′(k̂∗) ∂

∂µ̂k
∗ = d̂ · ∂∂µ̂k

∗, we get

p′
µ̂

=
ε̂(qH − p̂) + (1− ε̂)(p̂− qL)

1− µ̂(1− ε̂)− (1− µ̂)ε̂
> 0.

The limit behavior limµ̂→0 pµ̂ = qL is clear, since we have qL < p
µ̂
≤ qµ̂ for all values

µ̂ ∈ (0, 1).
For µ̂ going to one, note that the convergence of p

µ̂
is guaranteed by the strict mono-

tonicity. Since k∗ can not be higher than qH for the equation (9) to be true, it is bounded
and hence there is an increasing sequence (µ̂n), converging to 1, for which k∗(p

µ̂n
, µ̂n)

converges to a value κ ≥ 0. Take such a sequence and the limit n→∞ in (9). We then
obtain

qH − lim
µ̂→1

p
µ̂

=
(
1− ε(κ)

)(
qH − lim

µ̂→1
p
µ̂

)
− κ

⇔ ε(κ)

(
qH − lim

µ̂→1
p
µ̂

)
= −κ

which, since the left hand side is weakly positive, implies κ = 0, thus ε(κ) = 1
2 and

�nally

lim
µ̂→1

p
µ̂

= qH .

Proof of Lemma 4.4. As seen from section 3, the consumer would buy for any price
below qL. This shows that no such price p < qL can be part of an equilibrium because a
deviation to any price in (p, qL) would yield a higher payo�. This shows the lower bound
of i).
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Assume that the equilibrium pro�t πL for the low type is strictly below qL − cL. A

deviation to the price qL − qL−cL−πL
2 would then yield the pro�t

qL − qL−cL−πL
2 − cL = qL−cL

2 + πL

2 > 2π
L

2 = πL.

This concludes the proof of statement iii). Having the low type set the price qH with
positive probability, the equilibrium de�nition implies µ(qH) < 1 and thus it is optimal
for the consumer to not buy the product, implying zero pro�t for the low type. This
contradicts iii). Using an obvious similar argument, we conclude that the low type can
not have any price above qH in its support. This shows ii) and the rest of i).
It is left to show statement iv). Let p ∈ (qL, qH) be a price that is in the support of
aL but not of aH . By the equilibrium de�nition we must have µ(p) = 0 so the consumer
would know the true quality when observing price p. Hence, he would not buy the
product and the low type would make no pro�t which contradicts the previous point.
Assume now that p ∈ (qL, qH) is a price in the support of aH but not of aL. Since
µ(p) = 1 and p < qH , the consumer buys with probability 1. So there must be at least
one price pL > p, pL ∈ supp(aL), otherwise the low type would deviate from any price to
p. Since only consistent strategies are played in equilibrium, we are left with two cases.
First case: b (pL) = (0, γ, γ), γ ∈ [0, 1]
By optimality of the low type's strategy, this price satis�es

p− cL ≤ (pL − cL)γ. (10)

That is, the low type must make at least as much pro�t with setting price pL than with
price p. By the previous part of the proof, pL is in the support of aH . Hence the high
type must be indi�erent between setting prices p or pL.

p− cH = (pL − cH)γ

(10)⇒ (pL − cL)γ + cL − cH ≥ (pL − cH)γ

⇔ (1− γ)cL ≥ (1− γ)cH

which, since the �rst equation also implies γ 6= 1, is not compatible with the assumption
cL < cH .
Second case: b (pL) = (k, 1, 0), k > 0
Let ε̂ := ε(k) be the probability of a false signal. This equals the chance that the low
type will sell her product for the price pL. Again by optimality of the low type's choice
the following inequality holds.

p− cL ≤ (pL − cL)ε̂ (11)

As before, the price pL must also be in the support of the high type. This yields

p− cH = (pL − cH)(1− ε̂)
(11)⇒ (pL − cL)ε̂+ cL − cH ≥ (pL − cH)(1− ε̂)
⇔ ε̂(pL − cH) ≥ (1− ε̂)(pL − cL)

which gives a contradiction for the same reason as before and using ε̂ < 1− ε̂.
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Proof of Lemma 4.5. Let p < p′ be two such prices, ε̂, ε̂′ the corresponding error proba-
bilities. For search to be possible, the prices have to be in both supports and hence, by
the indi�erence principle for both types,

(p− cH)(1− ε̂) = (p′ − cH)(1− ε̂′)⇒ (1− ε̂) > (1− ε̂′)⇔ ε̂ < ε̂′

(p− cL)ε̂ = (p′ − cL)ε̂′ ⇒ ε̂ > ε̂′

which gives a contradiction.

Proof of Lemma 4.6. Without search, there are two probabilities γ, γ′ ∈ [0, 1] of the
consumer buying for the prices p < p′. By the optimality of the �rm's strategy we have

(p− cH)γ = (p′ − cH)γ′

(p− cL)γ = (p′ − cL)γ′.

Note that, since the low type always has positive pro�t, all of these factors must be
strictly above zero. Reassembling these equations gives two di�erent values for the ratio
γ
γ′ since p 6= p′ and cL 6= cH .21 This is a contradiction.

Proof of Lemma 4.8. Assume such a price p ∈ (qL, qH) exists for which the consumer
buys with probability lower than one. Then, because of Lemma 4.4 iv) and iii), not
buying is not possible so she buys with probability γ ∈ (0, 1). She is thus indi�erent
between buying without search and not buying. In this case p = q̄µ(p) holds. Since
ε′(0) = −∞, she would search on that price by Lemma 3.5.

The case q = qL follows from the same argument as the proof of Lemma 4.4 iii). If sales
had less than full probability, a slightly lower price would yield full sales and hence a
higher pro�t.

Proof of Proposition 4.9. The previous lemmas already show that not more than two
equilibrium prices can exist in (qL, qH). We then show that there can not be a search
price ps and a no-search price p1 played by both types. If this was the case, we must
have p1 < ps since otherwise there would be incentives to deviate from ps to p1. For this,
remember that Lemma 4.8 shows that the price p1 induces sure buying.
Let now be p1 and ps be played in an equilibrium by both types. Applying the indi�er-
ence principle for both �rms we get

p1 − cH = (1− ε̂)(ps − cH)

p1 − cL = ε̂(ps − cL)

and thus

1− ε̂ =
p1 − cH

ps − cH

p1<ps
cH>cL
<

p1 − cL

ps − cL
= ε̂

21Here, we use that the fraction p′−c
p−c for p 6= p′ is strictly monotone in c for c < p, p′. This statement is

easy to check via di�erentiation.
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which contradicts ε̂ ∈ [0, 1
2 ].

Finally, note that if the price p1 is played, the consumer buys with certainty and p1 is
thus the lowest price in the equilibrium. Thus, qL /∈ supp(aL).
The statement about the low value of γ for b(qH) = (0, γ, γ) is obvious. If we denote

the low type's equilibrium pro�t by πL, one upper bound for γ is πL

qH−cL which is strictly
smaller than one. Note that there might also be a lower bound for this value, e.g.
if cH < qL. See for example the existence condition for the total adverse selection
equilibrium.

Proof of Lemma 4.11. Let (a, µ, b) be an equilibrium in which qH is played by the high
�rm and the consumer has strategy b

(
qH
)

= (0, γ, γ), γ > 0. This is a best response
because of µ̂ := µ

(
qH
)

= 1 and thus the consumer's utility

γ · ub(qH , µ̂) + (1− γ) · un︸︷︷︸
=0

= γ(µ̂qH + (1− µ̂)qL − qH) = γ(1− µ̂)(qL − qH)

attains its maximum in all values of γ. For slightly lower µ̂, however, this value has a
unique maximum in γ = 0 and thus the original strategy b

(
qH
)
is locally dominated by

(0, 0, 0). On the other hand, the total adverse selection equilibrium does not have this
problem since (0, 0, 0) is the equilibrium strategy for qH .
Every other equilibrium price is a search price ps or a non-search price p1 being in both
supports of the �rm's strategy or the price qL, set by only the low type. We show that
non of these prices is locally dominated in beliefs.
Let ps be an equilibrium search price (implying that µ(ps) ∈ (0, 1)) with consumer
behavior b(ps) = (k, 1, 0), k > 0. By the analysis of section 3, this strategy is the unique
maximum over all search behaviors. The remaining candidates for domination are thus
(0, 0, 0) (�don't buy�) and (0, 1, 1) (�buy�)22. If �don't buy� had the same utility, we had

us(ps, µ(ps), k) = µ(ps)
(
1− ε(k)

)
(qH − ps) +

(
1− µ(ps)

)
ε(k)(qL − ps)− k = 0 = un.

Di�erentiating this with respect to the posterior belief, one sees that

∂

∂m
us(ps,m, k) =

(
1− ε(k)

)
(qH − ps) + ε(k)(ps − qL) > 0

such that we have us(ps,m, k) > un for all m > µ(ps). The strategy b(ps) is thus not
locally dominated by the strategy (0, 0, 0).
If �buy� had the same utility as b, we had

us(ps, µ(ps), k) = µ(ps)
(
1− ε(k)

)
(qH − ps) +

(
1− µ(ps)

)
ε(k)(qL − ps)− k

= µ(ps)q
H + (1− µ(ps))q

L − ps = ub(ps, µ(ps)).

22Note that the proof shows that also their convex combinations can not be local best responses in this
case and thus are no candidates for dominating strategies.
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and the derivatives

∂

∂m
us(ps,m, k) =

(
1− ε(k)

)
(qH − ps) + ε(k)(ps − qL) (12)

≤ max
{
qH − ps, ps − qL

}
< qH − qL =

∂

∂m
ub(ps,m).

This shows that b(ps) is strictly better than (0, 1, 1) for any m < µ(ps). The strategy
b(ps) is thus not locally dominated.
Now let p1 < qH be an equilibrium price. If b(p1) = (0, 1, 1) is not a unique best
response, there is a search strategy (k, 1, 0) with the same payo�23. This also implies
µ(p1) ∈ (0, 1) since search being optimal is not possible for degenerate posteriors. Using
(12), we know that for a marginally higher posterior belief, this search strategy is worse
than �buy�. Strategy b(p1) is thus not locally dominated.
The last price to check is qL for which the equilibrium behavior (0, 1, 1) is clearly the
unique best response for any posterior belief m > 0 so that local domination is also
excluded here. This also concludes the proof for showing that the total adverse selection
equilibrium has belief-robust responses.

Proof of Proposition 4.13. Let (a, µ, b) be an equilibrium. We �rst show that there are no
equilibrium prices p which di�er from qL, qH , p

µ̂
and pµ̂ where µ̂ is determined according

to Bayes' law.
First, assume that there is an equilibrium no-search price p in (qL, qH) which is not
equal to p

µ(p)
. In this case, Lemma 3.4 shows that ub(p, µ(p)) > u∗s(p, µ(p)). Assuming

that µ is continuous in p, the continuity of ub and u
∗
s implies that �buying� will still be

better than �searching� for a marginal increase of the price. This is an incentive for both
types to deviate which contradicts the equilibrium property. If p = qL but played by both
types (thus µ(p) > 0), the non-emptiness of (qL, p

µ(p)
) shows that the same argument

holds.
Second, assume the existence of an equilibrium search price p 6= pµ(p). It follows again
from Lemma 3.4 that we must have u∗s(p, µ(p)) > un. Again the continuity of these ex-
pressions implies that the consumer will also search for a marginal higher price, although
the search e�ort and thus the error probability ε̂ might change. Note that the pro�t of
the �rm, depending on the type, is (p − cH)(1 − ε̂) or (p − cL)ε̂ such that, for a higher
price, at least one of these values will increase. This gives an incentive for at least one
type to deviate.
These two arguments together with Lemma 4.11 rule out all the equilibria from Propo-
sition 4.9 that are not mentioned in Proposition 4.13. We thus only have to show that
the rest of the equilibria can be supported by a locally continuous belief system.
Since all equilibria have a �nite number of prices, these prices can be considered in-
dependently from each other by looking at non-intersecting environments of them. The
price qL, if only played by the low quality �rm, can obviously be supported by µ(p) = 0
in any environment of qL. For the price qH note that for all values of µ̂ = µ(qH) the

23Lemma 3.5 rules out no-search strategies giving the same payo�.
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interval (pµ̂, q
H) is non-empty and the lower bound is continuously increasing in µ̂ (see

Lemma 3.6) so that there is an invertible, continuous function p(µ̂) with p(µ̂) ∈ (pµ̂, q
H)

for all µ̂ ∈ (0, 1). By the de�nition of pµ̂, the inverse µ(p) of this function satis�es

un > max
{
ub(p, µ(p)), u∗s(p, µ(p))

}
∀p ∈

(
p(1

2), qH
)

so that the consumer would not buy with that belief system for any other price and hence
there is no incentive for a deviation by any �rm.
Let now ps be an equilibrium search price on the upper line of the search area. That is

ps = pµ(ps).

Keeping the function µ constant above ps leads to the consumer not buying for higher
prices. This was shown in the proof of Lemma 4.11. For lower prices, we can use the
same argument as before of pµ̂ being strictly increasing in µ̂ to show that there exists
a continuous and even increasing belief system µ(p) for p < ps for which the consumer
does not buy on lower prices.
At last, assume p1 = p

µ(p)
for a no-search price, implying that the consumer buys

with probability one. Moreover, assume ε(k∗(p1, µ(p1))) < 1. Independent of the belief
system, no �rm would deviate to a lower price since the probability of selling can not
grow (p1 induces sure buying). Keeping the posterior belief constant to µ(p1) for higher
prices leads to search behavior for these prices. By continuity of ε(k∗), we have

lim
p↓p1

(1− ε(k∗(p, µ(p))))(p− cH) = (1− ε(k∗(p1, µ(p1))))(p1 − cH)
ass.
< p1 − cH

so that a high quality �rm has a lower pro�t for slightly higher prices. It is straightforward
to show the same for the low type.

The existence conditions are obvious from the proof, the minimum payo�s of both types
and the indi�erence principle for all prices in a type's price support.

Proof of Observation 4.14. In PEb, both types trade for sure while in PEs the high type
�rm has some trading probability 1 − ε̂ > ε̂. It su�ces to show the observation for any
hybrid equilibrium.
Remember that the existence of a hybrid equilibrium implies qL− cL < qH − qL. In this
case, the selling probability for the price qH in a separating equilibrium can not exceed

qL − cL

qH − cL
=

qL − cL

qH − qL + qL − cL
<

qL − cL

qL − cL + qL − cL
=

1

2
.

to not make the low �rm deviate to the higher price. The selling probability for a high
quality �rm in a hybrid equilibrium, however, is 1− ε̂ > 1

2 which proofs the observation.

Proof of Lemma 4.16. If two or more hybrid equilibria exist, the consumer surplus and
the low type's pro�t are both at their minimum. Observe that the latter implies that the
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search precision ε(k∗(pµ̂, µ̂)) in these equilibria is higher if the price pµ̂ is higher. This
also implies a higher chance of selling high quality goods and thus an overall strictly
higher pro�t for the high type. Hence, HE dominates all other hybrid equilibria.
Let either of PEb, PEs or HE exist. We know that in all these equilibria we have
πL ≥ qL−cL, πH ≥ 0 and u∗ ≥ 0 which are the payo�s of the TAS equilibrium. In PEb,
the consumer has positive utility while in PEs and HE, the high type �rm has positive
pro�t. Hence TAS is dominated.
Now let EQ either denote PEs or HE and denote ps and ε̂ the search price and its
corresponding signal imprecision in EQ. We know that the consumer is strictly better
o� in PEb. Assume πH(PEb) ≥ πH(EQ). It then follows, since ps ≥ pη

p
η
− cL

ps − cL
≥
p
η
− cH

ps − cH
=

πH(PEb)
1

1−ε̂π
H(EQ)

≥ 1− ε̂ > ε̂

⇒ πL(PEb) = p
η
− cL > ε̂ · (ps − cL) = πL(EQ).

This shows that PEb dominates EQ.
It is straightforward to show that HE and PEs do not dominate each other. The low
type pro�t in PEs is higher than in HE but this, together with the higher search price
in HE, implies a lower sale probability for the low type and hence a higher probability
for the high type. Hence the pro�t of the high type is higher in HE.

Proof of Lemma 4.17. Note �rst that the existence of PEs implies that the low type's
pro�t ε̂ · (pη − cL) is at least qL − cL. In the hybrid equilibrium, this bound must be
attained for the low type to justify playing both prices. We show that this condition can
not be met in both equilibria.
Taking the derivative of πL(pµ̂, µ̂) with respect to the posterior belief µ̂ (for values in
which this is di�erentiable) yields

∂

∂µ̂
πL(pµ̂, µ̂)

=
∂

∂µ̂
ε(k∗(pµ̂, µ̂)) · (pµ̂ − cL)

=

(
∂

∂µ̂
ε(k∗(pµ̂, µ̂))

)
(pµ̂ − cL) + εp′µ̂

=

{
0 if ε = 0

ε′(k∗)
([

(ε′)−1
]′

(d̂) ∂
∂µ̂d(pµ̂, µ̂)

)
(pµ̂ − cL) + εp′µ̂ if ε > 0

=

{
0 if ε = 0

ε′(k∗) 1
ε′′(k∗) d̂

2
(
qH − qL − 2pµ̂ + p′µ̂(1− 2µ̂)

)
(pµ̂ − cL) + εp′µ̂ if ε > 0

.

For this, we had to use standard results for the derivative of the inverse function
[
(ε′)−1

]′
=

1
ε′′ and the quotient di�erentiation theorem for the derivative of d.
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While the right hand side of the lower term is always positive, the left hand side is

positive if µ̂ ≥ 1
2 and pµ̂ ≥

qH+qL

2 . Note that the former condition implies the latter as

we always have pµ̂ ≥ qµ̂. It is thus su�cient to have µ̂ ≥ 1
2 . Moreover, in an equilibrium

where the high type always sets the search price, Bayes' law implies µ̂ ≥ η on that price.
The derivative of the low type's pro�t it thus always non-negative for µ̂ ∈ [1

2 , 1). It
is even strictly positive for all beliefs in which ε(pµ̂, µ̂) > 0 which must be the case in

equilibrium. If η ≥ 1
2 , this monotonicity results hold for all posterior beliefs that can

occur on equilibrium search prices.
By Lemma 3.6, this pro�t converges to 1

2(qH − cL) when taking µ̂ → 1. Using the
condition qL − cL < qH − qL, we know

1
2(qH − cL) = 1

2(qH − qL + qL − cL) > qL − cL.

Let η ≥ 1
2 and ε(k∗(pη, η))(pη−cL) < qL−cL. It then follows from the strict monotonicity

and the convergence that there exists exactly one µ̂ ∈ (η, 1) with ε(k∗(pµ̂, µ̂))(pµ̂− cL) =

qL − cL. On the other hand, if we had ε(k∗(pη, η))(pη − cL) ≥ qL − cL, we have no such
value for µ̂.
We see that the conditions of the low type having a higher pro�t than qL − cL in one
equilibrium and exactly this pro�t in the other are mutually exclusive. By continuity,
this extends to an open interval of values of η below 1

2 which proofs the existence of
η.

Proof of Proposition 5.1. In this proof, we often write p(a) instead of p
µ̂
(a) for exposi-

tional reasons. De�ne

P :=
{

(p, a)|d(p, η) < εk(k̄(a), a)
}

the open area for which ε(k∗(p, η, a), a) is positive.
Note that k∗(p, η, a) as de�ned by (1) is continuous24 and piecewise di�erentiable in

(p, a) in P and its complement P c. It thus also holds for the composition ε(k∗, a). Hence
p
η
(a) has the same properties25 , being the unique implicit solution of the equation

ub(p(a), η, a) = u∗s(p(a), η, a)

q̄η − p(a) = η
(
1− ε(k∗, a))

)(
qH − p(a)

)
+ (1− η)ε(k∗, a)

(
qL − p(a)

)
− k∗ (13)

24While k̄ can take the value ∞, k∗ can not. Since k̄ is continuous when restricted to the open set on
which it is �nite, k∗ is continuous.

25A similar di�erentiability argument as in footnote 20 on page 34 applies here. The set

{a|d(p(a), η) = εk(k̄(a), a)}

might not be bounded and hence not compact. But every intersection with [0, A], A > 0 is compact.
The previous argument applies to these sets and hence there are countably many, ordered potential
discontinuities a1 < a2 < . . . .
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where we left out the arguments of k∗. Di�erentiating this expression with respect to
a, in the areas where this is di�erentiable, and writing pa := ∂

∂ap(a) yields

−pa = η
[
(− ∂

∂aε)(q
H − p) + (1− ε)(−pa)

]
+ (1− η)

[
( ∂
∂aε)(q

L − p) + ε(−pa)
]
− ∂

∂ak
∗

= −
(
η(1− ε) + (1− η)ε

)
pa −

(
η(qH − p) + (1− η)(p− qL)

)
∂
∂aε−

∂
∂ak
∗

= −
(
η(1− ε) + (1− η)ε

)
pa + 1

d(p,η)
∂
∂aε−

∂
∂ak
∗

and

∂
∂aε = ∂

∂aε(k
∗, a) = εk(k

∗, a) ∂
∂ak
∗(p(a), a) + εa(k

∗, a)

= εk
∂
∂ak
∗ + εa

= d(p, η) ∂
∂ak
∗ + εa.

whenever (p(a), a) ∈ P and

∂
∂aε = ∂

∂a0 = 0

in every open subset of P c. Combining these expressions, we either get

− pa = −
(
η(1− ε) + (1− η)ε

)
pa +

εa
d

⇔ pa =
η(qH − p) + (1− η)(p− qL)

1− η(1− ε)− (1− η)ε
εa < 0

or

pa =
1

1− η(1− ε)− (1− η)ε
∂
∂a k̄(a) ≤ 0.

It is left to show the limit of p(a) when we let a go to 0 or ∞. We begin with the latter
case.
First claim: lima→∞ ε(k

∗(p
η
(a), η, a), a) = 0

We write k∗(a) := k∗(p
η
(a), η, a). Assume that lim supa→∞ ε(k

∗(a), a) =: e > 0. This

also implies

εk(k
∗(an), an) = d(p

η
(an), η) and ε(k∗(an), an) > e

2 ∀ n ∈ N

for some sequence (an) going to in�nity and having limn→∞ ε(k
∗(an), an) = e. Since

p
η
(an) converges (due to the monotonicity), so does d(p

η
(an), η) and we have

lim
n→∞

εk(k
∗(an), an) = lim

n→∞
d(p

η
(an), η) =: δ ≤ −1

max{η, 1− η}(qH − qL)
< 0

which implies εk(k
∗(an), an) > 2δ for large n. Choose k = − e

8δ > 0 and n large enough
such that this inequality holds. We then have for all these n either

ε(k, an) ≥ ε(k∗(an), an) >
e

2
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if k ≤ k∗(an) or

ε(k, an) = ε(k∗(an), an) +

∫ k

k∗(an)
εk(l, an)︸ ︷︷ ︸

≥εk(k∗(an),an)>2δ

dl >
e

2
+ (k − k∗(an))2δ

≥ e

2
+ k2δ =

e

2
− e

4
=
e

4

otherwise. This is a contradiction to limn→∞ ε(k, an) = 0.
Second claim: lima→∞ k

∗(p
η
(a), η, a) = 0

The argument here is almost the same. Assume lim supa→∞ k
∗(p

η
(a), η, a) =: κ > 0.

Take a sequence an, limn→∞ an =∞ with limn→∞ k
∗(an) = κ and k∗(an) > κ

2 for all n.
Let δ be as before, and let n be large enough so that the inequality εk(k

∗(an), an) > 2δ
holds. We then have

ε(κ2 , an) =ε(k∗(an), an)−
∫ k∗(an)

κ
2

εk(l, an)dl ≥ ε(k∗(an), an)−
(
k∗(an)− κ

2

)
δ
2

≥−
(
k∗(an)− κ

2

)
δ
2 → −

κ
2
δ
2 > 0, n→∞,

contradicting limn→∞ ε(
κ
2 , an) = 0.

From the two claims, it now follows easily by equation (13) that

q̄η − lim
a→∞

p
η
(a) = η(qH− lim

a→∞
p
η
(a))

⇒ lim
a→∞

p
η
(a) = qL.

This concludes the proof for the case a→∞.

The proof for a→ 0 is quite similar. Using basically the same arguments, we show that
lima→0 ε(k

∗(p(a), a), a) = 1
2 and that lima→0 k

∗(p(a), a) = 0. Hence the limit of equation
(13) yields

q̄η − lim
a→0

p
η
(a) =

1

2
η(qH − lim

a→0
p
η
(a)) +

1

2
(1− η)(qL − lim

a→0
p
η
(a))

⇒ q̄η − lim
a→0

p
η
(a) =

1

2
q̄η −

1

2
lim
a→0

p
η
(a)

⇒ lim
a→0

p
η
(a) = q̄η.

The last part of the proposition follows from this convergence of p
η
(so that for low

values, the price of PEb is above c
H and for high a it is not) and the previously shown

lim
a→0

ε(k∗(p(a), a), a) = 1
2 > 0

which ensures that ε > 0 for low values of a. This is part of the existence condition for
PEb.
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Proof of Proposition 5.2. The arguments here are basically the same as in the previous
proof, using that pη(a) is implicitly de�ned by the equation

un = u∗s(p(a), η, a)

0 = η
(
1− ε(k∗, a))

)(
qH − p(a)

)
+ (1− η)ε(k∗, a)

(
qL − p(a)

)
− k∗.

The derivative is thus either

η(qH − p) + (1− η)(p− qL)

−η(1− ε)− (1− η)ε
εa > 0 or

1

−η(1− ε)− (1− η)ε
∂
∂a k̄(a) ≥ 0.

The arguments for the convergence to q̄η and qH are again very similar to the previous
proof and are thus omitted.

Proof of Corollary 5.3. It follows from the convergence of p
η
(a) that PEb does not exist

for high values of a, since its price would be lower than the high quality production
costs cH from some point on. The search prices of both, PEs and HE, converge to
qH . The proof of Proposition 5.2 shows that for PEs, the corresponding signal error
ε
(
k∗(pη(a), η), a

)
converges to 0 when a goes to in�nity. Thus for high values of a we

have

ε
(
k∗(pη(a), η), a

)
(pη(a)− cL) < qL − cL (14)

so that PEs does not exist. The convergence of pη(a) to qH also shows that for high

values of a we must have pη(a) > cH . For each of these values of a, since the left hand

side of (14) converges to 1
2(qH − cL) > qL− cL when η goes to one, there exists µ̂ ∈ (η, 1)

so that

ε
(
k∗(pµ̂(a), µ̂), a

)
(pµ̂(a)− cL) = qL − cL.

This constitutes the existence of a hybrid equilibrium and thus of HE.
The above equality combined with the limit behavior

qH ≥ pµ̂(a) ≥ pη(a)→ qH , a→∞

implies the convergence of ε
(
k∗(pµ̂(a), µ̂)

)
to qL−cL

qH−cL .

Proof of Proposition 5.4. From the proof of Proposition 5.2 we know that

lim
a→0

pη(a) = qη, lim
a→0

k∗(pη(a), η, a) = 0 and lim
a→0

ε(k∗(pη(a), η, a), a) =
1

2
.

The low type pro�t in PEs thus converges to

lim
a→0

ε
(
k∗(p

η
(a), η, a), a

)
(pη(a)− cL) = 1

2(qη − cL)

= 1
2(ηqH + (1− η)qL − cL)

= 1
2(η(qH − qL)︸ ︷︷ ︸

<qL−cL

+qL − cL)

< qL − cL
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which shows that for low a this equilibrium type does not exist. It follows from the proof
of Lemma 4.17 that for each such a there is at least one belief µ̂(a) > η for which the low
type exactly attains the pro�t qL − cL at price p̂(a) := pµ̂(a)(a) if the consumer behaves

optimally. Writing k̂∗(a) := k∗(p̂(a), µ̂(a), a), this means

ε(k̂∗(a), a)︸ ︷︷ ︸
=:ε̂(a)

·(p̂(a)− cL) = qL − cL.

We can use a similar argument to the one in the proof of Proposition 5.1 to show that

lim
a→0

k̂∗(a) = 0 and lim
a→0

ε̂(a) =
1

2
.

The above equality then dictates that lima→0 p̂(a) = 2qL − cL and, since the posterior
belief satis�es

µ̂(a)(1− ε̂(a))(qH − p̂(a)) + (1− µ̂(a))ε̂(a)(qL − p̂(a))− k̂∗(a) = 0

for all a, taking the limit and applying the result yields lima→0 µ̂(a) = qL−cL
qH−qL .

Finally, the condition cH < 2qL − cL = lima→0 p̂(a) ensures that these prices indeed
form hybrid equilibria for low values of a.
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