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Abstract

Chakraborty and Harbaugh (2010) prove the existence of influential cheap talk equilibria

in one sender one receiver games when the state is multidimensional and the preferences of

the sender are state-independent. We show that only the babbling equilibrium survives the

introduction of any small degree of uncertainty about the sender’s preferences in the spirit

of Harsanyi (1973). None of the influential equilibria are robust to this kind of uncertainty.

1 Introduction

This paper is concerned with the strategic information transmission (as first analyzed in Craw-

ford and Sobel (1982)) between one informed sender and one uninformed receiver. The sender

can attempt to communicate her information to the sender before the sender takes an acti-

on. The receiver would, ideally, like to make his choice of action dependent on the state of the
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world, but in a way, that differs from the sender’s ideal choice of action. Thus, there is a conflict

of interest. Communication is costless (termed “cheap” in the literature). Messages the sender

transmits to the receiver have no intrinsic meaning, or no intrinsic meaning can be verified, and

only possibly take on meaning (reveal information) in equilibrium.

One of the main findings of the cheap talk literature, started by Crawford and Sobel (1982), is

that influential communication in one sender one receiver games is typically only possible if the

conflict of interest is not too large.3 This has been shown in the equilibrium characterization by

Crawford and Sobel (1982) and expanded by Goltsman, Hörner, Pavlov, and Squintani (2009).

If the conflict of interest is large, credible communication seemed only possible if messages are

verifiable or costly (for a survey of this literature, see Sobel (2013)).

Chakraborty and Harbaugh (2010) propose and analyze a one sender one receiver game with

a multi-dimensional state space with an extreme form of conflict of interest. The receiver is

essentially as modelled in Crawford and Sobel (1982), but the informed sender actually does

not at all care about the state itself:4 The sender’s preference is state-independent.

Surprisingly, and by a beautiful argument - which eventually allows the use of the Borsuk-Ulam

theorem (a fundamental fixed-point theorem; see Section 5.2 for a version of that theorem) -

Chakraborty and Harbaugh (2010) show that, in their model, influential cheap talk equilibria

always exist.

To analyze games of incomplete information, such as those of the cheap talk literature, in

addition to specifying players, strategies, and consequences (payoffs) to complete the model one

has to make informational assumptions. The informational assumptions made in Chakraborty

and Harbaugh (2010), as also in Crawford and Sobel (1982), are as follows. The utility functions

of both sender and receiver are common knowledge, as is the receiver’s “subjective” belief about

the state.

3In an influential equilibrium the sender is able to influence the receiver’s choice of action by the sender’s

choice of message.
4For multiple sender one receiver models Battaglini (2002) showed that a multi-dimensional state-space

implies the existence of equilibria with full information revelation. For one sender one receiver models this is

not typically true.
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In fact Chakraborty and Harbaugh (2010) relax these informational assumptions in a robustness

exercise in two different ways, and show, for each case, that the game so modified still exhibits

influential equilibria. Both robustness exercises allow the sender to have possibly different utility

functions. In both cases the sender knows her utility function and the receiver’s subjective belief

about the sender’s utility function is common knowledge. In one specification this commonly

known distribution has finite support with the number of positive probability utility functions

less than the dimensionality of the state space. In the second specification this commonly known

distribution places a sufficiently large atom on a single utility function.

As the state space is a compact subset of, at least, two-dimensional Euclidean space and as there

are, in principle, an infinite number of possible utility functions the sender could have (even

an infinite number of utility functions that are all very close to each other) we feel a different

robustness check should also be undertaken. In this paper we assume that the receiver, while

possibly having a good general idea about the sender’s preferences does not believe that any

particular utility function (out of the infinitely many possible ones) has positive probability.

We call this the Chakraborty and Harbaugh (2010) model with Harsanyi uncertainty, as the

uncertainty is very much as it is in the purification argument of Harsanyi (1973).5 Completing

this model by assuming that the receiver’s subjective belief about the sender’s utility function

is common knowledge, we then find that this modified game has no influential equilibria. This

result does not depend on the choice of the set of possible utility functions (as long as a belief

without atom can be specified) nor on the exact shape of the distribution of these beliefs.

The paper is organized as follows. We begin by restating the model of Chakraborty and Har-

baugh (2010) and stating our modification to that model in Section 2. Section 3 demonstrates

the main finding of Chakraborty and Harbaugh (2010), as well as the non-robustness to Har-

sanyi uncertainty of all influential equilibria, by means of the simplest possible example. The

5Harsanyi (1973) uses, what we here call, Harsanyi uncertainty to show that mixed equilibria, in which the

players are indifferent between at least two pure strategies, can be thought of as pure strategy equilibria in the

game played by, at least in the minds of the players, infinitely many possible “types”. As explained in Section 3,

the influential equilibria in Chakraborty and Harbaugh (2010) also rely on indifference. One way to state our

result is that the influential equilibria in Chakraborty and Harbaugh (2010), even though they are actually in

pure strategies, cannot be purified in the sense of Harsanyi (1973). Alternatively, one could also say that the

influential equilibria in Chakraborty and Harbaugh (2010) are not regular in the sense of Harsanyi (1973).
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main result of our paper is then stated and proven in Section 4. Section 5 concludes by provi-

ding a discussion of three related points. Section 5.1 shows by example that not all cheap-talk

games suffer from this non-robustness. The example is a simple special case of Crawford and

Sobel (1982) with almost common interest. Section 5.2 provides a theorem that states that, if

the Harsanyi uncertainty in the Chakraborty and Harbaugh (2010) model is only about the

receiver, then the game always has an influential equilibrium. Finally, Section 5.3 provides an

argument that demonstrates that, even if the sender’s preference is common knowledge, the-

re may be higher order belief uncertainty (about the receiver’s belief about the state), in the

spirit of Bergemann and Morris (2005), that again implies the non-robustness of all influential

equilibria.

2 The model

A sender (female) is privately informed about the realization of θ ∈ Θ, where Θ is a convex

and compact subset of RN with non-empty interior and N ≥ 2. The sender can send a costless

message m from a finite set of messages M to a receiver (male). The receiver observes the

message and then takes an action in action space A = Θ. A sender strategy is thus a mapping

from state space Θ to the set of messagesM , while a receiver strategy is a mapping from message

space M to action space Θ. The utility function of the receiver is given by v(a, θ) = −(a− θ)2.

This implies that, in any equilibrium, the receiver, “knowing” the sender’s strategy, plays, as his

best response, the (conditional) expectation of θ. The prior of the receiver is described by the

distribution function F with full support on Θ. The utility of the sender is a function u : A → R

that does not depend on the realization of the state variable θ.

The equilibrium concept is Bayesian Nash. A Bayesian Nash equilibrium is termed influential

if there are at least two messages (sent with positive probability according to F ) which induce

different actions.67

6Note that in any equilibrium the receiver will never want to randomize between two actions. His best

response (for messages sent with positive probability) is always unique. In fact, for the purpose of this paper it

is without loss of generality to restrict attention to pure strategies for both the sender and the receiver.
7Sobel (2013) differentiates between an influential and an informative equilibrium. In an influential equili-

brium different messages induce different actions, while in an informative equilibrium different messages induce
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Up to this point, the model we presented here is exactly the model introduced by Chakraborty

and Harbaugh (2010). We now add uncertainty about the preferences of the sender in the

following way to the model. There is a set of possible utility functions U for the sender. The

sender is privately informed about her utility function u ∈ U . The receiver has a prior belief

given by distribution function φ, a distribution over the set U which has no atoms.8 We call this

extended model the Chakraborty and Harbaugh (2010) model with Harsanyi-Uncertainty, as

the way we introduce uncertainty is essentially as in Harsanyi (1973), the “purification” paper.

3 The main example

(a) No uncertainty (b) Uncertainty

Figure 1: Uncertainty vs. no uncertainty in the linear case

For our main example suppose that Θ = [0, 1]2 (i.e. N = 2) and that the sender’s preferences

are linear. That is, for any a ∈ Θ, we have u(a) = a1 +xa2. The “indifference slope” x is known

to the sender, but not known to the receiver. The receiver has a non-atomic prior φ over x in

the interval [x0 − ε, x0 + ε] for some fixed and commonly known x0 ∈ R and ε > 0. In terms of

different sender beliefs. In our context the two notions are identical.
8We assume the necessary technical assumptions on U are satisfied, such that a non-atomic distribution

exists.
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our general model we have U = {u(a) = a1 + xa2|x ∈ [x0 − ε, x0 + ε]}. Suppose, further, that

the set of messages M consists of exactly two elements m1 and m2.

Consider first the case in which there is no uncertainty about the sender’s preference. For such

a case Chakraborty and Harbaugh (2010) show that there is an equilibrium of the following

kind, as illustrated in Figure 1 (a). There is a hyperplane h that divides the state space Θ

into two regions. In region 1 (say, above the hyperplane) the sender sends message m1, which

induces action a1, while in the other remaining region 2 the sender sends message m2 inducing

action a2. The two actions are simply (and necessarily in equilibrium) the updated expected

state given the sender’s strategy. Chakraborty and Harbaugh (2010) show, by a nice argument

appealing to the Borsuk-Ulam theorem, that the hyperplane can be chosen (rotated around

any arbitrary state c) such as to make the sender exactly indifferent between actions a1 and a2.

Therefore, they show that an influential equilibrium exists.

Suppose now there is Harsanyi-Uncertainty about the slope of the indifference curve as modelled

above. This case is illustrated in Figure 1 (b). Now consider the following strategy. The state

space is divided into two regions (by, for instance, but not necessarily, a hyperplane). As before,

the sender sends message m1 in region 1 and message m2 in region 2. It is now possible that

there is a preference-type of the sender who is indifferent between the two induced actions a1

and a2. Note, however, that this is true for only exactly a single one of these preference-types

of senders. All other preference-types have a strict preference for one or the other action. This

means all other preference-types (and they have cumulative probability 1 in this model) will

want to deviate to a strategy that involves sending one and the same message irrespective of the

state. Thus, there is no such influential equilibrium in the model with Harsanyi-Uncertainty.

4 The main result

We now state and prove the main theorem. In order to do so, we first define Condition (S), as

stated in the online appendix of Chakraborty and Harbaugh (2010).

The set of possible utility functions U (that the sender might have, from the point of view of

the receiver) satisfies Condition (S) if for any two actions a and a′ , if u′(a) = u
′
(a
′
) for u′ ∈ U ,
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then u(a) 6= u(a
′
) for all u ∈ U , u 6= u

′ . For example, the linear preference model in our main

example (Section 3) satisfies this property. More generally, Condition (S) holds for preferences

whose indifference curves satisfy a single crossing property. The following theorem is the main

result of this paper.

Theorem 1. Consider a sender-receiver game as defined in Section 2. Suppose the set of

possible utility functions for the sender, U , satisfies Condition (S) and suppose that φ, the

receiver’s prior belief over U , is non-atomic. Then there does not exist an influential equilibrium

in this game.

Proof. The proof is by contradiction. Suppose there exists an influential equilibrium. Hence,

there exist messages m1 and m2 that are sent with positive probability (under F and φ) and

induce different actions, a1 = E(θ|m1) 6= a2 = E(θ|m2). In other words, for each message there

is a set of senders (with positive probability under φ) that send this message in a set of states

that also has positive probability under F . Action ai, for i ∈ {1, 2}, is then the receiver’s unique

(and pure) best response to receiving message mi (given the senders’ strategies).

The strategy profile given is thus such that the receiver behaves optimally. We now turn to the

(various types of) senders. In order for a sender to use message m1 in some states and message

m2 in other states (and given the sender has state-independent preferences) the sender must be

exactly indifferent between both induced actions a1 and a2. We thus must, at a minimum, have

that there is a sender-type u′ ∈ U such that u′(a1) = u′(a2). But then Condition (S) implies

that for all u ∈ U , u 6= u
′ , we have u(a1) 6= u(a2). Given that distribution φ is non-atomic, the

“event” u 6= u′ has probability one under φ. This means that a unit measure of senders has a

strict preference to send only one of the two messages (over the other) irrespective of the state.

This, in turn, implies that the receiver’s best response to both messages must be the same. We

thus arrive at a contradiction.

Comments:

1. An example sketched in Figure 2 explains why a condition like Condition (S) is needed for

the non-existence of an influential equilibrium. Take an interior point c and a hyperplane h

which splits the state space in two halves. The indifference curves of the different sender
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Figure 2: Existence of influential equilibrium despite Harsanyi-Uncertainty

types are the dotted lines.9 Importantly all indifference curves intersect at two places

(violating Condition (S)), which are exactly the best response actions a1 and a2 of the

receiver to receiving message m1 (state is above line h) and m2 (state is below line h).

Thus, there is an influential equilibrium. Condition (S) rules out such situations.

2. Nevertheless, it is straightforward to generalize Theorem 1 to a somewhat weaker con-

dition than Condition (S): Say Condition (S
′
) holds if for any two actions a and a

′ ,

Pφ(u ∈ U|u(a) 6= u(a
′
)) = 1. The proof is the same.

3. Theorem 1 and the Condition (S
′
) version of Theorem 1 give sufficient conditions for

the non-existence of influential equilibria. It might be interesting to investigate necessary

conditions for the non-existence.

4. Note that, in Theorem 1, the set of possible sender preferences U , apart from the assump-

tion that it admits a non-atomic distribution and satisfies Condition (S) or (S’), can be

anything. Of course we have in mind that there is a modeler’s choice of u0 ∈ U (as, for

instance, chosen by Chakraborty and Harbaugh (2010) as a good guess for the sender’s

preferences), and that all other possible u ∈ U are close to u0. For instance, all u ∈ U are

such that the maximal pointwise difference to u0 is below some small positive real number

9One may think of a continuum of indifference curves between the left-most and the right-most curve.
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ε. Theorem 1 implies that even if all u ∈ U are close to u0 (and close to each other) the

sender-receiver game with Harsanyi-Uncertainty does not have an influential equilibrium.

5. Note, finally, that if indeed all u ∈ U are ε-close to some u0 ∈ U then any influential

equilibrium of the game with sender preference u0 and without uncertainty about the

sender’s preference, remains an ε-equilibrium of the sender-receiver game with Harsanyi-

Uncertainty.

5 Discussion

5.1 Uncertainty about the bias in Crawford and Sobel

We have shown that the influential cheap talk equilibria of Chakraborty and Harbaugh (2010)

do not survive the introduction of Harsanyi-Uncertainty about the type of the sender. In this

section we show that this is not a general problem that all sender-receiver games suffer from.

To see this we use a simple example in the spirit of Crawford and Sobel (1982) with a possibly

biased sender in which information transmission can still happen despite uncertainty about this

bias.

The state space is Θ = [−1, 1]. The prior of the receiver is given by a distribution F (with

density f) over Θ that is symmetric around zero.10 The sender is privately informed about the

realization of the state θ ∈ Θ and can send a costless message m ∈M = {H,L} to the receiver.

The receiver observes the message of the sender and takes an action a ∈ A = Θ = [−1, 1].

The sender has utility function u(a, θ, b) = −(θ + b − a)2 and the receiver utility function

v(a, θ) = −(θ − a)2. Here, b denotes the sender’s bias relative to the receiver. Recall that

a denotes the action taken by the receiver, and θ the state. Suppose, first, it was common

knowledge that the sender’s bias is equal to zero. Thus, the game is one of complete common

interest. This game has an influential equilibrium in which senders with state below zero send

message L and senders with state above zero send message H. The receiver chooses actions

10The assumption of symmetry is not important for the result. It allows us, however, to dramatically simplify

the equilibrium calculations.
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which are equal to the conditional expectation of the state conditioning on the observed message

and given the sender’s strategy. For the case of a uniform prior F , for instance, the receiver

chooses action aH = 1
2
upon receiving message H and aL = −1

2
upon receiving message L.

We now introduce Harsanyi-Uncertainty about the bias into this example of a Crawford and

Sobel (1982) sender-receiver game.11 The sender knows her bias precisely, in addition to knowing

the state. The receiver does neither know the true state nor the precise bias b. Instead, the

receiver only has a prior φ (with density function ϕ) over an interval [−ε,+ε] of possible biases

of the sender for ε positive but small. The prior φ is assumed to be symmetric around 0 and

orthogonal to the prior F over the state space.12

We shall now compute an influential equilibrium that is close to the equilibrium without bias

uncertainty given above. Suppose that the receiver plays action aH if he observes message H

and action aL if he observes message L with (without loss of generality) aL < aH . Then the

behavior of the sender must be as follows. If the state θ is below a cut-off of q(b), which depends

on the sender’s bias, then she sends message L, otherwise she sends message H. The cut-off

must be such that the sender with bias b and state equal to this cut-off q(b) is indifferent

between the two messages. This consideration leads to q(b) = aH+aL
2
− b. The symmetry in the

two distributions implies that aL = −aH . This in turn implies that the cutoff is q(b) = −b and

independent of the two actions.13 It then remains to calculate the equilibrium action aH . It is

given by the conditional expectation, from the sender’s point of view, of the state q(b) given

that message H is sent, i.e. given that θ > q(b). For ε small enough, this can be expressed as

the double-integral

2

∫ ε

b=−ε

∫ 1

θ=−b
θf(θ)ϕ(b)dθdb,

where the 2 is the reciprocal of the probability that θ > q(b) (derived from the symmetry in

the two distributions). For the special case of two uniform distributions for F and φ we obtain

aH = 1
2
− ε2

6
and aL = −aH . Thus, except for the receiver’s actions being just slightly closer to

11Papers with uncertainty about the bias in the cheap talk literature include Morgan and Stocken (2003)

and Li and Madarász (2008). We are not aware of a paper that introduces uncertainty about the bias in a way

similar to ours.
12In other words the receiver’s joint prior about state and bias is the product of the two marginal priors. Bias

and state are, in the receiver’s view, independently drawn.
13Without symmetry in the distributions this would not be true, and calculations would be more cumbersome.
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the center than under the case without bias-uncertainty, the equilibrium has hardly changed.

In particular, as ε tends to zero the influential equilibrium of the game with bias-uncertainty

converges to the original influential equilibrium of the game without bias-uncertainty. To see this

not only for the double-uniform prior case, note that, generally, the condition θ > q(b) = −b,

as ε tends to zero, tends to the condition θ > 0, which is the condition employed in the model

without bias uncertainty.

5.2 Different receiver types

Suppose there is no Harsanyi-Uncertainty about the preferences of the sender. That is, as

in Chakraborty and Harbaugh (2010), there is only one type of sender with state-independent

utility function u : A → R, whereA = Θ and Θ a convex and compact subset of RN withN ≥ 2.

Instead, there are possibly infinitely many different receiver types in terms of the receiver’s

subjective belief F over the state space Θ. That is, there is a set F of distributions over the

state space. Each receiver privately knows his distribution F . The sender is not informed about

the receiver’s prior, but holds her own prior ψ over the set F . This prior ψ is commonly known

and can be a continuous distribution or can have atoms, or can even be a finite distribution.

Theorem 2. Consider a sender-receiver game as defined in Section 2 with the information

structure as given in Section 5.2. Then this game has an influential equilibrium.

Proof. The proof follows the existence result of Chakraborty and Harbaugh. Fix an arbitrary

c ∈ int(Θ) which exists as Θ is nonempty. Let hs,c be the hyperplane through c with “orientation”

s ∈ SN−1. The orientation is orthogonal to the hyperplane and has (Euclidean) length 1. Thus,

SN−1 is the unit sphere in RN . The hyperplane splits (essentially partitions) the state space into

two nonempty regions R1(hs,c) and R2(hs,c). The expert sends message m1 if θ ∈ R1 and m2

if θ ∈ R2. Receiver type F best responds to the sender’s strategy by choosing optimal action

aFi (hs,c) ∈ Ri(hs,c) upon receiving message mi (for i ∈ {1, 2}).

The sender, with given fixed prior ψ, computes, for i ∈ {1, 2}, her expected utility ui(hs,c) =

Eψ
[
aFi (hs,c)

]
. For a fixed interior point c, each ui(hs,c) is a continuous function in s ∈ SN−1.

For opposite orientations s,−s ∈ SN−1, we have R1(hs,c) = R2(h−s,c) and R2(hs,c) = R1(h−s,c)
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implying u1(hs,c) = u2(h−s,c) and u1(h−s,c) = u2(hs,c).

Consider the difference between the two utilities: ∆(·, c) : SN−1 → R, where ∆(s, c) = u1(hs,c))−

u2(hs,c)). The property that ∆(s, c) = −∆(−s, c) makes this a (continuous) odd map in s. The

Borsuk-Ulam theorem14 then implies that there is a s∗ ∈ SN−1 such that ∆(s∗) = 0. Thus,

there exists for every interior c an orientation s∗ ∈ SN−1 such that u1(hs∗,c)) − u2(hs∗,c)) = 0.

Thus, we have found an influential cheap talk equilibrium.

5.3 Higher-order belief uncertainty

In the spirit of Bergemann and Morris (2005) and the so-termed “Wilson-doctrine” one could

ask how robust the influential equilibria of Chakraborty and Harbaugh (2010) are to higher-

order belief uncertainty. The previous subsection demonstrates that the influential equilibria

of Chakraborty and Harbaugh (2010) are robust to uncertainty that the sender might have

about the receiver’s belief. In this small section we argue that essentially any higher-order

belief uncertainty with a continuum of sender-types will again remove all influential equilibria

of Chakraborty and Harbaugh (2010).

The argument is not more complex than our argument, presented in Section 4, to show that

the influential equilibria of Chakraborty and Harbaugh (2010) are non-robust to Harsanyi-

Uncertainty. It does, however, require a bit more notation. Let θ ∈ Θ be the state, privately

known to the sender. Let F ∈ F be the subjective belief of the receiver about the state, privately

known to the receiver. Let u be the sender’s utility function, commonly known to sender and

receiver. Let ψ ∈ Ψ be the subjective belief of the sender about the receiver’s subjective belief,

privately known by the sender. Let, finally, µ be the belief of the receiver about the sender’s

private belief ψ, commonly known to sender and receiver.

This model shares with the original Chakraborty and Harbaugh (2010) model and the model

of Section 5.2 that there is common knowledge of the sender’s utility function. It differs from

the Chakraborty and Harbaugh (2010) model, but still agrees with the model of Section 5.2,

14The Borsuk-Ulam theorem implies that all continuous odd functions f : SN−1 → R have a zero, i.e. there

exists s∗ such that f(s∗) = 0.
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in so far as the receiver’s belief about the state is not common knowledge. It differs from the

model of Section 5.2 in so far as the sender’s belief about the receiver’s belief is not common

knowledge. Thus, there are again, as in the model of Section 2 and unlike the model of Section

5.2, multiple types of sender.

Now suppose that there is an influential equilibrium with at least two used messagesm1 andm2.

Suppose each message mi induces optimal receiver actions aFi (different for different receiver

beliefs F ). The sender evaluates the expected utility of these actions according to her private

belief ψ ∈ Ψ about the distribution over the receiver’s private belief F by Eψu(aFi ). Suppose

further that the commonly known belief of the receiver, µ, over the private beliefs of the sender

is non-atomic and the set Ψ satisfies some condition like Condition (S). Then, if one sender-type

ψ is indifferent between the two messages, i.e. Eψu(aF1 ) = Eψu(aF2 ), no other sender-type ψ′ is

indifferent. That is, for all ψ′ ∈ Ψ with ψ′ 6= ψ we have that Eψ′u(aF1 ) 6= Eψ′u(aF2 ). By the same

argument as in the proof of Theorem 1 almost all sender-types will want to deviate from the

proposed strategy. Thus, this game (with higher-order belief uncertainty as described here) has

no influential equilibria.
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