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Radner Equilibria under Ambiguous Volatility

Patrick Beißner∗

December 9 2013

Abstract

The present paper considers a class of general equilibrium economies when
the primitive uncertainty model features uncertainty about continuous-time
volatility. This requires a set of mutually singular priors, which do not share
the same null sets. For this setting we introduce an appropriate commodity
space and the dual of linear and continuous price systems.
All agents in the economy are heterogeneous in their preference for uncer-
tainty. Each utility functional is of variational type. The existence of equi-
librium is approached by a generalized excess utility fixed point argument.
Such Arrow-Debreu allocations can be implemented into a Radner economy
with continuous-time trading. Effective completeness of the market spaces al-
ters to an endogenous property. Only mean unambiguous claims equivalently
satisfying the classical martingale representation property build the marketed
space.

Key words and phrases: Knightian uncertainty, variational preferences, general equilibrium, mu-

tually singular priors, dynamic consistency, volatility uncertainty, excess utility map, gross substi-

tutes, risk adjusted priors, sublinear-expectation, Radner implementation, incomplete markets

JEL subject classification: G10, D50, C62

1 Introduction

Ever since the pioneering general theory of competitive markets, the extension to a
dynamic equilibrium has served as an initial position for a neoclassical intertemporal
asset pricing theory.

Most models of an Arrow-Debreu economy in continuous time assume an under-
lying and a priori given probabilistic structure. We replace this all-encompassing
and basic assumption with a set of pairwise mutually singular probability measures
(priors) P . Our main focus is concerned with models where the volatility of the
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nancial support through the German Research Foundation (DFG) and the IGK “Stochastics and
Real World Models” Beijing–Bielefeld are gratefully acknowledged.
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state variable is uncertain or ambiguous. This can only be accomplished through
one such set. Furthermore, we aim to analyze the interrelation between volatil-
ity uncertainty and incomplete markets. In contrast to the situation of mutually
equivalent priors,1 a new feature emerges about the states of the world:

Certainty about the true prior automatically determines states which cannot oc-
cur. A different situation arises when certainty is limited to the knowledge that the
true prior is contained in P . This shrinks the set of impossible states and reasonable
contingent claims.
The existing literature, when dealing with potentially complete markets, has es-
tablished a standard way to construct a financial market equilibrium. Here Duffie
and Huang (1985) may be regarded as the seminal paper that explores the idea
in Kreps (1982), about implementing an Arrow-Debreu allocation into a so called
Radner (1972) economy. This is achieved via continuous trading of long-lived secu-
rities. A major tool for spanning the complete market of Arrow-Debreu securities
is the concept of a martingale generator, which reduces in a Brownian setting to
the classical martingale representation theorem.2 However, in the present setup the
concept of martingale multiplicity as an integer valued measure for the dimension of
uncertainty is imprecise. An additional component in the martingale representation
suggests, instead, a measure with fraction number values.
This paper establishes the existence of a Radner equilibrium with an endogenously
incomplete financial market. The starting point is a heterogeneous agent Arrow-
Debreu economy with ambiguity averse agents, where the objective uncertainty is
given by the set of priors P . Similarly to representative agent economy in Epstein
and Wang (1994) we observe the indeterminacy in the effective equilibrium priors
of the price system, as output data of this intermediate economy. As a result,
only special Arrow-Debreu equilibrium allocation can be implemented into a Rad-
ner economy, and we observe an incomplete market equilibrium. The endogenous
indeterminacy of the Arrow-Debreu equilibrium price system determines the degree
and structure of the incompleteness of the implementing financial market.
In the present Radner economy, each agent has to find trading strategies of buy-
ing and selling traded claims in order to maximize her utility on net trades when
volatility uncertainty of the state variable is present. This is achieved in terms of
a suitable dynamic conditional sublinear expectation X 7→ EQEt [X].3 The set QE

1Ambiguity or Knightian uncertainty in continuous time is often modeled by the so called
drift uncertainty. Here, the probabilities must be equivalent to each other. Such a description
is not appropriate when the volatility is the object which carries the uncertainty. See Chen and
Epstein (2002) for a formulation of such preferences via a backward stochastic differential equation
(Backward-SDE) and Beißner (2011) for the related existence of general equilibrium.

2The notion of martingale multiplicity works in a separable framework, so that an orthogonal-
ization procedure counts the dimension of uncertainty.

3At this point the assumed weak compactness and stability under pasting of P play an essential
role for the construction of a universal random variable being under each prior simultaneously the
conditional expectation. When the set of priors is mutually equivalent, this property is nothing
else as the dynamic consistency of conditional expectation. In the volatility uncertainty framework
stability under pasting is a stronger condition, see Nutz and Soner (2012). A key feature of this
conditional expectation is the semigroup property Es ◦ Et = Es for s ≤ t, which implies the Law
of Iterated Expectation.
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refers to all equilibrium price measures, given an equilibrium allocation. In the
classical uncertainty model with only one prior, the linear risk-adjusted expectation
operator is related to the unique equilibrium price measure.
As demonstrated in the finite state case, Mukerji and Tallon (2001) discuss am-
biguity aversion as a source for incompleteness in financial markets. Beyond the
related marketed space, a kind of collective portfolio inertia results. In essence,
the market-clearing condition in the Radner equilibrium is in action. The role of
the financial market as a mechanism to change the shape of income streams is ac-
complished only partially. Nevertheless, this fits into the arguments by Dow and
da Costa Werlang (1992), where inertia for a single agent in a partial equilibrium is
detected. In a different setting, De Castro and Chateauneuf (2011) observe similar
results on unambiguous trade with unambiguous aggregate endowment.
As argued in Anderson and Raimondo (2008), the candidate equilibrium price pro-
cess is often assumed to be dynamically complete. Quite frequently this assumption
is encoded in the exogenous volatility model of the candidate equilibrium price pro-
cess.4 In this regard, our model differs in terms of an intrinsic incompleteness due
to the volatility uncertainty and the appearance of ambiguous net trades. As such,
the size and structure of the marketed space is the result of Arrow-Debreu equilib-
rium.

Martingales and Dynamic Spanning
The relationship between martingale multiplicity and dynamical spanning of the
commodity space is an economically meaningful corollary of the martingale repre-
sentation. In the case of Brownian noise a square integrable random variable X can
be represented in terms of a stochastic integral:

X = EP [X] +

∫ T

0

θsdBs

This result is strongly related to the completeness of the financial market. Loosely
speaking, in our mutually singular prior framework, a number representing the di-
mensions of uncertainty does not exist. In essence, this is caused by the more evolved
martingale representation theorem. Similarly to the classical Doob-Meyer decom-
position for a submartingale, the representation of martingales under a sublinear
expectation sustain an additional monotone compensation term:

X = EP [X] +

∫ T

0

θsdBs −KT

Only a closed subspace of the present commodity space L1(P) allows for the clas-
sical replication of a possible consumption profile X : Ω → R. In this case the
compensation term (Kt) equals zero. Such random variables are mean unambigu-
ous, i.e. the expectation value of the claim is the same under each prior. At this
abstract stage, we can already presume some implications for incompleteness in the
involved market structure, see Remark 3.1.

The uncertainty model and the economy

4See for instance Duffie and Zame (1989) and Karatzas, Lehoczky, and Shreve (1990).
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We consider a measurable space (Ω,F) and fix a set of the probability measures
P . In general, three cases of relationships between priors in P are possible. As
described at the beginning of the introduction, two priors maybe mutually singu-
lar. This implies a disjoint support of these measures. The second possibility is a
mixture. In this case, two priors may be equivalent on a sub σ-field and mutually
singular on a complementary sub σ-field. The last case, which does not appear, is
mutual equivalence of measures.
In principle, this modeling can describe a set of different probability assessments
related to the states of the world ω ∈ Ω, so that different possible shapes of the
intrinsic volatility may appear. Sure statements concerning random variables in this
uncertainty setting cannot be reflected as almost sure events under only one prior
P ∈ P . In this context, arguments are based on P-quasi sure analysis, which takes
every prior into account simultaneously. Here, a reasonable consumption profile
X : Ω → R should have a finite first moment. Thus, our commodity space L1(P)
consists of random variables with a finite expectation for all P ∈ P .5 Based on this
sublinear expectation, we can define a norm c1,P such that the space of consump-
tion profiles becomes a Banach space. The positive cone of L1(P), given by random
variables satisfying X ≥ 0 P-quasi surely, induces an appropriate order structure.
Having the commodity space fixed, we introduce the corresponding topological dual
space. This space consists of continuous and linear functionals, which are the candi-
date price systems. Similarly to the single prior case a generalized Radon-Nikodym
density result, representing these price functionals, becomes available. In essence,
we can represent every linear and c1,P-continuous functional by a measure µ such
that dµ = ψdP , where P ∈ P and ψ ∈ L∞(P ). This allows us to approach the
existence of equilibria via a modified excess utility mapping.
With the given commodity-price duality, we introduce a class of preference rela-
tions for the agents in the economy. In the seminal paper by Gilboa and Schmeidler
(1989), the well-known maxmin preferences are axiomatized, and account for ambi-
guity aversion. Later Hansen and Sargent (2001) generalize this concept by intro-
ducing an entropy based penalty term for the priors under consideration.6 In our
economy, agents are described by variational preferences. Maccheroni, Marinacci,
and Rustichini (2006) introduce and axiomatize variational preferences, a robust
version of the expected utility in the form

U(X) = min
P∈P

EP [u(X)] + c(P ),

where the minimum is taken by a whole class of possible probabilistic views of con-
ceivable scenarios. The functional c : P → R penalizes each prior with a different
weight. We show that natural properties, such as concavity and upper semiconti-
nuity are imposed when natural conditions on the primitives. When the penalty
term is linear even c1,P-continuity can be shown. Moreover, we fully describe the
superdifferential of such a utility functional, as in Rigotti and Shannon (2012) for
the finite state case.
The economy consists of I ∈ N agents, equipped with variational preferences on

5For instance, for each P ∈ P, the commodity space satisfies L1(P) ⊂ L1(Ω,F , P ).
6Note that in their model the set of priors are mutually equivalent.
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the positive cone of the commodity space L1(P). The existence of equilibrium is
achieved by a modified Negishi method. In the first step we prove the existence of
Pareto optimal allocations.7 The modification of the excess utility relies on multiple
priors, which are now explicit arguments of the excess utility map.8

In the last part, we implement the net trades of the equilibrium allocation into a
Radner type economy. This is achieved via the previously mentioned martingale
representation. The implementability of the Arrow-Debreu Equilibrium is limited
by the linear price system.

Related Literature
In the standard single prior Arrow-Debreu setting with expected utility, market
prices are directly affected via individual marginal rates of substitution for state
contingent commodity bundles (See Martins-da Rocha and Riedel (2010) for a gen-
eral overview of issues concerning issues the existence of equilibria.) In the simplest
version of this model, equilibrium price systems are given by marginal utility weights
that can result into risk-neutral probabilities. Continuous-time models and dynamic
Arrow-Radner equilibria are treated in Duffie and Huang (1985) and Dana and Pon-
tier (1992). A unique Radner equilibrium is observed in Karatzas, Lehoczky, and
Shreve (1990). This approach is based on a representative agent, see Huang (1987).
We also refer to Hugonnier, Malamud, and Trubowitz (2012) and Herzberg and
Riedel (2013) for a recent discussion of endogenous completeness in continuous-
time finance models.
Existence of equilibria in incomplete markets for a finite state space is well devel-
oped, starting with the seminal paper by Duffie and Shafer (1985). For an overview
we refer the reader to Magill and Quinzii (2002). In Basak and Cuoco (1998), re-
stricted market participation is modeled as a source of market incompleteness. As
a consequence, Pareto weights are stochastic.
When the uncertainty is given by an undominated multiple-prior setting, consider-
ations of heterogeneous agent economies are treated only for a finite state space, see
for instance Dana (2004) and Dana (2002). In Dana and Le Van (2010) no-arbitrage
conditions are associated with a risk adjusted set of priors. Rigotti and Shannon
(2012) discuss market implications of ambiguity and feature generic determinacy of
general equilibrium.
Ravanelli and Svindland (2013) consider efficient allocation with variational prefer-
ence when the uncertainty is given by a set of equivalent probability measures. In
this case, it is possible to start with a reference probability space.
Representative agent economies for the infinite state and discrete time case can
be found in Epstein and Wang (1994), where a modification of Lucas’ asset pric-
ing model is established in terms of a Choquet expected utility introduced in
Chateauneuf (1991). Very recent research by Epstein and Ji (2013a) provide a
discussion of the continuous-time case and the notion of sequential trade equilibria
with a single agent.

7Here, the topological lattice properties of the commodity space ease the proof for the existence
of an optimal allocation.

8Several technical difficulties motivate this change. A particular problem is that the price space
is not directly related to a state price density as in the traditional Lebesgue space setting when
there is only one prior P .
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This paper is organized as follows. Section 2 illustrates the implications of the
uncertainty model in the case of finitely many states or priors. In Section 3 we
introduce the commodity space and the price space. Moreover, we introduce the
variational utility functional and discuss its properties. In Section 4, we show the
existence of Pareto optimal allocations. Afterwards we establish the existence of
equilibrium and the Radner implementation. The appendix collects the details and
proofs.

2 Simple Economies under Singular Priors

For perspective, we give an outline about the implication of maxmin preferences
when there are finitely many states of world Ω = {ω1, . . . , ωn}. As we will see,
the worst case expected utility with a partially disjoint support of possible priors
emerges in the form of a Leontief-type utility. In the first subsection, we illustrate
the implication in a concrete two agent economy with two priors P = {P1, P2} on
Ω that are neither singular nor equivalent. Then, we move to the setting with the
state space found in Sections 3 and 4 and foreclose some results formulated therein.
Two priors P1, P2 ∈ ∆̊n, the interior of the simplex of probability measures, are
always equivalent. Two priors are singular if their supports are disjoint.

2.1 The Finite State Case

In order to illustrate the main point with a concrete example, consider an economy
with two agents i = 1, 2 and n = 6 states of the world at time T > 0. The
uncertainty is given by two measures represented by P1 = (0, 0, 1

4
, 1

4
, 1

4
, 1

4
) and P2 =

(1
4
, 1

4
, 1

4
, 1

4
, 0, 0), see Figure 1.9 It is unknown which prior is the correct, although

Figure 1: Non-Equivalent and Non-Singular Priors

each prior determines different states of the world. Each agent is ambiguity averse
on P = {P1, P2} with maxmin preferences represented in terms of U i : R6

+ → R
9In the volatility uncertainty setting, such priors occur when the volatility is in agreement up

to some time t > 0 and then differs.
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given by

U i(X) = min
P∈P

EP [ai ln(X)]

=
ai
4

(
ln (Xω3 ·Xω4) + min

(
ln (Xω1 ·Xω2) , ln (Xω5 ·Xω6)

))
.

The endowments are given by e1 = (1, 1, 2, 1, 3, 3) and e2 = (2, 2, 1, 2, 1, 1),
where the prior-dependent endowment is denoted by ei(P ), for instance we have
e1(P1) = (1, 1, 2, 1). Due to the singularity in the events {ω1, ω2} and {ω5, ω6}, the
utility structure has a Leontief flavor in these states. This means for instance, the
indifference curve with respect to payoffs in the events {ω1, ω2} and {ω5, ω6} are
L-shaped. This is illustrated in the Edgeworth boxes of Figure 2.
After some calculations, we have an equilibrium price system Π(·) = 〈·, p〉, with
p ∈ R6

+ such that (p5, p6) = 0 must hold. This follows from the L-shaped indiffer-
ence curve and (eω1 , eω2) > (eω5 , eω6). The price system has the same support as
P2. This can be infered from the first order conditions, since each agent has P2 as
the minimizing (effective) prior of her maxmin utilities. The non-unique equilib-
rium allocation (X̄1, X̄2) ∈

[
X,X

]
lies on the orange line segment of Figure 2 (b).

Arrow securities of state ω5 and ω6 are for free, so that a feasible retrade on the
order interval

[
X,X

]
leaves the utility unaffected. On the other hand, consump-

Figure 2: Edgeworth boxes via Leontief-type utility

tion in state ω3 and ω4 behaves as in the expected utility setting with one prior.
Specifically, the consumption is prior independent. This can be seen in the explicit
description of U i(X) above and Figure 2 (a). In Subection 3.1.2 we consider the
analog space of unambiguous contingent claims denoted by M[P ]. However, trade
outside of M[P ] is possible.

2.1.1 The Modified Negishi-Approach

Continuing with the setting of the last paragraph, we illustrate how the existence
of an equilibrium can be shown. To do so, we consider the first order condition

αi∇U i(X̄ i) = αi

(
ai · P2({ω1})

X̄ i
ω1

, . . . ,
ai · P2({ω4})

X̄ i
ω4

, 0, 0

)
= 〈p, ·〉, i = 1, 2.
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From this characterization of the Pareto optimal (PO) allocation, we denote the set
of common effective priors under the efficient allocation by P(α). The restriction
to concentrate on linear prices leads to a price system 〈p, ·〉 = EP2 [ψ·] having an
endogenous support {ω1, . . . , ω4}. As such the representation as a sole random
variable fails.
We illustrate how the Negishi method applies to show the P2 almost sure unique
equilibrium, so that the indeterminacy of the equilibrium allocation is outside the
support of P2. Let us consider the utility possibility set in Figure 3. The utility

Figure 3: Utility possibility set under {P1, P2} = P

possibility set (UPS) for the economy EP with expected log utility agents under
P ∈ P is denoted by UP . Clearly, each EP induces a unique equilibrium weight
denoted by α = GE(P ). On the other hand each α ∈ ∆2 induces a representative
agent Uα, whose effective prior is denoted by P ∈ P(α). The UPS of the original
economy with multiple priors is then given by U = UP1 ∩ UP2 . Moreover, we have
P2 ∈ P(α2). While P1 /∈ P(α1) is not an effective prior for UP1 and therefore
contradicts the first order conditions with respect to the α1-efficient allocation.
This illustrates how the Negishi approach with a von Neumann-Morgenstern utility
still applies under the correct prior of the maxmin preferences, as explained in the
following.
An equilibrium has to satisfy two conditions. On the one hand, the prior P2 = P ∗ as
a component of the price system must be effective for the representative agent, i.e.
P ∗ ∈ P(α∗). On the other hand the weighting α∗ of the representative agent under
P ∗ must be the correct equilibrium weight denoted by GE(P ∗) = α∗. These two
conditions can be condensed in a fixed point of a composited correspondence, i.e.
P ∗ ∈ P ◦GE(P ∗). This observation will lead to a proof method for the existence of
an equilibrium, also in the volatility uncertainty setting. Moreover, as a byproduct,
we observe structural properties more directly.
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2.2 The Infinite State Case

One special property of every finite dimensional commodity space L is the equiva-
lence of every two arbitrary norms ‖ · ‖i : L → R+, i = 1, 2, with this in mind, we
move to the infinite (and uncountable) state space Ω, consisting of continuous paths
ω : [0, T ]→ R, equipped with the usual Borel σ-algebra B(Ω) = F . Let us consider
two mutually singular priors P = {P1, P2} on (Ω,F) as the uncertainty model. In
Section 3 we describe this in more detail.
Let the endowment ei of each agent i = 1, 2 depend on the prior. So that we
have ei = (eP1

i , e
P2
i ) ∈ L2(P1) × L2(P2), where L2(P ) = L2(Ω,F , P ) is the usual

Lebesgue space of integrable random variables equipped with a standard norm
‖x‖L2(P ) = EP[|x|2]1/2. Since both priors are possible, it is reasona-ble to consider
endowments satisfying c2,P(ei) = max

{
‖ePi ‖L2(P ),P ∈ P

}
<∞. The finiteness con-

dition under the c2,P-norm corresponds to the space L2(P), being with each P ∈ P
a strict sub space of L2(P ).
A standard price system Π : L2(P)→ R for equilibria in infinite dimensional com-
modity space is linear and continuous in the topology of the underlying commodity
space. As we will present in Section 3.1 the related price dual space of L2(P),
denoted by L2(P)∗, is strictly larger than L2(P )∗, P ∈ P , due to the stronger
c2,P-norm. We have the following sequence of inclusions:

L2(P) ⊂ L2(P ) ∼= L2(P )∗ ⊂ L2(P)∗, P ∈ P
Again, each agent has maxmin utility Ui(X) = ai min(EP1 [ln(X)],EP2 [ln(X)]), de-
fined on the positive cone L2(P)+. Let (X̄1, X̄2) be an equilibrium allocation of the
economy E = {L2(P), Ui, ei}i=1,2 such that X̄P

1 + X̄P
2 = eP and X̄P

1 = X̄1 P -a.s.
holds under every P ∈ P .
Now, consider the situation when Ui(X̄i) = aiE

P2 [ln(X̄i)] 6= aiE
P1 [ln(X̄i)] for each

i = 1, 2. The supergradients of Ui at a consumption bundle in L2(P)+ lie in the
dual L2(P)∗. The first order condition to characterize a Pareto optimal allocation
gives us

α1 · ∇U1(X̄1) = µ1 = µ2 = (1− α1) · ∇U2(X̄2), where dµi = αi · u′i(X̄i)dP2.

In comparison to the traditional general equilibrium theory the equilibrium pric-
ing measure Q = µ

|µ| cannot contain all the information about the uncertainty
model. Although Q completely represents the linear and continuous price system
Π(·) = EQ[·], it is decoupled from the non-effective prior (relatively to the equilib-
rium allocation) P1. Note, that this conceptual observation is consistent with the
finite state case in Subsection 2.1. These informal computations are condensed in
the following observation:

Let (p, (X̄i)) be an equilibrium in {L2(P2), Ui, ei}2
i=1 then an equilibrium for

{L2(P1)× L2(P2), Ui, ei}2
i=1 is given by ((0, p), (X̄P1

1 , X̄P2
1 ), (X̄P1

2 , X̄P2
2 )).

In contrast to a standard finance model with an underlying probability space
(Ω,F , P ), the equilibrium price system Π ∈ L2(P)∗ no longer carries the infor-
mation of all null sets. This has direct implications for the related concepts of asset
pricing, such as arbitrage, equivalent martingale measures and stochastic discount
factors.
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3 The Primitives of the Economy

Let us start with the underlying uncertainty model. We consider scenarios, repre-
sented by probabilistic priors, which do not share the same null sets. As such, it is
not appropriate to assume the existence of a given reference probability measure.
Concerning the construction of priors, our method needs some structure on the state
space.
Let Ω be the set of all possible states of the world. A state is an exogenous se-
quence of circumstances from time 0 to time T which are relevant to the economy.
We assume Ω ={ω∈ C([0, T ];R) :ω0 = 0} to be the canonical space of continuous
sample paths starting in zero and endowed with the uniform topology.10 The σ-field
of events is given by the Borel σ-field of Ω, called F = B(Ω). LetM1(Ω) be the set
of all probability measure on (Ω,F).
Now, we construct a set of priors on the measurable space (Ω,F). The canonical
process Bt(ω) = ωt is a Brownian motion under the Wiener measure P0.11 We
denote by Fo = {Fot }t∈[0,T ], with Fot = σ(Bs, s ∈ [0, t]) the raw filtration of the
canonical process B. The strong formulation of volatility uncertainty is based upon
martingale laws in terms of stochastic integrals:

P a := P0 ◦ (Xa)−1, where Xa
t =

∫ t

0

√
asdBs, t ∈ [0, T ].

The stochastic integral Xa is the classical Itô integral under P0. The process
a = (at)t∈[0,T ] is Fo-adapted and has a finite first moment. Probability measures
generated in this way are denoted by PS, referring to the strong formulation of
volatility uncertainty.

Assumption 1 The uncertainty of each agent is generated by a convex set D of
processes, such that the set of priors is weakly compact12 and given by

P = {P a ∈ PS : a ∈ D}.

Recall that, the volatility of a stochastic integral Xa =
∫ √

adB is given by the

quadratic variation 〈Xa〉t =
∫ t

0
asds. As such, by construction the volatility un-

certainty is encoded in the quadratic variation. The mutual singularity of priors
is an intrinsic and natural property in the continuous-time setting. For instance,
P a(〈BT 〉 = T ) = 0 6= 1 = P0(〈BT 〉 = T ) may appear, for some constant a 6= 1.
In order to address this fact, we need to modify the notion of a sure event. To do
so, we say a property holds P-quasi surely (P-q.s.) if it holds outside a P-polar set.
Such sets have zero probability under every prior P ∈ P . Next, we illustrate this
construction method of priors for Peng’s G-expectation.13

10This topology is generated by the supremum norm ‖ω‖∞ = supt∈[0,T ] |ωt|, ω ∈ Ω.
11Note that P0 is not a reference measure and its technical purpose is linked to the construction

of the uncertainty model. The case P0 /∈ P is possible and refers to 1 /∈ D in Assumption 1.
12The set of measures is relatively compact if and only if for each sequence of closed sets Fn ↘ ∅

implies supP∈P P (Fn)↘ 0. Regularity in terms of monotonic continuity of EP [·] is equivalent to
weak relative compactness for P. We refer to Huber and Strassen (1973) and Denis, Hu, and Peng
(2011).

13We refer to Peng (2010) for the analytic construction of G-expectations.
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Example 1 Let the uncertainty be given by a G-expectation. The volatility is
associated with the volatility bounds 0 < σ < σ. The associated nonlinear ex-
pectation EG[X] can be represented by maxP∈P EP [X] = EG[X], P is induced by
D = {a ∈ L2(P ⊗ dt) and Fo-adapted : at(ω) ∈ [σ, σ]P0-a.s.}. This is a weakly
compact set of probability measure on (Ω,F).14 The quadratic variation process is
no longer deterministic. All the volatility uncertainty for B is concentrated in the
quadratic variation 〈B〉. Under every prior P a in P, the volatility process is given
by 〈B〉Pat =

∫ t
0
asds. This bracket process is absolutely continuous with respect to

the Lebesgue measure on [0, T ] and its density satisfies σ2t≤〈B〉t≤ σ2t, t ∈ [0, T ],
P0-a.s.

3.1 The Commodity Space and the Price Dual

We aim to consider contingent claims having a finite expectation for every possible
prior P ∈ P . In the tradition of Debreu (1959), we present an axiomatic analysis of
economic equilibrium, when Assumption 1 defines the uncertainty model. We intro-
duce the underlying space of consumption bundles (c, C) consisting of consumption
at time 0 and time T . The comprehensive set of priors prevents the consideration
of a classical Lebesgue space. Nevertheless, we repeat similar steps and begin with
a rather small set of reasonable random variable. Then we introduce a reasonable
norm with which we accomplish the (topological) completion.
We begin to describe the state-dependent consumption good at time T , where we
consider only claims on consumption with a finite expectation for each prior P ∈ P .
As in Huber and Strassen (1973), for each F -measurable real functions X : Ω→ R
such that the expectation EP [X] exists under every P ∈ P , we define the upper
expectation operator15

EP [X] = max
P∈P

EP [X].

For a general treatment, see Denis, Hu, and Peng (2011) and the references therein.
Let Cb(Ω) denote the set of all bounded, continuous and F -measurable real functions.
The concrete description of our uncertainty model allows us to define an appropriate
commodity space which considers every prior in P as relevant. Consequently, we
suggest a norm taking every prior into account, so that we consider the capacity-type
norm c1,P on Cb(Ω) by c1,P(X) = EP [|X|].

3.1.1 The Commodity Space

Let the closure of Cb(Ω) under c1,P be denoted by L1(P) = L1(Ω,F ,P).16 Moreover
let L1(P) = L1(P)/N be the quotient space of L1(P) given by the c1,P null elements

14See Proposition 5 in Denis and Kervarec (2013) for the weak compactness and convexity, see
also Theorem 2.1.20 in Peng (2007).

15EP [·] satisfies the property of a sublinear expectation (see Peng (2006)), i.e. monotonicity,
positive homogeneity, constant preserving, sub-additivity. This object builds the basis of our
model.

16It is easily verified that Cb(Ω) ⊂ dom(EP [·]) = {X ∈ L(Ω) : EP [X] < ∞} holds, where L(Ω)
denotes the set of Borel measurable function X : Ω→ R.
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denoted by N .17 We do not distinguish between classes and their representatives.
Two random variables X, Y ∈ L1(P) can be distinguished if there is a prior in P ∈ P
such that P (X 6= Y ) > 0.18 For the given commodity space we may introduce an
order structure X ≤ Y if P (X ≤ Y ) = 1 for every prior P ∈ P . We obtain the
following result.19

Proposition 1 The given triplet (L1(P), c1,P(·),≤) is a Banach lattice with an σ-
order continuous norm, that is Xn ↘ 0, with Xn ∈ L1(P) implies c1,P(Xn)↘ 0.

As usual, we define by L1(P)+ = {X ∈ L1(P) : X ≥ 0 P-q.s.} the positive cone of
L1(P). In Subsection 3.2, the fine quasi sure order structure causes a more involved
notion of strict monotonicity.

Cone Order Monotonicity Arbitrage

L1(P)+ X ≥ Y q.s. standard –
L1(P)+\{0} X ≥ Y q.s. & X 6= Y strict weak

L1(P)⊕
X ≥ Y & X 6= Y

P -a.s. ∀P ∈ P semi-strict semi weak
L1(P)++ X > Y q.s. weakly strict strong

Table 1: Order Structures in the Commodity Space L1(P)

Loosely speaking, a strictly desirable consumption bundle must be nonzero under
every possible prior. In preparation, let us introduce the cone of semi-strictly posi-
tive random variables

L1(P)⊕ =
{
X ∈ L1(P)+ : P (X > 0) > 0 ∀P ∈ P

}
.

Note that this intermediate cone contains L1(P)++ = {L1(P)+ : X > 0 q.s.}, the
quasi interior of L1(P)+.20 Accordingly, we have the following strict inclusions
L1(P)++ $ L1(P)⊕ $ L1(P)+ \ {0}. Table 1 summarizes the different cones and
their interrelation to monotonicity and possible arbitrage notions.

3.1.2 Unambiguous Contingent Claims

As illustrated in Figure 2, there are contingent claims which can be perfectly repli-
cated. Such random variables are not affected by the volatility uncertainty. As we
will discuss later, especially in Subsection 4.1, there is a subspace of L1(P) which be-
comes a natural candidate for the marketed space of perfectly replicable contingent
claims, as given by

M[P ] = {ξ ∈ L1(P) : EP [ξ] = −EP [−ξ]}

=
{
ξ ∈ L1(P) : EP [ξ] = EP ′ [ξ] for all P, P ′ ∈ P

}
.

17One can show that these null elements are P-quasi surely zero.
18In a setting with equivalent priors, i.e. priors sharing the same sets of mass zero, this implies

that P (X 6= Y ) > 0 for all P ∈ P.
19This is important for the application of an abstract existence result for quasi equilibria. How-

ever, we take a different approach to prove existence, see also Remark 2.
20By Proposition 1, L1(P) is a Banach lattice. The representation follows then by Lemma 4.15

in Abramovich and Aliprantis (2002).
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Random variables in M[P ] are called P-unambiguous. For another set of priors Q,
the notion of Q-unambiguity (in L1(P)) is still meaningful and well-defined. Mean
unambiguity is strongly related to ambiguity neutrality. For instance, we may take
the viewpoint of Epstein and Zhang (2001) and consider the Dynkin system of
unambiguous events U(P) = {A ∈ F : P (A) is constant for all P ∈ P}.

3.1.3 The Price Space

We turn now to the space of price systems on R × L1(P). A model which aims to
observe the existence of a general equilibrium should first of all clarify what price
system decentralizes an allocation. As it is common, we suppose a linear price
system Ψ : R × L1(P) → R. Moreover we require continuity under the topology
of the c1,P-norm.21 We discuss the topological dual of L1(P). For our purposes we
need to determine market prices via marginal rates of the agents. For the existence
proof for equilibrium, the following result is of importance.

Proposition 2 Elements in the topological dual of (L1(P), c1,P) can be represented
by an absolutely continuous measure:

L1(P)∗ ⊃
{
l(·) =

∫
·dµ = EP [ψ·] : P ∈ P and ψ ∈ L∞(P )

}
= L̃1(P)∗

The subspace L̃1(P) in Proposition 2 is smaller than L1(P). Same arguments, as in

Proposition 1, show that
(
L̃1(P), c1,P(·),≤

)
is an order continuous Banach lattice.22

Remark 1 In Lemma 1 we consider a class of utility functionals on L1(P) such
that there are super-gradients even in L̃1(P)∗. In principle, the dual of L̃1(P) seems
to be more acceptable. On the other side, it is unclear how to work within L̃1(P),
when we apply results from the dynamic theory of G-expectation, whose natural
domain is L1(P). Moreover, some convergence results are only available for L1(P)
(see the beginning of the Appendix).

The representation in Proposition 2 has similarities to the duality of Lebesgue spaces
from classical measure theory, when only one prior P describes the uncertainty. Note
that the stronger capacity norm c1,P(·) in comparison to the single prior L1(P )-norm
implies a richer dual space, controlled by the set of priors P .23 Let us introduce the
space of semi-strictly positive functionals

L1(P)∗⊕ =
{
l ∈ L1(P)∗ : l(·) = EP [ψ·] with P ∈ P and ψ ∈ L∞(P )++

}
,

where L∞(P )++ denotes the cone of P -a.s. strictly positive and bounded random
variables. Suppose l ∈ L1(P)∗⊕, then l may not be strictly positive, i.e. l(Y ) = 0

21Later on we assume semi-strict monotonicity of preferences. This guarantees semi-strictly
positive prices. Since R× L1(P) is a Banach lattice, this implies norm continuity.

22For more details, we refer to Section 2, Lemma 4.1 and Proposition 4.1 in Bion-Nadal and
Kervarec (2012).

23With the explicit representation in Proposition 2, the weak topology of the dual pairing is
tractable and allows us to apply standard convergence results from measure theory.
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if Y ∈ L1(P)+ \{0}.24 This indicates that we need a weaker notion than strict
positivity. In Table 2, we give the different dual cones and their interrelation to the
representation property. Similarly to the commodity space we have different order
structures with respect to its order dual. Specifically, we compare the representing
measure of Proposition 2. Furthermore,

Dual Cone Order Positivity Repr. dµ=ψdP of l

L1(P)∗+ l ≥ 0 on L1(P)+ standard ψ ∈ L∞(P )+&P ∈ P
L̃1(P)∗+\{0} l > 0 on L̃1(P)+\{0} strict ψ∈L∞(P )++&P ∈Pcan25

L1(P)∗⊕ l > 0 on L1(P)⊕ semi-strict ψ ∈ L∞(P )++&P ∈ P
L1(P)∗++ l > 0 on L1(P)++ weakly strict ψ ∈L∞(P )+\ {0}

Table 2: Order Structures in the Dual of L1(P)

the following result shows that exactly semi-strictly positive random variables have
strictly positive values with respect to functionals in L1(P)∗⊕.

Corollary 1 Let l : L1(P) → R be a linear and continuous functional, we have:
l ∈ L1(P)∗⊕ ⇔ l(X) > 0 for all X ∈ L1(P)⊕.

Now, the representing measure µ of a linear and c1,P-continuous functional can be
decomposed by P and ψ. The P -almost surely strictly positive random variable ψ ∈
L∞(P )++ can be seen as a state price density under the cohesive probability model
P . This allows us to represent every semi-strictly positive, normalized, continuous
and linear price system on R× L1(P) as

Ψ(x,X) = π(x) + Π(X) = π · x+ EQ[X],

where π > 0. The equilibrium price measure given by Q(A) =
∫
A
ψ(ω)dP (ω),

A ∈ F , describes the value of any claim in terms of an expected payoff, where ψ
is normalized to unit expectation under P ∈ P . To sum up, our commodity-price
pair is given by (R× L1(P),R× L1(P)∗).

3.2 Variational Preferences

A priori, each agent is faced with the same objective uncertainty model (Ω,F ,P).
In this situation the heterogeneity is induced by different ambiguity attitudes which
we describe below.
Every agent is determined by an initial endowment (e, E) ∈ R+ × L1(P)+, and a
utility functional V on R+×L1(P)+ being additively separable, so that we can write
V (x,X) = u0(x) + U(X). We describe the utility functional U on L1(P)+ for an

24This can be seen as follows. Let P̂ (Y > 0) > 0 and Y = 0 P -a.s. for every P ∈ P \ {P̂} and
let X 7→ l(X) = EPl [ψX] such that Pl, P̂ are mutually singular and ψ > 0 P l-a.s., hence l(Y ) = 0.

25Note that Pcan denotes the canonical equivalence class, which we mention in Example 3 of
Subsection 3.2, below. For details we refer to section 4 in Bion-Nadal and Kervarec (2012) and
especially Definition 4.3 therein.
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arbitrary agent, where the positive cone is induced by the order relation of Section
3.1. As we consider preference relations � on L1(P)+, convexity and continuity can
be defined in a standard way. Monotone preferences are directly related to the order
structure and the set of priors P . We state a weak notion of strict monotonicity on
L1(P)+.26

Definition 1 A preference relation is called semi-strictly monotone at X ∈
L1(P)+, if X + Z � X for all Z ∈ L1(P)⊕.

In Remark 1 below, we discuss in more detail why this modified strict monotonicity
condition is more appropriate when mutually singular priors constitute the uncer-
tainty. We allow for variational preferences introduced and axiomatized by Mac-
cheroni, Marinacci, and Rustichini (2006):27

C � X ⇐⇒ min
P∈P

(
EP [u(C)] + c(P )

)
≥ min

P∈P

(
EP [u(X)] + c(P )

)
, (1)

where u : R+ → R is a utility index and c : PS → R is an ambiguity index. For
each C ∈ L1(P)+ define the set of effective probability scenarios

M(C) = argmin
P ′∈P

EP ′ [u(C)] + c(P ′).

As we show in Lemma 1, this set is proportional to the superdifferential of the
utility. Such priors minimize the variational utility at C. We assume that variational
preferences are defined on a weakly closed set of priors for the uncertainty model
P , i.e. dom(c) = {P ∈ PS : c(P ) < ∞} ⊆ P . The case dom(c) = {P} corresponds
to an expected utility under P ∈ P . The following lemma gives standard properties
of the variational utility functional.

Lemma 1 Let u : R+ → R be monotone, strictly concave, continuous and differ-
entiable on R++. Let c : PS → [0,∞] be grounded28, convex, and weakly lower
semi-continuous. Define the utility functional U : L1(P)+ → R by (1).

Then we have, U : L1(P)+ → R is

1. monotone and semi-strictly monotone if u is strictly monotone.

2. concave, not strictly concave on L1(P)+ and strictly concave on M[P ].

3. c1,P-upper semi-continuous. If the penalty term is linear on dom(c), then
U : L1(P)+ → R is c1,P-continuous. In this case, the penalty term is given by
c(P ) = L1(P)〈φ, P 〉L1(P)∗ = EP [φ], for some φ ∈ L1(P).

4. The superdifferential of U : L1(P)+ → R at C is given by ∂U(C) =
{µ : F → R : dµ = u′(C)dP, P ∈M(C)}.

26An alternative notion of weak strict monotonicity could refer to a cone L1(P)X = {Y ∈
L1(P)+ : P (Y > 0) > 0 ∀P ∈ M(X)} depending on the effective priors M(X) at X ∈ L1(P)+,
defined below. In this situation strict utility improving consumption atX refers to the intermediate
cone L1(P)X , heavily depending on X. Another alternative is the local monotonicity concept in
Nutz and Soner (2012).

27In their setting the domain of the preference relation is the space of simple acts.
28This means that its infimum value is zero.
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The lemma is an extension to the case of infinite (uncountable) states, see Rig-
otti and Shannon (2012) for the finite state case. This indicates that the present
commodity price duality is tractable. For finite valued measurable functions, the
explicit formula of the superdifferential is proven in Maccheroni, Marinacci, and
Rustichini (2006). In the following we present examples to illustrate the usefulness
and flexibility of variational preferences. The first example refers to the classical
maxmin preferences found in Gilboa and Schmeidler (1989). The second example
refers to anchored preferences axiomatized by Faro (2009).

Example 2 1. Maxmin Preferences: An agent with maxmin preferences is modeled
by the following criterion

U(C) = −EP [−u(C)] = min
P∈P

EP [u(C)] + δP(P ),

where c = δP : PS → [0,∞] is the convex indicator function of dom(c) = P.

2. Anchored maxmin preferences: Fix an initial endowment E ∈ L1(P)+. We can
define the following anchored preference representation

U(C) = min
P∈dom(c)

EP [u(C)− u(E)], c(P ) =

{
EP [u(E)] if P ∈ dom(c)
+∞, otherwise.

Here the penalty term is linear, with φ = −u(E).29

In multiple prior models based on a reference measure, i.e. all other priors are
absolutely continuous, it is possible to consider the relative entropy in terms of c.
The usage is limited and does not apply to mutually singular priors directly, as the
following example illustrates.

Example 3 λ-Relative Entropy: In this example, we concentrate on the cone
L̃1(P)+. In case of a penalty term associated to the relative entropy we need some
preparation for the construction. We introduce some synthetic probability measure.
As discussed in Bion-Nadal and Kervarec (2012), there is a canonical equivalence
class R(c1,P) = Pcan of probability measures. This class is based on a countable
dense subset {P n}n∈N of P. Taking a sequence of real number {λn}n∈N with λn > 0
such that

∑
λn = 1 the resulting probability measure P λ =

∑
λnP

n is in Pcan. Let
a reference measure Pλ be fixed. The λ-relative entropy Rλ(·‖P) : PS → [0,∞] is

defined by Rλ(P‖P) =
∫

Ω
log
(

dP
dPλ

)
dPλ. Priors closer to the dominating prior Pλ

have a larger influence on the utility evaluation. Finally we can write the utility
functional as

U�L̃1(P)+
(C) = min

P∈P
EP [u(C)] + c(P ) = min

P∈P
EP [u(C)] + θRλ(P‖P),

where θ ∈R is an intensity parameter. Note that this relative entropy formulation
heavily depends on the parameter λ for the synthetic measure P λ.

29In Dana and Riedel (2013) such anchored preferences are related to Bewley preferences, see
Bewley (2002). However, in their discrete time framework the uncertainty is modeled by a set of
mutually equivalent priors.
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We close the section with a discussion on semi-strict monotonicity.

Remark 2 1. Strict monotonicity is usually defined by U(X+Y ) > U(X) for some
Y ∈ L1(P)+ \ {0}. The singularities of the priors do not allow for such a notion of
monotonicity. We illustrate this issue for maxmin preferences in Example 2.1. Let
Y ∈ L1(P)+ has only one effective prior P Y ∈ P. Then we may have

U(Y ) = min
P∈P

EP [u(Y )] = EP [u(Y )] = EP [u(0)] = U(0), where P 6= P Y .

This means, the commodity bundle Y may not be strictly desirable in comparison
to zero consumption. From this point of view variational preferences seem to be
rather consistent with semi-strictly preferences. Another argument refers to the rep-
resentation property of the topological dual. As pointed out in Lemma 1, the utility
gradients can be decomposed, with the strict positivity of the density part satisfied
for semi-strict monotone and concave variational preferences (see also Corollary
1). In this situation, semi-strict positive functionals are compatible with the utility
gradients. The equilibrium results in Section 4 are strongly connected to this issue.
2. The c1,P-continuity of the utility functional is a desirable property. By the same
argument as for the classical Lebesgue space, related to some probability space, we
have an empty interior of the positive cone L1(P)+. Monotone and concave vari-
ational utility defined on the whole space are c1,P-continuous. This follows for in-
stance from an application of the extended Namioka-Klee Theorem in Biagini and
Frittelli (2010).

4 Equilibria and Implementation

This Section is divided into three parts. In a preliminary step we introduce the
martingale theory of the considered conditional sublinear expectation. Then we
establish the existence of an equilibrium allocation and discuss some new struc-
tural properties. In the last step we achieve the implementation of the equilibrium
allocation into a Radner economy.

4.1 A Detour: Spanning and Martingales

In order to establish a Radner implementation, we introduce a new sublinear ex-
pectation, generated via the supremum of the adjusted priors. Due to the present
uncertainty model P , a new well-behaved conditioning principle is needed. We roll
out the dynamics of security markets by introducing the concept of conditional sub-
linear expectations. The involved implementation via a security market accounts
for such well-behaved nonlinear expectations.
We proceed similarly to the single prior case, where the Radner implementation in
continuous time is based on a certain classical martingale representation property.
In the present situation, the multiple prior model enforces a conditional sublinear
expectation which spawns an elaborated martingale representation theorem. As we
indicate at the end of this subsection an effect on the space of unambiguous claims
is apparent. A possible replication of the claim via the security market provokes
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the appearance of incomplete markets.

Structure of Priors
For the purpose of a martingale representation theorem under a conditional sub-
linear expectation we need the following notion of stability under pasting for P ,
also called fork-convexity. In essence, this property refers to a rational updating
principle. Before, we define the set of priors with a time-depending restriction on
the related sub σ-field

P(t, P )o = {P ′ ∈ P : P = P ′ on Fot }, with t ∈ [0, T ] and P ∈ P .

This set of priors consists of all extensions of P : Fot → [0, 1] from Fot to F in P .
More precisely, this is the set of all probability measures in P defined on F that
agree with P in the events up to time t.

Assumption 2 The set of priors P is stable under pasting, i.e. for every P ∈ P,
every Fo-stopping time τ , B ∈ Foτ and P1, P2 ∈ P(Foτ , P ), the set of priors P
contains again the prior Pτ given by

Pτ (A) = EP
[
P1(A|Foτ )1B + P2(A|Foτ )1Bc

]
, A ∈ Foτ .

Note, that we use the raw filtration Fo. The stability under pasting property is
closely related to dynamic consistency or rectangularity of Epstein and Schneider
(2003). However in the present volatility uncertainty setting these notions are not
equivalent.30 For details we refer to Section 3 in Nutz and Soner (2012). For in-
stance, the set of priors which defines a G-expectation, illustrated in Example 1,
satisfies automatically Assumption 2.

Information Structure
The usual conditions of a rich σ-field at time 0 is widely used in Mathematical
Finance.31 But the economic meaning is questionable. In our uncertainty model of
mutually singular priors we can augment, similarly to the classical case, the right
continuous filtration given by F+ = {F+

t }t∈[0,T ] where F+
t =

⋂
s>tFot for t ∈ [0, T ).

The second step is to augment the minimal right continuous filtration F+ by all
polar sets of (P ,FoT ), i.e. Ft = F+

t ∨N (P ,FoT ), see Appendix A.1 for details. This
augmentation is strictly smaller than the universal enlargement procedure.32 Note
that the augmentation does not affect the commodity space of equivalence classes,
whose elements are P-q.s. indistinguishable. Additionally we have B(Ω) = FoT and
FoT = FT P-q.s.
This choice is economically reasonable, because the initial σ-field does not con-
tain all 0-1 limit events, see Section 4.1 in Nutz and Soner (2012). In nearly all
continuous-time Finance models, such a rich initial σ-field is assumed. This implies
a rich knowledge of every decision maker about events in the long run. In Huang
(1985) one can find a detailed discussion of information structures for asset prices

30Lemma 8 in Appendix B of Riedel (2009) shows the equivalence of these concepts, when the
priors are mutually equivalent.

31One reason may be, that in this case the full stochastic calculus is applicable.
32This means Ft $

⋂
P∈P σ(F+,N (P,Fot )), for t ∈ [0, T ].
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and trading strategies, when the uncertainty is given by a probability space.

Conditional Sublinear Expectation
We introduce the dynamics and the different notions of martingales of our under-
lying uncertainty model (Ω,F ,P). The so called strong formulation of uncertainty
in Assumption 1 guarantees the existence of a martingale concept which allow for
a martingale representation. The efficient use of information is often formalized by
the concept of conditional expectation. Implicitly, this depends on the uncertainty
structure and the given filtration. Due to the pasting property of P we have a uni-
versal conditional expectation being under every prior almost surely equal to the
essential supremum of relevant conditional expectations. This concept is formulated
in the following definition.

Definition 2 A set of priors P has the aggregation property in L1(P) if for all
X ∈ L1(P) and t ∈ [0, T ], there exists an Ft-measurable random variable EPt [X] ∈
L1(P) such that

EPt [X] = Pess sup
P ′∈P(t,P )

EP ′ [X|Ft] P -a.s. for all P ∈ P .

Note that in the definition the random variable is defined in the quasi sure sense.
The linear conditional expectation under a probability space has strong connections
to a positive linear projection operator. In the presence of multiple priors, the
conditional updating in an ambiguous environment involves a sublinear projection
EPt : L1(P) → L1

t (P), where L1
t (P) ⊂ L1(P) denotes the closed subspace of Ft

measurable random variables. In this regard the aggregation property just states
that we can find a well-defined sequence of conditional expectations satisfying a
rational updating principle. The weak compactness and stability under pasting
allows for such a conditional sublinear expectation.

Lemma 2 Under Assumption 1 and 2, P satisfies the aggregation property. More-
over, we have EPs ◦ EPt = EPs , s ≤ t.

Without a well-behaved conditional expectation, the introduction of a martingale or
its representation seems unreproducible.33 Now, we introduce martingales under the
conditional expectation EPt . Fix a random variable X ∈ L1(P). The sublinearity
of the dynamic conditional expectation defines a martingale similarly to the single
prior setting,34 as being its own estimator.

Definition 3 An F-adapted process (Xt)t∈[0,T ] is a P-martingale if

Xs = EPs [Xt] P-q.s. for all s ≤ t.

We call X a symmetric P-martingale if X and −X are both P-martingales.

33Without the weak compactness of P, a construction of random variables in the quasi sure
sense involves more technical difficulties. However, in this situation one can take the separability
condition of Soner, Touzi, and Zhang (2012b), see also Example 4.14 therein. An aggregation
result, in the sense of Definition 2, can then be observed with the so called Hahn property of
Cohen (2011). Here the definition of an ess sup in the quasi sure sense approaches the aggregation
property.

34For the multiple prior case with equivalent priors we refer to Riedel (2009).
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The nonlinearity of the conditional expectation implies that if a process (Xt) is a
martingale under

(
EPt
)
t∈[0,T ]

, then −X is not necessarily a martingale.35 As we will

discuss in detail, a fair game refers to the symmetric martingale property. In this
case, the process is equivalently a P -martingale under every P ∈ P . In subsection
4.3 we discuss the relationship to asset prices under the sublinear expectation gen-
erated by P .
In a dynamic trading setting, it is essential if a contingent claim X ∈ L1(P) can be
represented in terms of a stochastic integral. As mentioned in the Introduction this
corresponds to the mean unambiguity property, introduced in Section 3.1. For the
replication of a claim, the following result is central. It can be seen as a generalized
martingale representation theorem, when the uncertainty is given by the present
mutually singular uncertainty model, see Nutz and Soner (2012) for a proof.

Martingale Representation: Under Assumption 1 and 2, we have for every
X ∈ L1(P) a unique pair (θ,K)36 of F-predictable processes with

1. θ such that
∫ T

0
|θs|2d〈B〉s <∞ P-q.s.,

2. K such that all paths of (Kt) are càdlàg, nondecreasing and KT ∈ L1(P),

such that EPt [X] = EP0 [X] +

∫ t

0

θsdBs −Kt for all t ∈ [0, T ], P-q.s.

The positive and increasing process K in the representation is new and can be under-
stood as a correction term. The sublinear conditional expectation allows for biased
martingales, i.e. we only have EP [−KX

T ] = 0 if and only if P ∈ argmaxP∈P EP [X].
Here, KX is the output of the martingale representation theorem applied with re-
spect to X ∈ L1(P).

Remark 3 1. Already at this stage, the interplay between the existence and the
structure of a competitive equilibrium and absence of arbitrage opportunities are at
work. As illustrated in Vorbrink (2010) in the G-framework (see Example 1) absence
of weak arbitrage (see Table 1) does not imply EP [−KT ] = 0 for every P ∈ P. Note
that this arbitrage notion is consistent with strictly monotone preferences, stated in
Table 1 and refers to a robust approach to finance.
If an exchange economy is in equilibrium, net trades should not admit for arbitrage.
But, by Proposition 2 the equilibrium price system perceives only P ∗-a.s. events,
since the representing measure µ of the equilibrium price system can be decomposed
by dµ = ψdP ∗. The value of net trades ξ ∈ L1(P) should not differ under such
equilibrium priors P ∗. Therefore, the case P ′(Kξ

T 6= 0) > 0 must refer to a non-
equilibrium prior P ′, see Example 5 for an application of this issue.
2. In the G-framework the compensation part can be written more explicit, when X

35Representations of non symmetric martingales can be formulated via a so called second order
backward stochastic differential equation (2BSDE). This concept is introduced in Cheridito, Soner,
Touzi, and Victoir (2007) and developed further in Soner, Touzi, and Zhang (2012a).

36The pair is unique up to {ds × P, P ∈ P}-polar sets. More precisely, the process K is an
aggregated object under the Continuum Hypothesis, see Remark 4.17 of Nutz and Soner (2012)
and paragraph 8 and 9 of Chapter 0 in Dellacherie and Meyer (1978).
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is contained in a (uncertain) subset of L1(P):

Kt =

∫ t

0

ηrd〈BG〉r −
∫ t

0

G(ηr)dr, t ∈ [0, T ],

where BG is the so called G-Brownian motion37 and η is an endogenous output of
the martingale representation, so that K is now a function of η. Example 5 and 6
make use of this fact.
As such it is an open problem, if every X ∈ L1(P) can be represented in this complete
form. We refer to Peng, Song, and Zhang (2013) for the latest discussion, on the
complete representation property.

The following corollary gives an alternative representation and a justification of un-
ambiguous random variables. It illustrates which random variables have the repli-
cation property in terms of a stochastic integral. The space of feasible integrands
Θ(B) is given below in Subsection 4.3.

Corollary 2 The marketed space M[P ] of unambiguous contingent claims is a c1,P-
closed subspace of L1(P). More precisely, we have

M[P ] =

{
ξ ∈ L1(P) : ξ = EP [ξ] +

∫ T

0

θsdBs for some θ ∈ Θ(B)

}
.

Furthermore, the stochastic integral has continuous paths P-q.s.

The notion of perfect replication is associated to the situation when K ≡ 0. Exactly
at this step the martingale representation comes into play. This space of random
variables is strongly related to symmetric martingales. More precisely, elements in
M[P ] generate symmetric martingales, via the successive application of the con-
ditional sublinear expectation along the augmented filtration F. In the lights of
Corollary 2, the analogy between unambiguous events and unambiguous random
variables becomes apparent.38 Note that this analogy is already used and indi-
cated in Beißner (2012), where a notion of ambiguity and risk neutral valuation is
considered.

4.2 Existence of Arrow-Debreu Equilibrium

With the discussion of the primitives in Section 3, we introduce now the hetero-
geneous agent economy, consisting of a finite set of individuals I = {1, . . . , I}
consuming at time t = 0 and t = T . The economy is given by E(e, E) =(
R+ × L1(P)+, {Vi, (ei, Ei)}i∈I

)
, where the initial endowment of agent i satisfies

(ei, Ei) ∈ R+ × L1(P)+. Her utility is given by Vi : R+ × L1(P)+ → R such that
(c, C) 7→ u0

i (c) + Ui(C). The utility Ui : L1(P)+ → R is a variational functional,

37As already mentioned in Example 1, a G expectation can be induced by some volatility bounds.
Here, the function G is given by η 7→ G(η) = 1

2 supσ∈[σ,σ] σ · |η|.
38Under one prior or a set of mutually equivalent priors, indicator functions are elements of the

related Lebesgue space. In our setting this is not necessarily true, since ω 7→ 1A(ω), for some
A ∈ F is not continuous.
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introduced in Section 3.2, with utility functions u0
i , u

T
i : R+ → R and ambiguity

indexes ci,
39 we have

Vi(c, C) = u0
i (c) + min

P∈P
EP [uTi (C)] + ci(P ). (2)

The aggregate endowment of the economy is denoted by(e, E) ∈ R+×L1(P)+. Note
that we allow for a heterogeneity in the sets of priors. This can be achieved via
different domains of the penalty terms ci, see also the last part of Assumption 3.

4.2.1 Efficient Allocations and Sharing Rules

We describe the optimal allocation of resources by the following problem. A weight-
ing α ∈ ∆I , where ∆I = {α ∈ RI

+ :
∑
αi = 1} denotes the I-dimensional simplex,

induces a representative utility Vα(c, C) :=
∑
αiVi(ci, Ci).

An allocation (c̄, C̄) = ((c1, C1) . . . , (cI , CI)) is α-efficient if the functional Vα :
(R+ × L1(P)+)I → R achieves the maximum over the set of allocations Λ(e, E) ={

(c, C) ∈ (R+ × L1(P)+)I :
∑

(ci, Ci) ≤ (e, E) P-q.s.
}

.
Under concavity of the utility functionals, α-efficiency for some α ∈ ∆I is equivalent
to Pareto optimality, while this is related to an equilibrium with transfer payment.
As a first step we establish the existence of α-efficient allocations.

Theorem 1 Suppose Vi : R+ × L1(P)+ → R, i ∈ I, are utility functionals given by
(2) with a concave utility index, then there exists an α-efficient allocation. If each
ci is linear, the solution correspondence

C(α, e, E) = arg max
(x,X)∈Λ(e,E)

∑
i∈I

αiVi(xi, Xi)

is nonempty, convex and weakly compact valued. Moreover, if for each (t, i) ∈
{0, T} × I, uti is twice continuously differentiable, i.e. uti ∈ C2,1(R+;R), there is a
continuous selection (c, C) ∈ C, such that α 7→ Ci(α,E) is continuously differen-
tiable on ∆̊I . In particular, we have a

µ ∈
⋂
i∈I

αi∂Ui (Ci(α,E)) 6= ∅, where dµ = αiu
T
i

′
(Ci(α,E)) dP. (3)

The result is interesting in its own right, but will play as well a central role in
the approach to the existence of an (analytic) equilibrium. From the theorem we
immediately infer that there is a fully insured efficient allocation, when the aggregate
endowment is certain, i.e E(ω) is constant P-quasi surely.
If the aggregate endowment is uncertain but unambiguous, i.e. E ∈ M[P ], structural
properties of optimal allocations depend additionally on preferences. The following
example illustrates how Pareto sharing rules determine the insurance properties and
the resulting net trades.

39We assume that the agents in the economy share the same set of priors, but they do not agree
via their ambiguity index. A simple generalization could be a heterogeneity in the ambiguity via
a modification of equivalent priors with a bounded density.
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Example 4 Let the uncertainty model be that of Example 1 and the aggregate en-
dowment of the economy be unambiguous, i.e. E ∈ M[P ] and by Corollary 2, we

have E = ET = EP [E] +
∫ T

0
θEt dBG

t , for some adapted and integrable process θE.
Note, that the individual endowment is still allowed to be ambiguous. Now suppose
for each i ∈ I that the functional form of optimal consumption Ci(α, ·) ∈ C2,1(R+)
is twice continuously differentiable and not linear, which holds if each ui ∈ C3,1(R+)
has a nonlinear risk tolerance, for details see Hara, Huang, and Kuzmics (2007).
This implies C ′′i (α, ·) 6= 0 and we derive for each i ∈ I by the G-Itô formula40

Ci(α,ET ) = Ci(α,EP [E]) +

∫ T

0

C ′i(α,Et)θ
E
t dBG

t +
1

2

∫ T

0

C ′′i (α,Et)
(
θEt
)2

d〈BG〉t.

Due to the nonzero d〈BG〉-part, we have Ci(α,E) /∈ M[P ] by Corollary 2. This
means that the Pareto optimal allocation is ambiguous. In case of linear risk toler-
ance, i.e. C ′′i (α, ·) = 0, the same computation imply an unambiguous Pareto optimal
allocation. From this we infer that the absence of idiosyncratic ambiguity does not
always leads to unambiguous efficient allocations.
Concerning the net trades ξi = Ci(α,E) − Ei, we have, unless the “pathological”
case that the d〈BG〉-part of Ei eliminates the d〈BG〉-part of Ci(α,E), ambiguous
net trades, meaning that ξi /∈ M[P ].

In the case of linear risk tolerance a sufficient condition for unambiguous net
trades is Ei ∈ M[P ], for each agent i ∈ I.

Comparing this example with De Castro and Chateauneuf (2011), we see that an
unambiguous aggregate endowment is not sufficient to observe an unambiguous
Pareto optimal allocation. The missing gap relies on the structure of the sharing
rule. Note that the arguments in the present setting are based on results from
stochastic analysis under G-expectation.

4.2.2 The General Equilibrium

Now we introduce the classical notion of an Arrow-Debreu equilibrium. Note that,
the feasibility holds P-quasi surely and for the price functional we require c1,P-
continuity as discussed in Section 2.1. By Proposition 1, L1(P) is a Banach lattice,
hence positive and linear functionals on L1(P) are automatically c1,P-continuous.
The I + 1-tuple ((c̄1, C̄1), . . . , (c̄I , C̄I); (π,Π)) ∈ (R+ × L1(P)+)I × (R × L1(P)∗)
consisting of a feasible allocation and a continuous linear price functional, is called
a contingent Arrow-Debreu equilibrium, if

1. For all i, (c̄i, C̄i) maximizes Vi on R+×L1(P)+ under Ψ(c− ei, C − Ei) ≤ 0.

2. The allocation (c̄, C̄) is feasible:
∑

i∈I(c̄i, C̄i) = (e, E), P-q.s.

Next, we reconsider the utility gradient of the agent when she faces a maximization
problem in terms of a first order condition. As in the single prior setting, the excess
utility map encodes the “universal system of equations” of the defined equilibrium.
In matters of the utility maximization, the particular form of the gradient causes

40The result can be found in Peng (2010).
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a modification in the definition of the excess utility map, see Appendix A.2 for the
details of the construction method. In general, the gradient is an element of the
topological dual. The representation of the dual space, see Proposition 2 and Lemma
1, implies DUi(C) ∈ ∂Ui(C) ⊂ L1(P)∗, where a supergradient can be represented
by DUi(C)(h) = EP [u′i(C)h], for some P ∈Mi(C) and direction h ∈ L1(P).

Remark 4 In infinite dimensional commodity spaces, the positive cone may have
an empty interior. In this situation, a properness condition is needed to establish
the existence of an equilibrium. Note that by Proposition 1, L1(P) is an order
continuous Banach lattice. As we aim to establish an equilibrium allocation with
an explicit dependency of the effective priors, we only mention this whole branch of
abstract existence result. We refer to Martins-da Rocha and Riedel (2010) and the
references therein.

In order to connect the gradient with the price system, in terms of Theorem 1
and the second fundamental theorem of welfare economics, we have to make an
assumption on the integrability of u′(E).

Assumption 3 Let the aggregate endowment E ∈ L1(P)+ be strictly positive P-q.s.
and let e =

∑
ei > 0. We assume41

max
α∈∆I

(
u0
α
′
(e) + uTα

′
(E)
)
∈ L∞(P) and

⋂
i∈I

dom(ci) 6= ∅.

This assumption is closely related to a cone condition, which is important for the
existence of an equilibrium in infinite dimensional commodity spaces, see also Re-
mark 2.2 in Dana (1993). Moreover it guarantees that the price system is an element
of the semi-strict order dual L1(P)∗⊕, see Subsection 3.1 for details. The proof of
the following theorem is based on the gross substitute property of the modified ex-
cess utility map Φ : ∆I × P → RI , see Definition 5 in Appendix A.2. In order to
guarantee this property we have to make the following well-known assumption.

Assumption 4 For each (i, t) ∈ I× {0, T}, x 7→ x · uti
′
(x) is non-decreasing.

The assumption is equivalent to the Arrow-Pratt measure of relative risk-aversion
being less or equal than one, when uti

′
is twice differentiable. We are ready to state

the first main result of the paper.

Theorem 2 Suppose each agent satisfies the conditions of Lemma 1, with
strictly concave and strictly monotone utility index and a linear penalty term
ci. Under Assumption 1-4 there is a Pareto optimal Arrow-Debreu equilibrium
(c∗1, C

∗
1 , . . . , c

∗
I , C

∗
I ; (π,Π)), with Π ∈ L1(P)∗⊕.

The Pareto optimal equilibrium allocation is based on an α∗-efficient weighting
α∗ ∈ ∆I , so that we denote the set of equilibrium priors by

PE ⊂ P(α∗) ⊂ P .
41Fix t ∈ {0, T} and α ∈ ∆I , u

t
α : R++ → R is given by utα(e) = maxx∈Λ(e,0)

∑
αiu

t
i(xi). Here

L∞(P) is the closure of Cb under the norm c∞,P(X) = inf{M ≥ 0 : |X| ≤M,P − q.s.}. See again
Denis, Hu, and Peng (2011) for more details.
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This set of common unadjusted priors P(α∗) is constructed in Appendix A.2, see also
Subsection 2.1 for an illustration of the construction idea. One important property
is that the representative agent behaves as an agent with variational utility. In
the following, we illustrate in the sense in which α-efficient allocations are uniquely
specified. Namely, under every equilibrium prior P ∈ PE an equilibrium allocation
is determined P -a.s. To illustrate this point in more detail, we define a different
allocation resulting in the same utility. As the following example points out, the
reasoning is consistent with the finite-dimensional example in Section 2.1, where
the Leontief-type utility of the agents created a similar degree of freedom. This is
illustrated in Figure 2 (b).

Example 5 Consider an economy with two agents i = 1, 2 under the uncertainty
model of Example 1 and Remark 3.2. Utilities are given by

U1(C) = min
P∈P

EP [ln(C)] = −EG [ln (C)] and U2(C) = min
P∈P

EP [C1/2].

The endowment of each agent is a function of the G-Brownian motion at time T ,
i.e. Ei = ϕi(B

G
T ) ∈ L1(P)+, where ϕi : R → R+ is assumed to be convex, so that

ϕi = exp is in principle a possible choice. Moreover, let ϕ = ϕ1 + ϕ2 so that the
aggregate endowment can be written as a function of the G-Brownian motion BG,
i.e E = ϕ(BG

T ). After some computation an equilibrium consumption allocation
Ci(α,E) = Υα

i (BG
T ) is given by

Υα
1 (BG

T ) =
2 · ϕ(BG

T )

1 +
√

1 +ϕ(BG
T )ᾱ2

, Υα
2 (BG

T ) =

(
ᾱ · ϕ(BG

T )

1 +
√

1 +ϕ(BG
T )ᾱ2

)2

,

where α = α1, 1− α = α2 and ᾱ = α
1−α . Since Υα

1 (BG
T ) + Υα

2 (BG
T ) = ϕ(BG

T ) holds
P-q.s., this results into a feasible allocation. Since Υα

i = Ci(α, ·) ◦ ϕ and C2(α, ·)
is convex and increasing, we have that Υ2

α is convex as well. In order to observe
the effective prior, note that u2(C2(α,E)) = u2(Υα

2 (BG
T )) is concave, which implies

M2(C2(α,E)) = {P σ} = PE by the following computation:
We discuss the optimal allocation via tools from stochastic analysis under the G-
expectation. Suppose that each optimal consumption has the complete representation
property of Remark 3.2,42 we can write

Υα
2 (BG

T ) = EG
[
Υ2
α(BG

T )
]

+

∫ T

0

θ2
t dB

G
t −
∫ T

0

G
(
η2
t

)
dt+

1

2

∫ T

0

η2
t d〈BG〉t, (4)

where θ2
t = f 2

x(t, BG
t ), η2

t = f 2
xx(t, B

G
t ) and f 2(T,BG

T ) = Υ2
α(BG

T ) = C2(α,E). As
illustrated in the first part of the example Υ2

α is convex and by Section 1 in Chapter
II of Peng (2010) it follows that f 2(t, ·) : R → R+ is convex for each t ∈ [0, T ].

42A sufficient condition is the boundedness of ∂xΥα
i (x) on R+.
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Hence f 2
xx ≥ 0 and we deduce that the last two terms of (4) can be written as

−K2
T = −

∫ T

0

G
(
f 2
xx(t, B

G
t )
)

dt+
1

2

∫ T

0

f 2
xx(t, B

G
t )d〈BG〉t

= −1

2

∫ T

0

sup
σ∈[σ,σ]

σf 2
xx(t, B

G
t ) + âtf

2
xx(t, B

G
t )dt

=
1

2

∫ T

0

(ât − σ) f 2
xx(t, B

G
t )dt,

The martingale representation theorem also tells us, that the process (−K2
t ) is a

G-martingale. Moreover, we have −K2
t ≡ 0 P σ-a.s. and −K2

t 6= 0 under every
other prior in P \ {P σ}.
With this observation, we construct a different allocation having the same util-
ity. Consider η̄ = ε · η2, ε ∈ (0, 1). We show that the allocation (C1(α,E) +
εK2

T , C2(α,E)− εK2
T ) is also α-efficient and satisfies C1(α,E) 6= C̄1 := C1(α,E) +

εK2
T P -a.s. for every P ∈ P \ {P σ}.

Since, ât ∈ [σ, σ], it follows that K2
t ≥ 0 P-q.s. Hence, by the monotonicity of

the utility functional, this reallocation does not worsen the utility of agent 1, i.e.
U1(C1(α,E) + εK2

T ) ≥ U1(C1(α,E).
For agent 2, the positive homogeneity of G implies G(η̄) = εG(η). From this we see

that P σ is still the only effective prior with respect to C̄1, since 1+ε
2

∫ T
0

(σ − ât) η2
t dt =

−(1 + ε)K2
T = −K̄2

T yields

C̄2 = EG
[
Υ2
α(BG

T )
]

+

∫ T

0

Z2
t dB

G
t − (1 + ε)K2

T .

Specifically, under P σ the compensation term satisfies K̄2 ≡ 0 and hence the utility
of agent 2 remains unaffected, i.e. U2(C2(α,E)) = U2(C̄2). Note that, for ε suffi-
ciently small, we have P σ ∈M2(C̄2), since M2(C2(α,E)) = {P σ}.
Finally, we state the semi-strictly positive equilibrium price system given by X 7→
Π(X) = EPσ [u′α∗(E) ·X], where the effective prior is induced by

arg min
P∈P

EP [uα∗(E)] = {P σ} = P(α∗) = PE.

Ambiguity aversion creates the worst case prior P σ and the density part in terms of
risk attitudes is given by

u′α(E) =
α

ϕ(BG
T )

(
1 +

√
1 + ϕ(BG

T )ᾱ2

)
.

Summing up, we have illustrated how the new martingale representation theorem
can be applied to construct many different efficient allocations and analyze their
structural properties.

Note that the convexity of Υ2
α(·) induces the unique effective prior P σ, which can be

seen as an extreme case. Different effective priors corresponding to more complex
volatility specifications depend in general on the structure of the efficient sharing
rules, see again Example 4 for the most simplest case.
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4.3 The Existence of Incomplete Security Markets

With the dynamics of the uncertainty model of Section 4.1, we are now in the
position to formulate trading processes and the Radner equilibrium. Before, we
introduce an assumption for the space of consumption profiles at time T . This
gives us a certain invariance on the space of net trades.

Assumption 5 The density part of the equilibrium utility gradients at time T ,
uTα
′
(E) is bounded away from zero, i.e.

ε < max
α∈∆I

uTα
′
(E) P-q.s., for some ε > 0.

This assumption is satisfied when the aggregate endowment is bounded away from
zero and the utility functions ui satisfy the Inada condition at zero. It guarantees the
boundedness above and below away from zero of our state price density ψ = uTα∗

′
(E),

where α∗ is the equilibrium weight of Theorem 2 in Subsection 4.2. It follows that
L1(Q) = L1(P), where

Q =

{
Q : dQ =

ψ

EP [ψ]
dP, for some P ∈ P

}
.

This invariance is of importance, since the density ψ is derived from the equilibrium
and is not a primitive.43 Based on the set of unadjusted equilibrium priors PE, we

denote by QE =
{
Q : dQ = ψ

EP [ψ]
dP, P ∈ PE

}
the set of equilibrium pricing mea-

sures.
Now, we introduce a Radner equilibrium of prices, plans and price expectation re-
lated to the present mutually singular prior model. The price process S = (St)t∈[0,T ]

for our long lived security is a P-semimartingale44 on the filtered sublinear expec-
tation space (Ω, L1(P),EP ,F).
As we have seen in Example 4, we observe unambiguous net trades when strong
assumptions on endowments and utilities are imposed. By the martingale repre-
sentation theorem under Q applied with respect to Q-ambiguous net trades, i.e.
Ci −Ei /∈ M[Q], a disposal term Ki

T appears. To account for this useless consump-
tion, where the equilibrium price system is zero, we allow for a gain process with a
feasible possibility of free disposal of wealth under non equilibrium priors. This is
achieved in terms of a security with possibly negative dividend under some Q ∈ Q.
We consider the set of admissible trading processes already mentioned in Corollary
2, with certain regularity conditions:

1. Well defined : θ is F-predictable and EP
[∫ T

0
θ2
t d〈S〉t

]
<∞.45

2. Gain process :
∫
θdS is a P-q.s. well defined stochastic integral.

43In Section 3 of Duffie and Huang (1985) a similar assumption can be found.
44As defined in Pham and Zhang (2012), the uncertain process S is a P-semimartingale if it is

a P -semimartingale for every P ∈ P. Note that their Assumption 4.1 is in the present setting
fulfilled, since we augment the filtration with the P-polar sets.

45The bracket process is given by 〈B〉 = B2 −
∫
BdB, where the stochastic integral is defined

pathwise, see Soner, Touzi, and Zhang (2012b) and the references therein.
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3. Self-financing : The trading process satisfies the accounting identity

Xθ
t = θtSt = θ0S0 +

∫ t

0

θrdSr, P-q.s. for every t ∈ [0, T ].

The space of processes θ satisfying conditions 1.-3. is denoted by Θ(S). From
Corollary 2 it follows directly that the gain process must be a symmetric martingale
in order to establish a perfect hedge. If we consider the volatility uncertainty as
a robustness constraint, the corollary just characterizes a perfect hedging portfolio
with some initial value if and only if the terminal payoff is unambiguous. We come
now to the formal definition of a Radner equilibrium under volatility uncertainty.

Definition 4 A Radner equilibrium for E(e, E) is comprised of N + 1 long lived
security claiming D = (D0, . . . , DN) ∈ L1(P)N+1, with price process S =
(S0, . . . , SN), a set of trading strategies θi ∈ Θ(S), i ∈ I and a price π > 0 for
consumption at time zero, which satisfies:

For each agent i ∈ I, the consumption
(
ei−Xθi

0 π
−1, Ei+X

θi

T

)
maximizes

Vi : R+ × L1(P)+ → R on the budget set

B
(
ei, Ei, π,D, S

)
=
{(
ei −Xθ

0π
−1, Ei +Xθ

T

)
∈ R+×L1(P)+ :θ∈ Θ(S)

}
,

so that the market clears,
∑

i∈I θ
i
t = 0 P-q.s., for every t ∈ [0, T ].

A priori, the functional capability of the financial market as a mechanism is re-
flected by the marketed space M[Q]. In comparison to the single prior case, market
completeness is not an intrinsic property in terms of the simpler all-encompassing
martingale representation.

Theorem 3 Suppose the security-spot economy

E(e, E) =
{(

Ω,F ,F,P
)
, D,

{
Vi,R+×L1(P), (ei, Ei)

}
i∈I

}
satisfies Assumptions 1 to 5, then there is a Radner equilibrium for
E(e, E), ({(θi)}i∈I, π,D, S), which implements the given Arrow-Debreu Equilibrium(
{ci, Ci}i∈I; EP [ψ·]

)
if and only if

EP [ψ(Ci − Ei)] = EP [ψ(Ci − Ei)], for every i ∈ I. (5)

In this case, we have:

1. The financial market is effectively dynamically complete.

2. Trade may be ambiguous, i.e. (Ci − Ei) /∈ M[Q].

3. Under the equilibrium prior, each (ci, Ci) is perfectly hedged.

The condition in (5) states a relation about endogenous objects. More precisely, (5)
can be understood as the existence of a worst case prior Q as an element of QE.
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At the same time, Q must be a maximizing prior with respect to the uncertainty-
adjusted sublinear expectation EQ evaluated at each net trade ξi = Ci − Ei, i.e.

Q ∈ Q(ξi) = arg max
Q∈Q

EQ[ξi].

Note that if the net trades are unambiguous then this condition is automatically
satisfied, see Example 4 and 5.
In the presence of volatility uncertainty, the proof of Theorem 3 can be regarded as
a canonical extension of Duffie and Huang (1985). In their example with Brownian
Noise only two long lived security price processes are required to admit a com-
plete Radner equilibrium. This follows from the two summands in the (Brownian)
martingale representation. The present volatility uncertainty setup requires a third
component in the martingale representation. This is a compensation part of dis-
posal under non maximizing priors Q(ξi).

46 For this reason, we observe a martingale
multiplicity of three. But Theorem 3 also tells us, that in contrast to the single prior
case, the implementation of efficient Arrow-Debreu equilbria into a Radner equilib-
rium is not always possible. The Pareto efficiency of the Radner equilibrium is quite
surprising, since multiple period incomplete markets are typically only constrained
efficient. Nevertheless, the efficiency still depends on which equilibrium allocation
is considered.
Under a non-equilibrium prior P ∈ P \ PE the consumption profiles are for some
agents superhedged. However, under the priors

P ′ ∈Mi(Ci) ∩
{
P ∈ P : dP = ψ−1dQ,Q ∈ Q(ξi)

}
,

the hedge is still perfect, i.e. KP ′,i = 0 P ′ ⊗ dt-a.e. Under such priors, the deflated
gain process becomes a martingale and under every other effective prior only a
supermartingale. This is still consistent with the “no expected gain from trade” hy-
pothesis of Duffie (1986). The following example illustrates under the G-framework,
how the Radner equilibrium incorporates with the new component in the martingale
representation theorem. The dynamics of the price process of the new security, ob-
tained from Lemma 3 in Appendix A.2, get a more explicit specification. Again, the
price process depends heavily on the net trades of the Arrow-Debreu equilibrium.

Example 6 Apart from the condition in Theorem 3, suppose we are in the G-
framework and every net trade ξi = Ci − Ei, i ∈ I, has the complete martingale
representation property, see Remark 3.2. Denoting by ât = d

dt
〈BG〉t the time deriva-

tive of the quadratic variation of the G-Brownian motion, we have

Ki
t =

∫ t

0

G(ηit)dt−
1

2

∫ t

0

ηitd〈BG〉t

=

∫ t

0

sup
σ∈[σ,σ]

σηitdt−
∫ t

0

ηitâtdt =
1

2

∫ t

0

σitη
i
tdt−

1

2

∫ t

0

ηitâtdt

=
1

2

∫ t

0

(σit − ât) · ηitdt,

46Alternatively to this particular and novel security, we could introduce a family of securities
being contingent on the prior. However, such a prior-dependent contingency would stand in
opposition to the present quasi-sure analysis in aggregated terms.
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for some ηi, as an output of the complete martingale representation. In the deriva-
tion, each process σi corresponds to a P σi ∈ P with P σi ∼ Qi ∈ Q. Similarly to the
proof of Theorem 3, let us consider the following dividend structure

D0 ≡ 1, D1 = BG
T , D2 =

∫ T

0

−1

2

∑
i∈I

(
σit − ât

)
dt.

The price process S2
t = EQt [D2] for the asset with dividend D2 and the portfolio

processes of each agent are EQ-martingales, i.e. a Q-supermatingale under every
prior Q ∈ Q and a Q-martingale under some Q ∈ Q corresponding to the no gain
from trade hypothesis. Moreover, the price process is absolutely continuous with
respect to dt and given by

dS2
t = −1

2

∑
i∈I

(
σit − ât

)
dt, S2

0 = 0.

For the strategy of this bounded variation security S2, consider the following parti-
tion of unity

∑
i∈I κ

i
t = 1 Q-q.e. so that

θi,2t =

{
κitη

i
t if

∑
i∈I σ

i
t − ât 6= 0

0 else
κit =

(σit − ât)∑
i∈I σ

i
t − ât

, i ∈ I \ {I}.

Note that in the uncertainty neutral world Q the asset price S2, so that Ki =∫
θi,2dS2, may become negative under some non equilibrium measures Q\{Q}, where

dQ = ψdP and P ∈ PE satisfies (5).47 In essence this depends on the net trade
and the equilibrium expectation. Remember, the compensation (or disposal) part
in the martingale representation prefigures this possibility. This can be understood
as the interplay between the P-q.s. clearing condition and the disposal parts of
the net trades. For instance, this phenomenon is not present, when net trades are
unambiguous and induces portfolio processes being symmetric Q-martingales without
a disposal part.

A Appendix

The first part of the appendix collects the proofs of Section 2. First we review some
convergence results used, and which are relevant especially to the proof for Lemma
1.

Convergence properties of sublinear expectations, Denis, Hu, and Peng (2011):

1. Let {Pn}n∈N ⊂ P converges weakly to P ∈ P . Then, for each X ∈ L1(P), we
have EPn [X]→ EP [X].

2. Let P be weakly compact and let {Xn}n∈N ⊂ L1(P) be such that Xn ↘ X,
then EP [Xn]↘ EP [X].

47 In the situation of Example 5 this is possible, since σi ≡ σ > â. However, the same is true
for S1. In each case, a splitting of the positive and negative parts would guarantee positive price
processes.
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3. Let (Xn)n∈N be a sequence in L1(P) which converges to X in L1(P). Then
there exists a subsequence (Xnk)k∈N which converges to X quasi-surely in the
sense that it converges to X outside a P-polar set.

We say a sequence (Xn)n∈N converges in capacity to X if for each ε > 0 we have
supP∈P P (|Xn −X| > ε) convergeing to zero.

Hierarchy of convergence, Cohen, Ji, and Peng (2011): Quasi sure convergence
implies convergence in capacity.

Dominated convergence for sublinear expectation, Xu (2010): Let (Xn)n∈N be a
sequence in L1(P) such that |Xn| ≤ Y ∈ L1(P), for each n ∈ N. If Xn → X in
capacity, then limn→∞ EP [Xn] = EP [X].

In our multiple prior setting quasi sure convergence does not imply convergence in
capacity, see the Appendix of Xu (2010) for an example. In this case, the limit X
is not necessarily an element of L1(P).

A.1 A 1: Details and Proofs of Section 3

As mentioned in Subsection 2.1, two random variables X, Y ∈ L1(P) can be dis-
tinguished if there is a prior P ∈ P such that P (X 6= Y ) > 0. Such null elements
are characterized by random variables which are P-polar. P-polar sets which are
evaluated under every prior are zero or one, although, the value may differ between
different priors. A property holds quasi-surely (q.s.) if it holds outside a polar set.
Furthermore, the space L1(P) is characterized in Denis, Hu, and Peng (2011) via

L1(P) =
{
X ∈ L(Ω) : X has a q.c. version, lim

n→∞
EP
[
|X|1{|X|>n}

]
= 0
}
. (6)

A mapping X : Ω → R is said to be quasi-continuous (q.c.) if for all ε > 0 there
exists an open set O with c(O) = supP∈P P (O) < ε such that X|Oc is continuous.
We say that X : Ω → R has a q.c. version if there exists a quasi–continuous
function Y : Ω→ R with X = Y q.s.

Proof of Proposition 1 We show inf(X, Y ) = X ∧ Y ∈ L1(P) for every X, Y ∈
L1(P) via the representation in (6). Since {|X| > n}⊃{|X ∧ Y | > n}, we have by
the sublinearity of EP

EP
[
|X ∧ Y |1{|X∧Y |>n}

]
≤ EP

[
|X|1{|X|>n}

]
+EP

[
|Y |1{|Y |>n}

]
−−−→
n→∞

0.

Since X and Y have a q.c. version, there are ε̄, εX , εY > 0 such that εX + εY < ε̄
with c(OX) < εX , c(OY ) < εY and hence c(OX ∪ OY ) ≤ c(OX) + c(OY ) < ε̄.
Because X|(OX∪OY )c and Y |(OX∪OY )c are both continuous, the quasi-continuity of
X ∧ Y follows. The order relation is indeed a lattice operation.
That L1(P) is a Banach space is shown in Denis, Hu, and Peng (2011). L1(P) is
a Banach lattice, since for all X, Y ∈ L1(P) with |X| ≤ |Y |, i.e. |X| ≤ |Y | P -a.s.
for all P ∈ P imply

c1,P(X) = max
P∈P

EP [|X|] = EP ′ [|X|] ≤ EP ′ [|Y |] ≤ c1,P(Y ),
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for some maximizing prior P ′ for c1,P(X). Fix a sequence of positive random vari-
ables (Xn) in L1(P) such that Xn ↘ 0 in L1(P). Hence X1 dominates the sequence
and an application of the dominated convergence under sublinear expectation gives
us

lim
n→∞

c1,P(Xn) = lim
n→∞

EP [|Xn|] = EP [| lim
n→∞

Xn|] = 0.

Hence, L1(P) is an order continuous Banach lattice. �

Proof of Proposition 2 In our construction, the underlying sublinear expectation
space is given by (Ω, Cb(Ω),EP), as given by Theorems 25 and 52 in Denis, Hu, and
Peng (2011) L1(P) = L1

G(Ω). Since Ω is a polish space and P is a weakly compact
by Assumption 1, c1,P is a Prokhorov capacity.
If l : L̃1(P) → R is a non-negative linear functional, then there is a non-negative
measure µ with support Ω such that

l(X) =

∫
Xdµ, for every X ∈ L1(P),

This is shown in Proposition 11 of Feyel and de La Pradelle (1989). In Theorem
6 by Feyel and De La Pradelle (1977), it is shown that every continuous linear
functional is the difference of two non-negative linear functionals.
L̃1(P) is given by the space of c1,P-equivalence classes of Cb(Ω)

c1,P
, so that the domain

is modified via the so called Lebesgue prolongation. The explicit representation of the
c1,P-topological dual of L̃1(P), can be found in the first chapter of Kervarec (2008),
Theorem I.30. �

Proof of Corollary 1 ”⇒”: By Proposition 2, we have l(X) = EP [ψX], since
ψ > 0 P -a.s and P (X > 0) > 0, therefore l(X) > 0 follows.
”⇐”: l ∈ L1(P)∗ implies again by Proposition 2 that we can write l(X) = EP [ψX].
Suppose ψ /∈ L∞(P )++ then P (ψ > 0, X > 0) = 0 for some P ∈ P is possible. We
have a contradiction. �

Proof of Lemma 1 1. Monotonicity follows directly from the monotonicity of the
utility index u. Let PX ∈ M(X) ⊂ P be a minimizing prior of U(X). Semi-strict
monotonicity follows from u′(X) > 0 on a set with a positive measure with respect
to PX and

U(X + Z)− U(X) ≥ EPX [u(X + Z)− u(X)] > EPX [u′(X + Z) · Z] ≥ 0,

where the strict inequality follows from strict concavity of u and P (Z > 0) > 0 for
every P ∈ P.

2. The mapping C 7→ EP [u(C)] + c(P ) is concave for each P ∈ P and the inf
operation preserves concavity. We prove the strict concavity on M[P ]. Let α ∈ (0, 1)
and C,X ∈ L1(P)+ ∩M[P ], with C 6= X. We compute

αU(C) + (1− α)U(X) ≤ min
P∈P

EP [αu(C) + (1− α)u(X)] + c(P )

< min
P∈P

EP [u(αC + (1− α)X)] + c(P )

= U(αC + (1− α)X),
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where the first inequality follows from the concavity of C 7→ U(C).
The functional U is not strictly concave on its whole domain, since C 6= X in L1(P)
does not imply C 6= X under every P ∈ P, hence one can easily pick two elements
C and X which are P -a.s. equal, where P ∈ M(λC + (1 − λ)X) and deduce a
contradiction, when following the proof of concavity.

3. Let the sequence (Xn)n∈N ⊂ L1(P)+ converges to X in L1(P). In order to
prove the assertion, we show that every subsequence (Ynk)k∈N of (Xn) has in turn a
subsequence (Zn)n∈N such that

lim sup
n→∞

U(Zn) ≤ U(X).

Let PX ∈ M(X) be a minimizing prior and (Ynk)k∈N be a subsequence of (Xn)n∈N.
There is a subsequence (Zn)n∈N in (Ynk)k∈N and some Z ∈ L1

+(P) satisfying

Zn(ω)→ X(ω) and 0 ≤ Zn(ω) ≤ Z(ω) for PX-a.s.

We may take Z = X+
∑

n∈N |Zn+1−Zn|, with c1,P(Zn+1−Zn) ≤ 2−n. Monotonicity
of u implies 0 ≤ u(Zn(ω)) ≤ u(Z(ω)) and u(Zn(ω))→ u(X(ω)) for PX almost every
ω ∈ Ω.
So, by the lim sup-version of Fatou’s lemma under PX we deduce

lim sup
n→∞

U(Zn) ≤ lim sup
n→∞

EPX [u(Zn)] + c(PX)

≤ EPX [u(X)] + c(PX) = U(X).

We prove the norm continuity of U , when c is linear. To show U(Xn) → U(X)
for some norm convergent sequence (Xn)n∈N, it suffices again to show that every
subsequence of (Xn)n∈N has a subsequence (Zn)n∈N with U(Zn)→ U(X).
Let (Xnk)k∈N be a subsequence of (Xn)n∈N. We have Xnk → X in c1,P . There is
a subsequence (Zn)n∈N of (Xnk)k∈N and a Z ∈ L1(P) with 0 ≤ Zn ≤ Z P-q.s.
and Zn → X P-q.s., which implies convergence in capacity, (see the beginning of
Appendix A). We may take Z as before. By the monotonicity and continuity of
u, we have 0 ≤ u(Zn) ≤ u(Z) P-q.s. and u(Zn) → u(X) P-q.s. An application
of dominated convergence under sublinear expectation, as stated in the beginning of
Appendix A, gives us

lim
n→∞

U(Zn) = −EP
[
φ− u

(
lim
n→∞

Zn

)]
= −EP [φ− u(X)] = min

P∈P
EP [u(X)]− 〈P, φ〉 = U(X).

This implies the c1,P-continuity of the utility functional. Note that the lower semi-
continuity and linearity of the penalty term implies continuity, hence we can find a
φ ∈ L1(P), to give a representation in terms of a bilinear form.

4. That P is also σ(L1(P), L1(P)∗)-weakly compact follows by the same arguments
as in the proof of Proposition 2.4 in Bion-Nadal and Kervarec (2012), since it is
a closed subset of the nonnegative part of the unit ball of L1(P)∗. Effective priors
exist, since P 7→ EP [X] is weakly continuous for every X ∈ L1(P), and build a
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convex weakly compact subset of P.
Let P ∗ ∈ M(C) be an effective prior for C and let X ∈ L1(P)+ be arbitrary. By
the concavity and differentiability of the utiltiy index u, this implies

U(X)− U(C) = min
P∈P

EP [u(X)] + c(P )−min
P∈P

EP [u(C)] + c(P )

≤ EP ∗ [u(X)] + c(P ∗)− EP ∗ [u(C)] + c(P ∗)

≤ EP ∗ [u′(C)(X − C)].

The characterization of the superdifferential follows from the fact that ∂U(X) ⊂
L1(P)∗, Proposition 2 and Corollary 2 of Theorem 2.8.2 in Clarke (1990). �

A.2 A 2: Details and Proofs of Section 4

Proof of Lemma 2 By Assumption 1 the set of priors is convex, weakly compact
and stable under pasting. The semigroup property of the conditional expectations
can be found in Proposition 3.6 (i) of Nutz and Soner (2012).
Alternatively, when the set D is given by an explicit correspondence process, one
can also apply Theorem 2.6 form Epstein and Ji (2013b). �

Proof of Corollary 2 The alternative representation is an application of the mar-
tingale representation theorem in Section 4.2. It can be easily verified that M[P ] is
a closed subspace of L1(P). Unambiguous random variables can be identified as the
terminal value of the stochastic integral, which is the image of a linear operator,
with preimage Θ(B). �

In order to concentrate on the essential difficulties of the proofs in Subsection 4.2, we
do not consider consumption and endowments at time 0, until the proof of Theorem
3. The product structure of the consumption profiles and the additive utility imply
that proofs within the two period economy are slight generalizations. To do so we
identify Λ(0, E) with Λ(E) =

{
C ∈ L1(P)I+ :

∑
Ci ≤ E

}
.

Proof of Theorem 1 The functional Uα : Λ(E)→ R is weakly upper semicontinu-
ous, by Lemma 1. By Proposition 1, L1(P) is a Banach lattice with order continuous
norm. This implies that the order interval [[0, E]] = {x ∈ L1(P) : 0 ≤ x ≤ E} is
σ(L1(P), L1(P)∗)-compact, this result can be found in Theorem 2.3.8 of Aliprantis,
Brown, and Burkinshaw (1990) and Section 2 in Yannelis (1991). Hence, Λ(E) is
σ(L1(P)I , (L1(P)I)∗)-compact, as a closed subset of [[0, E]]I under the same topol-
ogy. The Weierstrass Theorem (Theorem 2.43 in Aliprantis and Border (2006))
implies the existence of a maximizer.
The upper hemicontinuity of C(α, ·) : ∆I × L1(P)+ ⇒ L1(P)I+ follows from Berge
Maximum theorem, where each U i is continuous. We prove the existence of a con-
tinuously differentiable selection. The well defined mapping C(α, e) : ∆I×R+ → RI

+

is the unique solution of the pointwise problem

C(α, e) = argmax
xi≥0,

∑
xi≤e

∑
αiui(xi), (α, e) ∈ ∆I × R+,
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which is continuously differentiable on ∆̊I×R++, the interior of dom(C). For every
α ∈ ∆I there is a P ∈ P such that the modified economy with dom(c̃i) = {P}, i ∈ I,
satisfies the same first order condition as in the original economy

µ ∈ L1(P)∗, dµ = u′α(E)dP = αiu
′
i (Ci(α,E)) dP,

for every i ∈ I such that αi 6= 0. This implies the α-efficiency of {Ci(α,E)}i∈I
in the original and c̃i-modified economy. Feasibility holds by construction. Hence,
C ∈ C is a continuously differentiable selection in α. �

The proof of Theorem 2 needs some preparation and is divided into the following four
propositions, which make use of the conditions for Theorem 2. The proof strategy
of Theorem 2 adapts the ideas of Section 3 in Dana (2004). With the existence of
an α-efficient allocation from Theorem 1, we can consider the single-valued solution
selection C : ∆I × L1(P)+ → L1(P)I+ of the concave program (Uα,Λ(E)), given by

{Ci(α,E)}i∈I ∈ argmax
(Ci)∈Λ(E)

∑
i∈I

αiUi(Ci),

in the next steps. Now, we introduce our excess utility map. In comparison to the
classical case, the mapping has to be modified, since the utility gradient cannot be
solely represented by a random variable with a conjugate integrability order. In
general for some X ∈ L1(P)+, the set of effective priors M(X) is not unique, since
it is the minimizer of a convex (and not strictly convex) program, i.e. Gateaux
differentiability is in general not true. Hence, we propose a prior dependency in the
excess utility to account for this change in the universal system of equations.

Proposition 3 Under Assumptions 1-4 with dom(ci) = {P}, for all i ∈ I, there is
a P -a.s. unique equilibrium.

As illustrated in Example 5, in general there is no hope for a P-q.s. unique equi-
librium.

Proof of Proposition 3 By Theorem 1, for each α ∈ ∆I , a unique α-efficient
allocation exists. The proof now follows the lines of Dana (1993), where the present
commodity price duality is given by 〈L1(P), L∞(P )〉. Here, the continuity of the
excess utility map follows by the dominated convergence result at the beginning of
Appendix A. �

Let us denote by GE : P → ∆I , the single-valued correspondence which asserts to
every prior the unique equilibrium weight αP of the relevant vNM-economy(P ) in
Proposition 3. This motivates the following definition.

Definition 5 Let Ci(α,E) be the argmax of an α-efficient allocation with von Neu-
mann Morgenstern utility under P ∈ P. The excess utility map Φ : ∆I × P → RI

is given by

Φi(α, P ) = α−1
i EP [u′α(E) · (Ci(α,E)− Ei)] , i ∈ I.
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The primitives of the economy specify this modified excess utility map. A zero
for the standard excess utility map, when only the utility weight α is the variable,
guarantees an equilibrium. The modification in the definition is caused by the
equilibrium prior, a new component in the universal system of equations. Due to
the first order conditions of individual maximization, this object appears because
of the given structure of the topological dual space.
A zero (α, P ) ∈ ∆I × P of Φ is not sufficient to guarantee an equilibrium, since an
arbitrary P ∈ P may not lie in the set of common effective priors

⋂
i∈IMi(Ci(α,E)),

where the consumption Ci(α,E) is taken from the α-efficient allocation. To account
for this situation, we need the following two Propositions.
First, we prove that at every Pareto optimal allocation, the intersection of the risk
adjusted effective prior is not empty. As we will see below, this ensures that the
excess utility map can attain a zero in RI on the appropriate set of priors. To do so,
we reformulate α-efficiency in terms of a supremal convolution from convex analysis.
For E ∈ L1(P), let

�i∈IαiUi(E) = max∑
Ci=E

∑
αiUi(Ci),

and denote the superdifferential of �I
i=1αiUi by ∂�Uα, see Laurent (1972) for de-

tails. Note that the domain of each Ui equals L1(P)+.
The following proposition states that for α-efficient allocations the utility supergra-
dients of the agents agree. We also discuss the α-dependency of common effective
priors.

Proposition 4 1. Let (C1(α,E), . . . , CI(α,E)) ∈ Λ(E) be the α-efficient allocation
of Theorem 1. We get⋂

i∈I

∂αiUi(Ci(α,E)) = ∂�Uα(E) 6= ∅,

for some α ∈ ∆I . Moreover, the set ∂�Uα(E) is weakly compact and convex.
2. The set of common risk unadjusted priors P(α) = ∩i∈IMi(Ci(α,E)) satisfies,

P(α) = {P ∈ P : ∃µ ∈ ∂�Uα(E) with dµ = u′α(E)dP}

= arg min
P∈P

EP

[
uα(E)−

∑
i∈I

αiφi

]
,

where φi is the representation of the linear penalty term ci.
3. The correspondence P : ∆I → P is upper hemicontinuous on ∆I . Moreover, P is
weakly compact and convex valued.

Proof of Proposition 4 1. The allocation (C1(α,E), . . . , CI(α,E)) ∈ Λ(E) can
be related to an α-weighted program (Uα,Λ(E)). We formulate this in terms of
supremal convolution. By construction we have

∑
iCI(α,E) = E P-q.s. and

�i∈IαiUi(E) =
∑

αiUi(Ci(α,E)).
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By Lemma 1, we have ∂Ui(CI(α,E)) 6= ∅, for each i ∈ I. The first part of the
proposition follows from Proposition 6.6.4 in Laurent (1972). The convexity of
∂�Uα(E) can be found in Theorem 47A in Zeidler (1985). The intersection of
compact sets is again compact.
2. Let P̄ ∈ P(α), we derive

max
(X)∈Λ(E)

∑
i∈I

αiUi(Xi) =
∑
i∈I

αi min
P∈P

EP [ui(Ci(α,E)− φi]

= EP̄

[∑
i∈I

αi
(
ui(Ci(α,E))− φi

)]
= min

P∈P
EP

[
uα(E)−

∑
i∈I

αiφi

]
,

where the pointwise definition of uα can be found in the footnote in Assumption 3.
The result follows from Lemma 1.4.
3. The upper hemicontinuity of the correspondence P follows from Berge’s maximum
theorem with respect to the α-parametrized and linear problem minP∈P EP [uα(E)−∑
αiφi]. The values are weakly compact and convex, due to the first part of the

proposition. �

In the next step, we relate Proposition 3 with our notion of excess utility.

Proposition 5 The tuple
(
{Ci(α∗, E)}i∈I,EP ∗ [u′α∗(E)·]

)
is an Arrow-Debreu equi-

librium if and only if

Φ(α∗, P ∗) = 0 and P ∗ ∈ P(α∗),

which is equivalent to (α, P ) ∈ gr(GE−1) ∩ gr(P) or P ∈ P ◦GE(P ).

Proof of Proposition 5 ”⇐”: Each prior P ∈ P(α) is associated to a supergra-
dient DUi(Ci)(X) = EP [u′i(Ci)X] for each agent i ∈ I simultaneously. A possible
prior P /∈ P(α) with a zero in the excess demand is not related to at least one agent
k’s first order condition with a positive weight αk. Whereas, if Φ is not zero, we
have only an equilibrium with transfer payment.
”⇒”: By Proposition 4, Φ(α∗, P ∗) = 0 and P ∗ ∈ P(α∗) implies the existence
of an equilibrium

(
{CP ∗

i (α∗, E)}i∈I, u′α∗(E)
)

under vNM(P ∗) utility, i.e. X 7→
EP ∗ [ui(X)] − ci under P ∗ ∈ P(α∗), where ci = EP ∗ [φi] and CP

i (α, ·) corresponds
to the α-efficient consumption of agent i under vNM(P ) utility. We get

EP ∗ [u′α∗(E)(C − Ei)] ≤ 0

implies EP ∗ [ui(C)]− ci ≤ EP ∗ [ui(C
P ∗

i (α∗, E))]− ci.

This implies Ui(C) ≤ Ui(C
P ∗
i (α∗, E)), due to Ui(C) ≤ EP ∗ [ui(C) − φi]. Hence,

({CP ∗
i (α∗, E)}i∈I,EP ∗ [u′α∗(E)·] is an equilibrium of the original economy. �

Agent i’s set of effective priors Mi(Ci(α,E)) ⊃ P(α) at an optimal consumption
forms the basis for the set of equilibrium priors. The first order condition of α-
efficient allocations relies on the set of common supergradient ∂�Uα. The risk
adjustment via the normalized marginal utility u′α(E) of the representative agent
delivers the correct set of equilibrium priors, see Proposition 4.2. This is consistent
with the decomposition of the linear price systems and the modified excess utility
map.
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Proof of Theorem 2 Define the functional ρ : ∆I × P → R by

ρ(α, P ) = min
i∈I

Φi(α, P ).

By Proposition 6.2 Φi(α, ·) is linear and weakly continuous, hence ρ(α, ·) is weakly
continuous. From an application of Proposition 6.1 we follow for each P ∈ P the
continuity of ρ(·, P ), since the pointwise infimum of continuous functions is again
continuous. Since the maximum of ρ(·, P ) over ∆I is by construction a zero, the
solution mapping GE is also given by

GE(P ) = arg max
α∈∆I

ρ(α, P ).

Therefore by Berge’s maximum theorem, GE is a single-valued and upper-
hemicontinuous correspondence and hence continuous when viewed as a function.
Now, P ◦ GE : P → P is a composition of upper hemicontinuous correspondences
and hence again upper hemicontinuous. By Proposition 4.1., P is convex and weakly
compact valued and hence so is P ◦GE. Since the vector space of signed measure on
(Ω,F) equipped with the topology of weak convergence is a locally convex topological
vector space, we apply the Kakutani-Glicksberg-Fan fixed point theorem (Theorem
17.55 in Aliprantis and Border (2006)) with respect to P◦GE, and the result follows
by Proposition 5. �

Proposition 6 1. For each P ∈ P, the function Φ(·, P ) is continuous in the inte-
rior of ∆I and ‖Φ(α, P )‖RI → +∞ whenever αi → 0 for some i ∈ I.

2. For each α ∈ ∆I , the function Φ(α, ·) is weakly continuous.

The following result is used in the proof of Theorem 2.

Proof of Proposition 6 1. This follows from Proposition 3 and the continuous
differentiability of each ui. Since P ∈ P is fixed, the limit behavior follows by same
argument as in the the standard single prior case.

2. Let {Pn}n∈N be a sequence in P which converges weakly to some prior P . Ac-
cording to the first result at the beginning of Appendix A,

lim
n→∞

EPn [u′α(E) · (Ci(α,E)− Ei)] = EP [u′α(E) · (Ci(α,E)− Ei)]

and which proves continuity in the weak topology. �

The equilibrium weight α∗ relates the residual set of priors by PE = P(α∗).

A.2.1 Proofs of Subsection 4.3

By Q-q.e., we denote Q⊗ dt = {Q⊗ dt,Q ∈ Q}-quasi everywhere.

Proof of Theorem 3 We begin with the only if part of the theorem and denote
ξi = Ci − Ei. Suppose there is an agent i ∈ I, such that QE ∩ Q(ξi) = ∅.48 This

48Here, Q(X) = arg maxQ∈Q EQ[X] denotes the effective (uncertainty adjusted) priors under
the sublinear equilibrium expectation.
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implies EQ[ξi] < EQ[ξi], where Q ∈ QE. In order to guarantee the implementation
of the Arrow-Debreu equilibrium, the portfolio process Xθi with θi ∈ Θ(S) requires

Xθi

T = Xθi

0 +
∫ T

0
θitdSt and must satisfy

Xθi

T = ξ and Xθi

0 = π(ei − ci).

An application of the martingale representation theorem to ξi implies Xθi

0 = EQ[ξi],
so that the only constants in the martingale representation and the self-financing
condition must be equal. On the other side, we have by the Arrow-Debreu budget set
Xθi

0 = π(ei−ci) = EQ[ξi], which is a contradiction to QE∩Q(ξi) 6= ∅ or equivalently
to (5) in the formulation Theorem 3.

To proof the other direction, fix the following elements in L1(P) as the dividend of
the first two securities:

D0 ≡ 1, D1 = BT , D2 = KT ,

where KT is specified in step two below by virtue of Lemma 3. We introduce the
candidates for the price of consumption at time zero and the price process of the
security. Let the price of D at time t be S1

t = EQt [D1] and S0
t = EQt [D0] = 1. The

positive scalar π is the price of time zero consumption. We divide the proof into
four steps. In the first step and second, we introduce the candidate trading strategies
for agent i ∈ I\ {I} and show market clearing in the third step. The last step shows
that the trading strategies are maximal elements in the budget sets.

1. Let ξi ∈ L1(P), i ∈ I \ {I}, be some feasible net trades. The process

X i
t = EQt [ξi]− EQ[ξi], t ∈ [0, T ]

is an integrable Q-martingale and we have by the martingale representation

X i
t =

∫ t

0

θi,1r dS1
r −Ki

t , (7)

Q-q.e. Fix some strategy θi := (θi,0, θi,1, θi,2) ∈ Θ(S0, S1, S2) =: Θ(S), where θi,0

and θi,2 are specified in step two.
As a candidate Radner equilibrium allocation at time T , we consider the allocation
generated by the Arrow-Debreu equilibrium allocation, i.e. ξi =

(
C̄i − Ei

)
, for each

i ∈ I.

2. Applying Lemma 3 to {Ki}i∈I\{I} in (7), there is a predictable process of bounded
variation S2 starting in zero with S2 ∈ L1(P) and predictable S2-integrable processes
{θi,2}i∈I\{I}, such that49

−Ki
t =

∫ t

0

θi,2r dS2
r Q-a.e.

49Note that the asset price S2 depends heavily on the equilibrium net trades.
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From this we can reformulate the bounded variation part in (5) and get −Ki
t =∫ t

0
θi,2r dS2

r , for each i ∈ I \ {I}. Fix the following trading process for the riskless
security S0 for agent i ∈ I \ {I}:

θi,0t = EQ[ξi] +

∫ t

0

θi,1r dS1
r +

∫ t

0

θi,2r dS2
t − θ

i,1
t S

1
t − θ

i,2
t S

2
t , Q-q.e.,

where EQ[ξi] = EQ[ξi] for some Arrow-Debreu equilibrium pricing measure Q ∈
Q(ξi) ∩ QE 6= ∅. Clearly,

∫
θi,0dS0 ≡ 0 is a well defined square integrable integral

and EQ[ξi] = 〈θi0, S0〉. Predictability of θi,0 can easily be verified.
Substitution of the integral equations yields the self-financing property for θi:

〈θit, St〉 = 〈θi0, S0〉+

∫ t

0

〈θir, dSr〉 Q-q.e.

It follows that each trading strategy is admissible, i.e. θi ∈ Θ(S), for each i = I\{I}.
We observe via the self-financing property

〈θiT , ST 〉+ Ei = (θi,0T , θ
i,1
T , θ

i,2
T )>(D0, D1, D2) + Ei = C̄i, Q-q.s.

〈θi0, S0〉 = EQ[ξi] = EQ[ξi] = EQ[C̄i − Ei] = π(ei − c̄i).

Hence, each agent i = I \ {I} consumes (c̄i, C̄i) via the portfolio strategy θi.

3. In order to meet the market clearing condition in the Radner economy, consider
the last agent I ∈ I, equipped with θI = −

∑
j∈I\{I} θ

j, which guarantees market

clearing, by the linear structure of Θ(S). The self-financing condition θI ∈ Θ(S)
holds by construction. We derive again by the Arrow-Debreu budget constraint,
since Q ∈ QE

〈θI0, S0〉 = EQ
[
−
∑

j∈I\{I}

ξj

]
= EQ [ξI ] = π(eI − c̄I).

By the clearing condition of the Arrow-Debreu equilibrium we derive

ξI = −
∑

j∈I\{I}

ξj =

〈
−
∑

j∈I\{I}

θjT , ST

〉
= −

∑
j∈I\{I}

(
θj,0T S

0
T + θj,1T S

1
T + θj,2T S

2
T

)
,

which gives us the clearing condition in the Radner economy.

4. In the last step we show the individual optimality of the trading strategies.
Suppose there is an agent k ∈ I capable of achieving a strictly preferred bundle
(c, C) �k (c̄k, Ek + ξk) in terms of a different trading strategy θC ∈ Θ(S). The
Arrow-Debreu price system (at time T ) in Theorem 2 satisfies Π ∈ L1(P)∗⊕, the
value of (c, C) should be strictly higher in comparison to (c̄k, C̄k), since preferences
are semi-strictly monotone.50 This means

πc+ EQ[C] > πc̄k + EQ[Ek + ξk], for some Q ∈ QE.
50In this argument, we benefit from the semi-strict positivity of the price system.
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Applying the Radner budget constraint for (c, C), we have

πek − 〈θC0 , S0〉+ EQ

[
Ek + 〈θC0 , S0〉+

∫ T

0

〈θCt , dSt〉
]
> πc̄k + EQ[Ek + ξk],

for some Q ∈ QE. Since
∫
θC,0dS0 ≡ 0 and the stochastic integral

∫ t
0
θC,1r dS1

r is a
symmetric Q-martingale, and hence a Q-martingale for every Q ∈ Q as well. By
the market clearing and Lemma 3, KC

T =
∫ T

0
θC,2r dS2

r holds Q-q.s. and since −KC

is a Q-martingale starting in zero, we conclude

πek + EQ [Ek] = πek + EQ
[
Ek −KQ,C

T

]
> πc̄k + EQ[Ek + ξk].

This implies 0 > π(c̄k−ek)+EQ
[
C̄k − Ek

]
, and contradicts the given Arrow-Debreu

budget optimality of (c̄k, C̄k).

This proves the existence of the Radner equilibrium. The properties of the equilib-
rium follow directly from the construction. �

By P(F), we denote the predictable σ-algebra on Ω̄ = [0, T ]×Ω with respect to
the filtration F in Subsection 4.1. In the proof of Theorem 3, we applied the the
following result.

Lemma 3 Fix a finite set {Ki}i∈I of predictable, nondecreasing processes, starting
in zero with Ki

T ∈ L1(P), then there is a predictable, nondecreasing process S,
starting in zero with ST ∈ L1(P) and a set (ηi)i∈I of predictable and S-integrable
processes such that

Ki
t =

∫ t

0

ηirdSr P-q.e. for every i ∈ I.

Proof of Lemma 3 Set Ki,P = Ki as a process on (Ω,B(Ω), P ). By the properties
of each Ki.P , there is a positive (random) measure µi,P on (Ω̄,P(F)) satisfying

A 7→ µP (A) = EP

[∫ T

0

1AdKi,P
t

]
, A ∈ P(F).

The space of σ-finite signed measuresMσ(Ω̄,P(F)) is a Banach lattice51 (see section
IX.2 of Jacobs and Kurzweil (1978)), and especially a lattice group. By Proposition
5.1.12 of Constantinescu (1984), there is a finite family of strictly positive and
σ-finite measures (νPλ )λ∈L ⊂Mσ(Ω̄,P(F)) such that∑

λ∈L

νPλ = µP =
∨
i∈I

µi,P ∈Mσ(Ω̄,P(F))

and for every i ∈ I there exists a subset Li ⊂ L with

µi,P =
∑
λ∈Li

νPλ ∈Mσ(Ω̄,P(F)).

51 Here, Mσ(Ω̄,P(F)) is quipped with the natural ordering and the total variation norm.
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Absolute continuity follows, i.e. νPλ � µP for every λ ∈ L. Hence, by the Radon-
Nykodym theorem applied on (Ω̄,P(F), µP ), we have

dνPλ =
dνPλ
dµP

dµP , for every λ ∈ L.

The density
dνPλ
dµP

is in L1(Ω̄,P(F), µP ) if and only if νPλ is σ-finite, and we have

dµi,P =
∑
λ∈Li

dνPλ =
∑
λ∈Li

dνPλ
dµP

dµP = ηi,PdµP .

Similarly to the identification of Ki,P via µi,P , there is a predictable process SP with
SP0 = 0 and increasing paths and a ηi,P ∈ L1(Ω̄,P(F), µP ), such that

dKi,P
t = ηi,Pt dSPt for every t ∈ [0, T ] and i ∈ I.

In order to guarantee aggregating objects, i.e. S = SP and ηi = ηi,P P ⊗ dt-a.e. for
every P ∈ P, we use the weak compactness of P in Assumption 1. The aggregation
property holds by an application of Theorem 5.1 of Soner, Touzi, and Zhang (2012b),
(see also Example 4.14 therein). The result follows. �

References

Abramovich, Y., and C. Aliprantis (2002): An invitation to operator theory.
American Mathematical Society.

Aliprantis, C., and K. Border (2006): Infinite dimensional analysis: a hitch-
hiker’s guide. Springer Verlag.

Aliprantis, C., D. Brown, and O. Burkinshaw (1990): Existence and opti-
mality of competitive equilibria. Springer Verlag.

Anderson, R., and R. Raimondo (2008): “Equilibrium in Continuous-Time Fi-
nancial Markets: Endogenously Dynamically Complete Markets,” Econometrica,
76(4), 841–907.

Basak, S., and D. Cuoco (1998): “An equilibrium model with restricted stock
market participation,” Review of Financial Studies, 11(2), 309.

Beißner, P. (2011): “Existence of Arrow-Debreu Equilibrium with Generalized
Stochastic Differential Utility,” Working Papers.

(2012): “Coherent Price Systems and Uncertainty-Neutral Valuation,”
Arxiv preprint arXiv:1202.6632.

Bewley, T. (2002): “Knightian decision theory. Part I,” Decisions in economics
and finance, 25(2), 79–110.

42



Biagini, S., and M. Frittelli (2010): “On the Extension of the Namioka-Klee
Theorem and on the Fatou Property for Risk Measures,” Optimality and Risk-
Modern Trends in Mathematical Finance, pp. 1–28.

Bion-Nadal, J., and M. Kervarec (2012): “Risk Measuring under Model Un-
certainty,” The Annals of Applied Probability, 22(1), 213–238.

Chateauneuf, A. (1991): “On the use of capacities in modeling uncertainty aver-
sion and risk aversion,” Journal of Mathematical Economics, 20(4), 343–369.

Chen, Z., and L. Epstein (2002): “Ambiguity, Risk, and Asset Returns in Con-
tinuous Time,” Econometrica, 70(4), 1403–1443.

Cheridito, P., H. M. Soner, N. Touzi, and N. Victoir (2007): “Second-
order backward stochastic differential equations and fully nonlinear parabolic
PDEs,” Communications on Pure and Applied Mathematics, 60(7), 1081–1110.

Clarke, F. (1990): Optimization and nonsmooth analysis, vol. 5. Society for In-
dustrial Mathematics.

Cohen, S. (2011): “Quasi-sure analysis, aggregation and dual representations of
sublinear expectations in general spaces,” Arxiv preprint arXiv:1110.2592.

Cohen, S., S. Ji, and S. Peng (2011): “Sublinear Expectations and Martingales
in Discrete Time,” Arxiv preprint arXiv:1104.5390.

Constantinescu, C. (1984): Spaces of measures, vol. 4. de Gruyter.

Dana, R. (1993): “Existence and uniqueness of equilibria when preferences are
additively separable,” Econometrica, 61(4), 953–957.

(2004): “Ambiguity, uncertainty aversion and equilibrium welfare,” Eco-
nomic Theory, 23(3), 569–587.

Dana, R., and C. Le Van (2010): “Overlapping Risk Adjusted Sets of Priors and
the Existence of Efficient Allocations and Equilibria with Short-Selling,” Journal
of Economic Theory, 145(6), 2186–2202.

Dana, R., and M. Pontier (1992): “On existence of an Arrow-Radner equi-
librium in the case of complete markets. A remark,” Mathematics of Operations
research, 17(1), 148–163.

Dana, R., and F. Riedel (2013): “Intertemporal Equilibria with Knightian Un-
certainty,” Journal of Economic Theory, 148(1), 1582–1605.

Dana, R.-A. (2002): “On equilibria when agents have multiple priors,” Annals of
Operations Research, 114(1), 105–115.

De Castro, L., and A. Chateauneuf (2011): “Ambiguity aversion and trade,”
Economic Theory, 48(2), 243–273.

43



Debreu, G. (1959): Theory of value: An axiomatic analysis of economic equilib-
rium, vol. 17. New Haven: Yale University Press, c1959, 1973 printing.

Dellacherie, C., and P. Meyer (1978): “Probability and potential,” Paris:
Hermann.

Denis, L., M. Hu, and S. Peng (2011): “Function Spaces and Capacity Related
to a Sublinear Expectation: Application to G-Brownian Motion Paths,” Potential
Analysis, 34(2), 139–161.

Denis, L., and M. Kervarec (2013): “Utility functions and optimal investment
in non-dominated models,” SIAM J. Control Optim., 51(3), 1803–1822.

Dow, J., and S. da Costa Werlang (1992): “Uncertainty aversion, risk aver-
sion, and the optimal choice of portfolio,” Econometrica, 60(1), 197–204.

Duffie, D. (1986): “Stochastic Equilibria: Existence, Spanning Number, and
the No Expected Financial Gain from Trade’Hypothesis,” Econometrica, 54(5),
1161–1184.

Duffie, D., and C. Huang (1985): “Implementing Arrow-Debreu equilibria by
continuous trading of few long-lived securities,” Econometrica, 53(6), 1337–1356.

Duffie, D., and W. Shafer (1985): “Equilibrium in incomplete markets: I::
A basic model of generic existence,” Journal of Mathematical Economics, 14(3),
285–300.

Duffie, D., and W. Zame (1989): “The consumption-based capital asset pricing
model,” Econometrica, 57(6), 1279–1297.

Epstein, L., and S. Ji (2013a): “Ambiguous volatility and asset pricing in con-
tinuous time,” To Appear: Rev. Finan. Stud.

Epstein, L., and S. Ji (2013b): “Ambiguous volatility, possibility and utility in
continuous time,” arXiv preprint arXiv:1103.1652v7.

Epstein, L., and M. Schneider (2003): “Recursive multiple-priors,” Journal of
Economic Theory, 113(1), 1–31.

Epstein, L., and T. Wang (1994): “Intertemporal Asset Pricing under Knightian
Uncertainty,” Econometrica: Journal of the Econometric Society, 62(3), 283–322.

Epstein, L., and J. Zhang (2001): “Subjective probabilities on subjectively
unambiguous events,” Econometrica, 69(2), 265–306.

Faro, J. (2009): “Variational bewley preferences,” Discussion paper, Technical
report, Cedeplar-FACE-UFMG.

Feyel, D., and A. De La Pradelle (1977): “Topologies fines et compactifica-
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