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Abstract

This paper constitutes the third part in a series dealing with
vNM-Stable Sets, see [2], [3]. We consider (cooperative) linear
production games with a continuum of players. The coalitional
function is generated by r + 1 “production factors” (non atomic
measures). r factors are given by orthogonal probabilities (“cor-
nered” production factors) while factor r + 1% is provided “across
the corners” of the market.

We consider convex vNM—Stable Sets of this game.

Within this third part we exhaustively discuss the situation
in a small but very significant economy or game. In this situa-
tion, there are two corners of the market (factors represented by
orthogonal probabilities), each of which being divided into two
sectors of constant density of the non cornered commodity (a
measure exhibiting mass across all corners of the market). For
short, this is the 2 x 2—case, the foundations of which have been
laid in Example 2.1 of Part I (cf. [2]).

It turns out that, depending on the boundary conditions, we
obtain two different scenarios. The first one reflects a situation
that exhibits a unique vNM-Stable Set. The second scenario
allows for a variety of vNM-Stable Sets including but not equal
to the core of the game.



* SECTION 1: INTRODUCTION, NOTATION * 3

1 Introduction, Notation

Within this third part of our series about vNM-Stable Sets of Semi Or-
thogonal Games we embark on a detailed discussion of Example of a “small
economy”, more precisely the 2 x 2 case, that has been treated in some ver-
sion already in Example 2.1 of Part I ([2]) (for short Example 2.1*I). We are
going to vary the boundary conditions for h,, A\, (7 = 1,2,3,4). That is,
we fix the assumption that A; = 0,hy = 1 but otherwise attempt to do an
exhaustive presentation.

Within this present paper it turns out that vNM-Stable Sets may exhibit
various forms of appearance.

In the first section the vNM-Stable Set presented is unique. The example is
not exhibiting a rich central commodity in the technical sense of Definition
3.1 of Part II, i.e. [2] (for short Definition 3.1*II). Yet the situation allows
for a similar treatment as in SECTION 3*II.

The second section then exhibits quite the opposite behavior of vNM—-Stable
sets. In this case there is an abundance of such stable sets within certain
restrictions. While there is no uniqueness, we can again come up with a full
characterization: the family of vNM-Stable Sets described is exhaustive, all
such stable sets will be of the nature exhibited.

We use definitions and notations as provided in |2], [3] and previously in [4]
and [5]. Thus, we consider a (cooperative) game with a continuum of play-
ers, i.e., a triple (I, F,v) where I is some interval in the reals (the players),
F is the o—field of (Borel) measurable sets (the coalitions) and v (the coali-
tional function) is a mapping v : E — R, which is absolutely continuous
w.r.t. the Lebesgue measure A. We focus on “linear production games”, that
is, v is described by finitely many measures A’  (p € {0,1,...,7}) via

(1.1) v(S) = min{N(S)|pe{0,1,....,7} (SeE).
(1.2) v= A{X°A N = AN

(as previously, we use R = {1,...,r} and Ry = RU {0}). All measures are
absolutely continuous w.r.t to Lebesgue measure X. The measures A',..., A"
are orthogonal copies of Lebesgue measure. Thus we choose the player set to
be I := [0,r). The carriers C* = (p—1,p] (p=0,...,r) of the measures
A? are the “cartels” commanding commodity p.

The measure A’ is assumed to have a piecewise constant density A° w.r.t A
given by

(1.3) AN =h onD7, (reT)
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where {D"},ct, constitutes a partition of the carrier C” of A” such that

U,eo D™ = C”. Further details of our notation are exactly those presented
in [2], 3].

Here we shall discuss the 2 x 2—example, the first rudimentary version of
which appears in EINY ET AL. [1]. however, we change the boundary data
so as to obtain an exhaustive treatment. Indeed, in what follows we explain
why the 2 x 2 case is completely treated within the two sections of this paper.
As previously we write

Ar = ADT) (1=1,...,4),
and also
(1.4) 2s = A(D?*u D%
such that
AMF+X=1, M+N=1.

Now we distinguish alternatives according whether

)\2+)\3210T)\2—|—)\3§1
hy 4+ hs > 1 or hg +hs <1

holds true. Observe that
)\1+)\321 andhg—f—thl

imply A3 > 1 — X, = Ao, hence

/\3 Z )\3h2 + )\3h3 Z /\3h2 + /\th = )\33 s le. 1 — /\4 Z )\33

hence
(1.5) 1> A5+ = A°(D)

contradicting our basic assumption A°(I) > 1. Hence, there remain the
following 3 cases to be distinguished. Note that in all these cases we then
assume that

11—\,

(1.6) .

<1 .

is satisfied. Note that A! and A? represent the corners of the market while
A? reflects the commodities in the center of the market.

First Case: The EHMS example.

(17) )\1 —+ )\3 S 1, i.e. )\1 S )\4, )\3 S )\2 s

(1.8) hy+hs>1 .
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this case has been treated in Part I; the result shows that the core is a
vNM-Stable Set.

Second Case:

(19) )\1 —+ )\3 S 1, i.e. )\1 S )\4, )\3 S )\2 s

(110) ho+hy <1 .

This case is treated in SECTION 2 below.

Third Case:
(111) /\1 + )\3 Z 1, 1.e. )\1 Z A4, )\3 Z /\2 s
(1.12) ho+hs>1 .

This case is treated in SECTION 3 below.

2 A Characterization: The 2 x 2 Example
with a unique vINM—Stable Set

Throughout this section we assume that the density A" satisfies

(21) h1:O, h2+h3<1, hs=1.
and

A+ < 1
(2.2) equivalently

Ao+ A > 1, A< M\ ,)\3<)\2 ,)\2+)\4>1.

This is not the case of a rich central commodity as we have two sequences
(hi,h3) and (he, h3) satisfying 2.7.*II. On the other hand, (2.2) is formally
the same as 3.12 in Lemma 3.3*II for the sequence (71,72) = (2,3). The
example is treated with this sequence in mind. Then conditions 3.12*II or
3.13*II boil down to (2.2).

Observe also, that the Example assumes h; = 0; hence we cannot compute
the relevant vectors (pre—coalitions) just by referring to Theorem 3.5*1, i.e.,
of [2]. Hence, we cannot call on Theorem 3.15 Part II, but instead have to
go through detailed proofs for existence and uniqueness. The proof for the
existence theorem nevertheless proceeds along the same path as exhibited in
SECTION 3*II.
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In order to have integer expressions in the 7., we prefer to normalize the rel-
evant vectors differently (see Remark 3.6*I). Accordingly, we list the relevant
vectors in a way that avoids rational expressions.

Lemma 2.1. With assumptions (2.1) and (2.2), the relevant vectors and
their values are given as follows:

a“:= (1,0,0,1);
v(@') =1 = e2a! = e¥a!t = al*
a®*:= (0,1,0,1) ;
v(@®) =1=e%a* = e*a® < c’a® =hy + 1
a':=(hs,0,1,0) ;
v(@®) = hy = e2a®® = 'a’® < e¥a’® = 1
(2'3) 234 . __ 1= ha.ho.1—(h h .
a T (07 35102, ( 2+ 3))7

234) — 1 _ h3 — 612a234 COa234 — 634CL234

v(a
a® .= (0,1 hg,hQ,O) :

v(@®) = hy = e¥a® = Pa® < 2
a*> = (0, hg, — hy,0)

U( ) _ h3 — 8120,32 _ Coa < 8340,32

The lemma is verified by some standard procedure for the computation of
the extremals of a compact convex polyhedron — but also in view of Theorem

3.5,[2]. Note that pre-coalitions a'* and a** are of the first type a® of

Theorem 3.5 of [2]. Precoalitions a'®, a?®, a? are of the second type a® and

pre—coalition a®** is of the third type a®.

Accordingly, we adjust our notation of e-relevant coalitions. Eg. whenever

H
for some ¢ > 0 a coalition T" C D' satisfies A(T'3) = ca'®, then we call
T' an e-13-relevant coalition. Then

(2.4) O(T?) = vEATS)) = v(ea®) = chy

holds true. A similar notation is used for other relevant vectors a®. Accord-
ingly, we slightly change the notation for

(2.5) H = {xcJ|xa>v(a) (ac A%}
such that in the present situation we have

H = {zxecd|xi+z4>1, zg+x9 >1,

2.6
(2:6) a®x > hy, a**x > hs, a®*x > hs).

Finally we note that the vector &, i.e., the unique element of J satisfying
a®x = hy, a**x = hsy and x1 + x4 = 1, is given by

2.7 = yhay b
( ) T ()\4 — )\1 2,103, v N\ )\4 — )\1 )
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with A)y = hoAJ + hgA§ < Aa.

This vector corresponds exactly to the one exhibited in SECTION 3*II if
we choose the sequence (71,72) = (2,3). The following sketch (Figure 2.1)
represents & as a density in I.

Al A\’

Xyg

Figure 2.1: The density suggested by &

Lemma 2.2. For \{ + A3 < 1 the extremals of H are

e, e and T .

Hence

H = Coan{elQ, 634,:17:}

The proof can be done by a routine computation of extremals. We cannot
rely on Theorem 3.10*I1 — again the caveat concerning the assumption h; = 0
has to be observed. Yet, that theorem yields relevant vectors though not all
of them.

The following Lemma is verified by a standard argument.
Lemma 2.3. Let p be an imputation with minima vector m. If
(28) mi+my <1

holds true, then an element of the core dominates m via an e-14-relevant
coalition. The same holds true if {14} is replaced by {24}.

Corollary 2.4. 1. The set
(29) F = {$€J|$1+ZE421,$2+ZE421, $2+$321}

has extremals €' and €3* only, hence F = C(v).
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2. Let n ¢ C(v) be an imputation with minima vector m. Suppose
(210) mi + my > 1 and Mo + My > 1
holds true. Then

Proof:

The first statement is verified by a standard computation, it is essential that
i—g < 1 holds true. The second statement follows then immediately, if (2.11)
is violated, then m € C(v) and hence necessarily n = 9™ € C(v).

q.e.d.

Note that this Corollary is close to Lemma 4.8 and Theorem 4.9 of [2], it
serves the same purpose.

Lemma 2.5. Let 9 be an imputation with minima vector m. If a®*m < hy,
then 9 is dominated by means of the core and itself. The same holds true for
a*? and a®3.

Proof:

Follows from our general theory, i.e., Theorem 4.4*I.

Theorem 2.6. H is internally stable.

Proof:

This actually does follow from Theorem 3.11*II. In the 2 x 2—case we can,
however, provide a second argument as follows.

We know that for internal domination only ¢ — 234-relevant coalitions have
to be taken into account as all pre-imputations @ € H induce the same value
v(a) = xa for the pre—coalitions of the first and second type.

Now all the extremals of H, i.e., the vectors e'?, e3*, & satisfy x; + 24 = 1

as well as the imputation equation, i.e., \jx1 + Aoxo + A3x3 + Mgy = 1.
Subtracting both we obtain for any @ satisfying both equations

)\21'2 + )\3%’3 + ()\4 — )\1)%’4 =1- )\1 = )\2 .

Hence the vector (A2, A3, Ay — A1) > 0 serves as a gradient to the hyperplane
in Rj,;, containing the projections of e'? e, . Clearly, for any two vectors
x,y located within this hyperplane a relation =, > y, (7 = 2,3,4) cannot
occur.

q.e.d.

We list the following standard arguments just for comprehensiveness.
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Corollary 2.7. Let n € I\ H with minima vector m.

1. If, for some linear combination © of T and e'? we have x5 > msy and
x3 > mg, then, for sufficiently small ¢ > O there is an -32-relevant
coalition S3% such that

¥ domgs2 1 .

2. If, for some linear combination x of T and e>* we have x5 > my and
x3 > mg, then, for sufficiently small € > 0 there is an -23-relevant
coalition S* such that

v d0m523 n.

3. If, for some linear combination x of &,e'?, and e3* we have xo >
Mo, T3 > Mg and x4 > my, then, for sufficiently small € > 0 there is an
e-23-relevant coalition S* such that

¥* domges 1 .

Lemma 2.8. Let (x9,23) > 0 be such that x5 + x3 < hg + hs. Then the
following holds true.

1. If x5 < hy then the 23—inequality
(2.12) a®r = (1 — h3)zy + howz < hy,
18 satisfied with a strict inequality.

2. If x3 < h3 then the 32—inequality
(2.13) a’*x = hyro+ (1 — hy)as < hs
18 satisfied with a strict inequality.

Proof: We check the first item.

As zo+1x3 <1 wehavet: = % > 1. Now, adding x5 4+ z3 < hy + hg and
(t — 1)zo < (t — 1)hy we obtain

1:t$2+l’3<th2+h3,

ie.,
1—=x
1< 3

ha + hg,
)

ie.,
To < (1 — l’g)hg + l’zhg,

which is indeed the 23-inequality (2.12),
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Lemma 2.9. Let n € J be an imputation and let let T be a 23-coalition.

Denote

(2.14) m, = essinfpr-n (1 = 2,3).
If

(2.15) mo +mg < ho + hs |

then, for sufficiently small € > 0, there is an e-23—coalition S C T" and a
linear combination T of ® and e3* satisfying 9% domg n.

q.e.d.
Proof:

Assume that mgy < hy is true (either this or m3 < hs has to be the case, the
second case is treated analogously). Because of Lemma 2.8 we can assume
that the 23-inequality (2.12) holds true for m, i.e., we have

(216) (]_ — hg)mg + h2m3 < hg .

Consider the vector

(2.17) o= 2Fp(1-2) e,
Now, because of

ho(1 —mg) > mao(1 — h3), i.e., mohg + he — mg > hamg
and T3 = hs we have

MoT3 + (hg — mz) > hgmg

ie.,
mo_ mo
— 1——)> .
h2 T3 + ( h2 ) ms
that is,
(218) To = My, T3 > M3

Then, for sufficiently small § > 0 the vector

mo

(2.19) 2= (E2 )z +(1- -

A —6e*? el

yields

(2.20) x5y > my, x§ > ms .
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Now we can choose an ¢-23—coalition S C T satisfying
(A(S?), A(S%)) = [(1 = hs), ho]

such that

(2.21) 9 >mnon S

holds true. For this coalition we have

(2.22) NP(S) = e (ha(1 — hs) + hshy) = ehy = X*(S).

As 2% is a convex combination of & and e**, we can apply Lemma 2.2 and
obtain

)

(2.23) 9= (S) = ehy

By (2.21) and (2.23) 9" dominates i on S for sufficiently small ¢ > 0.
q.e.d.

Now consider the & — 234-relevant coalitions corresponding to a**. The
following Lemma brakes the path.

Lemma 2.10. Let 2° € RY | 2" # &, satisfy
Mzl 4+ Aoz 4+ Az + A2} <1, 2V + 2l >1, and 2+l <1

Then there is a set of convez (i.e., nonnegative and summing to 1) coefficients
o, a3, a such that

(2.24) x* = e+ aze +axc H
satisfies
(2.25) vy =1y, a3 =213, x>z .

Consequently, for sufficiently small € > 0, there is a relevant e-234—coalition
S C T and a convex combination T of T, €2, and e3* satisfying 9* domg 7.

Proof:
1StSTEP : Let

_ 1— (29 + 29)
2.26 = —= 2 <1
(2.26) T T T (he 1 hy)

First of all consider the case that
(2.27) 2 >ha (r1=23).
Then let

(2.28) 0<ay=a9—hya < 1
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(2.29) 0<as=a3—hsa < 1.

Because of

(2.30) Qg +ahy = 1y, 3+ ahs =13,

and

(2.31) ag+az = (x5 +a3) —alhy+hs) = 1—@

we have a1 + o +@ = 1, that is the coefficients define a convex combination.
Thus we have determined the coefficients @, as, s of Z,e'2, and e3* such that
(2.25) is satisfied.

2"ISTEP :

We wish to verify
(2.32) s+ azy > 1)
or equivalently

(2.33) a(Ty — h3) > 2§ — 23

As we have
)\1.%'(1] + )\2.%'(2] + )\333'2 + )\41’2 S 1

and 29 + 2§ > 1, we have also
)\1.%'(1] + )\11‘2 Z )\1
subtracting the second from first we obtain

Aotd 4+ A2l + (Mg — M)al <1 — M\ = Ay

that is,
Ay — (Mg + A3
(2.34) 20 < 227 Daa T Aaty)
A — A
with an equation if and only if 29429 = 1 and A2+ Aoz + X325+ M2 = 1.

However, whenever both of these equations are satisfied, then necessarily all
inequalities involved are equations which means that T = T Thus, we may
assume that there is a strict inequality in (2.34). This implies

) — ) < Az = (Ao +:;39ig))\1_ 29(Ag — A1)
(2.35) A= derh —af(As + A — )
A — A

Ao(1 — (x5 + 23))
A= M
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On the other hand, using the definition of Z as given in (2.7), we obtain

A2 — hodg — h3)s

Ty — hy = —h
4 3 M 3
Ao — hodo — hg(A3 + Ay — Aq)
2.36 =
(2.36) N
B Ao(1 — (hg + h3))
A — A ’
hence
1 — 0 0
(2.37) a(Ty — hs) = Ao(l = (15 + 73))

Ay — N ’

Now comparing (2.37) and (2.35)we obtain directly the desired inequality
(2.33) and hence (2.32).

3"4STEP : In the case that (2.27) is not satisfied, we can proceed quite
analogously. Eg., if 23 < hya, the put as = 0 and determine az by (2.29),
the remaining computations then run exactly along the same line as above.

4*"STEP : Now consider the vector
T = 042612 + 063634 +ax.

Clearly, by the construction of as, s and @ this vector equals m on coordi-
nates 2,3 (by (2.30)) and exceeds m on coordinate 4 (by (2.32). Thus, we
can increase x slightly on coordinates 2, 3. IL.e., for sufficiently small § < 0

(2.38) x’ = (ag+0)e? + (a3 +0)e* + (@ —20)x

exceeds m on coordinates 2,3,4. Now effectiveness results from Corollary
2.14. Consequently & = x’ serves to fullfill the claim of the present lemma.

q.e.d.

Lemma 2.11. Let T" be a 234—coalition and let 1 € J be an imputation. Let
m be the minima vector of . If

(239) hg + h3 < mgy + mg, and mo < hg, h3 < mgs,

then, for sufficiently smalle > 0, there is a relevant e -234—coalition S C T or
a relevant e-23-coalition S C T as well as a linear combination T of &,e'?,
and e3* satisfying 9% domg n. (The symmetric case with my > hy, hz > mg

is treated analogously).

Proof:

Either the 23-equation (2.12) is satisfied, in which case we can just repeat
the construction of the Lemma 2.9. Or else, the reverse inequality holds true,
i.e., we have

(2.40) ma(1 — hy) > ha(1 — my).
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Then
ma[l — (hs + h3)] = ha[l — (ms + ms)],
that is
1 — (mg + ms3) S
1—(hg+hs) —
Hence we can define the quantities aws, s, @ as in the proof of Lemma 2.10
and the argument of that proof is repeated.

Qo = My —hg

q.e.d.
Theorem 2.12. Let \y + A3 < 1 and hy + hs < 1. Then H is externally
stable, hence a vNM-Stable Set.
Proof: 1*STEP :
Let n € J\ H and let m be the minima vector of 7.

Now, if m violates one of the inequalities regarding relevant 14 and 24 coali-
tions, then we can immediately dominate n (actually via the core) in view
of Corollary 2.3. Thus we have m; +my > 1, mg +my > 1.

Moreover, we can assume

holds true in view of Corollary 2.4.

3*"dSTEP : Assume now
(242) mo + mg < hg + h3 .

Then by Lemma 2.9 we obtain some linear combination & of & and e'? such
that for sufficiently small € > 0, the imputation ¥* dominates 1 w.r.t. some
relevant e-23-set S.

A*"STEP : Consider now the situation in which
(2.43) h, <m, (1 =2,3)
holds true.

Then by Lemma 2.10 we obtain some linear combination Z of Z, e!? and e3*
such that, for sufficiently small £ > 0, the imputation ¥9* dominates n w.r.t
some relevant e-234-set S

5*"STEP : Finally, consider the situation in which
(244) h2+h3 <mg+mg < 1, and mo <h2, h3 <ms .

is true

Here we can either construct a relevant 23 or a relevant 234 coalition. The
details follow immediately from Lemma 2.10. The symmetric case with my >
ha, hs > mg is treated analogously.
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q.e.d.

For the present setup at which there is just one additional extremal point in
H we can actually prove uniqueness of our vNM-Stable Set.

Theorem 2.13. Let K be a vNM-Stable Set. Then 9 = 9% € I,

Proof:

If 9 ¢ f/}\C, then there has to be an imputation 9 e H (in particular not
dominated by the core !) as well as a coalition S such that

(2.45) '{9\dom§1§

holds true. Let the essential minima of 9 be denoted by 71 = (Mmy,...,My)
with

(2.46) My = essinfpr ¥ (1 = 1,2,3,4).

15*STEP :

(2.47) We claim that w.l.o.g (Mg, m3) > (he, hs).

Indeed, because ¥ is not dominated by the core (Lemma 2.5), we have
Cl,23/’l’ﬁ Z hg, a32ﬁ Z h3.

If we focus in coordinates 2 and 3 of 7, then the situation is represented in
Figure 2.2. Obviously at most one of the coordinates 2,3 can be dominated
by a coordinate of Z, i.e., of (hg, hg). Assume mg3 < hg as indicated by Figure
2.2.

Then consider the imputation 9° = (1 — t)@—i— te® € Hfort := T3 — Mms.
Let the minima of 9° be given by m?, then

(2.48) (m9,m3) > (To, T3).

Therefore, the claim formulated in 2.47 is proved.

2"dSTEP : Our next claim is

(2.49) Ty > My .

Because of (2.48) and

TiA1 + Tado + T3Ag + TuAg = 1,
ML + Mg + M3z + myry < 1
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[P

; Lo
h
2 k/a:ﬂw — h3
\_/

Figure 2.2: Coordinates 2 and 3 of  and &

we have

MaAL + Mgy < Ty +Tahs = 1 — (fg)\z + fg)\g)
= 1— (hohy +hs)g) =1 — A3,

On the other hand, 9¥° cannot be dominated by the core, hence we have
necessarily
my+my >1=2+ 24 .

Adding
— My Ay — Mg Ay < =T\ — Tyl
and
7/7\11)\1 + ff\l4)\4 < TiA + Tgy
we come up with (Ay —A;)m§ < (Ay—\;)Z4. Hence (2.49) holds true indeed..

Similarly, one finds 7; < m;. Alternatively, one may at once focus on coor-
dinates 1,4 of & and m" and inspect Figure 2.3.

3"ISTEP :

We now claim that w.l.o.g

(2.50) my+my=1 .

Indeed, consider the measure

~

9 = Y — N | pr I | pa
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Ty
I 1
Y
AN T+ Ty = 1
. 0
. {z ‘ AMx1 + Ay <1 — Ags,
0
1-A"s ~. T1+ x4 > 1}
)\4 N\\ N
\\\ ‘\‘
IR My 4 Agzg =1 — X0
~ Y —

Figure 2.3: Coordinates 1 and 4 of m and &

for R R
(m1 + m4) -1
A — A1
Note that the minima in the second and third coordinate are not changed,
so the vector of minima m! of 9" inherits (2.48), that is

t =

(2.51) (my, m3) > (Ty, T3).
Moreover by the choice of ¢ we observe that
(2.52) (my +my) =1
But (ml,m}) also inherits the inequality

(2.53) Awy + Mzg < 1= Xy

from (my,my). Now, mj > my is obvious and mi > m; follows by an

inspection of Figure 2.3 which shows that (2.52) and (2.53) imply that any
solution « of these two inequalities necessarily yields z; > Z;. Thus 9" is
nonnegative, hence an imputation. But any domination of ¥ via some e
234-relevant coalition implies a fortiori a domination of 19 as both are equal
in in D*uU D? and 9" exceeds ¥ on D*. Consequently, 9' € H and we may
as well replace 9 by 9", in other words, we have verified (2.50).

4*"STEP :

Next we reduce the minima of 9 in D* U D? to (hg, hs). That is our next
claim is that w.l.o.g

(2.54) (M2, M3) = (h2, hs)
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holds true.
To this end we recall Lemma 2.10 and choose — using our present m — the
coefficients o, ag, @ as given by that lemma. Then we know that
x* = aje? + e +ax
satisfies
(x5, 23) = (T2, 73) = (a1, ) + a(hy, hs) .

Hence
(25, 23) — (a1, ) = @(hg, h3) .

Consequently, the vector

o % — (0[1812 + 0[2634)
T =
«
= (x§7x§) B (a17 Oéz)
a

satisfies
(x5, x5™) = (ho, hs) .

We claim that x** > 0 holds true. To this end, consider, for 0 < ¢ <1 the
vector
T — t(a1612 + 062634)

this vector inherits the inequalities 1 + x4 = 1 and 2y + 24 > 1 from Z
as the e'? and e** yield an equation in both inequalities. Now, if for some
t < 1 we would have 2 = 0, then 2! = 1 and 2 > 1 hence Mzt + ... +
Az > A + Ay = 1, a contradiction. Consequently z% = x3* > 0. Next,
x7* > 0 is immediately seen by inspecting Figure 2.3 as the inequalities
ry + zy = 1, M2t + M\zd <1 — A, admit only solutions & with z; > 7.

This implies that

9 — (a1e'? + ape3?)

I =

«

is indeed an imputation with minima (hg, hs) in D? and D?. However, as
Y = a0 + (e'? + aze™)

we observe that any domination of ¥** by some Y via some £ — 234-relevant
coalition induces a domination of 9 by a + (a;e'? + aye®*) via the same & —
234-relevant coalition, a contradiction. Hence we have 9 € H. Therefore,

we may, if necessary, replace 9 by 9**, that is we have verified our claim
(2.54).

5''STEP :
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Within this step we now show that 9 can actually be assumed to be constant
in D? U D?. That is we are going to prove that w.l.o.g

(2.55) 9 =hy on D*, 0 = hy on D,

To this end let 9* be obtained by shifting all mass of 9 above (ha, h3) from
D? U D? to D*, that is we define

| D1

9 = B+ halpethalps+ 9, +( / DX — Ay3)1 0

D2uD3

Suppose now that 9¥* is dominated by some 9 via some ¢ — 234-relevant
0234

coalition T for some € > (0. The measure

A= ho Al 4+ iy

)\2

exceeds ¥ on some set T2 C D?* of sufficiently small measure, as the minima
of this measure exceed (hg, h3).

Moreover, 9 exceeds 9 on T* as 9* exceeds 9 on T*.
Hence, for sufficiently small £ > 0 we can find an £ — 123-relevant coalition

T23 C 728 U T* such that, for sufficiently small § > 0 the measure

h
J o= (1= 9P+ +9

exceeds 9 on T4, Now, as 9(T?*) < £(1 — h3) = 'U(T234) and A"(T234) <
E(1 —hy) = v(T?4) we can choose, if necessary, 0 even smaller such that
Y(T?Y) < Z(1 — hg) = v(T?*) is true. Hence we have indeed

5 dOmT234 "3

a contradiction. Consequently, 9 € H and we may replace 9 by 9*. That
is, we have indeed verified our claim (2.55).
6*"STEP :

Altogether we have found 9 € H such that 9 = 7, > 7, on D' and ¥ = h,
on D7 (7 = 2,3) is the case. Moreover, z1+7, = 1 Now consider the average

over D* given by
~ 1 ~
Ty = —— [ YdX .
TN DY /

Then clearly
MZT1 + Aoho + Ashs + \Ty = 1

thus R
)\153'\1 + )\4@4 = 1 - )\33
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and
T1+T4>1

However, inspection of Figure 2.3 reveals that (7;,74) is the only solution to
this pair of inequality /equation. Hence ¥} = Z; and because of 77 + 7, = 1
it follows that z, = 74. Consequently, 9 > 9% which implies 9 = 9% as
both are imputations. This finally proves our Theorem.

q.e.d.

Theorem 2.14. H is the unique vNM-Stable Set.

Proof:

Let H be a second vNM-Stable Set. First of all H{ must contai_n the core as
the core is always undominated. By Theorem 2.13, we have ¥ = 9* € .
Consequently H C H and hence H = KH,

q.e.d.
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3 Multiplicity of vINM—Stable Sets

Recall the standard 2 x 2 Example (see [2], [3]); this we will now extensively
discuss under the assumption

(3.1) hi =0, hy+hs3>1 hy=1
and
(3.2) AM+A3>1.

Then (71,72) = (1,3) is the only sequence that yields hz + hs, =0+ hs < 1.
Thus, this is the case of a long central distribution but without the conditions
regarding A’ that ensure the existence in Part II ([3]).

In order to avoid rational expressions in terms hq, ho, we adjust our notation
of e-relevant coalitions in accordance with Remark 3.6 and Example 3.7 of
[2]. Thus the following is a complete description of the relevant vectors.

Lemma 3.1. Given the assumptions (3.1),(3.2), the relevant vectors and
their values are given as follows:

a't = (1,0,0,1) ;
v(a14) =1 = 8120,14 — 6340,14 — COCL14
a® = (0,1,1,0)
v(a23) =1 = 8120,23 — 6340,23 < coa23 — h2 +h3
a’t = (0,1,0,1) ;
(33) U(CL24) -1 = 6120,24 — e340/24 < coa24 — h2 + 1
a® = (h3,0,1,0)
U(a13) — h3 — 6120,23 — coa23 < 6340,23 =1
a'® = ((hy+hs) — 1,1 — hs, hy,0)

v a123) —1— hg — e1201123 — e3401123 — COG123

Remark 3.2. Accordingly, we reformulate the notion for e—relevant coali-
tions under the above two assumptions regarding a “long central commodity”.
Thus, whenever for some € > 0 a coalition satisfies

—

AT"?) = ea® = ¢(h3,0,1,0)
(3.4) and hence
v(T*) = AYT) =X (T) = chs < N}(T) =&,

then we call 7' an e-13-relevant coalition. Similarly, if T'* C D'
satisfies

—

A(T123> — €a123 = 6((h2 + h3) - 1, 1-— h37 h27 0)7
(3.5) and hence
U(T123> = Al(T) = )\Q(T) = )\3(T> = 5(1 - h3) )
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then we call T'?3 an e-123-relevant coalition, etc.

Next we turn to the set of pre-imputations
(3.6) H:={xecJ|ax>v(a) (ac A’}

which in the present 2 x 2 case is

H:{CBEJ|ZL‘1+$4Z1,$2+!E4Zl,l’2+l’321,

3.7
3.7) hsxy + x3 > hs} .

In the context of our previous presentations (cf. [2], [3]), this set was eventu-
ally discovered to yield a vNM-Stable set — unique in the context of a large
central commodity. In the present context this will not do. Rather we have
to identify a proper subset of H for our purpose.

We shall represent H in a suitable geometrical sketch (Figure 3.1). To this
end, we introduce the set of pre-imputations

(3.8) F = {zcJ|oy+a,>1, xo4+x4>1,00+23>1} .

In the present context, if one of the inequalities of F' is violated, then we
can immediately set up a domination by the core. Thus, F' is the set of all
pre-imputations that cannot be dominated by the core.

Clearly, H is the set of all such pre-imputations that, in addition, cannot be
(“internally”) dominated by some other element of H via some e-23-relevant
coalition.

Now we compute the extremals of H.

Lemma 3.3. Let

A
:B(3424) — h3634 + (1 _ h3)$(24) — (07 (1 — hg)—g hg, 1))

Ao
(3.9) B2 = hyed 4 (1 — hy)z™?
= (O, (1 —hs), hs, (1 — h3)f\\—i + h3) ;
then
(3.10) H = ConvH{e? ¥ x4 6421

Proof: We start with the set F' as defined in (3.8). The extremals of F' are
given by e'?, e3* and

A A
(3.11) z® = (0,22,0,1), and 2™ = (0,1,0,2) .
)\2 )\4
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Hence, F'is a simplex in R‘i as depicted in Figure 3.1. Now observe that the
following inequalities and equations hold true:

aBe? — @BpBRY — gB3,64) _ g
(3.12) ae* = 1>hy
aBz® — @Bz — 0<hy.
Thus the subsimplex
(3.13) H° = {x € F|a"z = h3}
has the extremals
(314) 612, .’E(3424), .’E(3442) )

This subsimplex divides the simplex F' into a simplex and a tetrahedron;
clearly H is the simplex spanned by e'?, e3*, £(3424) g (3442)

q.e.d.

Figure 3.1 shows the details representing the simplex H within the simplex
F spanned by e'?, ** and z®* and z*?.

e34

24)

!

Figure 3.1: The set H viewed within the simplex F'

Lemma 3.4. Let ¥ be an imputation with minimum vector m. If a*m >
hs, then 9 cannot be dominated via some ¢ — 13—relevant coalition.

The Proof is obvious.

We continue with similar considerations concerning ¢ — 123-relevant coali-
tions.
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Lemma 3.5. The following inequalities and equations hold true:

aPel2 — @13 = p,
aBr® = 1- hs < hs
(315) aBz®
which implies
Bz <,
Bz <,

Proof: The first three lines are directly computed and the last two lines
follow from the fact that 3442 is a “convex” combination of e3* and x(*?.

q.e.d.

The following Lemma refers to the projection of F' on Rjos.

Lemma 3.6. Let 1 — hy < & < hy and define
(3.16)
A* := ConvH{(1,1,0),(0,0,1),(0,¢, hs)} = Coan{e]?m, 6%4123, (0,¢, hg)}

There is no pair x,y € NS satisfying

(3.17) x>y, (1=1,2,3)

Proof: The normal n to the hyperplane spanned by the vectors e'?,(0,0,1),
and (0,&, hg) is positive. Indeed, up to normalization it is given by n =
(hs +&—1,1— h3, &) such that ne'?> = n(0,0,1) = n(0,&,h3) = & holds
true. Hence, for any two vectors &,y € A¢® we have nx = ny = £, that
is, ne —ny = 0 . Therefore, whenever x — y # 0, then  — y must have
positive and negative coordinates,

q.e.d.

With due caution the shape of Ag® can be visualized by Figure 3.7 for ¢ = hy
and £ = 1—hg. The intermediate values of £ can be imagined to yield similar
versions of Ag Observe that the normal to these simplices is always positive.

Definition 3.7. An imputation 9 is said to be vINM—extremal if

9 = 0 onD"

1—h) <9 < h onD?

(3.18) I-h) <9 < hy ,
v = hy onD

g = 1 onD*

That is, ¥ coincides with **?% on D' D3 D* and the remaining mass is

distributed in D? such that the values are located in Ay. In particular we
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{a'#x = hy} (0, 12

) 1— h3

{a®x = h3}

~
~
~
~
~
~
~|
~
~
~
~
~
~
~
~
~
-
-
-
-
-

Figure 3.2: The Simplex Ay®

have
/19d)\ = 23*PIN(D?) = (1 — hy)As
D2

cf. Figure 3.3

We are now in the position to specify our candidates for vNM—Stable Sets.
The typical representative is provided via some vNM-extremal imputation 2
via G := ConvH {)\1 A2 19} That is, we choose a candidate for a vNM—
Stable Set by specifying a third extremal apart from the two extremals of
the core.

Example 3.8. We can represent this candidate for the particular case that
we have the (unique) vNM-extremal imputation that is constant on D?

93129 . ,1993@424)

This is the imputation . In this case we have a candidate

for a vNM-Stable Set given by

(3.19)
GG2Y) . convH {6127634’%,(3424)} —Q°

G431 . {,1995 a:EG(3424)} — ConvH {)‘1’ )\2’,19(3424)} — g0,

the first set is sketched in Flgure 3.4.

For the sake of lucidity we shall treat the (VNM-Stable) set provided by
this example separately in a first approach. The general version will then
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Figure 3.3: A vNM-extreme imputation

1:24

Figure 3.4: The set G®**Y
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be easier understood and is completely treated in the subsequently following
theorems.

Thus we start out with (3.19) using abbreviations G® and G°.

Theorem 3.9.

(3.20) G’ = ConvH {e", e* (Y}
18 internally pre—stable, hence

(3.21) G = ConvH{AL, A2, 9%

18 1nternally stable.

Proof:

We have to check with respect to ¢ — 13— and ¢ — 123-relevant coalitions
only. Now Lemma 3.4 shows immediately that internal domination cannot
take place with respect to ¢ — 13-relevant coalitions. Geometrically, G is a
subset of H as discussed in the context of that Lemma. In other words, all
elements of G are located above the hyperplane H, hence satisfy a'®x > hs
which implies for the corresponding imputation 9% (T"?) > chy = X(T")
whenever T is an € — 13—coalition.

It remains to discuss ¢ — 123-relevant coalitions. As G has the shape in-
dicated in Figure 3.4, we have a'®z < h, for all z € G° outside the core.
However, for all & € G° we have in this case x4 = 0. Therefore, if for some
x,y € G° and some ¢ — 123-coalition T"?* we have 9% domgi2s 9, then
necessessarily z, > y, for 7 = 1, 2, 3 which, by Corollary 3.6 is not possible.

3424)

Figure 3.5: External dominance by G( via € — 13-coalitions

q.e.d.
Thus internal stability is being delt with. Now we follow up with
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Theorem 3.10.

(3.22) G’ = ConvH {e" e* (Y}
18 externally pre—stable, hence

(3.23) S0 .= ConvH{A' X2 9>}

18 externally stable.

1)
Figure 3.6: External dominance by G®*2% via ¢ — 123—coalitions
Proof:
Let 9 ¢ S’ be an imputation and let 2 = (74, . .., M) be it minima vector.

W.lo.g. we may assume m € F holds true, otherwise there is a vector in
F' exceeding m coordinatewise which we can argue about. Then necessarily
9 =9™. Clearlym € H = ConvH{e!2 3 z®129) 2342} for otherwise
¥ is dominated by the core. Thus 712 € H \ G".

The procedure is depicted in Figure 3.6. Technically we deal only with the
case that m has a zero first coordinate,the general case can obviously be
discussed similarly ( just move m towards e'* - there is another vector de-
noted by m depicted in the sketch). Within this context we now construct a
dominance via some € — 123 — coalition. Compare Figure 3.6 for the details.

Observing

me{we H|r, =0} = ConvH {&* g3 g312)}

3442 3424] 12 3424]
) ) :

3442

we move m parallel to the line [x%**? x towards the line [e'? @
Then the coordinate x; is unchanged (= 0) and so is coordinate z3 as x
and z3'?! have the same 3" coordinate.

Thus, necessarily, the second coordinate is increased (again compare the
situation for 342 and x31?1). Let the resulting vector be Z. Now, we move
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in direction of e3* for some small § > 0 to some vector called =’ such that
the second coordinate of &’ is still exceeding the second coordinate of & and
m and, in addition, the 3" coordinate has been increased. Finally we move
from x° in direction of e'? for some small ¢ > 0 to some vector called ¢ such
that the second and third coordinate still exceed the ones of ™ and the first
one has been increased in addition. Thus, ¢ exceeds m with respect to the
coordinates 1,2, 3 and still - as we have an element of G — yields a'*y¢ < h,
in view of Lemma 3.5. Consequently

:BC dOma123 m s

So far we have completed the treatment of
(3.24) g% = ConvH {A' N 9>} = g** .

Let us now turn to the general case of a vNM-extremal imputation generating
a vNM—-Stable Set.

Theorem 3.11. Let ¥ be a uNM-extremal imputation. Then
(3.25) G = ConvH{\' X 9}

18 1nternally stable.

Proof: We have to check for ¢ — 13— and € — 123-relevant coalitions only.
Now, internal stability against domination by ¢ — 13—coalitions follows at
once from Lemma 3.4. For ¥ has constant densities 0 and h3 on D' and D?
respectively, hence satisfies the conditions of that lemma. The same is true
for A' and A?, hence for any convex combination ¥ € §

Hence we have to show that G is internally stable against domination via
some ¢ — 123—coalition.

Now,for any ¥ € G and t € I we have

9(t) € ConvH {il(t), N2(1), é(t)}

Thus, in particular for any ¢ — 123-relevant coalition 7'?* and for any ¢, €
T7(r =1,2,3) we have

y = (D)), I(t2),D(t3)) € ConvH {em, = (é(tl),é(m,é(tg))}

= ConvH {812, 834, (O,E(tg), h3) }
= ConvH {612, e’ (0,¢, hB)}
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with 1—hs < & < hy. Now, whenever we have some domination 9 domypizsy 9
for some 19, then for the same t, € T7 (7 = 1,2, 3) the vector

x = (V(t1),9(t2),V(t3))

satisfies © > y and = € ConvH {e'? e*, (0,¢, h3)}, contradicting Lemma
3.6.

q.e.d.

Theorem 3.12. Let ¥ be a uNM-extremal imputation. Then
(3.26) G = ConvH{X' X 9}

1s externally stable, hence a vNM-Stable Set.

Proof:

Let 9° ¢ [ be_an imputation. We have to show that it is dominated by an
element from G.

15*STEP :

We prove the following statement:

(3.27) Without loss of generality 9° is constant on D' U D3 U D*.

Indeed , let m® = (m?, m? m9, m3, m}) denote the minima vector of 9.

Consider the imputation 9 that is obtained from 9° by collecting all mass
above the minima on D" (7 = 1,3,4) on D?. That is, consider

9" = milp + (9" + 0)lpe + mSlps + milps

with
¢ = / OdN— Y miA, .

—134
D'uD3uD* =13,

If 9° does not satisfy 3.27, then ¢ > 0 and 9* exceeds 9° on D?. Now, if some
¥ dominates 9' via some e relevant coalition — for example some ¢ — 123~
relevant coalition 7"%% — then cleary 9 exceeds 9° on T? C D?. Moreover,
as both, ¥ and 9' are constant outside D?, it follows that ¥ exceeds 9!
everywhere on D' U D3. Therefore, by definition of the essential minima, 9
exceeds 9° on sets D’ (1 =1, 3) of positive measure. Choosing an ¢ — 123~
coalition T with T° C T2 and T C T7 (7 = 1,3) yields a domination
Edomfm 190.

The same consideration holds true a fortior: for domination via some € — 13—
relevant coalition.

Henceforth we assume (3.27) and denote the constant values of 9° on D7 by
29 for 7 = 1,3, 4.
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2"ISTEP :

Our next claim is
(3.28) Without loss of generality z) + 2§ = 1

Indeed, first of all we have necessarily z¥ < 1.

For, consider the vector m = (2%, m3, x93, 29). If it is not a pre-imputation,

construct a pre-imputation m exceeding m coordinatewise. If one of the
inequalities defining F' is violated, then we have immediately a dominance
by the core (implying at once a domination of 9° by the core). Hence m € F.
But for all the extremals of F' we have a first coordinate not exceeding one.
Hence m, < 1 and a fortiori m, = xl < 1.

Next, assume that 29 + 2§ > 1 is true. (< would constitute a domination by
the core). Let
_ (@ +af) -1

t
)\ b
-1
then \
x&ﬂi—m:x}«ﬁ+@—n:1_%gy

Consider the (signed) measure 1 given by the density

n = (2—2—1)%2— (%—1)11174
with [, ndX = 0 as well as
9 = 9 +tn .
Then 9 is a preimputation as the last coordinate exceeds 0. Also, 9 is

constant on D' U D* with values summing up to one:

o) —t(=—1) = af +af — (2 +2}) - 1) =1

Now, domination of either 9° or 9 via some ¢ — 14-televant coalition is
impossible. With respect to any other form of domination — e.g. domination
via some £—123-relevant coalition — clearly 9 domqies 9 implies ¥ domz2s 9.

That is, we can as well replace 9° by 9 or just assume (3.28) in the ﬁrst place.

3"4STEP : Our next claim is
(3.29) Without loss of generality 2 =0 .

Assume 29 > 0 holds true. If 29 4+ 29 < 1, then ¥ is dominated by the core.
Hence (using (3.28)) 29 > 1 — 2% = 9. Therefore

¥ = o 0 )\1




* SECTION 3: MULTIPLICITY * 32

is nonnegative, hence an imputation which equals 0 on D'. As
9" = (1 — 2Dy + 200
we observe that any domination of ¥ by some ¥ induces a domination of 9°
by (1 —29)9 + 29A". Hence we may assume (3.29) at once.
4*hSTEP :

Similarly we prove

(3.30) Without loss of generality 2§ = hz .

For in view of (3.28) and (3.29) we have now zJ = 1. Now, an inequality
29 > 1 would imply 9°(I) > 293 + 29\ > A3 + Ay = 1, hence 2§ < 29.
Consequently

190 l’? — h3

V= - Al
1—(1'3—h3) 1-(1’8—h3)

is an imputation which equals hs on D3. As
9% = (1 — (25 — k)" + (27 — hy)A'

we observe that any domination of 9" by some 9 induces a domination of
9° by (1 — (2 — h3))9 + (23 — hs) A"
5*8STEP : By the first 4 STEPs we can now assume that 9" is VNM ex-
tremal. Clearly, both 9 andd° differ only on D?. Choose T? C D? of positive
measure such that ~

9 > 9% on T2
Then, for 6 < 1 — hz the we have

e’ = 0e?+(1-0)e* >9"on D'UD?.

Hence, for sufficiently small € > 0 we have necessarily

9° = (1-¢e)d+¢ee’ >9" on D'UT?>U D?
Choosing an ¢ — 123-relevant coalition T C D'u T?uU D? obviously
constitutes a domination ¥°° dompizs 9°. This completes the proof of our
theorem.

q.e.d.

Thus we have pointed out a class of vNM—Stable sets, each of them being
constructed by picking exactly one vNM—extremal imputation in the sense of
Definition 3.7 (Figure 3.3) and constructing the convex hull with the core. We
now set out to show that Theorem 3.12 provides a complete characterization
of all vYNM-Stable Sets.
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To this end let us define

The set Ay constitutes a simplex in R? the extremals of which are given by
(17 17 0)7 (07 07 1)7 (07 1— h37 h3)7 and (07 h27 h3) )

see Figure 3.7. Note that the set Ay as considered in Lemma 3.6 is a lower
dimensional subsimplex of Ay.

(0,1 — hg, h3)

1
(0, ha, hs)
123,
{a’ \33 - h2} (07 1E23)
{at'a = 1) /
- - -~ |
| //

/

Figure 3.7: The Simplex Aq

Lemma 3.13. Let § be a convex vNM-Stable set aﬂd let ¥ € § Let m =
(my, my, mg, m,) denote the essential minima of ¥. Also, assume that ¥
dominates some imputation via some € — 123-relevant coalition T %3,

1. Then

17 m2+m32 17

m
(3.31) -
ha, my < my.

In addition, the projection m'* of m onto Ryys satisfies

(332) m e Ao.
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2. For sufficiently small 0 < € < ¢ there exists an €—123-relevant coalition
T3 C T2 such that for allt, € T™ (1 =1,2,3)
(3.33) (9(t1),9(t2),0(t3)) € Ao ,9(t1) < V(t2)
holds true.

3. If, in addition, m,; = 0 holds true, then

(3.34) my > 1, m3=am > hs .
4. Next, if mq > hs, then, for T2 chosen by item2,
(3.35) 8 < hy on T2 .
5. Finally, if my = 0,m4 = hs, then

(3.36) my, >1—hs, thatisl—hs <O <hyonT? .

holds true.

Proof:
1StSTEP :

The vector m has to satisfy the inequalities defining F' as listed in (3.7).
Otherwise a domination via the core would occur. Also, it has to satisfy the
inequality a'*m > hs, otherwise it would be pre-dominated by itself and the
core (Theorem 4.4. of [2]). Moreover we have a'**m < hy in view of Lemma
3.5. The inequalities are thus

my +my > 1, m, +my my +mg > 1,

> 1
3.37 -
( ) algm > hs, amm < hy.

That is, the ones required in (3.31) apart from the last one.

The first four of these are the inequalitis defining H, thus the projection into
R123 has to be located with the convex hull of the projection of the extremals
of H, that is

A
(338) (1a L, O)a (07 0, ]-)7 (Oa 11— h3’ h2)7 (0’ (]' - h3)A_3’ h3)
2
Moreover, the projection of m has to be located below the hyperplane
{z | a'®*x < hy, which cuts the line {& € Rye3 |71 = 0,23 = h} at (0, hy, h3).
Thus, the fourth extremal as listed in has second coordinate at most ho, that
is we have



* SECTION 3: MULTIPLICITY * 35

As a consequence, the last inequality in (3.31) namely

(3.40) my, < m,

follows from the fact that all extremals of A as listed above satisfy these
inequalities.

2"dSTEP : The >-inequalities verified for m are also satisfed by any tripel
(9(t1),I(t2),9(t3))(t- € D7, 7=1,2,3).
For if one of these inequalities is violated on a set of positive measure, we

would again be able to construct an internal domination.

On the other hand, the inequality involving a'?? is satisfied on a set of positive
measure. To see this, denote the averages of 1

o [ DX B(T7)dA
T ON(T) T AT

(T:17273> 7m = (m17m27m3)'

As 9 dominates some imputation via some € — 123-relevant coalition 723
we have

(3.41) (T = /1:9d>\§'v(1) = chy .

7123

Consequently

3 3 .
ca'®m = Z / m,dX = Z / Dd
S —

(3.42) T T
= / 9d\ < chy |
7123
that is,
(3.43) a'®m < hy .

Now let T7 := {t € Tt |9 < m.} (r=1,2,3). Then A(D7) > 0 and for
any t, € T7 (1 =1,2,3) we have

(3.44) aPm < aPD(t,), 9(t2), (1)) < a' P < hy .

This shows that indeed (1.9(151),19(752),19(153)) € Ay holds true for any t, €

~ 123~
TT (1 =1,2,3). Now we can choose an £—123-relevant coalition T~ C T'23

in order to establish (3.33) (the inequality ¥(t;) < ¥(t3) follows as above).
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3"4STEP :

The inequalities listen in (3.34) follow immediately by specifying m; = 0 in
(3.31).

4*"STEP :

Assume now mg > hg. Choose T as in item 2 of the Lemma, i.e., as in the
2"STEP above.

By (3.44) we have a@'2(9(t1),D(ts), 9(ts)) < hy for any t, € " (r =
1,2,3). That is

((hy + h3) — 1)1:9(151) +(1—- h3)1:9(t2) + h21:9(t3) < hy
so a fortiori

(1= hg)D(t2) + had(ts) < o

and hence, using 9(t3) > my > hs

(3.45) (1 — h3)O(ts) < hg — hoO(t3) < hy — hshy = (1 — hs)hsy
This proves (3.35).
5hSTEP :

The remaining inequalities (3.36) follow again from inspecting the extremal
points of A, (see Figure 3.7).

q.e.d.

Theorem 3.14. Let § be a convez vINM-Stable Set. Then there exists a
vNM-extremal imputation 9 € G.

Proof:
1StSTEP :

Let 9 be a vINM— Solutlon If 96429 ¢ 9 then we are done. Otherwise, let
9 € 9 be such that ﬁdomes 942 holds true with some e — 123-relevant
coalition (only this kind of domination can occur). Let m denote the minima
vector of . A similar notion (m? for the minima vector of 9¥° etc) will be
used in what follows.

Within the next two steps we are going to show that

There exists an imputation 9° € § such

(3.46) ~
that 9° € G ,m(f =0 and mg = hs.

2"dSTEP : First, if i, = 0 is not the case, then consider the measure

Q 1
(3.47) ¥ = ﬁA —m )‘A
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which is nonnegative (as m; < m,, cf. (3.31)) and has total mass 1, hence
constitutes an imputation. As

9 = (1—my)Y + i\

it is seen_that domination of 9’ by some 9 e 9 induces domination of 9 by
(1 -0+ mye'? which would constitute an internal dominance within g
Hence 9’ € 9 follows at once. ¥ has zero minimum on D', hence we can
henceforth assume that 9° yields m, = 0, i.e., the first part of (3.46).

3‘"dSTEP Now we proceed in a similar way in order to generate an element
of 9 that has a minimal value hs in the third coordiate.

First of all the essential minimum m/ of ¥ over D' satisfies m/ = 0. Hence
the essential minimum over D* satisfies m/, > 1, for otherwise 94" would be
dominated by the core via some ¢ —14-relevant coalition. Now, if mi+m} > 1
would be true, then a contradiction would follow from

19(.[) > m'l)\l +m/2/\2+)\3+)\4 > )\3+)\4 = 1.

Hence we know m4 < m/. Next, if we have

/ m3
= h
m3 1 — m1 > 3
then we consider the imputation
19/ )\2
348 ’190 S — I h
(3.48) Tl —hy) T I ( — )

Asin /’Ehe 2" ST EP this imputation inheri:c\s all domination inside § from
(and 1), hence it has to be an element of G.

Thus we have found 9¥° € § satisfying our statement (3.46).

4*STEP : Let us complete the proof of our theorem. To this end, consider
9" as constructed in the previous steps satisfying (3.46). Now, if 9° is vNM-
extremal, then we are done. Otherwise, there is some positive mass of 9°
on

(D' {9° > 0)}U{D?N{9° > hy) }U{D?*N{9° > hs}U{D*N{I° > 1}}

Now we are going to throw all of this mass onto {D*N {9 < hy}}. Note that

the set {D*N {9 < hy}} has positive 9° measure for otherwise we would
obtain

9T} > hodg + hsds + Ay = A3(1) > 1
That is, for sufficiently small € > 0, we construct an imputation 9" such that
9 =0on D', 9 =hzon D* 9'=1on D*

9! > 1— hy on D?

349 e .
( ) ’091 = hg on {D2 N {190 Z hg}},

' > 9 on {D?*N (9" < hy)}
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Clearly, 9' is vNM-extreme. Therefore, if 9* € §, then we are done.

Assume therefore that 9 ¢ § holds true. Then there is 192 € § dominating
®'. This domination can take place only with respect to some £ — 123~

relevant coalition 7' as the density 9 respects all inequalities prohibiting
domination by the core or via some ¢ — 13—coalition.

We have 9% > 9' on T2. However, according to (3.33) there is some coalition

T? € T? such that 92 < hy holds true on T2. Consequently, 72 C 72N {9° <
ho} and hence

(3.50) hy > 92 >0 >9"on T? .
This implies
—123

(351) 192(T ) S €(h2(1 — hg) + hghg) = €h2

for any € — 123-relevant coalition T =T'UTUT with T C T2

D? D*

Figure 3.8: The situation of 9° vs. 9"
Now choose positive 0 < 1 — h3 and some small ¢ > 0 as well as coalitions
TTCT™ (r=1,3), T? CT?such that

(3.52)
(1= >9onT? (§>9onT", (1-hg+¢(1—06)>39%onT? .

This is clearly possible by (3.46) and (3.52). Therefore
9 = (1—0)9* +((6e? + (1 —6)e*)

exceeds 9° on T2 = T UT2 U T3. Hence, if we choose an & — 123—coalition

T C 7' then clearly (use (3.51))

/
¥ dOl’nTms 190 )

contradicting internal stability. Hence, 9° € § is necessarily vNM—extreme.
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q.e.d.

finally we have

Theorem 3.15. Let § beAa conver ulNM-Stable Set. Then there erists a
vNM-extremal imputation ¥ € G such that

~

(3.53) G = Com;H{Al, A%@}

Proof: By Theorem 3.14 there is at least one vNM-extremal imputation
Y € §. By Theorem 3.12 the convex hull

§ = ConvH {)\1, A2, ?9}

is a vNM-Stable Set. As § - § we have necessarily § = §
q.e.d.

Corollary 3.16. Let (3.1) and (3.2) be satisfied. Then the vNM-extremal
imputations supply a complete characterization of all yNM-Stable Sets. That
is, any vNM-extremal imputation ¥ provides a vNM-stable set via (3.53) and
every vNM-stable set is of this shape.

In particular, if ho+hs = 1 holds true, the only vNM-Stable Set is given by the

only vNM-extremal imputation, which is the constant imputation 932 — gy
That is, in this case

G(3424) _ Coan{)\l, A2, ,0(2434)}

18 the unique vNM—Stable Set.
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