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Universitätsstraße 25
D-33615 Bielefeld · Germany

e-mail: imw@uni-bielefeld.de
http://www.imw.uni-bielefeld.de/wp/

ISSN: 0931-6558

mailto:imw@uni-bielefeld.de
http://www.imw.uni-bielefeld.de/wp/


Categorization based Belief formations

Jörg Bleile∗

July 21, 2014

Abstract

An agent needs to determine a belief over potential outcomes for a new problem based on past

observations gathered in her database (memory). There is a rich literature in cognitive science

showing that human minds process and order information in categories, rather than piece by piece.

We assume that agents are naturally equipped (by evolution) with a efficient heuristic intuition

how to categorize. Depending on how available categorized information is activated and processed,

we axiomatize two different versions of belief formation relying on categorizations. In one approach

an agent relies only on the estimates induced by the single pieces of information contained in so

called target categories that are activated by the problem for which a belief is asked for. Another

approach forms a prototype based belief by averaging over all category-based estimates (so called

prototypical estimates) corresponding to each category in the database. In both belief formations

the involved estimates are weighted according to their similarity or relevance to the new problem.

We impose normatively desirable and natural properties on the categorization of databases. On the

stage of belief formation our axioms specify the relationship between different categorized databases

and their corresponding induced (category or prototype based) beliefs. The axiomatization of a

belief formation in Billot et al. (Econometrica, 2005) is covered for the situation of a (trivial)

categorization of a database that consists only of singleton categories and agents basically do not

process information categorical.
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1 Introduction

Often agents need to evaluate and judge the likelihood of future uncertain events. On

which basis can individuals derive and assign likelihoods and form probabilistic beliefs

over random incidents?

Traditionally, economic theory models uncertainties in a state space representation a la

Savage (1954) and Bayes and derive a subjective prior based on observable actions of the

agent. However, this procedure implicitly assumes that agents already know or are endowed

with a subjective prior belief, which they express through their observable actions. In this

way, the Savage and Bayesian approach does not advice agents how to find or form a prior

explicitly. Basically, the belief is purely subjective and offers no mechanism to incorporate

information directly into a belief formation. Consequently, their normatively appealing

and convincing approach to endogenously derive a belief is not feasible in situation in

which an agent might not be able to condense her insufficient or too complex information

into a consistent state space.

We consider an axiomatization of belief formation that allows and requires to take di-

rectly into account the available information (gathered in form of a list or database of past

observations or cases). The influence of data and experience on the formation of a proba-

bilistic belief was examined initially by the axiomatization of Billot et al. (2005) (BGSS

from now on). The axiomatizations of BGSS and related ones of Eichberger and Guerd-

jikova (2010) (EG) (for ambiguous multiprior beliefs) and Bleile (2014a) (precision depen-

dent cautious beliefs)1 yield that a belief induced by a database is a similarity weighted

average of the estimations induced by all observed cases in the database. Thereby simi-

larity weights capture different degrees of relevance of the potentially very heterogenous

information.

A common shortcoming of these approaches to belief formation is that an agent pro-

cesses each distinct single piece of information separately and forms its induced estimate.

Interpreting a database as memory an agent is assumed to store (memorize) all single pieces

of information and needs to retrieve any single piece of information from her memory.

However, numerous studies in (social) psychology and cognitive science show that hu-

mans do not store and treat single pieces of information in such a one by one procedure,

but classify information in different categories. The prominent social psychologist All-

port (1954) memorably noted ”the human mind must think with the aid of categories.

We cannot possibly avoid this process. Orderly living depends upon it ”. There is a

wealth of research demonstrating that humans’ cognition processes information by em-

ploying categorical thinking, reasoning and stereotyping.2 In particular, one can interpret

categorization as model of similarity-based reasoning (Tversky (1977), Gilboa and Schmei-

dler (1995,2001)) in which information needs not to be understood in its particularity, but

as member of a larger classified category that allows to generalize properties from cate-

1Another axiomatization that does not take into account all potentially available information in this vein is Bleile
(2014b). It deals with a two stage belief formation that consists of a initial filtering process that ”screens and selects”
the information that finally flows into the belief formation process.

2The psychology literature on categorization is vast, e.g. see Rosch and Lloyd (1976), Murphy and Medin (1985),
Goldstone (1994), Rips (1989), Smith et al. (1998), Medin and Aguilar (1999), Murphy (2002). Real life examples
discuss that consumers categorize products (Smith 1965), investors engage in ”style investing, (Sharpe (1992), Bernstein
(1995)), rating agencies categorize firms wrt. default risk (Coval et al. 2009), etc.
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gory members to new members through analogies and similarities. This makes categorical

thinking especially helpful for predictions (Osherson et al. (1990), Anderson (1991)).

In order to capture the impact of categorical thinking and reasoning in agent’s belief, we

modify and extend the mentioned axiomatic approaches (in particular BGSS) by adding a

categorization procedure that affects the processing, storing, retrieving and employing of

potentially available information.

In complex and poorly understood environments, categorizations emerge naturally to

simplify actions by gathering many distinct experiences together and ignoring the details

of each single piece of information. Limited learning and memorizing opportunities drive

agents into relying on abstractions and (categorical) summarizations rather than on single

past cases. Processing and storing of all past cases in full detail bears costs in storing

and retrieving the information, since the finer information is stored the more effort is

required to activate it. The classification of information in different categories offers a less

demanding way of storing and retrieving information, since only the assignment to suitable

categories and their characteristics needs to be memorized. In particular, the literature

on ”optimal” categorization focuses on the issue how fine or coarse categories ought to be

formed in order to process information in a way to gain a maximum amount of information

with the least cognitive effort. In particular, it should be more efficient than some other

form of case-based reasoning, as for instance kernel-based estimation.

Another important function of categorical reasoning concerns its role for facilitating and

improving inductive inference and prediction. The underlying idea is that an assignment

to categories does allow an agent not only to use the information contained in the current

problem, but exploit as well the additional information provided by the categories to which

this problem belongs (or which it activates). Of course, this is only helpful if the previous

experiences contained in the specific categories provide some information for the actual

problem such that the agent can infer or generalize some information and properties from

past observations in the categories. In this spirit, categorization is also closely related to

the ideas of reasoning by similarities or analogies. From this perspective, a categorization

of information enables and implicitly provides an agent with additional (more detailed)

information than mentioned in the initial description of the problem. Ideally categories

are formed like sufficient statistics for its assigned members and thus would make prediction

particularly simple and reliable.3

In this paper, we are not concerned with the formation of categories, but assume that a

set of (optimal) categories is already naturally or evolutionary determined.4 In particular,

we are solely interested in an axiomatic description on how categorized information is

incorporated into a belief formation by agents.

The categorization literature identified several procedures in using categorical thinking

for belief formation. The approaches differ in the way how many categories are taken into

account. Either all categories are considered or only some specific target category(ies) are

taken into account. Another difference concerns (the still an ongoing discussion about)

3Peski’s (2011) categorization model can be interpreted as such an optimal statistical procedure.
4Traditionally, categories are formed based on (attribute-wise, overall, functional or casual) similarity considerations.

Roughly speaking, in general categories are often formed as to maximize the similarity of objects within a category
and the dissimilarity of objects from different categories. However, there is an ongoing discussion and debated whether
categorization presupposes a notion of similarity or not (see Goldstone (1994) and Gärdenfors (2000), Pothos (2005)).
For instance some literature argue that categorization is theory or rule-based (according to various criteria)
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the issue how categories are represented themselves. Either categories are represented by

an aggregated summarizing representative, that captures the essence or central tendency

of the category - a so called prototype - or all members of the category are used for its

representation.5

There is experimental evidence in psychology that individuals tend to rely on (a sin-

gle) most likely target category(ies), whereas the other categories (and their content) are

immaterial for the belief formation (e.g. Murphy and Ross (1994), Krueger and Clement

(1994), Malt et al. (1995)). When faced with a new problem, an agent’s mind activates

automatically some already generated category(ies) that are best fitting according to some

metric for the current problem.6 Depending on how an agent treats categories she will

form her belief either based on all single pieces of information contained in the target cate-

gory(ies) or use the estimates induced by a prototypical representative associated with the

(target) category(ies). Our first axiomatization of a category based belief formation will

adopt this approach based on activated target categories, which simplifies (cognitively)

the belief formation, since an agent only needs to process the information that is directly

evoked for the current problem.

The second stream of literature -which is covered in our second axiomatization of a

prototype based belief- is based on the prototype of all categories in a database. Such

a prototype based belief adopts the approach taken in Anderson (1991) and models the

situation, in which an agent might not be able to figure out best fitting target category(ies).

The simplifying power of categorization in this approach results from taking into account

all (categorized) information through prototypical summaries and not by memorizing and

retrieving all single pieces of information. This reduces the cognitive and memorization

effort. It averages the particular prototypical estimates induced by the categories.

Our axiomatizations of both kinds of belief formation -category and prototype based-

are based on modified and extended versions of the axioms of BGSS and partly Bleile

(2014b). Categorization based belief formations can be seen as two stage procedures. First,

agents are endowed with a natural categorization structure on the in principle available

information (e.g. like through a natural or evolutionary developed optimal heuristic algo-

rithm). On the basis of this categorization structure and the current problem, the available

information (provided by the database/memory of past experiences) will be categorized.

We will assume some reasonable, natural and well known -but rather weak- properties

on this induced categorization of databases. The (structural) properties on the (induced)

categorization of databases differ for our two versions of categorization based belief for-

mation. However, a common feature concerns our main requirement that an agent will

not categorize any database, but that databases must be sufficiently complex or diverse to

initiate a categorization process. We assume that a database need to contain a minimum

amount of distinct cases such that an agent really (wants to) thinks in categories.7 How-

ever, this is a quite natural requirement, since one reason for categorizing information is

to overcome limitations in processing cognitively challenging information or environments.

5There are also approaches in between (Vanpaemel and Storms (2008)), but we stick to the extreme cases.
6For example by comparing the actual problem to the prototypical problem of different categories until a closest

match is found. The automaticity in categorical thinking is discussed e.g. in Allport (1954), Bargh (1994, 1997, 1999)
7Complexity is certainly related to the number of options to be considered, but also few options characterized by

difficult interwoven features might be challenging to evaluate.

4



Another common property says that the order of cases in a database is immaterial for the

categorization, i.e. a categorization procedure depends only on content and not on the

sequences of pieces of information.

For a prototype based belief we require that a minimum number of distinct cases a ”real”

category ought to contain. In particular, we require for a prototype based belief formation

that a database is categorized (in some accordance with the natural categorization) in

such a way that at most one singleton category exits and all other non empty categories

consist of at least two members. Of course a degenerate categorization in which each cate-

gory contains only one member is meaningless for our purpose (and is covered directly by

BGSS).

The second stage of a belief formation based on categorized information deals with the

behavioral impacts on the actual belief level. As in BGSS, we require that the belief is

independent of the order of the (categorized) information and that some form of concatena-

tion Axiom holds. Explicitly, a belief induced by the combination of two databases should

be a weighted average of the beliefs induced by the two databases separately. However to

keep the normatively appealing spirit of the axiom, we need to ensure that the categorized

information of the combination of two databases coincides with the combination of the two

separately categorized underlying databases.8

The particular properties of the categorization procedures and the axioms on the belief

formation level guarantee that the beliefs based on categorized information can be repre-

sented only based on information in the target categories evoked by the new problem (i.e.

as the category based belief) or based only on all prototypes of the categorized information

(i.e. as the prototype based belief).

As already mentioned there exist research discussing predictions based on categorical

thinking, but none of them is of an axiomatic nature. However, we are solely interested

in the behavioral foundation of a belief formation based on categorized information. Our

approach is closest to BGSS and Bleile (2014b) with regard to axiomatizations of belief

formations. Concerning the axiomatized procedures, the most relevant works are Anderson

(1991) for the prototype based belief and Murphy and Ross (1994) for the category based

belief. The existing literature deals either with applying prediction procedures based on

categorized information and discussing its consequences for specific situation (e.g. Mul-

lainathan (2002)) or is concerned with how and why ”optimal ” formations of categories

emerge (Fryer and Jackson (2008), Mohlin (2014), Peski (2011)). The mentioned papers all

employ a belief formation relying on prototypes (of the main target categories or the cat-

egory the current problem belongs to). However they all differ with regard to their notion

of an ”optimal” categorization. In Fryer and Jackson (2008) the optimal categorization

minimizes the sum (across categories) of within category variations between objects that

have already been encountered (for an exogenously fixed number of categories). Mohlin

(2014) aims to find the optimal number of categories in order to minimize the prediction

error, which amounts to tackling the tradeoff between small and fine or more coarse but

larger categories to avoid overfitting problems (which is also the principle rational of Peski

(2011) and Al Najjar and Pai (2014) for decision making). Peski (2011) shows when cat-

8For the axiomatization of a prototype based belief we deal with this issue in a similar spirit as in Bleile (2014b) by
introducing another simultaneously available (super)-database, which serves as the common reference which ”dictates”
the categorization in a consistent manner for any sub-database.
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egorical learning is optimal for prediction (in the sense of an (asymptotic) statistical tool

equivalent to learning by Bayesian updating). He compares a categorization algorithm

with Bayesian updating. The underlying assumption is that the environment is symmetric

meaning that the Bayesian prior is symmetric. The categorization algorithm is such that

categories are formed in order to minimize the inner entropy of the categories, i.e. to max-

imize the informational content in the categories. His categorization procedure combines

deductive reasoning (i.e. learn to form categories) and applying the deduced categorization

inductively to belief formation. This is structural impossible in our axiomatization.

The following section will introduce the database related framework. Section 3 illus-

trates by means of an example the two beliefs based on categorizations. In section 4 our

natural categorization structure is discussed. Section 5 and 6 cover the categorization of

databases, the axioms on the belief level and the resulting belief formations for both cate-

gorization based belief formations separately. We conclude in the last section. All proofs

can be found in the last section.

2 The model

In this section, we introduce the case-based information framework and the basic building

blocks of our belief formation based on filtered information. Further, we introduce some

definitions and notations necessary for our approach.

2.1 Database framework

A basic case c = (x, r) consists of a description of the environment or problem x ∈ X and

an outcome r ∈ R, where X = X1 × X2 × .... × XN is a finite set of all characteristics

of the environment, in which Xj denotes the set of possible values features j can take. R

denotes a finite set of potential outcomes, R = {r1, ..., rn}
The ordered set C ⊆ X ×R consists of all m ≥ 3 basic cases, i.e. C = {c1, ..., cm}.
A database D is a sequence or list of basic cases c ∈ C. The set of databases D consisting

of L cases, i.e. D = (c1, ..., cL) where ci ∈ C for all i ≤ L, is denoted by CL and the

set of all databases by C∗ = ∪L≥1CL, including the empty database ∅. The description

of databases as sequence of potentially identical cases allows multiple observation of an

identical case to be taken into account and treated as an additional source of information.

For a database D ∈ C∗, fD(c) denotes the relative frequency of case c ∈ C in databases D.

The concatenation of two databases D = (c1, c2, ..., cL) ∈ CL and E = (c′1, c
′
2, ..., c

′
T ) ∈ CT

(where ci, c
′
j ∈ C for all i ≤ L, j ≤ T ) is denoted by D ◦ E ∈ CL+T and is defined by

D ◦ E := (c1, c2, ..., cL, c
′
1, c
′
2, ..., c

′
T ).

In the following we will abbreviate the concatenation or replication of L-times the identical

databases D by DL. Specifically, cL represents a database consisting of L-times case c.

For any D ∈ C∗ the diversity of a database D is given by div(D) := |{D}|, where as usual

{D} denotes the set of different cases contained in database D. So div(D) gives the number

of different cases contained in database D.

We need to translate some relations from sets to the list framework.

Definition 2.1

(i) The ∈-relation on databases is defined by c ∈ D if fD(c) > 0.
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(ii) The ⊆-relation on the set of databases C∗ is defined by D ⊆ E ⇔ fD(c)|D| ≤ fE(c)|E|
for all c ∈ C. We will call such databases to be nested.

(iii) The ∩-relation on databases is given by D ∩ E = ((cmin{fD(c)|D|,fE(c)|E|})c∈C)

(iv) Two databases D and E are disjoint if for all c ∈ C: c ∈ D if and only if c 6∈ E.

The definitions are basically independent of the order of cases in the databases. Note

however that the definition of ∩-relation in (iii) is very specific, since the order of C is

transferred, i.e. by intersection a specific order (on C) is induced.9

2.2 Induced belief

For a finite set S, ∆(S) denotes the simplex of probability vectors over S and for n ∈ N
∆n denotes the simplex over the set {1, 2, ..., n}.
As in BGSS, EG and Bleile (2014a) an agent forms a belief over outcomes P (x,D) ∈ ∆(R)

in a certain problem characterized by x ∈ X using her information captured in a database

D ∈ C∗, i.e. P : X × C∗ → ∆(R).

3 Motivating example

In order to illustrate the basic idea and plausibility of categorization based belief formation,

we incorporate the two categorization procedures into the doctor example of BGSS.

A doctor needs to evaluate different outcomes of a treatment. She has some working

experience or access to some medical database related to the treatment D = (c1, ..., cl),

where she recorded in a case ci = (xi, ri) the vector of characteristics of a patient i, xi ∈ X,

(e.g. age, gender, weight, blood count, specific illness) and the observable outcome of the

treatment ri ∈ R (e.g. better, worse, adverse effects).

A new patient characterized by x enters her office and using a medical record D, the doctor

wants to derive a belief Px(D) ∈ ∆(R) over potential outcomes in R. She might apply an

empirical frequency and use only a part Dx of the database D, which contains only cases

c = (xc, rc) of patients with ”identical” characteristics xc = x compared to the current

patient,

”Frequentist”: Px(D) =

∑
c∈Dx

δrc
|Dx|

However, if the database contains not sufficiently many of these ”identical” patients x,

she might want to include also ”similar” patients. She judges the degree of similarity

between patients x and x′ by s(x, x′) ∈ R+. Further, she might induce from a case

c = (xc, rc) not only a point estimate δrc on the realized outcome, but derives a more

general estimate P c ∈ ∆(R) on likelihoods of particular (related) outcomes and forms the

belief as axiomatized in BGSS (2005) by

”BGSS-belief”: Px(D) =

∑
c∈D s(x, xc)P

c∑
c∈D s(x, xc)

9In contrast to intersections of sets, where orderings are immaterial, intersection of databases do require some as-
sumption on resulting orderings. Alternatively, one also might keep the sequence of either database.
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However, as discussed above, the cognitive science literature emphasized the role of cate-

gories in storing, retrieving and processing of information. Also the literature argued for a

naturally (by evolution) given ability or heuristic feeling to categorize. Thus, assume the

doctor is implicitly able to categorize the set C of all potentially possible patient-outcome

pairs (x, r) ∈ C into different categories C̃l ⊂ C for l ≤ L, such that the set C̃ = {C̃1, .., C̃L}
partitions the set of all possible cases c = (x, r). For example category C̃1 contains all male

patients, with age below 60 years, any weight, good blood count and sore throats and cate-

gory C̃l contains all male patients, overweight and heart problems and so forth. In general,

categories might be exclusive or non-disjoint, for instance male patients might appear in

different categories. Such an implicit preexisting natural categorization structure might

be subconsciously rooted in the mind of a doctor and induces some consistent (embedded)

categorization of a database D. Alternative, one might think of the preexisting natural

categorization structure as the patient groups that the doctor are taught at medical school

and the database D as the experience she made in working in a hospital. Receiving in-

formation about a new patient, she wants to predict the outcome based on (a natural or

taught) categorization of her past experience. Depending on how the doctor uses her cat-

egorized patient database D, she might form a category or prototype based belief as follows.

Suppose the current patient x is male, older than 40 years, overweight, etc. and the

doctor knows for each characteristic its value. The doctor partitioned her experience D

with the treatment into categories consistent with the natural (preexisting) subconscious

categorization. A specific patient x might trigger, activate or evoke automatically the

category(ies) to which this patient belongs, is related to or matches best. For example

this might be the category C̃1 (as above) ”synchronized”/intersected with the actually

experienced database D, which we denote by C̃(x,D) ⊆ D. Thus, not only the identical

patient profiles are recalled and considered but the entire x-evoked category in D that also

may contain different, but somehow similar or related patients (according to the criteria

for categorization, which were assumed to be optimal for predictive tasks by evolution). A

doctor might form a category based belief based only on the members the category(ies)

that patient x evokes, i.e. C̃(x,D),

”Category based belief”: Px(D) =

∑
c∈C̃(x,D) s(x, xc)P

c∑
c∈C̃(x,D) s(x, xc)

,

where as above s measures the similarity between the current patient and the already

treated patients.

Of course C̃(x,D) might not consist only of a single category, but several categories that

are activated by the patient x.

Alternatively, the doctor might have already categorized her experience D prior a new

patient arrives, i.e. C̃D = {C̃D1 , .., C̃DL } for l ≤ L, such that
⋃
l≤L C̃

D
l = D in a consistent

manner with respect to the (preexisting) natural categorization structure C̃. Furthermore,

she might have formed some prototypical estimates P C̃
D
l ∈ ∆(R) for each of these cate-

gories. For a given database D and a new patient x, the doctor’s prototype based belief

in such a situation might be given by a weighted average of these prototypical estimates,
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where the weights are determined by the relevance of the particular category for the current

patient, i.e. s̃(x, C̃Dl ) for all l ≤ L,10

”Prototype based belief”: Px(D) =

∑
l≤L s̃(x, C̃

D
l )P C̃

D
l∑

l≤L s̃(x, C̃
D
l

4 Natural evolutionary (optimal) categorization structure

Definition 4.1

A (natural) categorization structure C̃ = {C̃1, .., C̃L} on the set of basic cases C partitions

C into L different nonempty categories C̃l ⊆ C for l ≤ L ∈ N, i.e. C =
⋃
l≤L{C̃l}.

The definition allows for non-disjoint categories, since it is quite naturally that a case could

be classified into multiple categories if a categorization depends on more than one criterion.

For instance, the categories of young and male patients are not necessarily disjoint, when

gender and age are criteria. Moreover, hierarchical categories are not mutually exclusive,

e.g. the category of young patients and the one of young male patients.

We will not care about the formation of categories and assume that agents are naturally

endowed with an idea, how to construct categories. In particular, through evolutionary

pressure nature equipped us with an heuristic algorithm or tool that allows to form cat-

egorizations that organize our experience in an almost optimal way for prediction and

that tends to minimize prediction errors (and thus increase the likelihood to survive and

stay fit. concerning fitness and survival). This is supported by the findings that young

children appear to form, acquire and use categories from very early on (Gelman and Mark-

man (1986), Smith (1989), Murphy (2002)), showing also that many categorizations are

innate.11 However, if the categorization is based on data, the developmental literature

shows that especially in the beginning of learning (i.e. with small databases (i.e. for chil-

dren)) the categorization is still flexible (Hayne (1996), Quinn and Eimas (1996)). This

concern is immaterial for a natural categorization, since it is based already on all potential

pieces of information. However, we will take care of it, when we consider categorization

induced by database (in particular in the framework of a prototype based belief formation).

Another justification for assuming such a fixed preexisting categorization structure on

the set of all potential cases is by interpreting it as a result of an already developed

optimal categorization with regard to numbers and content of the categories. The literature

varies in the way how they define an optimal categorization (as already discussed in the

introduction, e.g. Fryer and Jackson (2008), Peski (2011), Mohlin (2014)).

A more direct reason, why we assume a preexisting natural categorization is based on

the fact that we want to avoid the many difficult and interacting mechanisms involved in

a categorization process12 and want to focus solely on the belief formation issue.

Also in the literature it is not uncommon to assume a fixed preexisting categorization

structure (Anderson (1991), Murphy and Ross (1994), Mullainathan (2002), Manzini and

10Alternatively, s̃ measures likelihood of patients x to be assigned or belonging to the particular category
11It is not observable that children rely on on purely empirical learning.
12e.g. initial encoding, abstraction of conceptual representation (if any), storage in memory of the abstraction and/or

exemplars, retrieval of stored representations, decision process that produce categorization or typicality, see Murphy and
Ross (1994)
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Mariotti (2012), Al-Najjar and Pai (2014) or Mohlin’s (2014) ex ante optimal categoriza-

tion).

5 Axiomatization of category based belief formation

5.1 Specific properties of the categorization procedure

In this section we specify the list of categories a problem x ∈ X evokes or activates and

our concept of a x-evoked categorization of a database.

Problem evoked categorization of a database

The definition of a problem evoked categorization of information captures the intuition

that a new problem activates specific most appropriate or relevant categories (that are

already generated in the natural categorization structure). An agent takes into account

these ”target” categories for the current problem.

Definition 5.1

For all x ∈ X a categorization structure C̃ induces a list C̃x of categories that problem x

evokes. For all x there exist a Mx ⊆ {1, .., L}, such that C̃x := ((C̃l)l∈Mx) ∈ C∗

We call C̃x the categories that are activated (evoked) by problem x or short x-

activated categories.

There is substantial experimental evidence showing that when faced with an object, hu-

mans’ brains automatically activate category(ies) that (according to some metric) appears

to suit the current problem best (with regard to best fitting, most likely or analogous cat-

egory(ies)).13 Basically, a new problem does not trigger some most relevant single pieces

of information, but the activation process is based on categorical thinking.

Our definition does not specify the exact procedure of activation. However, for our purpose

to form a belief given a current problem , i.e. the characteristic part of case x ∈ X, it

is most reasonable to think about a categorization of past observations according to their

characteristics.14 In this way, the characteristic x can be seen as a basic sensory input

such that categories are formed based on a relationships between the characteristics of the

cases (e.g. like a metric on the characteristics space or feature overlaps, etc.). In this way,

for instance a very specific procedure to evoke categories might solely activates categories

that contain a case that coincides (with regard to the characteristic part) with the current

problem, i.e. C̃x is the list of categories, that contain at least one case with characteristic

x ∈ X, i.e. let Al := {x ∈ X|∃c = (x, r) ∈ C s. th. c ∈ C̃l} for all l ≤ L, then

C̃x := (1A1(x)C̃1, 1A2(x)C̃2, ...., 1AL
(x)C̃L) ∈ C∗.

Such an procedure would imply that cases with different characteristics than x are only

activated if they are contained in categories that include member cases with characteristic

(problem) x.15 However, our definition is general and thus may not necessary rely on the

13Some research on this issue is mentioned in the introduction. Note that under automaticity subjects are often not
even aware of this process.

14However, an outcome dependent categorization is in principle also possible.
15Such a categorization is only useful, if cases with different characteristics into the same categories.
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x characteristics specifically, but may take into account the categories that are activated

by any characteristics that are close or related to x. Furthermore another widely accepted

procedure depends on the closest ”distance” (with respect to similar, salient, related, fa-

miliar) to the prototypical element of a categories (e.g. Rosch and Lloyd (1978)), which

then trigger their corresponding category(ies) members.

Properties on problem activated categories

Now we define a consistent transfer to activations of the categories in a database. Based

on a natural categorization structure C̃ = {C̃1, C̃2, ...., C̃L}, we will define a function

C̃ : X × C∗ → C∗ that determines the single pieces of information in a database D ∈ C∗

that belong to categories that are activated by a specific problem x ∈ X.

Thereby, our main assumption concerns a minimal amount of distinct cases in a database

that initiates categorical processing of information in agents’ minds. For a less diverse or

complex database (i.e. div(D) ≤ k) an agent’s brain does not start to simplify and reduce

the set of information by categorizing the information, but will just process, inspect and

take into account all single pieces of information directly. However, for more diverse or

complex databases agent’s mind will initiate a rough (problem evoked) classification of

the database in accordance with the natural categorization C̃ and then consider in detail

only the information in her database that are also contained in categories activated by the

current problem.

Definition 5.2 Induced minimal categorization

Let C̃ be a categorization structure on C and k ∈ N with k ≥ 3 . A database C̃(x,D) results

from a categorization function C̃ : X × C∗ → C∗16 that categorizes each database D ∈ C∗

according to the categories in C̃x that are evoked by problem x ∈ X. We call C̃(x,D) the

x-evoked/activated categorized database D (for cognitive ability level k) and define it for all

D ∈ CT for all T ∈ N by

C̃(x,D) :=

{
D ∩ (cT )c∈C for div(D) ≤ k
D ∩ (C̃x)T for div(D) > k

In the following, we will fix k = 3 without loss of generality. Obviously C̃(x,D) ⊆ D.

Example:

In order to clarify the definition of the categorization function for a database D ∈ CT

such that div(D) > 3, i.e. C̃(x,D) := (C̃x)T ∩ D, consider the following situation. Let

D = (c21, c2, c
4
3, c6, c

3
7) ∈ C11, i.e. div(D) = 5, and a categorization structure induced

by problem x ∈ X C̃x = (C̃1, C̃2), where C̃1 = (c1, c2) and C̃2 = (c2, c3, c4, c7). Then

(C̃x)11 ∩ D = (c1, c2)
11 ◦ (c2, c3, c4, c7)

11 ∩ D = (c21, c2, c
4
3, c

3
7), which is normatively and

descriptively appealing for such a categorized database.

Remark 5.1

(i) Since C̃x is insensitive to repetitions of cases, we need to ensure that repeated observa-

16With slight abuse of notation we name the function and the natural categorization identical to emphasize that for
each fixed categorization structure a corresponding function can be defined, i.e. that the function relies on this fixed
categorization structure like a parameter.
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tions in D ∈ CT are captured, which is guaranteed by introducing the T-replicated C̃x.17

(ii) An immediate consequence of the minimal induced categorization property is that for

database D such that div(D) ≤ 3, we have no categorization and the framework (and later

defined axioms) coincides with the framework of BGSS. Thus, it enables us to mirror their

proof for these kind of databases.

Apart from the minimality condition for an activated categorization of databases, the

definition makes implicitly three additional important assumptions.

First, a very important ingredient of this definition is that the evoked categories C̃x

are totally unrelated to the database under consideration. Only the underlying problem

activates the relevant categories. In accordance with these categories the actually available

information in the database is intersected. One may argue that a database itself determines

which categories are evoked (or even formed), since the database might provide some

intuition and motivation how to categorize it. However, our intuition runs solely through

a new problem x that activates the relevant categories in the subconsciously pre-existing

natural categorization C̃. In this sense the induced categorization of the database occurs

not directly on the level of the database.

Second, the ordering of the database D does not affect the resulting categorized database.

Any reordered database π(D) of the database D results identically activated categorized

information, i.e. the content of the categorized database C̃(x,D) and C̃(x, π(D)) coincides.

In this sense, the definition induces some categorization invariance that is driven by our

assumption that the categorization is evoked by the underlying problem x and not by the

database. This precludes that a categorization of a database is affected by order effects.18

However, since the x-evoked categories are activated independent from any database in our

approach,it is quite natural that their intersections with any reordered database result in

the same content.

Finally however, even though the content of differently ordered database are identical

after the categorization, the order of its evoked content (cases) in the categorized databases

may still be different, i.e. C̃(x,D) and C̃(x, π(D)) may consist of the same content but

differently ordered. However, the definition precludes this difference by assuming a specific

ordering for all categorized databases according to the order on the set of basic cases

(induced by the definition of ∩ for databases and the order on C). Yet, the reason for

this assumption is not that we want to restrict the categorization process on databases

in this way, but it is rather an anticipation of a property or axiom we would enforce for

the subsequent belief formation. In the manner of BGSS, an Invariance Axiom on beliefs

would say that the belief induced by a database is determined only by its content and

not its order of information in the database, i.e. the beliefs induced by any reordering

of the same content coincides. Thus, the assumption of a specific (seemingly restrictive)

order of the categorized databases is quite innocent and harmless in combination with an

Invariance Axiom on the belief stage, since then the order of any categorized database is

immaterial for a belief.

17We use the total length of the database just for simplicity. One might also take the maximal amount of a case
appears in D.

18For instance a first impression effect might might induce a bias for the category that the first case in the database
is most related to.
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5.2 Induced category based belief

A category based belief is composed of a usual belief P : X × C∗ → ∆(R) and a previous

problem evoked categorization of the underlying information C̃ : X × C∗ → C∗ (i.e.

C̃(x,D) ⊆ D), such that (P ◦ C̃) : X × C∗ → ∆(R), i.e. (P ◦ C̃)(x,D) = P (x, C̃(x,D)).

Faced with a new problem x ∈ X, the agent’s brain activates or evokes some appropriate

categories for this problem according to the natural categorization structure C̃ and forms

the belief based only on those pieces of information in the activated categories that are

actually available in her database, i.e. on sub-database C̃(x,D) ⊆ D.

In the following we will fix a problem x ∈ X and write for convenience C̃(x,D) = C̃(D)

and for (P ◦ C̃)(x,D) = (P ◦ C̃)(D) when no confusion arises.

5.3 Axioms on the level of belief formation

Categorized Invariance Axiom (already implied)

For all D ∈ C∗ and all permutations π on D, i.e. D = (c1, ..., cT ), then π(D) =

(cπ(1), ..., cπ(T )) the following holds:

(P ◦ C̃)(D) = (P ◦ C̃)(π(D))

The axiom basically says that the order or sequence of appearance of the cases in D

is immaterial for the induced category based belief, only the content matters. Thus, the

axiom is directly implied by our definition of a problem evoked categorization of databases,

since we discussed already that for any two databases containing the same content, their

induced categorization coincide, i.e. C̃(D) = C̃(π(D)) for all databases D ∈ C∗ and

reordered database π(D). In this sense the categorized Invariance Axiom is superfluous

and indirectly substituted by the definition of a categorized database.19

Per se the invariance property does not allow for different impacts if a case appears ear-

lier or later in a database. However the order in which information is provided or obtained

can influence the judgment strongly and may carry information by itself. One way to cope

with these order effects is to describe the cases informative enough. E.g. if one wants to

capture the position or time of occurrence of a case in the categorized database, one could

implement this information into the description of the cases itself. Put differently, if one

challenges the consequences of an invariance property, then there must be some criteria

which distinguishes the cases and paying attention explicitly to this difference in the de-

scription of the case may lead the agent to reconcile with such an invariance.

Category based Concatenation Axiom

There exists some λ ∈ [0, 1], such that for C̃(D ◦ E) 6= ∅

(P ◦ C̃)(D ◦ E) = λ(P ◦ C̃)(D) + (1− λ)(P ◦ C̃)(E),

where λ = 0 if and only if C̃(D) = ∅.

19Technically speaking, there is no difference between restricting the categorization process to specific orders or allowing
for different orderings and requiring an Invariance Axiom for beliefs.

13



In the following we will call the database which emerges from concatenation of other

databases as the combined or concatenated database, whereas the databases used for

the concatenation will be called combining or concatenating databases.

The category based Concatenation Axiom states that a category based belief induced

by a concatenated database is a weighted average of the category based beliefs induced by

its respective combining databases. The axiom captures the idea that a belief based on the

combination of two databases can not lie outside the interval spanned by the beliefs induced

by each combining database separately. Intuitively it can be interpreted in the following

way (stated from an exclusion point of view): if the information in any database induces

an agent’s belief not to exclude an outcome r, then the outcome r cannot be excluded by

the belief induced by the combination of all these databases.20

However, in order to sustain the normative appealing interpretation of averaging (cate-

gory based) beliefs, the categorized concatenation of two databases must coincide with the

concatenation of these two categorized databases, i.e. the union of the elements surviving

the categorization process for each single database should not differ from the elements sur-

viving the categorization of the database generated by the combination of the two. This

would ensure that a category based belief induced by the concatenated database relies

on information that is also employed in the category based beliefs induced by the single

concatenating databases. However this is directly achieved by the definition of a problem

evoked categorization of a database, i.e. for D ∈ CT and E ∈ CL

C̃(x,D ◦ E) = (C̃x)T+L ∩ (D ◦ E) = ((C̃x)T ∩D) ◦ ((C̃x)L ∩ E) = C̃(x,D) ◦ C̃(x,E)

The category based Concatenation Axiom assumes λ = 0 for databases such that C̃(D) =

∅. Of course λ 6= 0 would result in inconsistencies, since then (P ◦C̃)(D◦E) = λP (∅)+(1−
λ)(P ◦ C̃)(E), which implicitly states that the category based beliefs induced by C̃(D ◦E)

and C̃(E) would differ, even though the categorized databases coincide.

Collinearity Axiom

No three of ((P ◦ C̃)(c))c∈C such that C̃(c) 6= ∅ are collinear.

Technically speaking this axiom allows to derive an unique similarity function (in com-

bination with the other axioms), but it has also some reasonable intuition. Roughly it

states that a (non trivial) estimate based on a case is never equivalent to the combined

(non-trivial) estimates based on two other cases. Hence, a case is always informative in the

sense that no combination of two other cases can deliver the same estimation and would

make this case redundant. By non trivial we mean that the case is activated, since a not

activated case could only contribute a trivial (uninformed) uniform-like estimate.

20Of course the axiom is stronger in the sense, that it not only requires that the probability of such an r is positive,
but it should lie between the minimal and maximal assigned probabilities induced by the combining (filtered) databases.
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5.4 Representation Theorem of category based belief formation

Theorem 5.1

Let there be a function (P ◦C̃) : C∗ → ∆(R), where P : C∗ → ∆(R) and C̃ = {C̃1, ..., C̃L} a

categorization structure on C with corresponding induced minimal categorization function

C̃ : C∗ → C∗, i.e. for each D ∈ C∗ a categorized database C̃(D) ⊆ C∗ is given. Let

(P ◦ C̃) : C∗ → ∆(R) satisfy the Collinearity Axiom.

Then the following are equivalent:

(i) The function (P ◦ C̃) satisfies the category based Concatenation Axiom

(ii) There exists for each c ∈ C a unique P c ∈ ∆(R), and a unique strictly positive -up to

multiplication by a strictly positive number- function s : C → R+, such that for all D ∈ C∗

with C̃(D) 6= ∅

(P ◦ C̃)(D) =

∑
c∈C̃(D) s(c)P

c∑
c∈C̃(D) s(c)

.

Rough sketch of the proof:

The necessity part is straightforward calculation. The sufficiency part follows the rough

structure of the proof of BGSS and Bleile (2014b), but differs in the crucial arguments.

The idea is to transform the framework from the space of databases to the space of fre-

quency vectors that is structural more tractable, i.e. the filtered belief based on databases

(P ◦C̃)(D) =

∑
c∈C̃(D) s(c)P

c∑
c∈C̃(D) s(c)(c)

for D ∈ C∗ translates to frequency vectors fD by (P ◦C̃)(fD) =∑
j≤m sjC̃j(fD)P j∑
j≤m sjC̃j(fD)

. In order to show that this is viable we exploit the structure of the cate-

gorization procedure and the categorized Concatenation Axiom.

The essential part of the proof is to derive the similarity weights (si)i≤m. This will be

shown inductively over |C| = m and div(fE) ≤ m.

Step 1: Base case for the induction, i.e. |C| = m = 3. Since C̃(f) = f for all f such

that div(f) ≤ 3, we are exactly in the BGSS framework, which directly deliver the result

for these kind of frequency vectors.

Step 2: |C| = m > 3 and div(fE) ≤ m.

As in BGSS, we can show (using C̃(f) = f for all f such that div(f) ≤ 3) that the similarity

weights derived in Step 1 are independent of the triplet {i, j, k} for any set of basic cases

C = {ci, cj , ck} and thus we can define for all f ∈ ∆(C)

(P ◦ C̃)s(f) :=

∑
j≤m sjC̃j(f)P j∑
j≤m sjC̃j(f)

.

The aim is to show (P ◦ C̃)s(f) = (P ◦ C̃)(f) for all f ∈ ∆(C) via induction over m and

using Step 1 (m = 3) as base case.

Let f = αqj + (1 − α)f(j) (*) (for some α ∈ (0, 1)) where f(j) denotes the point in

conv({(ql)l∈{1,...,m}\j}) that is on the line through f and qj , as in BGSS.

(i) If there exists a j ≤ m such that qj 6∈ C̃(f), then the decomposition (*) and the cate-

gory based Concatenation Axiom (and induction assumption) delivers the claim.
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(ii) If qj ∈ C̃(f) for all j ≤ m, then there are m many qj such that C̃(qj) 6= 0m. Again, the

category based Concatenation Axiom applied to the m many decompositions yields that

(P ◦ C̃)(f) lies in the interior of the intervals spanned by ((P ◦ C̃)(qj), (P ◦ C̃)(f(j))) for

all j ≤ m. Combined with the Collinearity Axiom this delivers a unique intersection of

these lines in (P ◦ C̃)(f) and (P ◦ C̃)s(f), since the elements determining the lines satisfy

already the claim by the induction assumption.

Interpretation of Theorem

A category based belief formation can be interpreted as a two stage process in which

in an initial step the rough categorized information is activated by the current problem

and in a subsequent step the information contained in these activated categories are pro-

cessed and evaluated in detail for the belief formation.

A category based belief follows exactly the experimental evidence in psychology in which

individuals focus on the category(ies) that a problem belongs to or are most relevant and

fitting (Murphy and Ross (1994)) and all other categories are immaterial, not retrieved

and excluded. This implies that an agent does not need to retrieve or consider all poten-

tially memorized or all past cases (as in BGSS, EG, Bleile (2014a)). In this way, such a

procedure may reduce enormously the cognitive effort, since only a subset of past cases is

processed in detail and all pieces of information that are members of irrelevant categories

are not even needed to be retrieved.

A category based belief is not based on estimations that are associated with entire cat-

egories, but it relies on all estimates induced by the single cases in the categories activated

by the problem. This is an important distinction to the axiomatized prototype based belief

in the next section and reflects the disagreement in the categorization literature on how

categories are actually represented. One stream of literature argues for a representation

through all its members (Kruschke (1992), Medin and Schaffer (1978)), whereas another

branch reasons in favor of an abstracted summary in terms of a prototype representation

(e.g. Rosch and Mervis (1975) and references in Murphy (1994)).21

Since a category based belief relies only on the information of some activated categories,

it can be interpreted as a limited attention model as in Bleile (2014b), where a filtered

belief is formed based only on some parts of the potentially available information (so called

consideration set that survives a screening/filtering stage).22 For a category based belief,

the information in the evoked categories can be identified as the information that is con-

tained in such a consideration set in the limited attention model. From this point of view,

the filtering runs on the category level and the categories are roughly screened with the

purpose to ”determine” whether they are appropriate or not for the current problem. The

”surviving” categories are examined in full detail in the further belief formation. Never-

theless, the category based and filtered belief are interpretational very similar, however

from a structural, technical and axiomatic point of view they differ significantly. The cat-

21In general, there is tradeoff between informativeness and economy involved that might be better balanced by a
more intermediary representation as offered in VAM models (Vanpaemel and Storms (2008)), which allows for varying
abstraction levels. It seems that people shift from using a prototype representation early in training to using an exemplar
representation late in training.

22A filtered belief (P ◦ ΓE)(x,D) that is based also only on some parts ΓE(D) ⊆ D of the information captured in D,
since it is filtered in some way, i.e. (P ◦ Γ) : X × C∗ × C∗ → ∆(R), but requires some different setup.
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egory based belief formation can also be interpreted as an adaption of the choice model of

Manzini and Mariotti (2012) (”Categorize then choose”) to belief formation.

6 Axiomatization of prototype based belief formation

6.1 Specific properties of the categorization procedure

For a prototype based approach we will define a specific categorization of databases in ac-

cordance with a natural categorization structure, but independent of the current problem

of categorizing information. In this regard it differs from the first procedure.

Natural categorization structure

Let there be given a natural (evolutionary optimal) categorization structure C̃ as dis-

cussed in Section 4. We slightly restrict the natural categorization structure such that it

satisfies some additional structural properties regarding the content of the categories.

Definition 6.1

For a set of basic cases C we call C̃ = {C̃1, ..., C̃L} for some L ∈ N a categorization

structure, if

(i) C̃k ∩ C̃l = ∅ and

(ii) C = ◦j≤LC̃l and

(iii) for all l < L |C̃l| ≥ 2 and |C̃L| ≥ 1

In contrast to the unrestricted natural categorization structure in the section before, now

the categories are explicitly defined to be disjoint and should contain sufficiently many

elements. Disjointness is natural when a category is identified by a (set of) property or

attribute. An object does either possess a property or it does not, which implies the dis-

jointness. We stick to disjoint categories mainly for reasons of technical and notational

simplicity, but it could be generalized.

The assumption that almost all categories contain at least two members captures the moti-

vation to deal with ”real” categories.23 Basically, a ”real” category in our definition exists

whenever at least two or more heterogenous or distinguishable cases can be gathered in

the same category according to some common criteria. Categorization is only meaning-

ful if some pieces of information can be classified into a common genuine category. We

rule out a degenerate (trivial) singleton-categorization, in which all cases get their own

category. Furthermore, the optimal categorization literature (Fryer and Jackson (2008),

Mohlin (2014), Peski (2011)) supports our defining properties (under some mild condi-

tions). It shows that there exist many more cases than categories and that an optimal

categorization results in few and relatively coarse categories, which implies that ”optimal”

categories should contain many members, i.e. |C̃l| ≥ 2.

The underlying reason originates from a tradeoff between benefits and disadvantages of a

fine or coarse categorization.24 A finer categorization implies more categories that contain

23Manzini and Mariotti (2012) consider a similar requirement for their 2nd version of categorization.
24This is closely relate to the problem of over-fitting in statistics, where a too close/precise fit of limited observations-

i.e. using high-dimensional models- comes with risk of loosing the predictive power.
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less but more homogenous and similar members, but results in a decreasing robustness

or reliability of a prediction based on these (less precise or noisy) categories with less

many observations. Another compromise concerns the increasing challenge in searching

and identifying the ”correct” category(ies) for new objects for finer (and more narrow)

categorization (e.g. Medin (1983), Jones (1983)). Thus an agent might prefer to categorize

more coarsely into larger categories, which is well known and discussed in the psychology

literature and referred to as basic level categories. Basic level categories are neither the

most general nor the most detailed categories.

A categorization based solely on characteristics satisfies our definition under the con-

dition that the L categories are not empty, since if a case c = (x, r) ∈ C̃l, then the cases

c = (x, ri) are in the category C̃l for all i ≤ n.

The assumption that there exists at most one singleton category reflects the intuition

of a category that might collect the cases that are ”uncategorizable” into ”real” categories.

This is supported by an implication of optimal categorizations (e.g. Fryer and Jackson

(2008)) which shows that experiences and objects in databases that are not ”easy” to cat-

egorize (i.e. tend to form a singleton category) are more coarsely categorized and more

often lumped together (i.e. gathered in the category of uncategorizable elements C̃L+1).

Specific database induced categorization

Based on a natural categorization structure, we define a specific categorization proce-

dure for given databases that transmits the idea that there is one category that contains

the ”uncategorizable” elements. Further it assumes -similar to the problem evoked catego-

rization of databases in Section 5- that a minimum amount of complexity of the database

is required in order to initiate categorical thinking and processing of information. For less

diverse databases categorization is not necessary and the agent considers just all cases in

detail.

Definition 6.2

Let C̃ = {C̃1, .., C̃L} be a categorization structure on C. For all E ∈ C∗ a categorization of

E or E-categorization structure C̃E = {C̃E1 , ..., C̃EL+1} is given in the following way:

(i) If div(E) < 5, i.e. E = (cri , c
s
j , c

t
k, c

u
n) for distinct i, j, k, n ≤ m and r, s, t, u ∈ N0, then

C̃E = {C̃E1 = {ci}, C̃E2 = {cj}, C̃E3 = {ck}, C̃E4 = {cn}, C̃E5 = ∅, ..., C̃EL+1 = ∅}
Basically C̃E = {{c}c∈E}
(ii) If div(E) ≥ 5, then C̃E := {C̃E1 , ..., C̃EL+1}, where C̃El for l ≤ L is defined as follows:

C̃El =

{
C̃l ∩ E if div(C̃l ∩ E) ≥ 2

∅ if div(C̃l ∩ E) ≤ 1

C̃EL+1 =
⋃

{l≤L||C̃l∩E|=1}

C̃l ∩ E

Note, that by definition C̃El (for all l ≤ L+ 1) does not contain repetitions of cases.

The difference in processing information depending on div(D) Q 5 captures the motivation

to have at least three meaningful categories, in the sense that at least two ”real” non

singleton categories exist, which requires div(D) ≥ 5.
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Remark 6.1

The definition of a categorization of a database implies some sort of categorization invari-

ance, i.e. categorizations are independent of the order, number and frequency of cases in

a database. More precisely,

(i) C̃E = C̃D for all D,E ∈ C∗ containing the same cases, i.e. for all c ∈ C fD(c) > 0

if and only if fE(c) > 0. In particular C̃E = C̃E
Z

and

(ii) C̃E = C̃π(E) holds for all re-orderings π(E) on E.

Basically, we require that a category (or later its prototype) is not affected by repetitions of

already observed information, indirectly saying that categories are characterized by single

observations of different cases and not influenced by their frequencies. Interestingly, an op-

timal categorization procedure (a la Jackson and Fryer (2008)) results as well in categories

that remain unchanged when experiences is simply replicated (and also their prototypes),

i.e. C̃D
Z

l = C̃Dl for some Z ∈ N.25

The categories of an E-categorization structure (that an agent has in mind) can be evoked

or activated by cases that are also contained in another (simultaneously) available (some-

how related) database D.

Definition 6.3

Let D,E ∈ C∗, such that fD(ci) ≥ 0 only if fE(ci) > 0 for all i ≤ m. Then, the E-categories

evoked by D result from an D-induced E-categorization function C̃ : C∗ × C∗ → P (C∗)

C̃(D,E) := C̃E(D) = (C̃E1 (D), .., C̃EL+1(D)), where for all l ≤ L+ 1

C̃El (D) :=

{
C̃El if D ∩ C̃El 6= ∅
∅ otherwise

The definition is basically some consistency condition (note that C̃El (E) = C̃El ), but one

can interpret it as well in the following way. An agent having already categorized a database

E and is ”simultaneously” faced with processing the database D (consisting only of already

categorized cases in E) will not forget her already ”internalized” E-categorization struc-

ture. In particular, the cases in D activate some categories in the richer E-categorization

structure C̃E and it might only happen that some of these categories are not activated by

cases in D, i.e. if for a l ≤ L+1 and all c ∈ D c 6∈ C̃El , then C̃El is not evoked by D. However

this interpretation does only apply for ”simultaneously” available and actively categorized

databases. This is distinct to a This interpretation doe not apply for the natural catego-

rization structure that is subconsciously (evolutionary and automatically) anchored in the

brain. and thus not actively formed in a process.

An important implication of the definition is that for any reordering π(D) of the database

D, we have the same list of evoked categories in terms of content as well as in terms of

the order, i.e. C̃E(D) = C̃E(π(D)). In combination with the Remark 6.1, this implies a

categorization invariance, i.e. for any (D,E) ∈ C∗ × C∗ such that fD(c) ≥ 0 if fE(c) > 0

25However, the optimal categorization of Fryer and Jackson is sensitive to additional already known information, if it
concerns only single pieces of information, i.e. (i). Increasing the size of only a single group of cases may lead to a shift
in the categorization.
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and appropriate permutations π, π′

C̃E(D) = C̃E
L
(DZ) = C̃π(E)(π′(D)) (1)

This property of a database evoked categorization of information is restrictive, since the

order of cases in D might affect the order in which the E-categories are activated.26 How-

ever, similar as in Section 5, this specific assumption is not a property we want to enforce

explicitly, but it is an anticipation of an Invariance Axiom on the belief level, we would

enforced if the evoked categorization structure would be order sensitive.

Admissability of database based categorization

We defined an environment in which pairs of (somehow nested) databases (D,E) ∈ C∗×C∗

affect the belief formation. The richer database E induces some categorization, where the

cases of D activate the E-categories for the actual process of belief formation. In such a

framework not all potential combinations of databases are plausible and meaningful for a

belief formation based on categorized information. Our admissibility condition specifies the

circumstances under which categorization of information is a normatively and descriptively

reasonable.

As discussed already, a categorization heuristics is useful for sufficiently complex and

diverse databases. However a sufficiently diverse database is not directly complex, e.g.

if it is classified into a single (or very few) large category (ies) or into almost singleton

(very fine) categories. Basically, only if sufficiently many meaningful categories are evoked

an agent starts to think and process information categorical and feels confident in relying

on (summarized) information on the category level. For databases that involve only very

few activated databases an agent may not want to rely on only coarse (imprecise and

noisy) summaries of these few categories, but might go through the information case by

case in order to be sufficiently informed.27 Thus, in such a situation a categorization of

information does not offer some advantage to an approach of just taking into account all

single pieces of information directly.

Our admissibility condition (i.e. (ii) and (iii)) restricts the pairs of databases for which

an agent starts the categorical thinking an processing. It requires that a minimum number

of ”real” categories of C̃E (namely three)are in some sense activated by a database D and

considered for its evaluation.

Definition 6.4

The admissible pairs (D,E) ∈ C∗ × C∗ is given by the set A as follows

A := {(D,E) ∈ C∗ × C∗| (i) fD(c) > 0 then fE(c) > 0 for all c ∈ C

(ii) if div(D) = 2 then there must exist c ∈ E\D

such that |C̃E(D ◦ c)| = 3

(iii) if div(D) ≥ 3 then |C̃E(D)| ≥ 3}
26With additional effort on notation and definitions we could take care of orders.
27As in the setup of a category based belief or the original belief formation without a categorization as taken in BGSS,

EG, Bleile (2014a)
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Note that (D,E) ∈ A if and only if (DZ , EL) ∈ A.

A necessary condition for a ”real” categorization is div(E) ≥ 5. For less diverse E each

contained case is interpreted as singleton category and all conditions in A are naturally

satisfied. Thus, we need to discuss the admissibility conditions only for more diverse

databases that induce non trivial singleton categories.

For condition (ii) and (iii) to be satisfied we need |C̃E | ≥ 3, which captures our moti-

vation to employ only sufficiently ”rich” categorizations. Consequently, those pairs (D,E)

are ruled out such that |C̃E | < 3. Part (iii) captures explicitly the intuition of ”satis-

factorily” many activated E-categories, by enforcing that there must exist at least three

different cases in D that evoke three different E-categories.

For database D such that div(D) = 2 part (ii) requires that both contained different

cases need to belong to different categories according to the E-categorization structure.

The underlying idea is that D activates two different E-categories and thus triggers (makes

aware) some categorical thinking and processing. However, if the database D evokes just

one category C̃El in the E-categorization, then an agent might not initiate any categorical

thinking and processing at all or is just not aware of different categories, but might rely

on each single case directly. This is exactly ruled out by condition (ii).28

The admissibility condition is justifiable in general, but our initial motivation originates

in the most interesting situation for D = E. The condition (i) is directly met. A pair

(D,D) with div(D) = 2 is not admissible. This matches our desire that no categorization

is induced for databases that has no sufficiently complex categorization - i.e. not at least

three categories- such that a categorization procedure offers (summarized) information on

the category level for acceptable many categories. For more diverse databases, div(D) ≥ 3,

the admissibility just requires that the D-categorization structure consists of at least three

different categories, as we desired.

6.2 Induced prototype based belief

An agent forms a prototype based belief based on her available admissible pair of informa-

tion (D,E) ∈ C∗ × C∗ in the following way. Based on a natural categorization structure

C̃, a categorization of a database E result in the categorization C̃E . An agent evaluates

the simultaneously available database D by exploiting the categorized information C̃E con-

tained in the richer database E that is activated by cases in D.

Thus, a prototype based belief relies on categories in E that are evoked/activated by the

D induced categorization function C̃ : C∗ × C∗ → C∗, (i.e. C̃(D,E) = C̃E(D)) such that

(P ◦ C̃) : X × C∗ × C∗ → ∆(R), i.e. (P ◦ C̃)(x,D,E) = P (x, C̃(D,E)) = P (x, C̃E(D)).29

(P ◦ C̃) is a belief induced by the categories in the richest database available (i.e. E) that

are evoked/activated by single pieces of information in the database under consideration(

i.e. D). The most intuitive situation is where E = D, in which all D-induced categories

are employed.

28Note, that for all D ⊆ E ∈ C∗ with div(D) = 1 (D,E) is admissible, in particular for any E ∈ C∗ and all c ∈ E
(c, E) ∈ A. This requires an exception of the given interpretation, since it is obvious that only one E-category can be
activated. However, this is driven by the situation D = E = (cT ), which implies a belief only based on information (and
only category member) c, which is a acceptable in the light of the desired representation in Theorem 6.1.

29I.e. P : X × P (C∗)→ ∆(R) relies only on categories.
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Throughout the paper the problem x is fixed, therefore x is often suppressed in the follow-

ing, i.e. (P ◦ C̃)(x,D,E) = (P ◦ C̃)(D,E).

6.3 Axioms on the level of belief formation

As already mentioned above, our (restrictive) assumptions on the categorization procedure

(see Remark and 6.1 equation (1)) replaces the otherwise imposed Invariance Axiom.

Implied Invariance Axiom

For all admissible pairs (D,E) ∈ A and D ∈ CT and all permutations π on T for all T, we

have

(P ◦ C̃)(D,E) = (P ◦ C̃)(π(D), E)

The Invariance Axiom says that the order of the information in the database is imma-

terial for the induced belief. Only their content is important. For a discussion of the axiom

see Section 4.2.

Remark 6.2

Note, that in particular (P ◦ C̃)(D,E) = (P ◦ C̃)(π(D), π′(E)) by Remark 6.1).

Thus the order invariance accounts for both databases, which is important for the proof.

Prototype based Concatenation Axiom:

Let C̃ ba a categorization structure on C. For all D,E, F ∈ C∗ such that (D,F ) ∈ A and

(E,F ) ∈ A are admissible pairs, then there exist λ ∈ (0, 1) such that:

(P ◦ C̃)(D ◦ E,F ) = λ(P ◦D)(D,F ) + (1− λ)(P ◦ C̃)(E,F )

The interpretation of the axiom is similar to the Concatenation Axiom in BGSS and as

in Section 4.2. In order to keep the normatively desirable spirit of averaging, we need to

ensure that the information employed in the belief formation for the concatenation D◦E is

meaningfully related to the single databases D and E. Intuitively, the categories evoked by

(D◦E) need to be covered by the categories evoked by either D or E. This can only hold in

general, if a common categorization structure underlies all involved activation processes,

i.e. for a common C̃F . A determination of a belief as an average of two other beliefs would

be hard to justify if the underlying beliefs rely on different categorizations. If so, there

might be very different categories involved in the different beliefs that would prevent an

easy averaging, since no common evaluation basis exists. Of course, to be able to activate

some categories from this common categorization structure, all observed cases in D and

E need to be categorizable with regard to this common basis. Thus, the F-categorization

ought to cover at least the available information in D ◦ E, i.e. F ⊇ D ◦ E. Moreover,

having this categorization structure in mind, it appears reasonable to employ it in the be-

lief formation process and do not shift to another less rich categorization, e.g. like moving

to a E-categorization for database E, i.e. C̃E(E). Thus, the assumed structure ensures

that C̃F (D ◦ E) = C̃F (D) ∪ C̃F (E) and therefore the induced beliefs rely on the same

F-categories and are only distinct in the way which categories their contained cases evoke.

The prefix ”prototype based” Concatenation Axiom or belief will become clear in Theo-
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rem 6.1 and would allow for an interpretation of the axiom in terms of category related

prototypes.

Identity Axiom

Let (D1, E), (D2, E) ∈ A and related categorization structure C̃E = {C̃E1 , .., C̃EL+1}. For

all D1, D2 such that C̃E(D1) = C̃E(D2) = C̃El for some l ≤ L+ 1, then (P ◦ C̃)(D1, E) =

(P ◦ C̃)(D2, E).

The axiom says that the prototype based beliefs induced by databases (given an E-

categorization structure) coincide, if the databases evoke only one identical E-category.

In this situation, the specific content of the information is immaterial for the induced be-

lief, since only the activated category is relevant.

Collinearity Axiom

For all databases D ∈ C∗, no three distinct vectors of ((P ◦ C̃)(c,D))c∈D are collinear.

The interpretation is the same as in Section 4.2 or BGSS.

The only difference is the requirement of distinctiveness, since (P ◦ C̃)(c,D) is identical

for cases in D that are contained in (and activate) the same category. Basically, no three

estimates based on different categories are collinear.

6.4 Representation Theorem of prototype based belief formation

Theorem 6.1

Let (P ◦ C̃) be a function (P ◦ C̃) : C∗ × C∗ → ∆(R), where C̃ : C∗ × C∗ → P (C∗) is an

induced categorization function with underlying C̃E = {C̃E1 , ..., C̃EL+1} for all E ∈ C∗. Let

the prototype based belief (P ◦ C̃) satisfy the Collinearity Axiom.

Then the following are equivalent

(i) (P ◦ C̃) satisfies the prototype based Concatenation and Identity Axiom

(ii) For all E ∈ C∗ and any l ≤ L+ 1 such that C̃El 6= ∅ there exists a unique P C̃
E
l ∈ ∆(R)

and a unique -up to multiplication by a strictly positive number- strictly positive function

s̃ : C∗ × C∗ → R+, such that for all (D,E) ∈ A the following representation holds:

(P ◦ C̃)(D,E) =

∑L+1
l=1 s̃(D, C̃

E
l )P C̃

E
l∑L+1

l=1 s̃(D, C̃
E
l )

Moreover, s̃(D ◦ c, C̃El ) > s̃(D, C̃El ) for all c ∈ C̃El .

Rough sketch of the proof:

The necessity part is straightforward calculation. The sufficiency part follows the rough

structure of the proof of BGSS and Bleile (2014b), but differs in the crucial arguments.

Again, the first step is to reason, why it is viable to transform (P ◦C̃)(D,E) for (D,E) ∈ A
into (P ◦ f̃)(fD, fE) for appropriate adjusted definitions of (fD, fE) ∈ A.

The essential part of the proof is to derive the similarity weights (si)i≤m. This will be

shown inductively over div(fD) ≤ k ≤ m.
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Step 1: Base case for the induction, take any triplet {i, j, k} ⊂ {1, ..,m} such that

fD ∈ conv({(qv)v∈{i,j,k}}), i.e. div(fD) ≤ 3, and (fD, fE) ∈ A.

(i) For (fD, fE) ∈ A such that 2 ≤ div(fD) ≤ 3 and 3 ≤ div(fE) ≤ 4 the categorization

procedure is vanished and coincide with the BGSS framework.

(ii) For (fD, fE) ∈ A such that div(fD) ≤ 3 and div(fE) ≥ 4.

(a) For fD ∈ (qi, qj) and (fD, fE) ∈ A, there exist some qk such that admissibility condi-

tion (ii) holds. Then take the simplex spanned by {qi, qj , qk} and adopt Step 1 of BGSS,

Bleile (2014a,b), i.e. find si, sj , sk, define (P ◦ f̃)(f, fE) and run the recursive proce-

dure to cover all simplicial points on this simplex for the fixed fE . This yields that for

(P ◦ f̃)s(fD, fE) = (P ◦ f̃)(fD, fE) for all fD ∈ conv({qi, qj , qk}) and fixed fE .

(b) Since for an admissible pair (fD, fE) ∈ A from (a) there might exist many k such that

the admissibility condition (ii) holds. Repeat (a) for all such k.

(c) Since for fD ∈ (qi, qj) in (a) there exist many fE such that (fD, fE) is admissible,

repeat (a) and (b) for all these fE .

(d) Repeat (a), (b) and (c) for any pair (qi, qj) with distinct i, j ≤ m.

Thus, we have that (P ◦ f̃)s(fD, fE) = (P ◦ f̃)(fD, fE) for all admissible pairs (fD, fE)

such that div(fD) ≤ 3.

Step 2: For all (fD, fE) ∈ A such that div(fD) > 3

By the properties of the categorization, we know that at least two fE-categories contain

a least two cases and another category contains at least one member, e.g. f̃fE1 ⊇ {q1, qi},
f̃fE2 ⊇ {q2, qj}, etc.

Let fD = αqj + (1 − α)f(j) (for some α ∈ (0, 1)) where f(j) denotes the point in

conv{(ql)l∈{1,...,m}\j} that is on the line through fD and qj , as in BGSS.

Then the prototype based Concatenation Axiom and the induction assumption delivers

(P ◦ f̃)(fD, fE), (P ◦ f̃)s(fD, fE) ∈
⋂
t=1,2

((P ◦ f̃)(qt, fE), (P ◦ f̃)(f(t), fE)).

Applying the Collinearity Axiom yields the uniqueness of the intersection and the desired

result.

Interpretation of Theorem

The theorem is described for general pairs of admissible databases (D,E) ∈ A. How-

ever, the most interesting and natural situation is given by identical information (D,D),

which motivated our examination of a belief formation based on categorized information.

For (D,D) ∈ A, an agent only employs the categorized information in database D and

is not involved in the process of case based activation of categories as necessary for pairs

(D,E) ∈ A. For (D,D), the admissibility condition for a ”real” categorization of the

information D requires that the database D is categorized at least into three different cat-

egories (which is in principle only possible for databases with at least five different cases).

Thus, the most interesting and meaningful situation is for large databases which allow a

sufficiently rich categorization structure.

A prototype based belief formation does not focus on employing the information con-
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tained in the most appropriate evoked (target) categories for a problem, but it takes into

account the entire categorized information in a database. The belief is not only based

on one target category, but across all categories. This tries to compensate for potential

misassignments if the actual problem does not allow for a straightforward most appropri-

ate category. However the process is not based on a detailed piece by piece evaluation

of all cases and their induced estimates separately, but relies on the summarized coarse

information on the category level. This is in line with the procedure in Anderson (1991).

In particular, an agent only needs to compare and balance the categories (as an entity) at

large and use their category specific predictions. Thus not all single pieces of information

need to be evaluated, which is a severe (cognitive) simplification and captures the under-

lying aspect and motivation of a categorization (heuristic). The category based estimation

P C̃
D
l is the main ingredient and eponymous for our belief, since it can be interpreted as rep-

resentative or prototypical estimate associated with the category C̃Dl . Each category has a

unique representative prototypical estimate, which does not distinguish between between

cases in the same category, i.e. for all c ∈ C̃El (P ◦ C̃)(c, E) = P C̃
E
l . Implicitly, this means

that a category is understood in terms of a prototypical element in the category that cap-

tures, compresses, aggregates, summaries and abstracts the essence and central tendency

of a category (for prototype theory see e.g. Posner and Keele (1968), Reed (1972)). A

specific representation of such an aggregated prototype based estimate is not implied, but

a very natural prototype is simply the mean across previously experienced objects in the

category. But also other statistics can serve as prototypes, such as min if the decision

maker cares about worst case scenarios.

The weights (s̃(C̃Dl , D)) that are assigned to each category specific estimate P C̃
D
l reflect

the relevance of category l in the database D for the current problem. The weights do

not only measure the relevance of the categories C̃Dl , but also incorporate how often (in

similarity weighted terms) this category is activated by the specific database D. 30 Thus, the

specific content and structure (frequencies) of the (activating) databases are taken care of,

e.g. two databases that are categorized in identical categories can induced different beliefs

if they contain differently many cases of specific types, since then the relative relevance of

the same categories can be altered.

In sum, a prototype based belief formation facilitates fast and cognitive less demanding

predictions compared to ”smoother” forms of similarity based reasoning as for instance

provided by kernel-based predictions or BGSS, EG and Bleile (2014a). these approaches

need to incorporate all single pieces of information. For the prototype based approach,

an agent simply evaluates a problem in terms of prototypical thinking and reasoning, by

averaging the categories’ prototypical estimates, which can be derived, stored and retrieved

solely on the category level, independent of the problem. A kernel based or BGSS belief

requires a higher and more complex cognitive load and task by the need to store a large

amount of information and generate many more (conditional) estimations that complicates

the belief formation.

30Remember that a category does not contain repetitions of cases, i.e. C̃D
l = C̃D◦c

l for any c ∈ C̃D
l .
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7 Conclusion

This paper examines how beliefs are formed by agents that use a categorization procedure

in order to process, store and retrieve the available information. The cognitive science

literature emphasizes the role of categorical processing, thinking and reasoning. Based on

this insight we axiomatize a two stage belief formation procedure in which agents employ

categorized information and do not incorporate the available information piece by piece.

We assume that an agent is equipped (or has acquired (evolutionary)) subconsciously with

some intuition or heuristic how to (optimally) categorize the entire set of possible pieces of

information. Based on such a naturally given categorization heuristics, we introduce a pro-

cedure that consistently categorizes databases. We consider two well known and observed

procedures of categorizations, depending on how categories are activated for a new problem

and how they are represented. One procedure relies only on the information in specific

”target” categories that are the most appropriate categories for the current problem. An-

other procedure relies on all categories of the database, but that are not represented by

their contained single pieces of information, but rest on so called prototypical elements

that represent a summary or central tendency of the category. For both procedures, we

require a minimum amount of complexity/diversity of the underlying information, such

that an agent really engages into categorical processing and thinking. Otherwise an agent

sticks just to piece by piece evaluation of the information.

The axioms on the belief level are closely related to the axioms introduced in BGSS and

Bleile (2014b) and modified in a way to capture the categorization of information and their

consequences for induced beliefs. The two versions of belief formation based on catego-

rizations - category based and prototype based- are weighted sums of estimates induced

by past categorized information. Whereas the category based belief relies on estimates of

past observations in the target categories that are activated by the current problem, the

prototype based belief relies on all category related prototypical estimates in the database.

The weights that are assigned to the different estimates cover the similarity of the current

problem with the single piece of information that induced the estimate or respectively its

relevance with the particular category (or its prototype).

Compared to the beliefs axiomatized in BGSS, EG and Bleile (2014a), both belief forma-

tions based on categorized information reduce the cognitive effort extensively and thus are

more realistic procedures for belief formations. For the category based belief an agent only

needs to consider, evaluate and estimate each single piece of information within the target

categories, i.e. only some subset of the available information. In the prototype based be-

lief, an agent even thinks entirely categorical or in prototypes and thus treats information

always on an aggregate level.

A Preparations for the Proofs

An essential step in the proofs will be to identify database with their frequency vectors,

which allows to exploit the more tractable structure of the space of frequencies on C and to

adopt the approach taken in BGSS (and use the mechanism of Bleile (2014a)). However,

the proofs for categorization based beliefs formation requires some additional features,

since in addition a categorization step is involved, which alters the crucial steps in the
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inductive proof

General Definitions for a Frequency Framework

We need to introduce some definitions regarding the frequency framework.

The set of all frequency vectors on the ordered set of basic cases C = {c1, .., cm} is given

by (since C is fixed we skip it in the following)

∆(C) = ∆ := {f = (f1, ..., fm) s. th. fi ∈ Q ∩ [0, 1] for all i ≤ m and
∑

i≤m fi = 1}
The following set represents all frequency vectors related to databases D ∈ CT :

∆T := {f ∈ ∆ fi =
li
T
, li ∈ N+,

m∑
i=1

li = T and ∃D ∈ CT such that fD(ci) = fi = li/T}

Observe that if f ∈ ∆T (C), then f ∈ ∆TZ(C) for all Z ∈ N+, i.e. the frequency vector

fD represents all databases DZ for some Z ∈ N and we cannot relate it to any specific

database DZ for a specific Z ∈ N.

Definition A.1

(i) Om denotes the null-vector on Rm.

(ii) For all j ∈ {1, 2, ...,m} denote by qj the j-th unit vector in Rm, i.e. the frequency

vector representing a database containing only case cj ∈ C, i.e. qj = (0, ..., 0, 1︸︷︷︸
j−th

, 0, ..., 0)t

(iii) For all d ∈ ∆ its diversity is given by div(d) := |{i ≤ m | di > 0}|

Definition A.2

(i) The ⊆-relation on frequencies ∆×∆ is defined as follows for d, e ∈ ∆:

d ⊆ e if and only if di ≥ 0 only if ei > 0 for all i ≤ m.

(ii) Let d ∈ ∆T and e ∈ ∆L, then the ∩-relation on ∆×∆ is defined by

d ∩ e := ((
min{diT, eiL}∑
i≤m min{diT, eiL}

)i≤m) 31

For definition (i) we have in mind that there exist T and L such that d represents a database

of length T, i.e. D ∈ CT and e an E ∈ CL such that minj≤m djT ≤ minj≤m ejL.

B Proof of Theorem 5.1 (Category based belief formation)

It is straightforward to show that the representation satisfy the axioms.

The difficult part is the sufficiency direction, i.e. axioms imply representation. As before,

the essential step in the proof will be to identify database with their frequency vectors,

which allows to exploit the more tractable structure of the space of frequencies on C and to

adopt the approach taken in BGSS (and use the mechanism of Bleile (2014a)). However,

since in addition a categorization step is involved, the crucial steps in the inductive proof

require different arguments.

31 (Consistency) Remark: If d ⊆ e, then obviously d ∩ e = (( min{diT,eiL}∑
i≤m min{diT,eiL}

)i≤m) = (( diT∑
i≤m diT

)i≤m) = d
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B.1 Translating the database framework into frequencies

Why is it viable?

Remember, that we fixed a categorization structure C̃ and a problem x ∈ X.

In the following, we show that a consistent transformation form databases to frequen-

cies is viable. Roughly, we want to identify a problem evoked categorization C̃(D) of

a database D by its frequency vector in ∆(C) such that C̃(fD) ∈ ∆(C) corresponds to

C̃(D) ∈ C∗ within the category based belief formation, i.e. such that (P ◦ C̃)(D) corre-

sponds to (P ◦ C̃)(fD). For this purpose, we exploit the structure of the categorization

procedure and the axioms on the belief formation stage.

We need to show that the two stage procedure is independent of the order of the involved

database and its length. However, as already discussed in Section 5.1, for the specific

categorization procedure only the content matters and the order of cases is irrelevant, i.e.

C̃(D) = C̃(π(D)) for any reordering π(D) of the database D. Furthermore, the length of

the database is immaterial, since the category based Concatenation Axiom implies that

(P ◦ C̃)(DZ) =
∑

i≤Z λi(P ◦ C̃)(D) = (P ◦ C̃)(D) for all Z ∈ N and appropriate λ ∈ ∆Z .

Consequently for a category based belief we can identify any database D ∈ C∗ by its fre-

quency vector fD, i.e. the category based belief translates from (P ◦ C̃) : C∗ → ∆(R) to

(P ◦ C̃) : ∆(C)→ ∆(R) by (P ◦ C̃)(fD) := (P ◦ C̃)(D).

We need to reformulate the categorization, axioms and results from databases to frequency

vectors, given a fixed problem x ∈ X.

Categorization in frequency terms

Definition B.1

(i) Given a natural categorization C̃ = (C̃1, .., C̃L), the list of x-evoked categories on C,

i.e. C̃x = (C̃l)l∈Mx ⊆ C̃ ⊆ C∗ for a corresponding Mx ⊆ {1, .., L} translates to a x-evoked

categorized frequency vector C̃x ∈ ∆(C):

C̃x =
( 1

|C̃x|

∑
l∈Mx

1{C̃l}(c
1), ...,

1

|C̃x|

∑
l∈Mx

1{C̃l}(c
m)
)
∈ ∆(C)

which describes how often the ordered cases in C appear in the list of evoked categories.

(ii) A x-evoked categorization function for a database D ∈ C∗, i.e. C̃(x,D) ∈ C∗ translates

to a x-evoked categorization function for a frequency vector f = fD, i.e. C̃ : X ×∆(C)→
∆(C)∪0m such that C̃(x, f) = (C̃1(x, f), ..., C̃m(x, f)) ∈ ∆(C)∪0m is defined for j ≤ m by

C̃j(x, f) = fj1{div(f)≤3}(f) +
fj1{C̃x}(q

j)∑
i≤m fi1{C̃x}(q

i)
1{div(f)>3}(f)

C̃(x, f) is the frequency vector of a categorized database D (represented by frequency vector

f) evoked by a problem x, i.e. describes the resulting frequencies of the cases in D that are

also contained in the x-evoked categories.

28



Note, that C̃(fD) represents C̃(E) for all E = π(DZ) and any Z ∈ N.

As before, we will suppress a fixed x, i.e. C̃(x, f) = C̃(f).

Axioms in frequency terms

Category based Concatenation Axiom

For all Ti ∈ N (i = 1, 2) and any fi ∈ ∆Ti , there exists λ ∈ [0, 1], such that for

f = T1
T1+T2

f1 + T2
T1+T2

f2

(P ◦ C̃)(f) = λ(P ◦ C̃)(f1) + (1− λ)(P ◦ C̃)(f2),

where λ = 0 if and only if C̃(f1) = 0m.

Collinearity Axiom

No three of {((P ◦ C̃)(qj))j≤m} such that C̃(qj) 6= 0m are collinear.

B.2 Theorem 5.1, sufficiency part in frequency terms

Proposition B.1

Let there be a function (P ◦ C̃) : ∆(C)→ ∆(R), where P : ∆(C)→ ∆(R) and C̃ : ∆(C)→
∆(C) a categorization function on the set of frequency vectors.

If (P ◦ C̃) satisfies the category based Concatenation and Collinearity Axiom, then

there exist unique probability vectors (P j)j≤m ∈ ∆(R), and unique -up to multiplication by

a strictly positive number- strictly positive numbers (sj)j≤m ∈ R, such that for all q ∈ ∆(C)

such that C̃(q) 6= 0m

(P ◦ C̃)(q) =

∑
j≤m sjC̃j(q)P

j∑
j≤m sjC̃j(q)

(2)

where C̃j(q) denotes the frequency of case cj in C̃(q).

B.3 Proof of Theorem 5.1, sufficiency part in frequency terms

Step 0:

Obviously, by the definition of the categorization on frequency vectors we need to choose

P j = (P ◦ C̃)(qj) for j ≤ m, since C̃j(q) ∈ {qj , 0m} and for some q (e.g. for q s.th.

div(q) ≤ 3)) C̃j(q) = qj .

The aim is to find numbers (sj)j≤m such that representation (2) holds for all q ∈ ∆(C).

Step 1: |C| = m = 3

By the definition of the categorization function we have that C̃(q) = q for all q ∈ ∆(C),

since div(q) ≤ 3. In such a situation a categorization of information does not take place

and thus the framework coincides with the one in BGSS. Basically (P ◦ C̃)(q) coincides

with P (q) in the BGSS framework for div(q) ≤ 3 and therefore Step 1 of the proof in BGSS
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can be directly adopted for these frequency vectors.

Step 2: Now we consider |C| = m > 3.

Step 2.1: Defining the similarity weights

Using the considerations from Step 1 for all triplets {i, j, k} and C = {ci, cj , ck} we can

derive the similarity weights (s
{i,j,k}
v )v∈{i,j,k} and we know that for all q ∈ ∆({qi, qj , qk}),

the following representation holds

(P {i,j,k} ◦ C̃)(q) =

∑
v∈{i,j,k} s

{i,j,k}
v C̃v(q)P

v∑
v∈{i,j,k} s

{i,j,k}
v C̃v(q)

,

where for all v ∈ {i, j, k} P v are independent of the triplet {i, j, k} (by Step 0) and

(s
{i,j,k}
v )v∈{i,j,k} are unique up to multiplication by a positive number.

With a similar reasoning as in the proof in BGSS Step 2.1 and using again that C̃(q) = q

for q such that div(q) ≤ 3, we can show that the similarity values s
{i,j,k}
v are independent

of the choice of i, j and k for all v.

Thus, given these (sv)v≤m we can define for all q ∈ ∆

(P ◦ C̃)s(q) :=

∑
j≤m sjC̃j(q)P

j∑
j≤m sjC̃j(q)

.

Obviously, (P ◦ C̃)s satisfies the category based Concatenation Axiom.

Step 2.2: Completion to all q ∈ ∆(C), i.e. show that for all q ∈ ∆(C) (P ◦C̃)s(q) =

(P ◦ C̃)(q)

We proof this by induction over k for q ∈ ∆(C) such that div(q) = k.

By Step 1 we know that the claim (P ◦ C̃)s(q) = (P ◦ C̃)(q) is true for all q ∈ ∆(C) such

that div(q) ≤ 3. This serves as the base case for the induction. Now we assume that

(P ◦ C̃)s(q) = (P ◦ C̃)(q) for q ∈ ∆(C) such that div(q) = k − 1 and we will show it for

q ∈ ∆(C) such that div(q) = k

A similar construction as in BGSS, but with different reasoning yields the result. Let

q =
∑

l∈K αlq
l with αl > 0 and K ⊆ {1, ...,m} such that |K| = k.

Define for all l ∈ K the frequency vector q(l) to be the vector in conv({(qj)j∈K\l}) such

that q lies on the line generated by (q(l), ql). By the category based Concatenation Axiom

there exists some λ ∈ [0, 1] such that for all j ∈ K

(P ◦ C̃)(q) = λ(P ◦ C̃)(qj) + (1− λ)(P ◦ C̃)(q(j)).

We distinguish between two cases:

(i) If there exists a j ∈ K such that qj 6∈ C̃(q), then the category based Concatenation

Axiom implies for q = αqj + (1 − α)q(j) for an appropriate α ∈ (0, 1) that (P ◦ C̃)(q) =
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(P ◦ C̃)(q(j)), since (P ◦ C̃)(qj) receives zero-weight. The same is true for (P ◦ C̃)s, since it

satisfies also the category based Concatenation Axiom. However, since div(q(j)) = k − 1,

the induction assumption yields (P ◦ C̃)s(q(j)) = (P ◦ C̃)(q(j)) and we get the desired

result:

(P ◦ C̃)(q) = (P ◦ C̃)(q(j)) = (P ◦ C̃)s(q(j)) = (P ◦ C̃)s(q).

(ii) If for all j ∈ K qj ∈ C̃(q), then there are k > 3 many qj such that C̃(qj) 6= 0m.

Again, the category based Concatenation Axiom applied to the k many decompositions of

q = αjqj + (1− αj)q(j) for appropriate αj ∈ (0, 1) for all j ∈ K yields that (P ◦ C̃)(q) lies

in the interior of the intervals spanned by ((P ◦ C̃)(qj), (P ◦ C̃)(q(j))) for all j ∈ K. Since

for no three different j ∈ K these intervals can lie on the same line by the Collinearity

Axiom (since no three of {((P ◦ C̃)(qj) = P j)j≤C} are collinear), there must exist some

intersections of the lines. However, since (P ◦C̃)(q) lies in all these intervals, the intersection

must be unique and exactly equal to (P ◦ C̃)(q). However, also (P ◦ C̃)s(q) lies on all these

intervals, since by induction assumption (P ◦ C̃)(f) = (P ◦ C̃)s(f) for all f ∈ ∆(C) such

that div(f) ≤ k − 1 (which qj and q(j) satisfy). Thus the unique intersection can only be

(P ◦ C̃)s(q), which shows the equivalence of (P ◦ C̃)(q) = (P ◦ C̃)s(q). This completes the

proof for |C| > 3 and eventually the Proposition B.1 and Theorem 5.1. �

C Proof of Theorem 6.1 (Prototype based belief formation)

It is straightforward to show that the representation satisfies the axioms.

To show that the axioms imply the representation requires some work. As before, we

identify database with their frequency vectors in order to adopt the approach taken in

BGSS (and use the mechanism of Bleile (2014a)). However, the additional categorization

procedure alters the reasoning in the inductive proof significantly.

C.1 Translating the database framework into frequencies

Why is it viable?

We want to will identify the prototype based belief induced by categorized databases,

i.e. (P ◦ C̃) : C∗ × C∗ → ∆(R) by a belief (P ◦ f̃) : ∆(C) × ∆(C) → ∆(R) based on

frequency vectors and their induced categorization structures f̃ ∈ P (∆(C)), i.e. C̃ is rep-

resented by f̃ and (P ◦ C̃)(D,E) by (P ◦ f̃)(fD, fE).

Let (D,E) ∈ A.

(1) In a first step we exploit Remark 6.2, i.e. that (P ◦ C̃)(D,E) = (P ◦ C̃)(π(D), π′(E))

where π, π′ are permutations that reorder the cases in D and respectively in E arbitrarily.

Basically it says that orders of databases are totally immaterial for the induced prototype

based belief, i.e. only frequency vectors matter.

(2) a) The definition of a prototype based belief and database related categorization struc-

tures yields

(P ◦ C̃)(D,E) = P (C̃E(D)) = P (C̃E
Z

(D)) = (P ◦ C̃)(D,EZ) for all Z ∈ N
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b) In addition the prototype based Concatenation Axiom implies for DZ = D ◦ ... ◦D for

all Z ∈ N

(P ◦ C̃)(DZ , E) = (P ◦ C̃)(D,E)

Combining (2)a) and (2)b) yields for all (D,E) ∈ A and V,Z ∈ N

(P ◦ C̃)(DV , EZ) = (P ◦ C̃)(D,E) (3)

and thus also the lengths of the involved databases are immaterial as well.

Combining (1) and equation (3) shows that we can identify any D,E ∈ C∗ by their fre-

quency vectors fD, fE ∈ ∆(C) for a prototype based belief formation.

Consequently, we can rewrite our framework into a frequency framework.

Categorization structures in frequency terms

Definition C.1

A categorization structure f̃ = {f̃1, ..., f̃L} on ∆(C) satisfies the following properties

(i) (f̃l)i := 1
|C̃l|

1C̃l
(ci) for all l ≤ L and i ≤ m

(ii) (f̃k)i > 0 if and only if (f̃j)i = 0 for all i ≤ m and any distinct j, k ≤ L (i.e.

disjointness)

(iii)
∑

l≤L(f̃l)i > 0 for all i ≤ m (i.e. all cases are categorized)

(iv) for all l ≤ L (f̃l)i ≤ 1/2 and f̃L(i) ≤ 1 for all i ≤ m (i.e. specific content structure)

Define for all l ≤ L+ 1 and any q ∈ ∆(C) A(l, q) := {j ≤ m|(f̃l)j > 0 and qj > 0}, i.e. the

indices j such that case qj contained in database q belongs to category l f̃l.

Definition C.2

Let f̃ = {f̃1, ..., f̃L} be a categorization structure on ∆(C). A categorization structure

f̃ q = {f̃ q1 , ..., f̃
q
L+1} on q is defined by

(i) if div(q) ≤ 4, i.e. q ∈ conv({qh, q, qj , qk}), then f̃ q = {f̃1 = qh, f̃2 = qi, f̃3 = qj , f̃4 =

qk, f̃5 = 0m, ..., f̃L+1 = 0m}

(ii) if div(q) > 4, then f̃ q is given for all l ≤ L+ 1 by

f̃ ql : =


(1A(l,q)(1)

|A(l, q)|
, ...,

1A(l,q)(m)

|A(l, q)|
)

if |A(l, q)| ≥ 2

∅ = 0m if |A(l, q)| ≤ 1

f̃ qL+1 =

∑
l≤L 1{l≤L||A(l,q)|=1}(l)q

A(l,q)∑
l≤L 1{l≤L||A(l,q)|=1}(l)

32

By the equation (1) it is also possible to define C̃E(D) in frequency term.

Definition C.3

For any q, e ∈ ∆(C) such that qi ≥ 0 only if ei > 0:

f̃e(q) = {f̃e11{q|∃i≤m qi>0 and f̃e1 (i)>0}(q), ..., f̃
e
L+11{q|∃i≤m qi>0 and f̃eL+1(i)>0}(q)} ∈ P (∆(C))

is the result of an q-induced e-categorization function f̃ : ∆(C)×∆(C)→ P (∆(C)).
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Admissibility condition in frequency terms

Definition C.4

Define the set of admissible pairs (q, e) ∈ ∆(C)×∆(C) by the following

A :=
{

(q, e)| (i) for all i ≤ m qi > 0, only if ei > 0

(ii) if div(q) = 2 then ∃i ≤ m qi = 0 and ei > 0

s. th. for α ∈ (0, 1) |f̃e(αq + (1− α)qi)| = 3

(iii) if div(q) ≥ 3 then |f̃e(q)| ≥ 3
}

Axioms in frequency terms

Prototype based Concatenation Axiom

For all (αq + (1− α)q′, e) ∈ A for some α ∈ (0, 1), there exists λ ∈ (0, 1)

(P ◦ f̃)(αq + (1− α)q′, e) = λ(P ◦ f̃)(q, e) + (1− λ)(P ◦ f̃)(q′, e)

Identity Axiom

For all (q, e), (q′, e) ∈ A such that there exists a unique e-category f̃el (q) 6= 0m and f̃el (q′) 6=
0m and f̃ej (q) = 0m = f̃ej (q) for all j 6= l ≤ L+ 1 it holds

(P ◦ f̃)(q1, e) = (P ◦ f̃)(q2, e)

Collinearity Axiom

No three distinct vectors of {((P ◦ f̃)(qj , e))j≤m} are collinear for any (qj , e) ∈ A

C.2 Theorem 6.1, sufficiency part in frequency terms

Proposition C.1

Let there be given a function (P ◦ f̃) : ∆(C) × ∆(C) → ∆(R), where f̃ a categorization

function f̃ : ∆(C) × ∆(C) → P (∆(C)) with related categorization structure f̃e for all

e ∈ ∆(C). If the prototype based belief (P ◦ f̃) satisfies the prototype based Concatenation,

Identity and the Collinearity Axiom, then

for all e ∈ ∆(C) and each l ≤ L + 1 such that f̃el 6= 0m there exist P f̃
e
l ∈ ∆(R) and

a strictly positive -and unique up to multiplication with a strictly positive number- values

s = (sj)j≤m such that for all admissible (q, e) ∈ A

(P ◦ f̃)(q, e) =

∑
l≤L+1 s̃(f̃

e
l , q)P

f̃el∑
l≤L+1 s̃(f̃

e
l , q)

(4)

where s̃(f̃el , q) :=
∑
{i≤m|qi⊆q and qi⊆f̃el }

qisi

C.3 Proof of Theorem 6.1, sufficiency part in frequency terms

Step 0:

We get directly that for all l ≤ L+1 and all e ⊆ ∆(C) P f̃
e
l must be chosen by (P ◦ f̃)(qj , e)

for an appropriate j ≤ m such that qj ⊆ f̃el . By the Identity Axiom this is unique.
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The aim is to find the (sj)j≤m such that the representation (4) holds for all admissi-

ble pairs (q, e) ∈ A. We proceed in two steps, where the first step considers (q, e) ∈ A such

that div(q) ≤ 3 and in a second step we inductively generalize it to q with larger diversity.

Step 1: (q, e) ∈ A such that div(q) ≤ 3, i.e. take any triplet {i, j, k} ⊂ {1, ..,m}
such that q ∈ conv({(qv)v∈{i,j,k}}).

Step 1.1: (q, e) ∈ A such that div(q) = 1 is covered in Step 0.

Step 1.2: (q, e) ∈ A such that 2 ≤ div(q) ≤ 3 and 3 ≤ div(e) ≤ 4

Note that (q, e) with div(e) = 2 are not admissible.

By the definition of an e-categorization structure the categorization step vanishes for all

such pairs (q,e). This means that the prototype based framework (and axioms) directly

amounts to the BGSS framework, i.e. (P ◦ f̃)(q, e) coincides with the belief P (q) in BGSS.

Applying their proof yields the desired representation for all (q, e) with the above proper-

ties.

Step 1.3: (q, e) ∈ A such that div(q) ≤ 3 and div(e) > 4

Step 1.3.1: Determine the similarity weights (sv)v∈{i,j,k}

Define for all triplets {i, j, k} ⊂ {1, ..,m} q∗{i,j,k} := 1
3(qi + qj + qk)

Obvious div(q∗{i,j,k}) = 3 and to fulfill the admissability take e such that |f̃e(q∗{j,k,l})| = 3

and hence each qv for v ∈ {i, j, k} needs to be contained in a different category of f̃e.

We assume for convenience that qv ∈ f̃ev (it simplifies the notational effort extensively)

for v ∈ {i, j, k} which is possible after renaming the categories appropriately.

Observe that, since (q∗{i,j,k}, e) is admissible, also (q, e) ∈ A for any q ⊆ e and q ∈
conv({qi, qj , qk}).

Now, we use q∗{i,j,k} to determine the values (sv)v∈{i,j,k} given in the representation of

the theorem. By the prototype based Concatenation Axiom there exist λ = (λv)v∈{i,j,k} ∈
int(∆3) such that

(P ◦ f̃)(q∗{i,j,k}, e) =
∑

v∈{i,j,k}

λvP
f̃ev ,

where we have used that (P ◦ f̃)(qv, e) = P f̃
e
v , as shown in Step 0.

The representation of the theorem (plugging in the definition of s̃) delivers

(P ◦ f̃)(q∗{i,j,k}, e) =

∑
v∈{i,j,k} sv1/3P

f̃ev∑
v∈{i,j,k} sv1/3
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Equating these two equations and using that (P f̃
e
v )v∈{i,j,k} are not collinear yields a solution

for (sv)v=i,j,k, (i.e. sv = λv∑
v=i,j,k λv

). These sv might depend on the specific triplet used

in q∗{i,j,k}, whereas obviously P f̃
e
v = (P ◦ f̃)(qv, e) is independent of {i, j, k}, since only

depending on e and qv. However, similar as in Step 2.1 of the previous proof (or as in

BGSS) we can show that the similarity values can be chosen independently of the particular

triplet.

Thus, given these s = (s1, ..., sm) we define for any triplet {i, j, k} ⊂ {1, ...,m} and q ∈
conv({qi, qj , qk}) and e such that (q, e) ∈ A the following prototype based belief

(P ◦ f̃)s(q, e) :=

∑
v∈{i,j,k} svqvP

f̃ev∑
v∈{i,j,k} svqv

(5)

Recall that we assumed for convenience that qv ∈ f̃ev , which allows this easy representation.

Furthermore, observe that Ps satisfies the prototype based Concatenation Axiom.

Step 1.3.2: Completion to all (q, e) ∈ A such that div(q) ≤ 3

Define E := {(q, e) ∈ A | (P ◦ f̃)s(q, e) = (P ◦ f̃)(q, e)}. In the following we want to

derive that for all q ∈ conv({qi, qj , qk}) and all e such that (q, e) ∈ A also (q, e) ∈ E.

The idea is to partition the simplex ∆({qi, qj , qk}) recursively into sub-triangles-so called

simplicial partitions. A recursive simplicial partition is based on halving the lines between

the vertices of the triangles resulting form a previous partitioning. The vertices of the

particular triangles are called the simplicial points (of a t-th simplicial partition). Starting

from the simplex, the first simplicial partition results in 4 sub-triangles by connecting the

middle points between two of {qi, qj , qk}. The second simplicial partition consist of 16

smaller triangles resulting from applying the same ”halving”-procedure to each of the 4

subtriangles in the first simplicial partition, and so forth.

As in BGSS, the idea is to show that all simplicial points g of any simplicial partition

such that (g, e) ∈ A it also holds that (g, e) ∈ E. We apply the mechanism as in

Bleile (2014a,b) to cover all simplicial points recursively. Then it is possible to cover

each q ∈ cov({qi, qj , qk}) by sequences of (appropriate) simplicial points.

In order to illustrate the intuition, we will describe only the first step, i.e. the simplicial

points of the first simplicial partition. The further steps are analogously modified versions

(to the prototype based setup) of arguments used in Bleile (2014b).

Remark C.1

For all e ∈ ∆(C) such that qi ⊂ e the pair (qi, e) is admissible. However for q such that

div(q) ∈ {2, 3} this does not hold true in general. Nevertheless the sets of frequency vectors

e ∈ ∆(C) that makes (q, e) admissible for div(q) = 3 coincides with the set of frequency

vectors that make (q′, e) admissible for q′ ⊂ q and div(q′) = 2. This follows directly from

the definition of the admissibility condition (ii). This guarantees there exists a common

set of vectors e that make any t-th (t ≥ 1) simplicial points admissible, when it is paired

with such an e. This is important for our recursive procedure of combining all (differently

diverse) simplicial points (as well be clear below).
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Consider q such that 2 ≤ div(q) ≤ 3

Step A:

Consider any two distinct qi, qj (i, j ≤ m), w.l.o.g let i = 1, j = 2. Define q11 := 1
2q

1 + 1
2q

2

and obviously div(q11) = 2. For all e such that (q, e) ∈ A, there exist some qk (which

might be different for different e) such that for α ∈ (0, 1) |f̃e(αq11 + (1−α)qk)| = 3. q11 is a

simplicial point of the first simplicial partition of the triangle spanned by conv({q1, q2, qk}).
The prototype based Concatenation Axiom delivers the existence of β, γ ∈ (0, 1) such that

(P ◦ f̃)(q∗{1,2,k}, e) = β(P ◦ f̃)(q11, e) + (1− β)(P ◦ f̃)(qk, e)

(P ◦ f̃)(q11, e) = γ(P ◦ f̃)(q1, e) + (1− γ)(P ◦ f̃)(q2, e)

Hence we get (using the notation that (a,b) indicates the line running through a and b)

(P ◦ f̃)(q11, e) ∈ ((P ◦ f̃)(q1, e), (P ◦ f̃)(q2, e)) ∩ ((P ◦ f̃)(qk, e), (P ◦ f̃)(q∗{1,2,k}, e)) (6)

The same holds true for (P ◦ f̃)s, since it also satisfies the prototype based Concatenation

Axiom. Moreover, by Step 0 we know already that for all (qj , e) ∈ A, also (qj , e) ∈ E and

that for any triplet {i, j, k} and all (q∗{i,j,k}, e) ∈ A also (q∗{i,j,k}, e) ∈ E.

Thus, it only remains to check, whether the induced prototype based beliefs of (q1, e), (q2, e), (qk, e)

and q∗{1,2,k} are not collinear. Then, the two lines involved in (6) have an unique intersec-

tion. This implies then that (P ◦f̃)(q11, e) and (P ◦f̃)s(q
1
1, e) must coincide, since both lie on

both lines, i.e. (q11, e) ∈ E. However, the non-collinearity can be easily seen, since (qv, e) for

v = 1, 2, k induce three different prototype based beliefs P f̃
e
v (since |f̃e(αq11+(1−α)qk)| = 3

for any α ∈ (0, 1)) that are not collinear by the Collinearity Axiom.

Analogously the other simplicial points of the first simplicial partition of conv({q1, q2, qk})
are analyzed, i.e. for q21 = 1

2(q1 +qk) and q31 = 1
2(q2 +qk). Following the (slightly modified)

reasoning/method as in Bleile (2014a,b) Step 1, one can show that for the chosen e, all

simplicial points of any t-th simplicial partition are in E. Finally, one can find a sequence of

simplicial points that converges to any q ∈ ∆({qi, qj , qk}), where also it induced prototype

based belief converges. (for the details see the proofs of BGSS or the above mentioned

sections in Bleile). Thus for a given e (which induces a qk as above) (q, e) ∈ E for all

q ∈ conv({q1, q2, qk}) such that (q, e) ∈ A.

Step B:

Observe that for each admissible pair (q, e) ∈ A such that div(q) = 2 the frequency vector

e induces a set of frequency vectors ead := {qk | ∃k ≤ m s. th. |f̃e(αq11 + (1− α)qk| = 3}.
Hence keeping q1, q2 fixed, the same procedure as in Step A can be applied to the triangle

conv({q1, q2, qk}) for all k ≤ m such that qk ∈ ead for this specific e.

Step C:

Now, apply Step A and B to all e such that (q, e) ∈ A for div(q) ∈ {2, 3}

Step D:

Finally, applying the procedure to all possible pairs qi, qj instead of i = 1, j = 2 we get

that for all admissible (q, e) ∈ A such that div(q) ≤ 3 the claim (q, e) ∈ E, i.e. A = E for
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all q such div(q) ≤ 3, which concludes the proof of Step 1.

Now, we consider the situation for (q, e) ∈ A such that div(q) > 3. Therefore we need an

extended definition of (P ◦ f̃)s for (q, e) ∈ ∆(C)×∆(C):

(P ◦ f̃)s(q, e) :=

∑
i≤m siqi(

∑
l≤L+1 1f̃el

(qi)P f̃
e
l )∑

i≤m siqi

The indicator function appears in comparison to definition (5) since it is not clear to which

category f̃el a specific unit vector qi belongs. Basically (P ◦ f̃)s is a reformulation of the

representation (4)

Step 2: Show that (q, e) ∈ E for all (q, e) ∈ A such that div(q) > 3

We prove inductively that for all m ≤ k ≥ 3 with div(q) = k and all admissible pairs

(q, e) ∈ A it holds that (P ◦ f̃)s(q, e) = (P ◦ f̃)(q, e), i.e. (q, e) ∈ E.
We take the situation div(q) = k = 3, which was shown in Step 1, as the basis of the

induction and assume that the claim is true for all (q, e) ∈ A such that div(q) = k − 1 for

k > 3.

Take any (q, e) ∈ A such that div(q) = k, w.l.o.g. q ∈ int(conv({q1, .., qk})). By admis-

sibility |f̃e(q)| ≥ 3 holds, i.e. there are at least two categories f̃el for some l ≤ L + 1

containing at least two different cases qj for some j ≤ m and another category containing

at least one different case. W.l.o.g. let these categories be given in the following way (for

distinct i, j, k 6= 1, 2)

f̃e1 (q) ⊇ {q1, qi}

f̃e2 (q) ⊇ {q2, qj}

f̃eL+1(q) ⊇ {qk}

f̃el (q) ⊇ ∅ for all l 6= 1, 2 ≤ L

Now, let q be decomposed by q = αtq
t + (1−αt)q(t), where for t = 1, 2 q(t) is the point in

conv({qj |j ≤ k, j 6= t}) that is on the line connecting qt and q and αt ∈ (0, 1) accordingly.

By the prototype based Concatenation Axiom we know that there exist λt ∈ (0, 1) such

that

(P ◦ f̃)(q, e) = λt(P ◦ f̃)(qt, e) + (1− λt)(P ◦ f̃)(q(t), e)

This is possible since (qt, e) ∈ A and (q(t), e) ∈ A, since f̃e(q(t)) = f̃e(q) by construction.

Since in addition (qt, e), (q(t), e) ∈ E by the induction assumption (since div(q(t)) = k−1)

and (P ◦ f̃)s satisfies the prototype based Concatenation Axiom, we have

(P ◦ f̃)(q, e), (P ◦ f̃)s(q, e) ∈
⋂
t=1,2

((P ◦ f̃)(qt, e), (P ◦ f̃)(q(t), e))
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This intersection is unique since for t = 1, 2 it can be shown that the following holds:

(P ◦ f̃)(q2, e) = P f̃
e
2 6∈ ((P f̃

e
1 , (P ◦ f̃)(q(t), e)) =: h (7)

If this would not be true, i.e. if P f̃
e
2 would be on this line h, it would require that (P ◦

f̃)(q(t), e) is on the line between P f̃
e
1 and P f̃

e
2 . However by construction (P ◦ f̃)(q(t), e) ∈

int(conv({P f̃e1 , P f̃e2 , P f̃ek , ...})), which implies that it cannot lie on (P f̃
e
1 , P f̃

e
2 ) , since by the

Collinearity Axiom no three of (P f̃
e
l )l are collinear. Thus in sum, claim (7) is true, which

implies that for t = 1, 2 the lines based on ((P ◦ f̃)(qt, e), (P ◦ f̃)(q(t), e)) are distinct and

intersect uniquely in (P ◦ f̃)(q, e) = (P ◦ f̃)s(q, e), i.e. (q, e) ∈ E.

This completes the entire proof. �.
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