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Abstract

We seek to find the statistical model that most accurately describes
empirically observed results in sports. The idea of a transitive relation
concerning the team strengths is implemented by imposing a set of con-
straints on the outcome probabilities. We theoretically investigate the re-
sulting optimization problem and draw comparisons to similar problems
from the existing literature including the linear ordering problem and the
isotonic regression problem. Our optimization problem turns out to be
very complicated to solve. We propose a branch and bound algorithm
for an exact solution and for larger sets of teams a heuristic method for
quickly finding a ,,good* solution. Finally we apply the described meth-
ods to panel data from soccer, American football and tennis and also use
our framework to compare the performance of empirically applied ranking
schemes.

Keywords: stochastic transitivity, trinomial, geometric optimization, rank-
ing, branch and bound, linear ordering problem, elo, tabu search, football, soc-
cer, tennis, bundesliga, nfl, atp

JEL Classification: L83, C61, C63, C81

1 Introduction

In many situations we are confronted with data about a certain set of objects
which only include an array of comparisons about two of these objects at a time.
Then all too often the task arises to find the "fairest" or "most legitimate"
ranking among all of the objects in the considered set reaching from the "best"
one to the "worst" one.

The probably most popular application of such paired comparisons is sports.
In most sports games two opponents face each other in a duel. The result can
be a win for one of the teams or, depending on the sport, also a tie. Different
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kinds of data sets can arise. An experiment in a league where each team plays
each other team a fixed number of times will be called complete. That this
property is not naturally given can be seen for instance in American college
football, where each team of the 119 teams (in division 1) plays only a small
fraction of their competitors.

An important attribute of a ranking is that it expresses a transitive relation
between all of its objects. This means that if object or team A precedes B
and B precedes C, it automatically implies that A precedes C'. In contrast to
this, paired comparison data can include circular relations, which seem to be
inconsistent with this property. In a tournament it is possible that A beats
B, B beats C, but C beats A. It is easy to imagine that as the number of
teams rises, the probability of the occurrence of such inconsistencies rapidly
increases. Especially in the not very recent literature many suggestions have
been made to overcome these inconsistencies and find a ranking with a good
fit according to different concepts. A good overview of the classical models
for obtaining rankings from data sets gives Brunk [1960b]. One approach that
deserves attention is the one proposed by Slater [1961]. Here the observed
number of inconsistencies (in the sense mentioned above) is minimized. This
nontrivial problem later became known as a particular form of the so called
linear ordering problem. For a good survey on the linear ordering problem see
for example Charon and Hudry [2010].

The major issue concerning the mentioned approaches is that despite all of
them having some intuitive appeal, they seem to be rather arbitrary in finding
the "right" ranking. The difference of our approach is that we assume that
there actually exists a correct ranking. Of course we cannot directly observe
it, but we can try to find the ranking which is most likely identical to it. To
be more precise, we first of all make the assumption that the outcome of each
match follows a trinomial distribution, with a fixed probability for a loss, a tie,
and a win. These unobservable probabilities fulfill a certain form of transitivity.
Applying the respective conditions we can then use a likelihood function to gauge
the chance of the observed set of results given a particular set of probabilities.
Maximizing this likelihood function while fulfilling the transitivity conditions
answers the question about the most likely correct ranking.

In the literature there can be found plenty of works using the concepts of the
so called weak and strong stochastic transitivity. These are definitions, which
transfer the very intuitive concept of transitivity to the world of probabilities.
Because in our model we consider ties and also home/away asymmetries, we are
forced to define our own concept which goes beyond WST and SST.

At this point the optimization problem, which is the main object of the pa-
per is completely defined by the set of probabilities for three outcomes for each
game, the likelihood function which shall be maximized, and finally the set of
constraints imposed by the stochastic transitivity defined above. We are not the
first authors trying to find a maximum likelihood ranking while applying proba-
bilistic transitivity conditions. Thompson and Remage [1964| propose a similar
problem of ranking pairwisely compared objects. The analysis is extended in
Singh and Thompson [1968] by the incorporation of ties. However, Thompson
uses only constraints of WST.! This contributes a lot to the simplicity of the

LAfter the incorporation of ties he naturally can’t use the WST constraints, but has to
alter his concept. However, it still differs substantially from ours which makes a comparison



problem and enables Decani [1969] to formulate it as a linear program and later
propose in Decani [1972] a branch and bound algorithm to solve the problem
even more efficiently.

Unfortunately the new set of constraints make things much more compli-
cated. Increasing the number of teams leads to a huge number of constraints.
And it is straightforward to see that the space of transitive probability sets of
a particular dimension is not convex. So it is not a surprise that state of the
art solvers do not succeed in finding the optimal solution to this non-linear,
non-convex problem as soon as the number of teams is increased to more than
5 or 6.

This is why we split up the problem in two parts. The first one is to find
the probability sets and the likelihood for a fixed ranking and the second one is
to find the ranking with the greatest likelihood.

When the goal is to find probabilities for a fixed ranking, while still sticking
to the transitivity definition, the constraints become much simpler.

The problem we arrive at is now very close to the so called isotonic regres-
sion problem in which a set of probabilities needs to be estimated, while one
knows their order according to their magnitude (see Barlow and Brunk [1972] or
Van Eeden [1996] for an overview). A reference much closer to the subject of this
paper is Brunk [1955b]. Here the random variables (in our case the match re-
sults) are assumed to follow a distribution belonging to a an exponential family.
The single distribution parameter follows a function depending monotonically
on potentially multiple variables. These variable would in this work correspond
to the two teams that are playing. The very efficient method developed in this
paper later became known as the pool adjacent-violators algorithm (PAVA).
The major difference of Brunk’s paper to our approach is that the trinomial
distribution we will be using does not belong to the exponential family he is
referring to. It also has not one but two distribution parameters. So we are
very unfortunate to not being able to apply the PAVA. To be able to estimate
not only ordered binomial but also ordered multinomial distribution parameters
Jewell and Kalbfleisch [2004] developed a modification of this algorithm, the so
called m-PAVA. This algorithm is technically able to solve our first problem,
but turns out to be very inefficient and slow. But there is an alternative. Lim
et al. [2009] finds that a program of the kind we are facing can be formulated
as a geometric program, which then can be transformed into a convex program.
By applying state of the art interior point solvers, we are then able to find a
solution very efficiently.?

The second part of the problem is more complicated. If we increase the
number of teams, the possible number of orderings rises very quickly. For 4
teams there are 24 possibilities, for 5 teams there are 120 and for 18 teams
there are more than 6 x 10'®. But even if we’re not able to find the optimal
ranking, we are still able to compare different rankings created by the application
of empirically relevant ranking systems. And this is exactly what we do in the
empirical section of the paper. Among the candidates are the classical "three
points for a win" and "two points for a win" systems from soccer and also the
Elo system applied e.g. in chess.

To be able to make a good judgment about the true quality of the systems

very difficult.
2In Lim et al. [2009] investigations geometric programming is more than 150 times faster.



when applied to different sports, we develop two kinds of statistical tests. The
first one assumes the trueness of the null hypothesis stating that one of two
ranking systems under consideration is able to find the correct ordering. Then
we estimate all the probabilities and simulate a test statistic. Combined with
the empirically observed likelihoods, we are then ideally able to reject the null
hypothesis which lets us state that here the considered system is not able to
generate the correct ranking.

Our second approach of investigation focuses directly on the probability
that a particular empirically applied ranking system is correct, close to correct
or not so correct after all. Again, we use the system to order the teams in
an empirically observed data set and then estimate the probabilities using the
maximum likelihood approach. Then we simulate a very large set of results and
calculate a statistic of disagreements also used in the linear ordering problem.

The paper proceeds as follows.

2 Setup

All sports described above have in common that n teams are competing in a
number of repeated one-on-one games. The results of these games should be
aggregated to one final complete ranking. Let p;; be the probability that team
i beats team j.

Naturally, we must have V4,5 € {1,...,n}

Pij € [0, 1]
Pij +pji <1 (1)
It can be observed that playing at home (meaning in 4’s stadium) and playing
away makes a difference to the wining probabilities. Therefore we introduce
different probabilities for at home and away games: p;;;, is the probability that

i beats j at home and pj;, that team j wins against ¢ at ¢’s stadium.
Therefore (1) changes to

Dijh + Djia <1 Vi,j €{1,...,n}

Since in many sports, there exists the possibility of a draw, there is no strict
equality. In fact, the probability of a draw is

Gijh = Qjia = 1 — Pijn — Djia-

In this paper, we want to make only one assumption concerning a set of those
probabilities. This assumption is based on the concept of weak and strong
stochastic transitivity, which formalizes the very intuitive thought that if team
i is better than team j and j is better than k then ¢ has to be better than k,
as well. In a model of symmetric paired comparison without ties this can be
translated fairly easily into stochastic terms.

pij >1/2 AN pjp>1/2 = py, > 1/2 (WST)
pij >1/2 N pj>1/2 = py. > max{pi;, pjr} (SST)

Where (SST) is equivalent to

pij > 1/2 = pix > pjk-



The concept of stochastic transitivity has been widely used in the literature
on paired comparisons, especially in the 60s and 70s (see e.g. Tversky [1969],
Chung and Hwang [1978], Morrison [1963] or Davidson and Solomon [1973]).
The introduction of ties and in addition to that the introduction of a home/away

asymmetry forbid to use this concept directly. (SST) is best interpreted by say-
ing "if team 4 is better than team 7, it has to have a higher chance of beating
any third team k". But in a world with draws and home advantage we cannot
interpret "being better" as p;; > 1/2. Thats why one has to alter this point.
This is done in the following definition.

Definition 1 (Transitivity). A set of probabilities will be called transitive if
the following holds for every i, 5, k,l € {1,...,n},z,y € {a,h} and 3¢, j', k', ' €
{1,...,n}:
Dikz 2 Djkz < Dily = Pjly
Dkiz 2 Pkjz & Pliy 2 Pljy (2)
Pirk'x > Pj'k'e = Plj'a > Plli'x
The set of transitive probability sets will be called T .

Definition 2 (Transitive Ranking). A ranking will be called transitive if for all
i ranked above j the following holds:

Pikh = Djkhs Pkih < Dkjhs Pika = Djka> Pkia < Pkja YV k€ {l,...,n}\i,j
The set of probability sets according to this definition will be called 7.

Proposition 1. Definition 1 is, when assigning 0 to all draw probabilities and
ignoring away/home differentiation, equivalent to (SST).

The fact that a transitive ranking has a set of transitive probabilities and
every set of transitive probabilities has a transitive ranking is established in the
following Proposition.

Proposition 2. A set of probabilities P is in T if and only if it is in T'.

For the proofs of propositions 1 and 2 see appendix A.

The structure of the constraints and hereby the problem we have to solve
becomes clearer, if we write down the set of p;;, values in matrix form and add
the constraints using one particular ranking.

3 Optimization under a known ranking

Note that the probabilities depicted in figure 1 are only the constraints that ap-
ply for one ranking. So the optimization problem can be split into first finding
the optimal (i. e., likelihood maximizing) probabilities that satisfy the mono-
tonicity constraints from the matrix and second finding the best ranking. It
should become clear that if we consider the indices as variables of the functions
pr(t,j) and pa(i, ), then this function is monotone non-increasing in the first
variable and monotone nondecreasing in the second one. In the considered case
the two matrices are only insofar dependent on each other as the sum of an el-
ement of the upper right half of the first matrix and the corresponding element
of the bottom left half of the second matrix has to be less than or equal to unity.



* < prop < P13 < <Pinn * < P12a <P13a < <Pina
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Figure 1: Transitivity matrices for home and away probabilities
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Figure 2: PAVA example: Result matrix and p-Matrix

3.1 Transitivity without draws

Now, let us again compare the original problem to the one in the much simpler
case without ties. Here, the problem of estimating the probabilities is much
easier. Given the above assumptions, the number of wins when two teams
play each other a particular amount of times follows an elementary binomial
distribution. This instant allowed Brunk [1955a] to develop an algorithmic
approach, building the foundation of what later became known as the Pool
Adjacent Violators Algorithm (PAVA). See also Brunk [1960a] for an application
to paired comparisons. It follows a short description of the estimation procedure.

A lower interval is the set of all points (7, ) for which i > 4/, j < j'. So
it includes a point in one of the above matrices as well as all the points in its
south-west quadrant. An upper interval is analogously defined. A lower layer is
a union of lower intervals and an upper layer is a union of upper intervals.

The procedure is now to find the largest upper layer within which the average
number of wins is maximized. That is, we have to find an upper layer with the
property that the number of wins divided by the number of games it comprises
is maximal. For each p;; in this layer the maximum likelihood estimate under
the monotonicity constraints we defined is this average number of wins. Next
step is to repeat the procedure on the remaining set of the matrix of results.

To illustrate the approach, consider the following example of a tournament
of 4 teams in which each two teams played each other once. (Even though it
wouldn’t be a problem to consider home and away games, for simplicity we just
assume that the row team plays at home, here.)

On the left there is the matrix of tournament results. The solid line shows
the first upper layer with an average number of wins of 3/5, giving us the p-value
listed in the right matrix. The second layer includes all the numbers above and
to the right of the dashed line. Here the average value is 1/2 and so on. Having



the p-Matrix at hand, it is straightforward to calculate the maximum likelihood
of the tournament to be 0.018.

Please note that this algorithm, while being very efficient at finding the
probabilities for a fixed ranking, does not help finding the optimal permutation
of the teams. To find it, one is still forced to apply this algorithm 4! = 24 times
for this example.

Unfortunately including the chance of draws forbids to use this very simple
and efficient procedure. In the next section we show how to arrive at a solution
nonetheless.

3.2 Solution process for the case including draws

Again focusing on the part of the problem where the ranking is already fixed,
allowing for ties makes the solution procedure much more complicated. Now,
the task is not to estimate ordered binomial, but rather ordered trinomial distri-
bution parameters. Jewell and Kalbfleisch [2004] developed an extension of the
PAV algorithm discussed above. The Authors call this algorithm the modified-
or m-PAV algorithm. In the process the problem is iteratively broken down
into many one dimensional optimization problems. Since the number of these
subproblems grows very quickly with the number of teams and also the number
of adjacent violators, the required computational effort also does. This is the
main reason for Lim et al. [2009] to to reconsider the problem finding that it
can be formulated as a geometric program. Then it can be transformed into a
convex optimization problem, for which one can find a global solution very effi-
ciently with the help of e.g. interior-point algorithms. Lim et al. [2009] compare
the computational efficiency of the two approaches and find that geometric pro-
gramming is much faster than the m-PAV algorithm. These findings facilitate
the choice for us in this paper.

Let us take a look at it in detail. Consider the optimization problem for a
fixed ranking in its raw form.?

: —Wijh, —Wjia —(1—w;jp—wj;
mpm H Piin” " Pjia’ (1 = pijn — Pjia) (A=wijn=wjia)

(i,5)€EE
s.t.iﬂg Y (i,j) € E,(i,k) € E,j = k,x € {h,a} (3)
ikx
Dijh + Pjia <1
Dijz > 0

This is a geometric program. The objective function as well as the the left side
of the first constraint are monomial and the left side of the second constraint
are polynomials. The third constraint reflects the fact that the domain of our
objective function is positive, as in all geometric programs. The program can
easily be transformed to a convex optimization problem.

m;n Z wijn M(Pijn) + Wjia M(Pjia) + (1 — wijn — wjia) (1 = Pijn — Pjia)
(1,75)eE
st In(pije) —(pire) <0 YV (i,)) € E,(1,k) € E,j = k,x € {h,a}
ln(eln(Pijh) + eln(Pjia)) <0

3The only change made is the conversion to a minimization instead of a maximization
problem.



It is straightforward to show that the logarithm of a posynomial is convex
in In(z), which proves the fact that this is indeed a convex program. To solve
this kind of program we make use of the software package IPOPT (see Wachter
and Biegler [2006]). In addition to the program it requires the input of the
Jacobian and Hessian matrices of the constraints. It then applies an interior
point algorithm and solves our problem very efficiently.

4 Comparing rankings

4.1 Optimal Ranking

By assumption, each outcome in a set of paired comparisons is trinomially
distributed. We define w;j, to be the empirically observed number of times
team ¢ beats team j at home and ¢;;5, = t;;, as the number of times team ¢ ties
team j. Let m;; be the total number of games between ¢ and j at 4’s stadium.
The probability distribution is

Prizij = wij} = pij" Pjia” (1= pijh — pjia) ™ 000 (4)
where w;; is the vector consisting of the elements w;j;, and wj;, and x;; is
the analogously defined vector of a realization of the corresponding random
variable. (4) tells us the probability of a certain outcome of a game between
two particular teams in one particular stadium. By taking the exponential of
the natural logarithm of the left side, we can write the above equation as

Prizij = wij} = exp(wijn n(pijn) + wjia (pjia)
+ (M — wijn — Wjia) (1 = pijn — Pjia))
In large parts of the empirical section we restrict our selves to the case where
m,; = 1. But as we will see the other cases are treated analogously.
Let
Flij, pij] = wijn (pijn) + wjia M(pjia) + (1 — wijn — wjia) (L — pijn — Pjia)
The likelihood of a set of particular results to occur will be
Pr{(zij, ..., xij) = (Wij, ..., wirg )} = exp(Flwij, pij] + -+ 4 Flwigr, piryr])

Let E be the set of all valid (¢, j) combinations £ = {(4, j)[¢,j € {1,...,n},i #
j}. Then (2) implies that, in order to maximize the likelihood of a set of
outcomes, we have to solve the following maximization problem

max Jlp] = > Flwy,pyl st Apie| (i) € Br e {ha}} €T
Y (i,5)€E

This is a rather complicated optimization problem, first because the objective
function (the log of the likelihood function) is not linear, and second because
we have a huge number of non-linear constraints, which make the space we
are dealing with highly convoluted and non-convex. We can achieve convexity
by fixing a particular ranking of teams. In this case we face a total number



of 2(2(n — 2)n 4+ (n — 1)) constraints. In this case we face a total number
of 2(2(n — 2)n + (n — 1)) constraints. Note that a simple transformation of
parameters cannot help us making the problem convex. Also it cannot make
the problem linear after fixing a ranking. In this highly simplified case, where
the untransformed constraints can be expressed in a linear form, a logarithmic
transformation would make the objective function linear but take away linearity
from the constraints. More details on this will follow in section 3.2.

4.2 Ranking methods
4.2.1 The Linear Ordering Problem

At this point before proceeding with our efforts of finding solutions to the pro-
posed problem it makes sense to consider a related, but as we will see, clearly
different problem. As one of the classical combinatorial optimization problems
the linear ordering problem (LOP) attracted many authors resulting in a huge
amount of literature on it. See for example Marti and Reinelt [2011] for a good
introduction to the problem as well as a review of suitable algorithms. Also feel
referred to Charon and Hudry [2010] for a detailed survey.

If one is given a complete directed graph D,, = (V,,, A,) with arc weights
c;; for every ordered pair (4, ) € V,, x V,,, the linear ordering problem consists
of finding an acyclic tournament T (which corresponds to a permutation of the
set of objects or teams), which maximizes the sum of the arcs which are in
agreement with the direction of the arcs from D,,. So the sum Z(m)eT ¢;; has
to be maximal. Equivalently one could formulate the problem as minimizing
the so called remoteness corresponding to minimizing the arc weights pointing
in the opposite direction.

A more illustrative representation of the problem is the maximization of the
sum of superdiagonal elements in a matrix by manipulating the row/column
ordering. This is the so called Triangulation problem.

The reader might already be able to grasp a sense of similarity here. To
establish a direct connection between the LOP and the problem dealt with in this
paper, consider a situation where we fix the probabilities of wins and losses at
homogeneous values below and above the diagonal of the matrix independently
of which teams are in question. This means we set p;;n = P;, above diagonal and
Pijh =P, below it and analogously for the away probabilities. Let us consider
the case where p;, > P, and p, > P, Remember that the goal is to maximize

> wignn(pijn) + wiia (pjia) + (1 — wijn — wjia) (1 = pijn — Pjia)

(ij)eE
= Z wijn 0(Py,) + wije (Py) + tijn In(1 =Py —p,)
(ij)EE
+ > wignIn(p,) + wiga In(p,) + tign (1 = p, —P,)
(ij)eE

where FE and E represent the sets of elements above and below the diagonals,
respectively.

The results of a particular team in his two games against a particular op-
ponent makes a certain contribution to the sum. This contribution might be



higher because it is multiplied by higher probabilities if the records are super-
diagonal. So we are confronted with a triangulation problem just like the one
described above. Many Authors suggest an application of the LOP in sports
rankings (see e.g. Marti and Reinelt [2011]). And since it indeed seems well
suited for our purposes, we will include it in the analysis.

4.2.2 Branch and Bound Algorithm

Branch and Bound Algorithms are particularly well suited for combinatorial
optimization problems. As opposed to the other methods we are proposing, this
one leads with certainty to the optimal ranking. For an early survey on Branch
and Bound methods feel referred to Lawler and Wood [1966].

The following steps describe the execution of the algorithm:

1. Take the next team from the list of all teams

2. Put it in the list of previously selected teams at each possible position

@

For each position calculate an upper bound L above which the likelihood
cannot rise going further down the tree (i.e. after all teams were inserted)

Leave the team at the position with the highest upper bound

If all teams are inserted go to 6., otherwise go to 1.

Compare the likelihood to the best one found so far

Cut of the tree at all nodes where L is below the best likelihood

Go to the best of the lowest hanging nodes that could not be deleted and
start with 1. from there

®© N o oo

Before asking how the upper bound estimate L is calculated, lets first focus
on the procedure itself. To understand it better, consider a simple example of
three teams "a" "b" and "c".

A

Cab(-2.4) bca<-1.9> baC(-1.2)

Figure 3: Branch and Bound Algorithm: An example

n H

We start by inserting team The upper bound for the log likelihood at
this point is still 0, which is indlcated in brackets in Figure 3. Then team "b"
is added at each possible position. In Figure 1 we see upper bounds of -1.3 and
0, respectively. So we continue by leaving "b" at the second position and then

10



insert team c at each possible location. Since the example only includes three
teams, we can now calculate the value of the real objective function instead of
calculating L the way it was done previously. The highest value of the objective
function is found using the ordering "bac". This value of -1.2 now enables us
to cut of all hanging nodes, which have an upper bound below -1.2. So we cut
of the tree at "ba", since there is no way, we could get a better likelihood going
down the tree from this node. It is easy to see how the procedure can save
computational effort (even in this tiny example) compared to calculating the
MLE for all permutations.

The upper bound L is calculated as follows. First the optimization problem
(for a fixed ranking) is applied to the teams that have been inserted so far.

Lemma:. Adding an additional team into an existing ranking without changing
the relative order of the already existing teams can not increase L.

Proof. Tt is trivial to see that adding a variable (team) to the maximization
problem without adding additional constraints (results) does not change the
maximum likelihood (i.e., we are multiplying by 1). Now, adding additional
constraints without changing the objective function or changing the other con-
straints can never increase the maximum likelihood and therefore the new L has
to be less or equal to the L with 1 team less. O

At this stage we could already use this maximum likelihood of the considered
subset of teams for L. But there is a way to reduce the upper bound even further
and thereby make the algorithm a lot more efficient. For each team that is still
pending to be inserted we already know a subset of the constraints that will be
applied to the corresponding probabilities when going further down the tree, no
matter where this particular team will be inserted. Consider a situation where
teams 1, ..., k have already been inserted. Now, for each team [ € {k+1,...,n} we
know that pj. < pie and prig > pine for every i,i’ € {1,...,k} and z € {h,a}
such that ¢ is ranked above /. For k = 3 this is depicted in Figure 4.

* Pi2h  P13h P1in * Pi2a¢  Pi3a Pila

VI VI

P21h * P23n D2ih P21a * P23a P2ia

VI VI

P31n  P32h * P3in P31a  P32a * P3la
Piin < Pi2n < Pi3h Piia < Pi2a < Pi3a

Figure 4: Calculation of the upper bound L

For every team that has not been inserted yet, we know this subset of con-
straints. So we have another optimization problem for each team. The results
of these optimization problems (, having the form of a log likelihood values) can
be added to the value L.

As mentioned, the algorithm leads for sure to the optimal ordering. The
drawback is that despite of the fairly sophisticated upper bound that we are
suggesting, it is still not efficient enough to be applied to tournaments with more
than 9-10 teams*. Nevertheless the branch and bound algorithms deserves to

4Depending on the structure of results in the tournament as well as the users patience.
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be included in the empirical section of this paper.

4.2.3 Tabu Search

The third ranking algorithm we are suggesting is a heuristic search method. The
advantage of tabu search lies in the combination of local search and a diversifica-
tion mechanism. The local search systematically browses through neighborhood
solutions, checking for a possible improvement of the objective value. That the
algorithm doesn’t get stuck in local optima is assured by a memory structure,
avoiding previously visited regions of the solution space, giving a tendency for
diversification. A reference with a somewhat related application is Laguna et al.
[1999].
The algorithm works as follows:

1. Start from a randomly generated order of teams (call it p)
2. Calculate the maximum likelihood for the current ranking L(p)

3. Randomly select a team that is not on the "Tabu List" and remove it from
the order

4. Insert the team at position ¢ and calculate difference between the maximum
likelihood of the new and the original ranking: MoveValue = L(p’) — L(p)

5. Repeat 4. for 1 < i < n except for the original position
6. Insert the team at the position with the highest MoveV alue

7. Put the team on the "Tabu List" so that it won’t be selected for the next
"TabuTenure" iterations

8. Go to 2.

Basically what the algorithm does is taking a team from the ranking and
trying out every possible position for it, except for the original one. Important
is that the best among the new positions is selected even if the "MoveV alue"
is negative. Different convergence criteria are possible for the procedure. Since
in our analysis the computational effort in each iteration is fairly large, we use
a fixed number of iterations for the algorithm, so that we can best control the
amount of time it takes for the algorithm to finish.

4.2.4 Popular Ranking Methods

Finally we want to take a more practical approach and compare different ranking
systems, which have been used in different fields of sports. We chose the 3 point
system (also known as "Three points for a win"), which awards zero points
for a loss, one point for a draw and three points for a win. The sum of the
points together with the goal difference as a tie breaker then decides upon
the ranking. This system has been used in most soccer leagues since it was
officially adopted in 1995 by FIFA.5 Before the 3 point system was introduced,
the analogously structured 2 point system had been widely used in soccer. Here
the only difference is that two instead of three points are awarded for a win.

5England introduced the system already in 1981. The first time it was used internationally
was in the 1994 World Cup finals.
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These two systems are fairly easy to apply and (unfortunately) also very

similar to each other. So as a third candidate for a ranking scheme, we use
the Elo rating system. The Elo Rating system is a system invented by Elo
[1978] originally intended as a rating system for chess. Today it is not only
used as for different chess organizations, including the FIDE and the United
States Chess Federation, but also the European Go Federation, many different
computer games and even the National Collegiate Athletic Association, the
organization which is responsible for the organization of many American college
sport programs, notable college football and college basketball.
The main differences between the three points for a win is that it factors in the
strength of the opponent: winning against a strong opponent yields more points
than winning against a weak one. This results in the mayor weakness for our
needs: a relatively high number of games is needed to give meaningful results
and the order in which the teams play matters a lot.

4.3 Comparing the explanatory power of these rankings

To further enhance our comparative analysis of ranking systems, we will apply
a statistical hypothesis test. In this test two ranking systems are compared,
call them system a and system b. We solve problem (3) for both rankings. The
p-matrix calculated with the constraints generated by one of the rankings, say
system a, will yield a likelihood for the observed season at least as great as the
one generated by the other one, say system b.

L(Pu(w)|w) = L(Py(w)|w)

where P,(w) and Py(w) are the estimated p-matrices. So we could say, a allows
one to calculate a p-matrix with a higher explanatory value, so it must be the
better system. But in fact, it might have happened by chance, that this ranking
system performed better than the other one. The central question concerns the
degree of the odds that a performed better than b by the observed amount. Let
us define the likelihood ratio as follows

LRy = log(L(Pa(w)|w))) — log(L(Py(w)[w)).

We assume a Hypothesis Hj stating that "b is the correct ranking system".
Correct means that it allows us to estimate the right p-values. Using these
probabilities for each match, we simulate a complete season and get a new tour-
nament o for which we again calculate the likelihoods given P,(w) and Py(w).
This way a few thousand seasons are simulated and we receive a distribution
over the difference of the log-likelihood. In the ideal case, the probability (sug-
gested by the simulated distribution) of the observed difference between the
likelihoods is small enough to be able to reject Hy with this very test size a.

P[LR, () < LRgp(w)] < &

So, roughly what we do is assuming that one of the systems is correct, and then
we try to reject this hypothesis, by showing that the probability for another
system to be as much better as empirically observed is very small.

The weakness of this approach is pretty obvious. We are only able to reject
the hypothesis that a particular system is perfectly correct. Even though the
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data allows us to make a guess about it, the test does not allow us to make a
statement about which of the two systems in consideration is actually better.
So in fact, both of the systems might be incorrect, but we are only able to reveal
the inadequacy of one of them.

5 Data

We obtain the data from different sources. For soccer we focus on the German
Bundesliga and the British Premier League. For the former we have data from
the seasons 1968/69 till 2012/13, for the latter the sample from the seasons
1997/98 till 2012/2013. The scores for all matches, which are translated to
win/draw/loss data, are obtained from the website www.kicker.de. Notable
about the soccer data is that each team plays each other team exactly once at
home and once away in each season. This introduces a symmetry to the data
which, even though not it is not necessary, might be considered as desirable and
certainly influences the results of our analysis.

Regarding tennis, we face a different situation. Since there is no league
of players in which each player faces another one a fixed number of timer per
season we have to go a different way. We will focus only on the top 10 play-
ers according to the official ATP ranking at the end of each year (obtained
from http://www.atpworldtour.com). Then we collect the data for all the ATP
matches played in this season from http://www.tennis-data.co.uk. Of course
these data sets will be highly asymmetric, because some players play each other
more that once, and some might not play each other at all during a season.
Another special fact about the tennis data is that we don’t have a real home
away situation.® Even more importantly, in tennis there is no possibility of ties.
So we face only a binomial distribution for the outcome of each match which
considerably facilitates the optimization procedure.

Concerning American football, we will focus exclusively on the NFL. We have
data on the scores of every NFL game since 1978 from the website http: //www.re
pole.com/sundcast/data.html. The NFL comprises from 28 (in the season 1978)
to 32 teams in 2012. This is by far the largest group of teams. Almost naturally
it follows that among the samples there is a huge number of teams that don’t
face each other during a season. Which team is playing which is determined by a
complicated system, which shall not be further discussed here. In football draws
are possible, but only happen very rarely. Along with the fact that American
football enjoys great popularity, this makes NFL data very interesting for our
analysis.

6 Empirical Analysis

We now want to apply the presented methods to real data from sports. Count-
less different types of sports are imaginable and probably the readers preferences
for what he would like to see in this section are very heterogeneous. Neverthe-
less for reasons of space we want to focus on three types, namely soccer, tennis

60f course some players might feel more at home when a tournament is taking place in
their country of origin. But since this is very different to the situation of a team playing in his
very own stadium in its city, we will assume that every game takes place on neutral ground.
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and American football. The main questions we seek to answer are, "Is there a
tendency for one of the ranking schemes to be superior to the others according
to the criterion we defined?", "If yes, which one is it?", "Does it depend on the
type of sport?" and finally "Are we able to improve on the rankings found by
the simple ranking methods using one of the algorithms presented in section
4.27"

6.1 Soccer in Austria: Finding an Optimal Ranking

With the branch and bound algorithm we find our selves equipped with a very
powerful instrument to find the optimal ranking. Unfortunately this algorithm
can only be applied to sets of teams that have a limited size. The first object
of our investigation shall be the Austrian Bundesliga. Its size of 10 teams
enables us to apply the discussed bnb-method. During a season each team
plays each other team four times, two times at home and two times away. This is
different from most other soccer leagues, but doesn’t increase the computational
complexity by much. Here, we consider the season 2012/2013. To draw a first
comparison between the performances of the other ranking schemes, Table 1
shows the maximum likelihoods that have been calculated.

Method BnB 2-Point 3-Point LOP Elo Tabu-Search
MLE -129.844 | -131.742 | -135.561 | -140.024 | -131.703 -130.465

Table 1: Log likelihood values for the Austrian Bundesliga 12/13

While the ranking corresponding to the solution to the linear ordering prob-
lem gives a relatively low likelihood, the two point system as well as the Elo-
system seem to explain the results a lot better. Nevertheless, none of systems
generates the optimal ranking found by the branch and bound algorithm. The
ranking produced by the Tabu Search gives a higher likelihood than all the
systems, but still is not the optimal one.

Figure 5 compares the optimal ranking that we found with the actually
applied order, namely the 3-Point ranking. One can see that there are indeed
some differences. Perhaps most striking is that in this season SV Mattersburg
was relegated, while in the optimal ranking Wacker Insbruck would have been
relegated. This team was actually ranked 8th.
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Figure 5: Rankings resulting from 3-point system and Branch and Bound algo-
rithm

Unfortunately most leagues are larger that the Austrian Bundesliga. The
resulting computational effort makes it virtually impossible for us to find optimal
rankings. which is why in the next section we focus on the other methods and
compare the different ranking schemes across panel data from different leagues
in different sports.

6.2 Ranking Systems and Maximum Likelihood Estimates

Before the values of the probability matrices can be estimated, the teams need
to be put into an order. To give the reader an impression of how such a matrix of
outcome probabilities for each game looks like after the optimization, Figure 6
depicts the probabilities for home game wins for the Bundesliga season 2012/13
estimated using the "three points for a win" system.

e @ e ® » e @|m ¢ & © w T @ & € r @ =

e 0.18 031 069 08 08 08 08 08 1 1 1 1 1 1 1 1 1 1
L] 0 031 069 069 077 077 0.77 0.77 0.77 077 0.77 0.77 092 0.92 092 092 092 1
o 0 031 046 0.69 069 069 069 0.69 071 071 071 071 071 0.92 092 092 092 1
® 0 031 031 046 046 046 052 052 0.71 071 071 0.71 0.71 0.92 0.92 092 092 0.95
L] 0 031 031 046 046 046 046 052 07 0.7 07 07 07 086 092 092 092 0.95
@ 0 031 031 046 046 046 046 049 049 049 049 0.61 0.7 085 085 0.85 0.85 0.85
(O] 0 031 031 046 046 046 0.46 049 049 049 049 057 0.7 085 085 085 0.85 0.85
é 0 0 0.31 031 031 046 046 048 049 049 049 0.53 0.58 0.58 0.85 0.85 0.85 0.85
% 0 0 031 031 031 031 046 047 047 049 049 049 049 058 085 0.85 0.85 0.85
® 0 0 031 031 031 031 031 041 041 045 049 049 049 049 049 085 0.85 0.85
W 0 0 031 031 031 031 031 041 041 041 043 044 044 044 044 044 044 044
v 0 0 0.19 031 031 031 031 041 041 041 041 042 042 043 044 044 044 044
@ 0 0 0.19 019 0.19 0.19 031 038 041 041 041 042 042 042 044 044 044 0.44
@ 0 0 0.075 019 019 019 031 0.36 0.36 036 036 036 042 042 042 042 044 0.44
1) 0 0 0056 019 019 019 019 0.19 029 029 029 036 036 042 042 042 044 044
r 0 0 0037 019 019 019 019 019 029 029 029 029 029 029 029 036 044 0.44
@ 0 0 0 0 0 019 019 019 029 029 029 029 029 029 029 029 035 044
ES 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0094 0.17 0.3

Figure 6: MLE for p;;; using 3-point system

Generally, a striking feature about the structure of the estimated probably
matrices is the occurrence of homogeneous values in certain areas of the matrix,
reminding of the layer structure discussed in section 2.3. Remarkable in this
particular matrix is the large number of "1"s in the upper right corner and "0"s
in the lower left corner. The reader might be tempted to argue that these values
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are fairly unrealistic, because intuition tells us that even if the strongest team
plays the weakest one, in the current case Bayern Miinchen against Greuter
Fiirth, the chance of the former to win against the latter will be high, but never
100%. But the point is that we only hold this intuition, because probably at
some point in the past we have seen top teams occasionally loosing against
teams that were ranked very low. But since this kind of information is not part
of our estimation procedure, it is only natural that estimates look like this.”

Next, we want to try to improve this ranking by using one of the algorithms
presented in section 2.5. Unfortunately the sample of 18 teams is to large for an
application of the branch and bound algorithm, which would technically allow
us to find the optimal ranking. So we use the Tabu search method, which we run
for 100 iterations. The resulting ordering as well as the corresponding maximum
likelihoods are shown in Figure 7.
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Figure 7: Rankings resulting from 3-point system and Tabu Search

The Tabu Search finds a ranking that is partly very different from the one
determined using the 3-point system. The biggest difference is the position of
"Mainz 05" jumping from the 13th position to the 4th. This difference can only
be that "Mainz 05" has won the matches in this season that were particularly
important in the sense of being in accordance with the team having fairly high
winning probabilities in general. However, despite of differences in parts, a
great similarity between the rankings can be observed. This similarity can

be measured using Spearman’s rank correlation coefficient defined as p = 1 —
63 (ri=si)®8
n(n2—1)
ranking and s; the ranking with the highest maximum likelihood has calculated
with the Tabu Search algorithm. The correlation between the 3-point ranking

and the one found by the Tabu Search is indeed fairly high with a value of about

with r; being the original (3 point) ranking of team ¢ and the

"We have to add, that in case he has seen Bayern Miinchen play in the season 2012/13, he
most certainly would agree that estimating some probabilities in the right of the upmost row
with a value of 1 most probably only involves a very small error.

8Note that, as we do allow for ties in the results, we do not have ties in the rankings.
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0.87616. The difference between the maximum likelihood values however, is in
fact very large. The probabilities found using the Tabu Search ranking make
the observed season 3318 more likely compared to the probabilities found using
the 3 point ranking.

As mentioned above, we have data not only on this one Bundesliga season,
but on the ones from the last 50 years.” For every season that we have data
on, we calculated the maximum likelihood p-matrices as well as the objective
function values using the "2 points for a win", the "3 points for a win", Elo
system and the ranking from the solution to the linear ordering problem. Finally
we used the Tabu search method to find out, whether or not one is able to
improve on one or all of the ranking schemes. Because from season to season the
likelihood values fluctuate heavily, it makes sense to use the likelihood found by
one of the systems as a reference value and plot the differences to these values
in a diagram. As opposed to just plotting the absolute likelihoods of every
system in each year, this technique allows us to better compare the quality of
the rankings throughout the panel data. The system of reference will be "2
points for a win".
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(a) Bundesliga

9Because in the seasons 1963/64, 1964/65 and 1991/92 the number of teams in the Bun-
desliga was different from 18, we excluded these seasons from the sample. Sacrificing these
three data points for a higher comparability seems reasonable.
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Figure 7: Maximum Likelihoods for Bundesliga and Premier League panel data

Figure 7 (a) and (b) reveal that the two and three point systems are in
fact very close in the maximum likelihoods they "produce". This is not least
because in most cases the rankings determined by the two systems only differ
in a few spots. And if the rankings do not differ much, it’s only natural that
the likelihood values won’t be very far apart either. The two point system
allows for a calculation of p-matrices that make the observed seasons on average
across the Bundesliga samples by about 9.8% more likely than when using three
point system. In the Premier League the three point system has a 5.2% higher
explanatory power. The Elo-system also gives us likelihoods in the same range,
indicated by the green lines. Actually this is a bit of a surprise, since there
were some hopes that the intuitively very reasonable mechanism of getting more
points for winning against relatively strong opponents would enable us to explain
the observed results better. Still it is not worse than the conventional two and
three point systems. But because of its higher complexity we clearly refrain
from making a recommendation for using this system in soccer. The ranking
resulting from solving the linear ordering problem is by far the worst performer
in the diagram. One observes it to yield likelihoods that are on average more
that 1000 times smaller that the ones from the two point system. So we have
to clearly reject the suggestion for a possible application of the LOP in soccer
that has been made in the literature.

Another striking feature about the graphs is the position of the likelihood
curves corresponding to the tabu search. The heuristic algorithm is able to
improve on every single ranking from the sample, except for the Premier League
seasons 04/05 and 05/06. On average it helps to explain the results about 457
times better. The graph shows us that even though the simple ranking schemes
produce fairly "good" orderings in the sense of a high correlation (as seen above),
they are far away from being the most likely correct ones.

19



«0=ATP-2p

LoP-2p

=¥=Elo-2p

‘TabuSearch-2p

Figure 8: Maximum Likelihoods for ATP panel data

Next, Figure 8 shows the analogue results for the tennis panel data from the
last 14 years. The first thing to note is that the two and three point systems
produce the same likelihoods throughout the whole sample, which is why in this
graph there is no curve comparing the two, since it would lie on the x-axis. This
comes natural, because in Tennis we do not have draws, so in both systems
the players are only ranked according to their number of victories. In Figure 7,
in addition to the curves from Figure 6, the likelihoods from the official ATP
ranking from the end of each year are listed. This ranking is determined by
awarding different amounts of points for a stage that is reached in the Grand
Slam Tournaments, the ATP World Tour Finals, the Masters 1000, Olympics
etc. Of course this method is very sophisticated and includes also the results of
the matches of the top 10 players against others that might not be in the top
10. This data is not part of the other systems we are analyzing. According to
the criterion of this work, the ATP ranking performs fairly bad in explaining
the observed results. Interestingly in this tennis sample, the linear ordering
ranking produces fairly high likelihoods, in fact on average higher ones than the
n-point and Elo system. Again, in every year the tabu search algorithm is able
to improve on all of the discussed rankings.

Finally, Figure 9 illustrates the results form the same calculations as above,
now for American football results from the National Football League in the US.
There is little difference between 2- and 3 point systems, because draws are very
unlikely to occur. However, the 3 point system is almost at every point at least
as good as the 2 point system. The LOP and Elo systems operate in the same
range of likelihoods as well. With NFL data, applying the tabu search is more
effortful and thus takes more time for the same number of iterations, because
of the higher number of teams. However, again, the tabu search improves upon
all the rankings in the sample.
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Figure 9: Maximum Likelihoods for NFL panel data

In general, the difference in the relative likelihoods when applying the Elo/LOP
system and the n-point systems between soccer on the one hand and tennis and
American football on the other could be due to the heterogeneity in the num-
ber of games played between the teams in tennis and football as opposed to
the symmetric situation in soccer. Certainly a system like "two points for a
win" doesn’t seem to be particularly well suited in a situation where teams play
different amounts of matches. And as explained further above, here it could
be justified to give 1 and -1 points instead of 0 and 2 for a win and a loss, re-
spectively. However, implementing this changes not much and even reduces the
average likelihood a bit. Another explanation could be the sport itself. It might
be due to the result generating probabilities themselves, that for one sport dif-
ferent ranking schemes are better suited then others. Indeed, it is easy to show
that in the space of transitive probability matrices, there are areas where each
of the considered systems is most likely to generate a ranking closest to the real
one. This is an interesting direction for further theoretical research.

6.3 Hypothesis Testing

Now we are going further in the analysis of ranking systems than just observing
which ordering scheme is able to gen erate a higher maximum likelihood value.
We will consider two examples, which will help deepen the understanding of the
problem, but will also clearly highlight the limitations of this hypothesis testing
approach.

Consider the Bundesliga season 2011/2012. Looking at Figure 7 reveals
that for this data set the 3 point system performed better than the 2 point
system. The difference between the two maximum likelihood logs is 0.564. But
the central question is "did this MLE difference appear because the underlying
unobservable probabilities make the 3 point system more appropriate than the
2 point system in this season or could it in fact be the other way around with
the observation just happening by chance?".
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To answer this question, assume the correctness of the Hypothesis Hy: "The
2 point system puts the teams in the correct order". We will test Hy against the
alternative Hypothesis Hi: "The 3 point system puts the teams in the correct
order". Now, for the two systems the probability matrices Py,(w) and P, (w)
are estimated. Using Pa,(w) 5000 seasons are simulated. Then L(Pap,(w)])
and L(P;,p(w)m) are calculated for each of the seasons. Their respective fre-
quency distribution is depicted in Figure 9 (a) and (b). The distribution of
their difference, which corresponds to the ration of the likelihoods without logs
is plotted in Figure 9 (c).

500
50

00

300

Frequency

200

150

100

o
285 -283 281279 -277 -275 273 271 -269 -267 265 -263 -261 259 -257 -255 253 251 -249 -247 245 243 -241 239 237 -235 233 231 -229 -227 225 -223 -221 219 217 -215 213 211 -209 -207 205 -203 -201 199 -197 -195

(a) L(Pap(w)|)

500
50

00

300

Frequency

200

150

100

o
285 -283 -281 279 -277 -275 273 271 -269 267 265 -263 -261 259 -257 -255 253 251 -249 -247 245 -243 -241 239 -237 -235 233 231 -229 -227 225 223 -221 219 217 -215 213 211 -209 -207 205 -203 -201 199 197 -195

(b) L(Psp(w)|d)



%00

800

700

500

Frequency

00

300

20 19 18 47 16 45 44 13 12 41 0 8 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 2 25

() LRap,3p ()
Figure 9: Simulated test statistic for Bundesliga hypothesis test

Looking closely at the first two diagrams reveals that the distribution of
L(Ps,(w)|w) is shifted a little bit to the left relative to the one of L(Pap(w)|t).
This is intuitively correct because it is only natural that the probability matrix
that generated the seasons of the sample gives the higher likelihood values than
the matrix ng(w), which has nothing to do with the season simulation. Now
to find out the confidence level with which we would be able to reject Hy one
has to compare the observed likelihood ratio to the likelihood ratio distribution
in Figure 9 (c). This procedure shows us that assuming the correctness of Hy,
the probability of the likelihood ratio being < 0.564 is only 11%. So we are
able to reject the Hypothesis that the 2 point system gives the correct ranking
with test size @ = 0.11, meaning that the probability of not making an error of
the first kind is 0.89. One has to be careful not to misinterpret this result. It
means that we are able to reject the hypothesis that the 2 point system gives
the correct ranking. However, this does by no means imply that the 3 point
system gives the correct ranking.

Now let us conduct a second hypothesis test, this time using tennis data. A
good experiment would be to test for the correctness of the LOP system against
the 3 point/2 point system in the year 2012. In this year the LOP produced
a considerably higher likelihood than the 2 point system (see Figure 8 ), so we
would like to know if this was just a random result or if we can actually conclude
that the underlying probabilities favor the LOP scheme in the sense of telling
us the truth about the ordering of tennis players. The hypothesis are:

Hy: "The 2 point system puts the teams in the correct order"
Hy: "The solution to the LOP puts the teams in the correct order"

Assuming the correctness of Hy, we again estimate the probability matrices
and then simulate 5000 seasons. Hereby we always assume that the m;; values
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stay constant, i.e. the amount of times players meet is the same in every simu-
lation. We proceed as above by calculating the test statistic for the likelihood
ratio and then comparing it to the empirically observed one. We have:

LRay Lop = log(L(Paop(w)|w))) — log(L(Prop(w)|w)) = —6.9103

The simulated test statistic tells us that in case Hy is correct, the probability
of an occurrence of such a small likelihood ratio is only 0.02%. It follows that
we can reject Hy with test size & = 0.02 (i.e. a confidence level of 99.98%).

7 Conclusion

We constructed a statistical model describing the outcomes of sports matches.
The model assumes a transitive relationship between the relative strengths of
the teams. The resulting constraints turn out to be very restrictive, which is
illustrated by the rapidly shrinking size of the parameter space.The incorpo-
ration of ties as well as home/away asymmetries makes our model much more
complicated than the related isotonic regression problem. The discussed branch
and bound algorithm is capable of solving the problem for up to 10 teams.
For larger data sets, a tabu search heuristic has been proposed. The empirical
section of the paper first illustrates the structure of an optimized probability
matrix with an example. We have shown that in the example the maximum
likelihood produced by the tabu search is more that 3000 times higher than the
one resulting from an application of the 3-point system. But this does not mean
that the two rankings are strongly uncorrelated as seen from the high value of
Spearman’s rank correlation coefficient. Panel data has been used to compare
different ranking systems in three types of sports. In soccer, data from German
Bundesliga and English Premier League have shown that the 2- and 3-point
systems are very close to each other in the maximum likelihoods they produce,
which is not a surprise when considering their structural similarity. Hopes were
higher for the performance of the Elo system, because as opposed to the tradi-
tional point systems it considers the opponents strength. However, on average
the generated MLEs were in the same range as the ones from the n-point sys-
tems. This result also applies for ATP tennis and NFL American football data.
So the additional degree of complexity seems to be enough of a justification for
not giving a recommendation towards an introduction of the Elo system. A
difference worth mentioning is that the ranking, which results from the LOP
performs fairly well in tennis and American football, but worse than everything
else in soccer. We show that almost in every sample across all considered types
of sports we are able to improve on the rankings produced by the considered
systems by using tabu search. This illustrates that there might be a system
that is much better at finding the most likely correct ranking, possibly without
the inclusion of a great complexity. As a final remark, we want to mention that
the framework presented in this paper has its natural limitations and leaves out
many important aspects that should be considered when choosing or designing
a ranking scheme. Things like opponents incentives during a match and the
resulting effects on the observers level of thrill or the occurrence of winning de-
cision as late as possible during a season could be interesting points for further
research.
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A Proofs

Proof of proposition 1: Ignoring the away/home differentiation, we can write
Diks aS Pik- With 0 probabilities of draws, equation 1 is now

Pik =1 — Pri
and therefore equation 2 is then equivalent to

Dik = Dit < Pjx = pJl
Dirkr > Dj'k! = puj > purit

Now we have to show that (SST) = (5) and (5) = (SST).
(SST) = (5):
We are dividing this case into two cases: For p;; > % > pji We can see:

1 ssT
Dij = Prj =1 —pjr > 3 = Pie > pje VT

For every other case we can assume wlog that p;, > pji > %

1 sst
Dij > - D) — Dix >p]af Vo
1 1 sst
) = Pji > 3 = Djk > Dik
Which is a contradiction to the assumption, therefore p;; >
(5) = (SST):

Pij <

1
3

5
Pjk > Pik :L Pii > Pij )
pii=1/2 1
= Dii > Pij —— Dij < 5

Proof of proposition 2: Define a ranking from best to worst p(¢) : {1,..,n} —
{1,...,n} such that pira > pjre = p(i) < p(j) and priz < prje = p(i) < p(j).

Dikz Zp]km @P(l) <p(]) <:>pily ijly Vi,j,k,l,x,y
Pkix 2 pkja: < P(J) p(Z) ~ pily Z pjly Vl jv ka l,iL’ Yy
Pirkre > Pirka & p(j) < p(i) and p(i) £ p(5)3¢, 5, K«

B Parameter space

In this section we explore the effect of transitivity conditions on the parameter
space of winning probabilities to illustrate the limitations enforced by it. To do
that we compare the size of the parameter space with transitivity to the space of
unrestricted winning probabilities S,,, e.g. every Dij, Py fulfilling p;; + pji = 1.
The space of parameters including the transitivity conditions is a subset of this
set S,. S,(R) is hereby defined as the size of this space relative to S,, only
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considering the restrictions for p;; € R. The unrestricted parameter space is
n(n—1)

in this simple case: S,, = [0,1]~ 2  which can be easily seen by the fact that
every pj; is completely determined by p;;. The restricted space for n players
and the transitivity conditions for every (i,j) € K, with K, = {(i,j)|i,j €
{1,2,...,n},i < j} is therefore

bij+1
S = [ SulAG. 0D
bit1,j
with
bi07.70+1
Sn((d0, Jo)) = dpi o
big+1,50
and

pija for (17]) € Kn
bij =405 fori=yjy
0, else

As this fairly complicated recursive integral may be hard to interpret, table
2 gives the values for the relative size of the transitive parameter space for up
to five teams. It can be seen that the size rapidly shrinks and it is not hard to
imagine that for a league comprising e.g. 18 teams the conditions are in this
sense very strict.

n 2 3 4 5 6 7
relative 1 1 1 1 1 1
. 4 120 40320 203212800 19313344512000
S1ze
Approximation | 1 [ 025 [ 83 x 1073 [ 25x107° | 49x 1077 | 5.2x 10714

Table 2: Relative size of the transitive parameter space

References

RE Barlow and HD Brunk. The isotonic regression problem and its dual. Journal
of the American Statistical Association, 67(337):140-147, 1972.

H. D. Brunk. Maximum likelihood estimates of monotone parameters. The
Annals of Mathematical Statistics, 26(4):pp. 607-616, 1955a. ISSN 00034851.
URL http://www. jstor.org/stable/2236374.

HD Brunk. Maximum likelihood estimates of monotone parameters. The Annals
of Mathematical Statistics, 26(4):607-616, 1955b.

Hugh D Brunk. Mathematical models for ranking from paired comparisons.
Journal of the American Statistical Association, 55(291):503-520, 1960a.

Hugh D Brunk. Mathematical models for ranking from paired comparisons.
Journal of the American Statistical Association, 55(291):503-520, 1960b.

26



Iréne Charon and Olivier Hudry. An updated survey on the linear ordering prob-
lem for weighted or unweighted tournaments. Annals of Operations Research,
175(1):107-158, 2010.

FRK Chung and FK Hwang. Do stronger players win more knockout tourna-
ments?  Journal of the American Statistical Association, 73(363):593-596,
1978.

Roger R Davidson and Daniel L. Solomon. A bayesian approach to paired com-
parison experimentation. Biometrika, 60(3):477-487, 1973.

John S Decani. Maximum likelihood paired comparison ranking by linear pro-
gramming. Biometrika, 56(3):537-545, 1969.

John S Decani. A branch and bound algorithm for maximum likelihood paired
comparison ranking. Biometrika, 59(1):131-135, 1972.

Arpad E Elo. The rating of chessplayers, past and present, volume 3. Batsford
London, 1978.

Nicholas P Jewell and John D Kalbfleisch. Maximum likelihood estimation of
ordered multinomial parameters. Biostatistics, 5(2):291-306, 2004.

Manuel Laguna, Rafael Marti, and Vicente Campos. Intensification and di-
versification with elite tabu search solutions for the linear ordering problem.
Computers & Operations Research, 26(12):1217-1230, 1999.

Eugene L Lawler and David E Wood. Branch-and-bound methods: A survey.
Operations research, 14(4):699-719, 1966.

Johan Lim, Xinlei Wang, and Wanseok Choi. Maximum likelihood estimation of
ordered multinomial probabilities by geometric programming. Computational
Statistics & Data Analysis, 53(4):889-893, 2009.

Rafael Marti and Gerhard Reinelt. The linear ordering polytope. In The Linear
Ordering Problem, pages 117-143. Springer Berlin Heidelberg, 2011.

H William Morrison. Testable conditions for triads of paired comparison choices.
Psychometrika, 28(4):369-390, 1963.

Jagbir Singh and WA Thompson. A treatment of ties in paired comparisons.
The Annals of Mathematical Statistics, 39(6):2002-2015, 1968.

Patrick Slater. Inconsistencies in a schedule of paired comparisons. Biometrika,
48(3/4):303-312, 1961.

WA Thompson and Russell Remage. Rankings from paired comparisons. The
Annals of Mathematical Statistics, 35(2):739-747, 1964.

Amos Tversky. Intransitivity of preferences. Psychological review, 76(1):31,
1969.

C Van Eeden. Estimation in restricted parameter spaces-some history and some
recent developments. CWI Quarterly, 9(1):69-76, 1996.

Andreas Wichter and Lorenz T Biegler. On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear programming. Math-
ematical programming, 106(1):25-57, 2006.

27



	deckbl520
	text520
	text520
	text520



