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On Repeated games with imperfect public
monitoring: From discrete to continuous time

Mathias Staudigl∗ Jan-Henrik Steg†

September 16, 2014

Abstract

Motivated by recent path-breaking contributions in the theory of repeated games
in continuous time, this paper presents a family of discrete-time games which pro-
vides a consistent discrete-time approximation of the continuous-time limit game.
Using probabilistic arguments, we prove that continuous-time games can be defined
as the limit of a sequence of discrete-time games. Our convergence analysis reveals
various intricacies of continuous-time games. First, we demonstrate the importance
of correlated strategies in continuous-time. Second, we attach a precise meaning to
the statement that a sequence of discrete-time games can be used to approximate a
continuous-time game.

Keywords: Continuous-time game theory, Stochastic optimal control, Weak convergence

1. Introduction

In this paper we study a class of repeated games with imperfect public monitoring
which has been introduced in a continuous-time framework in the important contribu-
tion of Sannikov (2007). As has been convincingly shown in that paper and its followers,
continuous-time games are in certain ways analytically more tractable than their discrete-
time counterparts. Nevertheless, there are still open methodological questions how the
continuous-time game model fits into the perceived game-theoretic literature. In particu-
lar, it is often heuristically argued that continuous-time games are limit cases of sequences
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of discrete-time games. The purpose of this paper is to see in which sense this interpre-
tation is possible. We construct a class of discrete-time games which provides a consis-
tent approximation to the class of repeated games studied in Sannikov (2007), and show
that the basic features of the game-theoretic model can indeed be interpreted as limits of
sequences of discrete-time games. However, other features of the game model are less
clear to interpret. The main obstacle one faces in giving a full-fledged interpretation of
continuous-time games as limits of discrete-time games is the notion of a continuous-time
strategy. Once passing to the limit from discrete to continuous time, strategy spaces must
be enlarged in order to talk about convergence of strategies.1 As a consequence, limit
strategies must be interpreted as correlated strategies (or, abstractly speaking, measure-
valued processes), and the limit of these correlated strategies are not easily interpretable
in the continuous-time limit game. Nevertheless, we are still able to assign payoffs to
the limit game and prove that the limit dynamics of the signal process are diffusions
whose drift is controlled by the players’ strategies. These facts clearly show in what sense
continuous-time games can be interpreted as limits of discrete-time games, and in which
sense not.

We feel that an honest study of the foundations of continuous-time game theory is im-
portant from a theoretical as well as from an applied perspective. From a theoretical point
of view, we are the first who present a rigorous convergence analysis for the aforemen-
tioned class of continuous-time games. From an applied point of view, it is important to
know that continuous-time games can be derived from discrete-time games, just because
all real-world observations are discrete (though may be observed at high frequencies). A
continuous-time framework of the strategic interaction can then be regarded as an ideal-
ized model, which can be analyzed with the help of powerful analytic tools.

As an independent methodological contribution, we show in this paper that there is a
very specific way how repeated games in continuous time can be obtained from the more
traditional discrete-time game framework. Our proof of convergence is purely proba-
bilistic, using weak-convergence arguments. This is the weakest form of convergence of
stochastic processes one can think of and is the natural one to study strategic interac-
tions in the continuous-time limit. Weak-convergence arguments are nowadays standard
in the stochastic control literature (Kushner, 1990), though have not received that much
attention in strategic settings.

Many previous papers in the literature dealing with limits of discrete-time games
choose a path-wise approach, which may lead to pathological, or not well-defined out-

1A classical example for this is the well-known chattering phenomenon. See Example 4.1 and also Ex-
ample 4.2 in Section 4.2.
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comes. This is illustrated very clearly in the fundamental contribution of Simon and
Stinchcombe (1989), and has been recently discussed in some depth in Alos-Ferrer and
Ritzberger (2008). Our weak-convergence approach does not suffer from these problems,
just because we do not care about particular outcomes; all that the weak-convergence
approach allows us to do is to make predictions on the probability distribution over the
paths of play. Using this weaker notion of convergence, we are able to present a rigorous
convergence theorem for a fairly large class of repeated games, and thereby we are able
to give continuous-time games a clear meaning.

1.1 Related Literature

Besides the already mentioned references, there are several recent papers trying to
shed some light on the connection between discrete-time and continuous-time game the-
ory. Faingold (2008) is concerned with reputation models, whereas we consider repeated
games with imperfect public monitoring. Fudenberg and Levine (2007, 2009) study re-
peated binary choice games between a single long-run player and a sequence of short-run
players. They investigate the continuous-time limit of this family of games and work out
some conditions under which ”non-trivial” equilibria (meaning action profiles which are
not stage-game Nash equilibria) can survive when passing to the continuous-time limit.

Contract theory and problems in corporate finance were among the first applications
of stochastic analysis in game theory (see Holmström and Milgrom (1987) and Schättler
and Sung (1993)). Contract theory in continuous time is now a very active field of re-
search, starting with the paper by Sannikov (2008). For an excellent overview on contract
theory in continuous time we refer to Cvitanić and Zhang (2013). There have been several
attempts to provide limit theorems for principal-agent models as well, among which we
would like to highlight Hellwig and Schmidt (2002) and Biais et al. (2007).

In the theory of zero-sum games there are several recent papers investigating the con-
nection between discrete-time and continuous-time games. Cardaliaguet et al. (2013) and
Gensbittel (2013) deal with repeated games with incomplete information on one side, and
prove the convergence of the value of the family of discrete-time games to the value of
the limit continuous-time game.

Closest to this paper is the recent work by Neyman (2013) and Sannikov and Skrzy-
pacz (2010). Neyman (2013) considers stochastic games with finitely many states where
the transition probability is a function of the time lag between two consecutive moves.
He makes precise in what sense dynamic games converge to a continuous-time game,
and some of his arguments are closely related to ours. The two main differences between
his paper and ours is that (i) Neyman (2013) studies finite stochastic games, whereas we
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consider repeated games, and (ii) the dynamic is completely different. Neyman (2013)
assumes that the limit dynamic is a Markov jump process in which the players control
the transition rates. We instead consider the diffusion case. What we have in common
with the work by Neyman (2013) is the concept of convergence of strategies. We will say
more on this point later in the paper.2

Sannikov and Skrzypacz (2010) study a family of repeated games with imperfect pub-
lic monitoring where the public signal process follows a discrete approximation of a jump
diffusion. Using geometric arguments similar to Fudenberg et al. (1994), they report a
uniform bound (in the limit of frequent actions) on the set of public perfect equilibrium
payoffs. While we are not able to say much about the general connection between the
sets of sequential equilibrium payoffs of the discrete-time and continuous-time games,3

we rigorously prove the weak convergence of the game dynamics and the total expected
payoffs of the players to corresponding objects of the limit continuous-time game with
imperfect public monitoring as introduced in Sannikov (2007).

This paper is structured as follows: Section 2 introduces the class of repeated games
with imperfect public monitoring in continuous time. Section 3 describes the approxi-
mating family of discrete-time games. Since the proofs of the main results of this paper
are rather technical, we spend some time in motivating them. This motivating discussion
starts in Section 4. The main results themselves are collected in Section 4.3. The proofs of
the main results are organized in various intermediate lemmas which are stated in Sec-
tion 6. Technical proofs and additional background information on the concepts we use
are collected in extra appendices.

2. The continuous-time game

We start with a formal description of the repeated game in continuous time which
we intend to approximate via a sequence of discrete-time games with frequent moves.
This continuous-time game, denoted by Γ, is a straightforward extension of the model
presented in Sannikov (2007) to the N-player case.4

2For an extension of our arguments to stochastic games see Staudigl and Steg (2014).
3Which is a completely open problem in general. See, however, Staudigl (2014b).
4We keep the presentation to a minimum; additional information, in particular in view towards charac-

terization of sequential equilibrium payoffs, is given in the companion papers Staudigl (2014b) and Staudigl
(2014a).

–4–



2.1 The game dynamics in continuous time

We are given a stochastic basis (Wd+1,Wd+1, P), where Wd+1 , C(R+; Rd+1) is the
space of continuous functions taking values in Rd+1, endowed with the metric of uniform
convergence on compact sets, and Wd+1 is the σ-algebra generated by the cylinder sets.5

A generic element of the space Wd+1 is denoted by w = (w0, . . . , wd). We endow the mea-
sure space (Wd+1,Wd+1) with the Wiener measure P. Let B = (B0, . . . , Bd)

> = (B0, B(1))
>

be the canonical projection mappings on Wd+1, defined by

B0(t, w) = w0(t), B(1)(t, w) = (w1(t), . . . , wd(t)).

Hence, under P, the process (B0, B(1)) is (d + 1)-dimensional standard Brownian motion.
N players i ∈ I , {1, . . . , N} continuously monitor the evolution of a public signal

(Xt, Yt). This public signal consists of a (cumulative) signal process Xt ∈ Rd, and a public
correlation device Yt ∈ R. The signal X has continuous sample paths and is given as
the unique strong solution to the stochastic differential equation dXt = CdB(1)(t), X0 =

CB(1)(0), where C is a non-singular deterministic matrix. Similarly, the process Y has
continuous sample paths and is given by Yt = B0(t) for all t. We denote by {X◦t }t≥0 and
{Y◦t }t≥0 the filtrations generated by the processes X and Y, respectively. Additionally, we
denote by Xt , X◦t+ and Yt , Y◦t+ the right-continuous augmentations of the respective
σ-algebras. Let

W◦t , σ(X◦t ,Y◦t ), W◦∞ , σ

( ⋃
0≤t<∞

W◦t

)
and Wt , σ(Xt,Yt).

It is important to observe that X◦t = σ(B(1)(s); s ≤ t) and Y◦t = σ(B0(s); s ≤ t). In
repeated games with imperfect public monitoring the players’ strategies are formulated
as functionals over the sample paths of the public signal process (X, Y), satisfying the
usual “adaptedness” condition in dynamic games.

Definition 2.1. An N-tuple of stochastic processes α = (αi)i∈I is a public strategy profile if
each αi = {αi

t; t ≥ 0} is a {Wt}t≥0-progressively measurable process taking values in the finite
set of actions Ai available to player i. The set of public strategies for player i is defined as

Ai ,
{

αi : R+ ×Wd+1 → Ai|(∀T > 0) : αi|[0,T] is B([0, T])⊗WT-measurable
}

.

5This metric is given by

ρ( f , g) , ∑
n≥1

2−n min{1, ‖ f − g‖[0,n]}, where ‖ f − g‖[0,T] , sup
0≤t≤T

| f (t)− g(t)| .
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Remark 2.2. Public strategies, even if defined as processes on the probability space Wd+1,
can now be understood as functionals of the sample paths of the signal process (X, Y)
because B = (B0, B(1))

> = (Y, C−1X)> is the canonical projection mapping on Wd+1.
Hence, in the following we write αt = α̃t(X, Y) if we want to indicate the functional
character of the public strategy profile.

An important technical reason to choose the (canonical) sample path space as the un-
derlying probability space is that the following change of measure using the Girsanov
transformation is quite intricate with an infinite time horizon. On the one hand, one has
to take care that there even exists a new probability measure with the desired proper-
ties on the given set-up (which works for the path space). On the other hand, this new
measure will generally not even be absolutely continuous with respect to the initial mea-
sure, whence one cannot take the usual completion of the filtration by null sets. The two
measures will only be equivalent when restricted to any Wt for fixed t.

Public strategies affect the probability distribution over signal paths via a change of
measure. Let b : A , ∏i∈I Ai → Rd be a given bounded vector-valued mapping, and
denote by f : A→ Rd+1 the map

f (a) , (0, C−1b(a))> , (0, µ(a))> ∀a ∈ A.

Hence, the progressively measurable process (t, w) 7→ f (αt(w)) is bounded, so that the
stochastic exponential

Mα
t , exp

(∫ t

0
f (αs) · dB(s)− 1

2

∫ t

0
‖ f (αs)‖2 ds

)
is a true martingale on the stochastic basis (Wd+1,Wd+1, {Wt}t≥0, P). By the Cameron-
Martin-Girsanov theorem (see e.g. Rogers and Williams, 2000, Theorem IV.38.9), there
exists a unique probability measure Pα on (Wd+1,W◦∞) defined by6

Pα(Γ) , EP[1ΓMα
t ] ∀Γ ∈W◦t+, t ≥ 0.

Hence, for every t, the measure Pα|W◦t+ is equivalent to P|W◦t+ (but Pα, a probability mea-

6In the remainder of this paper we use the following notation consistently. For any separable metric
space X, we denote by ∆(X) the set of Borel probability measures on it. Given m ∈ ∆(X) we denote by Em

the integral operator with respect to m. Hence, for any m-integrable function f : X → R we write

Em( f ) ,
∫

X
f dm =

∫
X

f (x)dm(x) =
∫

X
f (x)m(dx).
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sure on the measure space (Wd+1,W◦∞), need not be equivalent to P), and the process

(1) Bα
0(t) = B0(t), Bα

(1)(t) , B(1)(t)−
∫ t

0
µ(αs)ds

is a standard (d + 1)-dimensional Brownian motion with respect to {W◦t+}t≥0 under Pα.
Then the sample paths of the signal process (X, Y) satisfy

Xt =
∫ t

0
b(αs)ds + CBα

(1)(t),

Yt = Bα
0(t) ∀t ≥ 0.

Hence, under Pα the public signal process X becomes a Brownian motion with drift b(α)
and volatility C. In terms of stochastic analysis the tuple

(Wd+1,Wd+1, {Wt}t≥0, Pα), (X, Y, Bα)

defines a weak solution to the stochastic differential equation{
dX(t) = b(αt)dt + CdW(1)(t), X(0) = 0,
dY(t) = dW0(t), Y(0) = 0,

(2)

where we recall that α can be interpreted as a (progressive) functional of the paths of
(X, Y) and W = (W0, W(1))

> is a standard Brownian motion. The main point of interest
of a weak solution is the induced distribution on the path space, since one does not fix the
stochastic basis (and, in particular, the driving Brownian motion process) a priori.7 This
is the right solution concept when it is not possible to insist on the filtration being the one
generated by the driving Brownian motion, which is the natural situation for games with
imperfect monitoring by a public signal (and not the noise process).

Remark 2.3. When we discretize the game later on and pass to the limit, we need to ac-
count for even less measurability and consider also α as part of the “solution” because
one will not be able to regard it as a given functional of the signal paths. Instead one
can understand it as a control process to be chosen, in which case (2) becomes a controlled
SDE. We demonstrate this concept first in Section 2.3. _

Remark 2.4. The reader will have observed that the construction of the game dynamics
can be easily generalized to allow for a state-dependent volatility matrix C(x). The con-

7In particular, once the existence of a weak solution to a given SDE is settled, there is always a ”canon-
ical” version of it. For an exceptionally clear presentation of the distinction between strong and weak
solutions in stochastic control problems see Yong and Zhou (1999).
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struction of weak solutions would be entirely analogous to the one described above if one
assumes that the data are uniformly elliptic: Assume that there exists a constant c > 0
such that

d

∑
i,j=1

(CC>)ij(x)γiγj ≥ c ‖γ‖2

for all x, γ ∈ Rd. _

2.2 Payoff processes in continuous-time

In continuous time players receive a continuous flow of payoffs given by8

(3) Ri
t(α

i) ,
∫ t

0
φi(αi

s) · dXs +
∫ t

0
ψi(αi

s)ds.

The goal of the players is to maximize their normalized discounted infinite-horizon utility

Ui(α) , EPα
[∫ ∞

0
re−rtdRi

t(α
i)

]
,

which, by Fubini’s Theorem, is equal to

Ui(α) = EPα
[∫ ∞

0
re−rtgi(αt)dt

]
.

The function gi is the expected utility rate function, defined by

(4) gi(ai, a−i) , φi(ai) · b(ai, a−i) + ψi(ai) ∀ai ∈ Ai, a−i ∈ A−i = ∏
j,i

Aj.

2.3 A projection result

Our class of admissible strategies in the game Γ contains implicitly a public correlation
device (the independent Brownian motion B0). In order to appreciate the notion of con-
vergence of discrete-time games on which our arguments are based, it will be useful to
understand the structure of the continuous-time game when the public correlation device
is “averaged out”. This will be made precise in this section.

8As mentioned in Sannikov and Skrzypacz (2010), this is the most general specification for the flow
payoff function in games with imperfect public monitoring.
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For a given public strategy profile α ∈ A = ∏i∈I A
i we define a ∆(A)-valued {Xt}t≥0-

progressively measurable process λα = {λα
t }t≥0 satisfying9

(5) λα
t (a) = Pα [αt = a|Xt] ∀a ∈ A, t ≥ 0.

Formally, one can interpret this process as an extensive-form correlated strategy (Forges,
1986; Lehrer, 1992). However, since there are no periods in a continuous-time game, we
avoid this interpretation and simply call the process λα a correlated strategy process.

For fixed t, λα
t is easily constructed as the regular conditional probability distribution

of the random variable αt, given the information Xt.10 If we took only this definition, we
would obtain an Xt-adapted process, defined up to sets of measure 0 that depend on t.
Since t is a continuous variable, there are uncountably many such null-sets, which even-
tually causes problems in the definition of the process λα = {λα

t ; t ≥ 0}. Nevertheless,
we can rely on results from filtering theory (see Theorem 2.2.1 in Bain and Crisan (2000)),
which guarantee that λα exists as a {Xt}t≥0-progressively measurable process.11 We will
use the correlated strategy process λα to construct weak solutions of the controlled SDE

(6) dX(t) = ∑
a∈A

b(a)λt(a)dt + CdW(t),

where W(·) is a standard d-dimensional Brownian motion relative to a filtration {Gt}t≥0,
and {λt}t≥0 is progressively measurable with respect to {Gt}t≥0 and ∆(A)-valued. Set-
ting Λ(a, t) ,

∫ T
0 λt(a)dt, we say that the pair (Λ, W) are the driving forces in this equa-

tion, whose solution is the signal process X. Λ is a measure-valued random variable on
the space A× [0, ∞), with the properties that Λ(A, T) = T for all T ≥ 0, and the random
variable Λ(a, T) is GT-measurable for every T. Measures with this property are known
as relaxed controls in optimal control theory, and we denote the space of all (deterministic)
relaxed controls by R(A × [0, ∞)) ≡ R.12 All these processes are realized on some un-
derlying probability space (Ω,G, P), which is part of the solution. The next proposition
explicitly constructs one weak solution of this controlled SDE.

9The sigma algebra Xt is the augmented version of the X◦t .
10Since A is finite and the underlying sample space is Polish, the regular conditional probability can be

defined P-almost everywhere. On the null set where it may not be defined one can modify this process to
be the Dirac measure on some arbitrarily chosen action profile a ∈ A. This does not affect the results.

11We just remark that if players ignore the public correlation device in forming their strategy, then the
correlated strategy process is trivial and given by

λα
t (a) = δa(αt) ∀t ≥ 0, a ∈ A

Pα-almost surely.
12More information on relaxed controls is given in Appendix A.1.

–9–



Proposition 2.5. On the set-up (Wd+1,Wd+1,X = {Xt}t≥0, Pα) the signal process X is a weak
solution to the stochastic differential equation

dXt = ∑
a∈A

b(a)λα
t (a)dt + CdB̄α

t ,

where

(7) B̄α
t , Bα

(1)(t)−
∫ t

0
(µλα

s − µ(αs))ds = B(1)(t)−
∫ t

0
µλα

s ds,

and µλα

t , ∑a∈A µ(a)λα
t (a). The process B̄α is a d-dimensional Brownian motion on this set-up.

Proof. By the construction (7), we only have to show that B̄α is a standard Brownian mo-
tion on the given set-up. B̄α is X-adapted since X is so and λα progressively measurable.
For any t > s, we compute that

EPα
[B̄α

t − B̄α
s |Xs] = EPα

[∫ t

s

(
µλα

r − µ(αr)
)

dr|Xs

]
+ EPα

[Bα
(1)(t)− Bα

(1)(s)|Xs]

= 0.

The last equality follows from the following considerations: First, for all s ≤ r ≤ t, the
law of iterated expectations gives us

EPα
[µ(αr)|Xs] = EPα

{
EPα

[µ(αr)|Xr]|Xs

}
= EPα

[
µλα

r |Xs

]
.

Second, since Bα
(1) is a Pα standard Wiener process, measurable with respect to the filtra-

tion {Wt}t≥0, which includes the filtration {Xt}t≥0, we obtain

EPα
[

Bα
(1)(t)− Bα

(1)(s)|Xs

]
= EPα

{
EPα

[
Bα
(1)(t)− Bα

(1)(s)|Ws

]
|Xs

}
= 0.

Hence, B̄α is an {Xt}t≥0-martingale under Pα. Its quadratic variation process under Pα is
the same as that of Bα

(1):

[B̄α, B̄α]t = t Pα-a.s.

This shows that B̄α is a {Xt}-Wiener process under the measure Pα. �

Given the process λα and its induced relaxed control measure Λα(a, T) ,
∫ T

0 λα
t (a)dt,

Proposition 2.5 states that (Wd+1,Wd+1,X, Pα), (X, Λα, B̄α) is a weak solution of the con-
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trolled SDE (6).
In terms of the correlated strategy process {λα

t ,Xt; t ≥ 0}, we can compute the ex-
pected discounted payoff of player i as follows: Using Fubini’s theorem and the law of
iterated expectations, one sees that

Ui(α) = EPα
[∫ ∞

0
rgi(αt)e−rtdt

]
= EPα

[
∑

a∈A
gi(a)

(
r
∫ ∞

0
δa(αt)e−rtdt

)]
= ∑

a∈A
gi(a)

∫ ∞

0
EPα

[δa(αt)]re−rtdt

= ∑
a∈A

gi(a)
∫ ∞

0
EPα{EPα

[δa(αt)|Xt]}re−rtdt

= EPα

{
∑

a∈A
gi(a)

∫ ∞

0
λα

t (a)re−rtdt

}
.

This expression will be crucial for arguing that the sequence of repeated game payoffs
converges to the payoffs in the continuous time model.

3. The discrete-time game

The family of discrete-time games, denoted by Γh, is modeled in the standard way.13

Since we are only concerned with repeated games with public signals and public strate-
gies, we can describe the information sets of the players completely in terms of sequences
of realizations of the signal process. Let {ξn}n∈N be an i.i.d. sequence of random variables
with law ρ ∈ ∆(Rd), satisfying the following assumptions:

Assumption 3.1. The probability law ρ satisfies the following conditions:∫
Rd

xdρ(x) = 0,(8) ∫
Rd

xx>dρ(x) = Id,(9)

supp(ρ) = Rd.(10)

The first two assumptions are normalizations, while the full support assumption of the
measure ρ is needed to support the hypothesis that players only have imperfect observa-

13See Mailath and Samuelson (2006) for an excellent survey of the discrete-time literature.
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tions of the actions of their opponents and cannot infer them directly from the realization
of the new signal. Formally, we will construct the repeated game dynamics such that the
support of the controlled signal distributions is independent of the controls (see eq. (12)
and the ensuing discussion). We now come to the explicit construction of the discrete-time
game.

3.1 The game dynamics in discrete time

Players monitor the evolution of the cumulative signal process

Xh
n =
√

hC
n−1

∑
k=0

ξk+1, Xh
0 = 0,(11)

so that the realization of the signal ξn+1 determines the jump ∆Xh
n , Xh

n+1 − Xh
n of the

cumulative signal process. Let E = (Rd)N denote the sequence space, and B(E) its Borel
σ-algebra. Further, we let P denote the probability law ρ⊗N and Fh

n the filtration gener-
ated by the process Xh, i.e.

Fh
n , σ(Xh

0 , . . . , Xh
n), Fh

0 = {∅, E}.

Hence, on the set-up (E,B(E), {Fh
n}n, P) the process Xh is a Markov chain with stationary

transition probabilities and moments

EP[∆Xh
n|Fh

n] = 0, VarP[∆Xh
n|Fh

n] = hCC>.

The public histories in the discrete-time game Γh are partial sequences of signal realiza-
tions, (x0, . . . , xn) ∈ (Rd)n+1, n ≥ 0. A pure public strategy is a measurable map from
public histories to pure actions. Formally, a discrete-time pure public strategy for player
i is a collection of measurable functions ai,h

n : (Rd)n+1 → Ai. Given the previous signal
realizations x[n] = (x0, . . . , xn), player i responds with the action ai,h

n (x0, . . . , xn) ∈ Ai. A
collection of measurable mappings {ai,h

n }n∈N0 is called a pure public strategy. As a conve-
nient notational device we define {Fh

n}n-adapted processes {αi,h
n }n by

αi,h
n , ai,h

n (Xh
0 , . . . , Xh

n) ∀n ∈N0,

and associate strategy profiles with αh
n , (α1,h

n , . . . , αN,h
n ). The space of pure public strate-

gies in the discrete-time game Γh is denoted by Ai,h. The set of pure public strategy pro-
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files is the Cartesian product Ah , ∏1≤i≤N Ai,h.14

For every action profile a ∈ A, define the probability law νh
a on (Rd,Rd) by

(12) νh
a (Γ) , ρ((θh

a )
−1(Γ)) ∀Γ ∈ Rd,

where

θh
a (u) , θh(a, u) ,

√
hC−1b(a) + u ∀(a, u) ∈ A×Rd.

Given Assumption 3.1, the measure νh
a is seen to satisfy the moment conditions∫

Rd
zdνh

a (z) = EP[θh
a (ξ1)] =

√
hC−1b(a) ,

√
hµ(a),∫

Rd
(z−

√
hC−1b(a))(z−

√
hC−1b(a))>dνh

a (z) = VarP[θh
a (ξ1)] = Id .

By construction, the support of each measure νh
a is the support of ρ and hence indepen-

dent of the action profile as in Abreu et al. (1990).15 To understand this construction bet-
ter, observe that if we take the probability measure Ph

a , (νh
a )
⊗N on the sequence space

(E,B(E)) and run the iid process {ξn} on the set-up (E,B(E), Ph
a) (recall that these map-

pings are the canonical projections), then we see that the law of the individual projections
is changed from ρ to νh

a . Hence, when running the process Xh on this set-up, we see that
its increments ∆Xh

n are still iid, but with mean hb(a) and covariance hCC>. Now we gen-
eralize this setting to general public strategies, not only those which constantly play a
single action profile. Hence, fix a strategy profile in feedback form {ah

n}n≥0 and define a
sequence of stochastic kernels {νh

n}n∈N0 by

(13) νh
n(Γ|x[n]) , νh

ah
n(x[n])

(Γ) ∀n ≥ 0, Γ ∈ B(Rd), x[n] = (x0, . . . , xn) ∈ (Rd)n+1.

Clearly, each measure νh
ah

n(x[n])
(·) is a probability on (Rd,B(Rd)) given x[n] ∈ (Rd)n+1. Us-

14Public strategies are the usual class of strategies in games with public monitoring. Clearly enough,
it is a restrictive class of strategies. However, it has some nice properties. First, it is closed under best-
replies, meaning that if the (N-1) other players use public strategies, there is a best-reply for the remaining
player in public strategies as well. Second, public strategies allow us to use recursive techniques to analyze
equilibrium payoff processes. Third, the probability distribution over the game tree induced by pure private
strategies (i.e. strategies in which player i may condition on his own past decisions, unobservable to the
opponents), can be copied by pure public strategies. Hence, they give rise to the same expected payoff. See
Mailath and Samuelson (2006) for further discussion.

15If the support of the probability measures νh
a shifted with the action profile, the players could in prin-

ciple infer the action profile from the distribution function. The constant support hypothesis makes such a
statistical inference impossible.
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ing our shorthand notation αh for the feedback strategy profile ah ∈ Ah, we let Pαh
denote

the induced probability measure on (E,B(E)), which is uniquely defined by the Ionescu-
Tulcea Theorem (see e.g. Ethier and Kurtz, 1986). Under this measure, the cumulative
signal process Xh is a non-stationary Markov chain whose increments satisfy the moment
conditions (P-a.s.)

EPαh
[∆Xh

n|Fh
n] = hb(αh

n),(14)

VarPαh
[∆Xh

n|Fh
n] = hCC>.(15)

3.2 Viewing Γh as a continuous-time game

We think of the discrete-time game Γh as a strategic interaction in continuous time
t ∈ R+, but where changes in the environment happen only at multiples of a common
mesh size h > 0. Hence, the time points where players observe a new signal and may
adapt their actions are th

n = nh for n ∈ N0. Accordingly, the dynamic variables of the
game are continuous-time processes with piecewise constant sample paths. Specifically,
we denote by X̄h the piecewise constant interpolation of the discrete-time signal process,
i.e.

X̄h
t = Xh

n ∀t ∈ [th
n, th

n+1), n ≥ 0.

The interpolated filtration is defined as Fh
t , Fh

bt/hc for all t ≥ 0. The process αh
t = αh

n

for t ∈ [th
n, th

n+1) denotes the interpolated strategy process. Next, we identify the driving
noise process of the piecewise-constant dynamic. Let

(16) B̄h
t , C−1

bt/hc−1

∑
n=0

(∆Xh
n − hb(αh

n)) = C−1
bt/hc−1

∑
n=0

εh
n,

where

(17) εh
n , ∆Xh

n − hb(αh
n)

is a zero-mean martingale difference under the measure Pαh
. Hence, {B̄h

t }t≥0 is a càdlàg
martingale with respect to the filtration {Fh

t }t≥0 with zero mean and covariance h Id, as
one can easily check using eq. (14). In terms of this martingale noise process we obtain
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the sample path representation of the signal process X̄h as

X̄h
th
n+1

= X̄h
th
n
+ hb(αh

th
n
) + C(B̄h

th
n+1
− B̄h

th
n
).

This is the stochastic difference equation solved by the signal process Xh when the play-
ers play the repeated game with the public strategy profile αh. The process B̄h is the
driving martingale term of this stochastic difference equation, and thus will be our nat-
ural candidate to approximate a standard d-dimensional Wiener process. It is important
to emphasize that we have not changed the definition of the stochastic process Xh itself.
This process is still generated by the equation (11), but its distribution is changed since
the public strategies of the players influence the law of the per-period signal random
variables ξn.

3.3 Payoff processes in the discrete-time game

Given a public strategy profile αh, the cumulative payoff to player i at the beginning
of stage n ∈N0 of the game Γh is defined as

(18) Ri
n(α

i,h) ,
n−1

∑
k=0

φi(αi,h
k ) · ∆Xh

k + h
n−1

∑
k=0

ψi(αi,h
k ).

The functions φi, ψi are the same as in the continuous-time payoff process (3). Players
discount future payoffs at the fixed positive rate r > 0, so that the weight of a period n

payoff rate is
∫ th

n+1

th
n

re−rtdt = δn(1− δ), where δ = δh , e−rh. The scalar δ ∈ (0, 1) can
therefore be interpreted as the discount factor between two consecutive periods in the
discrete-time game. Hence, the random discounted (normalized) payoff of player i in the
discrete-time game is

∞

∑
n=0

(1− δ)δnh−1∆Ri
n(α

i,h).

Recall the definition of the function gi

gi(ai, a−i) , φi(ai) · b(ai, a−i) + ψi(ai),

which corresponds to the expected stage game payoff rate of player i when the increment
distribution of the public signal process Xh is νh

a (·). By Fubini’s theorem, the normalized
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discounted payoff of player i over the infinite time horizon can be expressed as

(19) Ui(αi,h, α−i,h) , EPαh
[

∞

∑
n=0

(1− δ)δngi(αi,h
th
n

, α−i,h
th
n

)

]
.

4. Convergence of the repeated game dynamics

4.1 Preliminary Discussion

The proof of convergence of the family of repeated games Γh proceeds in two steps:
First, we investigate the compactness properties of interpolated data (constructed in Sec-
tion 3.2) describing the discrete-time interaction. This analysis will show that the signal
process, as well as its driving martingale noise process, are tight sequences of random
variables taking values in the space of right-continuous functions having left limits, de-
noted by Dd.16 We endow Dd with the Skorokhod topology under which it becomes a
complete separable metric space (see e.g. Jacod and Shiryaev, 2002, for more details). Its
induced Borel σ-algebra (i.e. the Borel sigma-algebra generated by the open sets of the
Skorokhod topology) is denoted by Dd. Relative compactness allows us to extract subse-
quences which converge in distribution. Moreover, a standard probabilistic construction,
known as the Skorokhod representation, allows us to realize the stochastic processes on
one common probability space (independent of the mesh size h), carrying random vari-
ables which are equal in law to the process (X̄h, B̄h), but which converge not only in law
but even almost surely.17

A delicate point in our convergence analysis is to understand the limit properties of
the family of interpolated discrete-time public strategies. Since the space of pure public
strategies is not weakly compact, we have to embed this space into a larger one, having
the necessary compactness properties. This compactification of repeated game strategies
is a well known tool in optimal control theory (Warga, 1972; Kushner and Dupuis, 2001;
El Karoui et al., 1987). We stick to the control-theoretic terminology and call the result-

16Let (Ω,F, P) be some probability space on which we have defined a sequence of random variables
{Yn}n∈N taking values in some separable metric space (E, d). This sequence is tight if the induced family
of probability measures P ◦ Y−1

n = Pn is tight. A family of probability measures {Pn}n is tight if for each
ε > 0 there exists a compact set K ⊂ E such that infn∈N Pn(K) ≥ 1− ε. A family of probability measures
{Pn}n on a separable metric space (E, d) is tight if and only if it is relatively compact under the topology of
weak convergence of measures on ∆(E). More details can be found in Ethier and Kurtz (1986) or Billingsley
(1999).

17The use of the Skorokhod representation in our convergence analysis is completely justified, since
only the distributional properties of the repeated game dynamics are what can be analyzed with weak-
convergence arguments. The stochastic basis on which the limit processes are realized is not of any impor-
tance.
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ing objects relaxed control measures. Game-theoretically, a relaxed control measure is the
appropriate continuous-time concept of a repeated game correlated strategy.18

Once the convergence of the interpolated data has been settled, we show that the
resulting limit processes solve a SDE identical to the projected SDE (6). Recall from our
discussion in Section 2.3 that this SDE represents the evolution of the cumulative signal
process X once we average over the public correlation device, and the laws of the public
strategies are transported to relaxed control measures. As it will turn out, we will be
able to compute expected payoffs of the players knowing only this projected system. It
will become apparent that exactly this projected system is what can be approximated
by sequences of discrete time games. Some implications of this result on the analysis of
equilibria in continuous-time games are discussed in the concluding section of this paper.

4.2 Relaxed Control Measures

Given a public strategy profile in the discrete-time game αh, define

λh
t (a) , δa(α

h
t ) ∀a ∈ A, t ≥ 0,(20)

and

Λh(a, T) ,
∫ T

0
λh

t (a)dt ∀a ∈ A, T > 0.(21)

Observe that Λh(A, T) = T for every T ≥ 0, so that the marginal distribution on the time
dimension of any induced random measure Λh is Lebesgue measure. Hence, for every h
the family of random variables Λh defines a random element of the space R(A× [0, ∞)) ≡
R, which we already encountered in Section 2.3.19 Using the language introduced in that
section, each random variable Λh is a relaxed control. The triple (X̄h, Λh, B̄h) completely
describes the game dynamics of the discrete-time game Γh when the public strategy αh is
used. It is a random element of the space

Z̃ = Dd ×R×Dd.
18Formally, our notion of convergence is what Neyman (2013) called w∗ convergence of Markov strate-

gies (which is just weak∗ convergence in suitably defined function spaces). Our strategies are more complex
objects than just Markov, which is the reason why we have to use the concept of weak convergence of re-
laxed controls. We share with Neyman (2013) the interpretation of the limit objects as correlated strategies.

19Since players are assumed to use pure public strategies in the game Γh, the measure Λh is just the
occupation measure of the strategy process.
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The following examples illustrate clearly why we have to use relaxed control measures in
our convergence theorem.

Example 4.1. Correlation in the limit. There are two players with common action set Ai =

{0, 1}. For every h > 0 assume that the players use the following pure public strategy

αi,h
n =

{
0 if n is odd,
1 if n is even.

The resulting profile of public strategies αh is clearly admissible in the game Γh. However,
defining the piecewise-constant interpolation αi,h

t as above and looking at sample paths
when the mesh size h goes to 0, shows that this function does not have a classical limit.
This example is well known in optimal control theory, where it is known as the “chatter-
ing phenomenon”. It would be unnatural to rule out such chattering controls. Hence, we
have to use a weaker concept for a limit. The classical remedy to the chattering problem
is to enlarge the space of admissible strategies. Hence, instead of the sequence of public
strategies αh, we consider their “measure” representation (20) and the induced relaxed
control measures Λh (21). It follows from classical results (summarized in Appendix A)
that every sequence of relaxed control measures has a weakly convergent subsequence. It
can be checked that the weak limit of the relaxed control measure induced by this pair of
strategies has a “density” given by

λt(a) =
1
2

δ(0,0)(a) +
1
2

δ(1,1)(a),

and it is clear that this measure in ∆(A) cannot be represented via independent random-
ization of the players. Only a correlated move can generate this distribution. Hence, there
is correlation in the limit of frequent moves.20 _

Example 4.2. Measurability in the limit. Another aspect why we obtain more general ob-
jects in the limit than standard strategies of the continuous-time game is that information
becomes continuous and one cannot decide certain events of the approximating sequence
in the limit anymore. As an example fix some time t ∈ R+ and two profiles a and a′

with different drifts b(a) , b(a′). Suppose that for any h > 0 the profile a is played for

20This “problem” has already been observed in Fudenberg and Levine (1986) where they discuss the
problem of approximating general open-loop strategies via a sequence of piecewise constant strategies.
Since their aim was to assign a natural limit to a sequence of repeated games where players use conventional
strategies in the limit (i.e., there is no public correlation device), they are forced to conclude that not all
sequences of discrete-time games have a “well-defined limit”. Including a public correlation device in
the limit game and using the notion of weak convergence allows us to assign a well-defined limit to the
sequence of repeated games.
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all n < bt/hc and also for n ≥ bt/hc if (∆Xh
bt/hc−1 − hb(a)) · 1 ≤ 0. Else the profile a′

is played. The probability distribution of the increment process ξn under this strategy is
therefore νh

a for n < bt/hc and νh
a′ for n ≥ bt/hc if (∆Xh

bt/hc−1 − hb(a)) · 1 ≤ 0 holds true.
Using the definition of these probability laws given by eq. (12), it is clear that

νh
a

(
{x ∈ Rd|(

√
hCx− hb(a)) · 1 > 0}

)
= ρ({x ∈ Rd|Cx · 1 > 0}),

and thus is independent of h. Below we will see that the public signal X̄h converges to a
continuous (diffusion) process in the limit, that only changes its drift at the fixed time t
with the given probability. Hence, it is not decidable by observing the limit signal process
whether the switch has actually occurred. _

4.3 Main Theorems

Following our previous discussion, we can identify the discrete-time repeated game
with the triple (X̄h, Λh, B̄h), constituting the information process, the relaxed control mea-
sure, and the driving martingale process, respectively. In terms of this triple, we now state
the main results of this paper. The first theorem settles the question in which sense the
family of discrete time games Γh provides a foundation for the continuous-time game Γ.

Theorem 4.3 (Weak convergence of game dynamics). Let (X̄h, Λh, B̄h) be a triple of càdlàg
processes obtained from the sequence of discrete-time games Γh by piecewise constant interpolation.
Then we have the following:

(i) Every such family of processes is tight in the topologies of their respective sample path spaces;

(ii) For a given subsequence (X̄h, Λh, B̄h) (we do not relabel) there exist a subsubsequence and
a probability space (Ω̄, F̄, P̄) such that convergence w.p.1 to a limit (X̄, Λ, B̄) holds. This
limit triple has the following properties:

(ii.a) Λ is a relaxed control measure with almost sure decomposition

Λ({a} × dt) = λt(a)⊗ dt;

(ii.b) Let Ḡt , σ(X̄s, Λ(s), B̄s, s ≤ t), then B̄ is a.s. continuous and is a standard Wiener
process;

(ii.c) The process X̄ is a.s. continuous and the tuple (Ω̄, Ḡ, {Ḡt}t≥0, P̄, X̄, Λ = λt ⊗ dt, B̄)
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is a weak solution of the stochastic differential equation

(22) dX(t) = ∑
a∈A

b(a)λt(a)dt + CdW(t).

This theorem is proven by a sequence of intermediate propositions in Section 6. Tight-
ness of the sequence of relaxed control measures is shown in Section 6.1. The tightness
for the processes X̄h and B̄h is demonstrated in Proposition 6.3. Part (ii) of the theorem
is the well-known Skorokhod representation. (ii.a) is shown in Proposition 6.2. (ii.b) and
(ii.c) are shown in Section 6.2, following Proposition 6.3.

Some discussion on its implications is in order. The game dynamics which we ob-
tain as a weak limit from the interpolated data (X̄h, Λh, B̄h) are defined on a probabil-
ity space which is larger than the one we have used in the explicit construction of the
continuous-time process in Section 2. Neither does the information embodied in this set-
up correspond to the information the players have in the continuous-time game, nor do
the random variables “look” like the ones we have used there. They only describe some
continuous-time game in distribution. Hence, the proper way of interpreting Theorem 4.3
is not one of “strong convergence” in which the driving data of the repeated game liter-
ally converge to a limit repeated game, but rather that the limit objects we obtain are able
to describe a continuous-time repeated game in distribution.21 In particular, the process Λ
which we obtain as the limit of the discrete-time relaxed control Λh does not correspond
to a relaxed control measure as the ones we have constructed in Section 2.3 (recall that
the objects studied there are Xt-adapted, while the limit is Ḡt-adapted, a filtration which
is strictly larger). This said, one may have serious doubts how relevant our theorem ac-
tually is. We can only provide a pragmatic reply to this concern: The expected payoff the
players obtain in the game only depends on the distributions induced on the path space
by the public strategy. As such, Theorem 4.3 says that the family of discrete-time game
dynamics converges in distribution and thus allows us to assign a limit value to each
family of discrete-time games. Viewed from this angle, our convergence analysis really
shows what is possible, in terms of the expected payoffs, when passing to the limit. In
fact, this leads us to the second main result of this paper.

Theorem 4.4 (Weak convergence of expected payoffs). Let {(X̄h, Λh, B̄h); h ∈ (0, 1)} be a
convergent family of random elements of the space Z̃ obtained from the sequence of discrete-time

21This implies that our approach is not able to say something about the relation between the dynamics of
the game in discrete and continuous time. This is also the reason why it does not make sense in our frame-
work to perform an equilibrium analysis, since concepts like sequential rationality cannot be verified when
passing from discrete to continuous time. A different approach has to be chosen to tackle this question. See
Staudigl (2014b).
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games Γh. In terms of the Skorokhod representation (Ω̄, F̄, P̄), (X̄h, Λh, B̄h) (we do not relabel) we
have

lim
h→0

U(αh) = lim
h→0

EP̄
[∫ ∞

0
re−rtg(αh

t )dt
]
= EP̄

[
r
∫ ∞

0
e−rt ∑

a∈A
gi(a)λt(a)dt

]
.

5. Conclusion

We have developed a consistent discrete-time approximation scheme for a class of
repeated games in continuous time in which the players receive information through a
diffusion signal driven by Brownian motion. Convergence of the family of discrete-time
games happens rather generally, when only insisting on weak convergence of the interpo-
lated game dynamics. As we have argued in the main text, weak convergence is sufficient
when one is interested in obtaining a consistent approximation of the total life-long utility
of a player. There are two issues which deserve more attention for future research: First,
it is an open problem to get a general interpretation theorem for the limit set of relaxed
controls in terms of continuous-time correlated strategies. Second, with our weak conver-
gence arguments one is not able to say much about limits of public perfect equilibria of
the game in discrete time. This is a complex topic which has, to our best knowledge, not
been studied at all. A more refined analysis of the continuation value process is needed,
which is initiated in Staudigl (2014b). In that note a general martingale decomposition
for the continuation value process in discrete time is performed, which is the closest pos-
sible representation of the corresponding continuous-time processes. While a complete
convergence proof is out of reach at the moment, the reader will see that the martingale
approach reveals a clean and transparent connection between discrete and continuous-
time game theory. In fact, we strongly belief that within this martingale framework one
is able to prove the convergence of the continuation payoff process to the corresponding
continuous-time process, and we regard this as an important question for future research.

We also remark that the weak convergence approach of this paper can be extended
to stochastic games with public signals. The arguments become, however, much more
involved and can be found in Staudigl and Steg (2014).

As a final remark we would like to point out that our analysis shows that continuous-
time games can be ”interpreted” as the limit objects of sequences of discrete-time games
with frequent actions only if there is a public correlation device available to the play-
ers. Public correlation is frequently used in economics either to facilitate the analysis, or
to capture exogenous uncertainty (”sunspots”) (see e.g. Stokey and Lucas, 1989; Duffie
et al., 1994). Public correlation is also used in Staudigl (2014a) where a general control-
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theoretic framework is developed to compute the set of public perfect equilibrium payoffs
in a continuous-time game. In that note a novel geometric characterization of the set of
perfect public equilibrium payoffs in terms of PDEs and the principal curvatures of a
self-generating set is derived.

6. Proofs

6.1 Compactness of relaxed controls

The main (technical) reason why we are interested in relaxed controls is the following
fundamental property.

Proposition 6.1. The sequence of relaxed control measures {Λh}h>0 is a tight family of random
measures in R. Hence, every subsequence has a weakly convergent subsubsequence.

Proof. See Appendix A.1. �

Given weak convergence we can make use of the Skorokhod representation theorem
(see e.g. Ethier and Kurtz, 1986). This theorem states that we can find a probability space
(Ω̄, F̄, P̄) which carries a sequence of measure-valued random variables Λ̄h, each of which
is equal in law to Λh, but which converges with probability 1 (i.e. P̄-almost everywhere)
to the limit random measure Λ̄ having the same law as Λ. Since all our statements are
just concerned with weak convergence of processes, we usually do not make a notational
distinction between the w.p.1 converging random variables guaranteed by the Skorokhod
representation theorem and the original ones. For the limit Λ we have the following
disintegration result.

Proposition 6.2. Let (Ω̄, F̄, P̄) be a probability space and Λ̄ a random element of R(A× [0, ∞)).
Then there exists λ : [0, ∞)× Ω̄×B(A)→ [0, 1] such that:

(i) λ(t, ω, ·) ≡ λt(·|ω) ∈ ∆(A) for all t ≥ 0, ω ∈ Ω̄;

(ii) For each a ∈ A, λ·(a|·) is B([0, ∞))⊗ F̄-measurable;

(iii) For all sets C ∈ B(A× [0, ∞)) = B(A)⊗B([0, ∞)), the decomposition

Λ(C) =
∫
[0,∞)

∫
A
1C(a, t)λt(da)dt

holds P̄-almost everywhere.
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Proof. See Appendix A.1. �

This result ensures that any random measure Λ, defined as the almost sure limit un-
der the Skorokhod representation of the sequence of relaxed control measures {Λh}h>0,
admits the decomposition

Λ({a} × B) =
∫

B
λt(a)dt ∀B ∈ B([0, ∞))

by (iii), where λ is a measurable process by (ii) with values in ∆(A) by (i). The subsequent
sections will relate this limiting process to a correlated strategy process of the continuous-
time repeated game Γ.22

6.2 Convergence of the signal process and the driving martingale noise

The first result we need for the weak convergence analysis is a compactness property
of the processes {(X̄h, B̄h), h ∈ (0, 1)}. To establish this, we fix a sequence of public strate-
gies {αh; h ∈ (0, 1)}, where αh is the public strategy profile used in the discrete-time game
Γh.

Proposition 6.3. The family of interpolated processes {X̄h}h>0 and {B̄h}h>0 is tight.

Proof. We use Aldou’s tightness criterion to prove the claim (see e.g. Jacod and Shiryaev,
2002, Theorem 4.5, pp. 356). Let Kb , maxa∈A |b(a)|. Then, using (a + b)2 ≤ 2a2 + 2b2, it
follows that

EPαh
[∥∥∥X̄h

t

∥∥∥2
]
= EPαh

∥∥∥∥∥h
bt/hc−1

∑
k=0

b(αh
k) + CB̄h

t

∥∥∥∥∥
2

≤ 2EPαh

∥∥∥∥∥h
bt/hc−1

∑
k=0

b(αh
k)

∥∥∥∥∥
2+ 2EPαh

[∥∥∥CB̄h
t

∥∥∥2
]

≤ 2K2
bt2 + 2t tr(CC>) , Kt.

In the step to the last equality we have used an explicit computation of the norm
∥∥CB̄h

t
∥∥2

,

22As the reader can see from the statement of the Proposition, the disintegration result holds for much
more general action spaces than the finite ones we are considering in this paper. Indeed, our convergence
theorem holds also if each individual action set Ai is a compact separable metric space. More details are
given in Appendix A.1.
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which will be given below. Using Chebyshev’s inequality, we see that for every η > 0

Pαh
[∥∥∥X̄h

t

∥∥∥ ≥ η
]
≤ 1

η2 EPαh
[∥∥∥X̄h

t

∥∥∥2
]
≤ Kt

η2 .

Hence, for every δ > 0 we can choose η >
√

Kt
δ so that

sup
h>0

Pαh
[∥∥∥X̄h

t

∥∥∥ ≥ η
]
≤ δ.

This gives the first condition in Aldou’s tightness criterion. For the second condition we
have to introduce some more notation. Let Th

T be the set of Fh
t stopping times τ which are

less or equal to T with probability 1. As in Billingsley (1999) (Theorem 16.9, pp. 177), we
have to show that for every η, ε, h there exist δ0 and h0 such that if δ ≤ δ0 and h ≤ h0 and
τ ∈ Th

T, then

Pαh
[∥∥∥X̄h

τ+δ − X̄h
τ

∥∥∥ ≥ η
]
≤ ε.

This follows if we can show that

lim
δ→0+

lim sup
h→0

sup
τ∈Th

T

EPαh [
1∧

∥∥∥X̄h
τ+δ − X̄h

τ

∥∥∥] = 0.

Using Jensen’s inequality and the strong Markov property of the process X̄h, the latter
follows from the estimate

EPαh [
1∧

∥∥∥X̄h
τ+δ − X̄h

τ

∥∥∥] ≤ √
EPαh

[∥∥X̄h
τ+δ − X̄h

τ

∥∥2
]

≤
√

Kδ → 0 as δ→ 0+.

The tightness of the process B̄h is established in the same way. Since some of the bounds
used in the argument will be useful later on to give a characterization of the weak limits
of this process, we nevertheless give a sketch of the proof. Recall that

B̄h
t = C−1

bt/hc−1

∑
n=0

εh
n,
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where εh
n = ∆Xh

n − hb(αh
n) a martingale difference sequence under the measure Pαh

with

(23) EPαh [
εh

n(ε
h
n)
>|Fh

n

]
= hCC>.

By definition of the martingale noise process B̄h we have

EPαh
[∥∥∥B̄h

t

∥∥∥2
]
= EPαh

[
C−1

bt/hc−1

∑
n=0

εh
n · C−1

bt/hc−1

∑
n=0

εh
n

]

= EPαh

tr

C−1

(bt/hc−1

∑
n=0

εh
n

)(bt/hc−1

∑
n=0

εh
n

)>
(C−1)>


= tr

C−1EPαh


(bt/hc−1

∑
n=0

εh
n

)(bt/hc−1

∑
n=0

εh
n

)> (C−1)>


= tr

[
C−1

bt/hc−1

∑
n,k=0

EPαh {
εh

n(ε
h
k)
>
}
(C−1)>

]
.

A straightforward computation, using (23) and the law of iterated expectations, shows
that for all n

EPαh
[εh

n(ε
h
n)
>] = hCC>,

and for all k , n

EPαh
[εh

n(ε
h
k)
>] = O the zero matrix in Rd×d.

Hence,

(24) EPαh
[∥∥∥B̄h

t

∥∥∥2
]
= h bt/hc tr(Id) ≤ td.

This gives the first bound needed in Aldou’s tightness criterion, and the second bound is
obtained as in the case of the process X̄h. �

Together with Proposition 6.1 this result shows that the triple {(X̄h, Λh, B̄h); h ∈ (0, 1)}
is tight as a family of random elements in the path space Z̃ = Dd × R×Dd. Under our
choice of norms, the space Z̃ is separable and endowed with a metric which makes it com-
plete. Under these topological conditions, tightness is equivalent to relative compactness,
which means that for every subsequence of {(X̄h, Λh, B̄h); h ∈ (0, 1)} there is a subsub-
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sequence, still denoted by {(X̄h, Λh, B̄h); h ∈ (0, 1)}, converging in distribution to a limit
(X̄, Λ, B̄). Take the converging subsequence {(X̄h, Λh, B̄h); h ∈ (0, 1)} and its weak limit
(X̄, Λ, B̄) as given for the remainder of this section. To complete the proof of Theorem 4.3
it remains to show that

(a) B̄ is a standard Wiener process with respect to {Ḡt}, where Ḡt , σ(X̄s, Λ(s), B̄s, s ≤
t);

(b) X̄ is a.s. continuous;

(c) the tuple (Ω̄, Ḡ, {Ḡt}t≥0, P̄, X̄, Λ, B̄) is a weak solution of the stochastic differential
equation (22).

For every h > 0 the process B̄h is the driving noise of the public signal process X̄h. To
show that the laws of the processes {B̄h}h>0 converge weakly to Wiener law on any [0, T],
we can appeal to Theorem 8 in (Gihman and Skorohod, 1979, p. 197). By (23) we have for
every n ≥ 0

EPαh [
(B̄h

th
n+1
− B̄h

th
n
)(B̄h

th
n+1
− B̄h

th
n
)>
∣∣∣Fh

th
n

]
= EPαh [

(C−1εh
n)(C

−1εh
n)
>
∣∣∣Fh

n

]
= h Id .

Therefore, we only have to show that the following Lindeberg-type condition holds under
Assumption 3.1: For any γ > 0,

(25) EPαh
[bT/hc−1

∑
k=0

1{‖C−1εh
k‖

2≥γ
} ∥∥∥C−1εh

k

∥∥∥2
]
→ 0 as h→ 0.

Consider the k-th summand in (25), or actually its conditional expectation wrt. Fh
k as

we are inside EPαh
[·]. Recalling εh

k = ∆Xh
k − hb(αh

k) =
√

hCξk+1− hb(αh
k) and that the law

νh
αh

k
of ξk+1 under Pαh

conditioned on Fh
k is that of ξk+1 +

√
hC−1b(αh

k) under P (defined

as ρ⊗N) we have

EPαh
[

1{‖C−1εh
k‖

2≥γ
} ∥∥∥C−1εh

k

∥∥∥2
∣∣∣∣Fh

k

]
=
∫

Rd
1{‖√hx‖2≥γ

} ∥∥∥√hx
∥∥∥2

dρ(x)

Pαh
-a.s. Hence, the left-hand side of (25) is

bT/hc
∫

Rd
1{‖√hx‖2≥γ

} ∥∥∥√hx
∥∥∥2

dρ(x) ≤ T
∫

Rd
1{‖x‖2≥ γ

h} ‖x‖
2 dρ(x).
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The last term vanishes as h↘ 0 for fixed γ > 0, since the law ρ has finite second moment;
cf. (9).

Now B̄ has almost surely continuous paths since its distribution, the Wiener law, puts
probability 1 on Wd = C(R+; Rd) ⊂ Dd. Next we show that with probability 1

(26) X̄(t) =
∫ t

0
∑

a∈A
b(a)λs(a)ds + CB̄(t) ∀t ≥ 0,

where λ = {λt; t ≥ 0} is taken from the disintegration of Λ according to Proposition 6.2.
This will prove that (X̄, Λ, B̄) satisfy (22) and that also X̄ has almost surely continuous
paths. To establish (26) we make use of the Skorokhod representation theorem. Hence, we
continue working on a new probability space (Ω̄, F̄, P̄) on which we have defined a family
(X̃h, Λ̃h, B̃h) which, for every h ∈ (0, 1), is a random element of the set Z̃, and whose P̄-law
equals the Pαh

-law of the original triple (X̄h, Λh, B̄h). As the specific probability space is
of no importance for our arguments we stick to the original notation and simply assume
that (X̄h, Λh, B̄h) converge almost surely to (X̄, Λ, B̄).

X̄h and B̄h converge in the Skorokhod topology while the measures Λh converge
weakly to the measure Λ as a random element of the space R. Then, as b is bounded
and t 7→ Λ(a, [0, t)) uniformly continuous, the RHS of

X̄h
t =

∫ bt/hc

0
∑

a∈A
b(a)λh

s (a)ds + CB̄h
t ∀t ≥ 0

converges also in the Skorokhod topology23 to the RHS of (26) (as functions of t ∈ R+).
Hence we have (26) with probability 1.

Finally we show that the weak limit B̄ of the processes B̄h is a martingale wrt. {Ḡt},
where Ḡt , σ(X̄s, Λ(s), B̄s, s ≤ t). We establish this by proving that for fixed times t, s > 0

23The integral converges even uniformly on any compact interval [0, T]. Indeed, since the drift is uni-
formly bounded, we can estimate∥∥∥∥∥

∫ u

t
∑

a∈A
b(a)(λh

s (a)− λs(a))ds

∥∥∥∥∥ ≤2dKb(u− t) ∀u > t ≥ 0.

If we now fix ε > 0 and set δ = ε/4dKb, then
{∫ t

0 ∑a∈A b(a)(λh
s (a)− λs(a))ds; t = kδ ∈ [0, T], k ∈N0

}
converges to 0 uniformly with probability 1 as h → 0, i.e., for all h sufficiently small the set is bounded
by ε/2. By the previous estimate and the choice of δ we can extend the set to all t ∈ [0, T] and it will be
bounded by ε.
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in the limit

EP̄ [Ψt (B̄t+s − B̄t)] = 0,

where Ψt is an arbitrary member of a class of functions generating the σ-field Ḡt.
For any integers p, q, let ϕj(·) ∈ Cb(A×R+; R), j ≤ p, be some bounded continuous

function from A×R+ to R, and define the duality pairing between the sets R and C(A×
R+; R) by24

(ϕ, m)t ,
∫ t

0
∑

a∈A
ϕ(a, t)m(a, dt) ∀t ≥ 0.

Further, let ti, i ≤ q be time points in [0, t], and let Ψ(·) be a bounded continuous function
of the inputs(

(ϕj, m)ti , X̄h
ti

, B̄h
ti

, j ≤ p, i ≤ q
)

.

To simplify notation set

Ψh
t , Ψ

(
(ϕj, Λh)ti , X̄h

ti
, B̄h

ti
, j ≤ p, i ≤ q

)
.

Then

EP̄
[
Ψh

t

(
B̄h

t+s − B̄h
t

)]
= 0,

because B̄h is an {Fh
t }-martingale and Ψt is Fh

t -measurable.
Thanks to our use of the Skorohod representation theorem, we know that with proba-

bility 1 X̄h and B̄h converge in the Skorokhod topology and the limit paths X̄. and B̄. are
continuous. Thus also X̄h

u and B̄h
u converge to X̄u and B̄u, resp., with probability 1 for any

u ∈ R+. Further, with probability 1 the measures Λh converge weakly to the measure Λ
on R(A×R+). Hence, (ϕj, Λh)ti converge to (ϕj, Λ)ti for all j ≤ p, i ≤ q a.s., implying
the convergence Ψh

t → Ψt , Ψ
(
(ϕj, Λ)ti , X̄ti , B̄ti , j ≤ p, i ≤ q

)
a.s.

Analogously to (24) one can show that EPαh [∥∥B̄h
t+s − B̄h

t
∥∥2
]
≤ sd. Consequently, the

family
{

B̄h
t+s − B̄h

t ; 0 < h < 1
}

with their respective laws Pαh
is bounded in L2 and thus

24The term ”duality” is a misuse of terminology which is justified on the following grounds: One can
identify the space of deterministic relaxed controls R as a subset of L∞([0, ∞); ∆(A)). Then taking as test
functions mappings φ ∈ L1([0, ∞); C(A; R)), the pairing (ϕ, m)t would be indeed a dual mapping between
these two function spaces. We take below test functions which are additionally continuous in the time
variable, which is more demanding than just being Lebesgue integrable.
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uniformly integrable, and so is
{

Ψh
t
(

B̄h
t+s − B̄h

t
)

; 0 < h ≤ 1
}

as Ψ(·) is bounded.
It follows that Ψh

t
(

B̄h
t+s − B̄h

t
)

converges even in L1. Hence,

EP̄ [Ψt (B̄t+s − B̄t)] = lim
h→0

EP̄
[
Ψh

t

(
B̄h

t+s − B̄h
t

)]
= 0.

Since the number of functions ϕj and the chosen time points ti were arbitrary, we have

EP̄ [B̄t+s − B̄t|Ḡt] = 0.

The proof of Theorem 4.3 is now complete.

6.3 Convergence of payoffs

The convergence of payoffs is a simple corollary of the convergence of the signal pro-
cess and the continuity of the problem data. Denote by {Λh}h>0 a sequence of relaxed
control measures with decomposition Λh(a, dt) = λh

t (a)dt which converges weakly to a
relaxed control measure Λ. Switching to the Skorokhod representation, there is a proba-
bility space (Ω̄, F̄, P̄) and random variables (X̄h, Λh, B̄h) (we do not relabel) taking values
in the set Z̃ and having the same law as the original triple, but which converge with prob-
ability 1 to the limit (X̄, Λ, B̄).

Then a straightforward manipulation of the expected utility of players gives

U(αh) = EP̄
[

r
∫ ∞

0
e−rtg(αh

t )dt
]

= EP̄

[
r
∫ ∞

0
e−rt

(
∑

a∈A
g(a)λh

t (a)

)
dt

]

= ∑
a∈A

g(a)EP̄
[

r
∫ ∞

0
λh

t (a)e−rtdt
]

= EP̄[Λh(ĝ)],

where ĝ(a, t) , g(a)re−rt, and Λh(ĝ) , ∑a∈A
∫ ∞

0 g(a)λh
t (a)e−rtdt. Since the map ĝ is

bounded and continuous, the convergence of the expected payoff vector U(αh) is now
a straightforward consequence of the weak convergence of the relaxed control measures
Λh and the characterization of weak convergence for a sequence of random measures as
described in Appendix A. As only distributions matter for the expectation, the conver-
gence of expected payoffs is indeed independent of the spaces on which the Λh and Λ are
defined, respectively. This completes the proof of Theorem 4.4.
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Appendix

A. Weak convergence of relaxed control measures

Recall that a sequence of probability measure {µn} on a Polish space E converges
weakly to a limit measure µ ∈ ∆(E), denoted by µn

w→ µ, if for all bounded continuous
functions f : E→ R

lim
n→∞

µn( f ) = lim
n→∞

∫
E

f dµn =
∫

E
f dµ = µ( f ).

A.1 Relaxed control measures

In order to prove convergence of repeated game strategies, we have to embed them
in a larger space which we will describe in this appendix. The results derived in this
appendix hold at a very general level, which shows that many of our convergence argu-
ments can be extended to larger families of games. In particular, the space of stage-game
action profiles A can be an arbitrary compact metric space, so that its Borel σ-algebra
B(A) is countably generated.

Let R(A× [0, T]) be the set of Borel measures Λ on A× [0, T] with the property that
Λ(A × [0, T]) = T = Leb([0, T]) for all T < ∞. If T = ∞, we write R(A × [0, ∞)).
With a slight, but convenient, abuse of notation we write a relaxed control measure Λ ∈
R(A× [0, ∞)) as a bimeasure of the form

Λ(C× D) = Λ(C, D) ∀C ∈ B(A), D ∈ B([0, ∞)).

This notation is justified by the fact (Morando’s Theorem (Morando, 1969), see Appendix
8 in Ethier and Kurtz (1986)) that all relaxed control measures can be disintegrated in the
form

Λ(C× D) =
∫

A×[0,∞)
1C×D(a, t)λt(da)dt,

where the time derivative λ : R+ × A→ [0, 1] is a map such that

(i) λt ∈ ∆(A) ∀t ≥ 0, and

(ii) t 7→ λt(A) is B(R+)-measurable for all A ∈ B(A).

The existence of a time derivative is essentially due to the fact that t 7→ Λ(B × [0, t]) is
absolutely continuous with respect to Lebesgue measure.
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Let ∆(A× [0, T]) denote the space of Borel probability measures on A × [0, T], with
Borel σ-algebra B(A× [0, T]). We denote by dT the Prohorov distance on this set, i.e., for
any two measures γ, ρ ∈ ∆(A× [0, T])

dT(γ, ρ) , inf{ε > 0|γ(C) ≤ ρ(Cε) + ε for all closed C ∈ B(A× [0, T])},

where Cε , {x ∈ R|dist(x, C) ≤ ε}. This distance defines a metric on ∆(A× [0, T]) which
makes it a complete separable metric space (Ethier and Kurtz, 1986, Theorem 3.1.7). For
Λ ∈ R(A× [0, T]) define

(27) Λ̄(T)(C) ,
1
T

Λ(C) ∀C ∈ B(A× [0, T]).

By construction, Λ̄(T) is a probability measure on A× [0, T]. For T = ∞, we define

d̄(γ, ρ) ,
∞

∑
k=1

2−kdn(γ̄(k), ρ̄(k)) ∀γ, ρ ∈ R(A× [0, ∞)).

It can be shown that the mapping d̄ defines a metric for the space of relaxed control mea-
sures R(A × [0, ∞)), and that a sequence {Λn}∞

n=1 in R(A × [0, ∞)) converges to an el-
ement Λ ∈ R(A × [0, ∞)), if and only if dk(Λ̄n

(k), Λ̄(k)) → 0 as n → ∞, if and only if

Λ̄n
(k)

w→ Λ̄(k) for every k ∈N.

Lemma A.1 (Prokhorov). The space of relaxed control measures R(A × [0, ∞)) is weakly se-
quentially compact under the metric d̄.

Proof. Let {Λn}n≥1 be a sequence in R(A× [0, ∞)). We will construct a weakly converging
subsequence by a diagonalization argument.

For every j ≥ 1, {Λ̄n
(j)} is a sequence of Borel probability measures on the compact

metric space A× [0, j]. Hence, {Λ̄n
(j)}n≥1 is tight and the direct half of Prokhorov’s theo-

rem (Billingsley, 1999, Theorem 1.5.1) guarantees that we can extract a weakly converging
subsequence {Λ̄nj}n≥1 such that Λ̄nj

(j)
w→ Λ̄(j) ∈ ∆(A× [0, j]) and therefore Λnj w→ Λ(j) :=

jΛ̄(j) on A × [0, j]). We use this insight to construct a weakly converging subsequence
on A × [0, ∞) via a diagonal procedure. Indeed, let {Λn1}n≥1 be a subsequence such
that Λn1 w→ Λ(1) on A × [0, 1] as n → ∞. Continue with the sequence {Λn1}n≥1 ⊂
R(A × [0, ∞)), but focus on its restriction to the set A × [0, 2] denoted by {Λn1}n≥1.
By Prokhorov’s Theorem there exists a weakly converging subsequence {Λn2}n≥1 ⊂
R(A × [0, ∞)) such that Λn2 → Λ(2). Since {Λn2}n≥1 is a subsequence of {Λn1}n≥1,

it follows that Λn2 w→ Λ(1) as n → ∞. Proceeding in this way, the k-th subsequence
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{Λnk}n≥1 has the property that Λnk w→ Λ(j) for all j = 1, 2, . . . , k. Now we can construct
a diagonal sequence {Λnn}n≥1 with the property that {Λnn}n≥j is a subsequence of the
weakly converging subsequence {Λnj}n≥1 for all j ≤ n. Hence, we have now obtained
a (sub)sequence {Λnk} such that Λnk

w→ Λ(j) on A × [0, j] for all j ∈ N and therefore
Λnk → Λ := limj→∞ Λ(j) under d̄ (Λ is understood as the limit of the monotone sequence
(Λ(j)) where Λ(j) is extended to A× [0, ∞) by setting Λ(j)(B) = Λ(j)(B∩A× [0, j]) for all
B ∈ B(A× [0, ∞)), making Λ a Borel measure on A× [0, ∞)).

Λ ∈ R(A× [0, ∞)), because for any T ∈ [0, ∞), Λnk
w→ Λ(dTe) on A× [0, dTe], and if we

approximate 1t≤T by continuous functions fm on [0, dTe], then
∫

A×[0,dTe] fm(t)dΛnk(a, t)
converges to T uniformly in k as m→ ∞, implying Λ(A× [0, T]) = T. �

Corollary A.2. The space of relaxed controls R(A× [0, ∞)) is compact.

Proof. The space of relaxed controls is a metric space. By Lemma A.1 every sequence in
this space has a converging subsequence. Thus, the space R(A× [0, ∞)) is sequentially
compact and therefore compact. �

Now we extend the weak compactness properties of relaxed control measures to the
stochastic setting. Consider a sequence of random elements {Λn}n≥1 on R(A× [0, ∞)).

We say that the sequence converges in distribution, denoted as Λn d→ Λ, if for all bounded
continuous functions f : A× [0, ∞)→ R+ with compact support we have25

Λn( f ) d→ Λ( f ).

Proposition A.3. Let {Λn}∞
n=0 be a sequence of random relaxed control measures. There exists

a subsequence which converges in distribution to a random element Λ taking values in the set
R(A× [0, ∞)).

Proof. The law of the family of random variables {Λn} is a probability measure on R(A×
[0, ∞)). By Corollary A.2 the space R(A× [0, ∞)) is a compact metric space, and therefore
∆(R(A× [0, ∞)) is compact under the Prokhorov metric. Hence, the sequence {Λn}n≥1

is tight, and therefore relatively compact. �

Consider a sequence of random measures {Λn}n≥1 in R(A × [0, ∞)). After relabel-
ing (if necessary) let {Λn}n≥1 denote the weakly convergent subsequence with limit Λ.
We know that any such limit measure has as marginal distribution on the time axis the
Lebesgue measure. For the proper interpretation of the almost sure limit of a sequence of
relaxed controls, we would like to ensure that there exists an almost sure decomposition of

25Cf. Theorem 16.16 in Kallenberg (2002) for equivalent notions of convergence of random measures.
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the limit measure in the form Λ(C × D) =
∫

C×D λt(da)dt, for some measurable process
λ : [0, ∞)×Ω → ∆(A). The first step to obtain such a process is the following general
fact, which we have learned from Stockbridge (1990). In order to be self-contained, we
provide a proof of this result. Note that in the following Lemma the set A can be an
arbitrary compact separable metric space.

Lemma A.4. Let (Ω,F, P) be a probability space and Λ a random element of R(A × [0, ∞)).
Then there exists λ : [0, ∞)×Ω×B(A)→ [0, 1] such that:

(i) λ(t, ω, ·) ≡ λt(·|ω) ∈ ∆(A) for all t ≥ 0, ω ∈ Ω;

(ii) For each B ∈ B(A), λ·(B|·) is B([0, ∞))⊗ F-measurable;

(iii) For all sets C ∈ B(A× [0, ∞)) = B(A)⊗B([0, ∞)), the decomposition

Λ(C) =
∫

A×[0,∞)
1C(a, t)λt(da)dt

holds w.p.1.

Proof. On the algebra

H , {H = Γ1 × Γ2 × Γ3|Γ1 ∈ B(A), Γ2 ∈ B([0, ∞)), Γ3 ∈ F}

define the set-function

ρ(Γ1 × Γ2 × Γ3) , E
[∫

A×[0,∞)
1Γ1×Γ2(u, t)1Γ3e−tdΛ(a, t)

]
.

Extend ρ to a measure on A× [0, ∞)×Ω, and observe that ρ(A× [0, ∞)×Ω) = 1. Set
Y , [0, ∞) × Ω and Y , B([0, ∞)) ⊗ F. Then the marginal measure µ(·) , ρ(A × ·)
on (Y,Y) is absolutely continuous with respect to the measure Leb× P, and has Radon-
Nikodym derivative dµ = e−t(dLeb× dP). By Morando’s Theorem (see the beginning
of this section) there exists a mapping λ : Y ×B(A) → [0, ∞) such that (i) λ(t, ω, ·) is a
measure on A, (ii) for all B ∈ B(A) the mapping λ(·, ·, B) is B([0, ∞)) ⊗ F measurable,
and (iii) for all Γ1 ∈ B(A), Γ2 ∈ B([0, ∞)), Γ3 ∈ F we have

ρ(Γ1 × Γ2 × Γ3) = E
[∫

A×[0,∞)
1Γ1×Γ2(a, t)1Γ3λt(da)e−tdt

]
.

Hence,

E
[∫

A×[0,∞)
1Γ1×Γ2(u, t)1Γ3e−tdΛ(a, t)

]
= E

[∫
A×[0,∞)

1Γ1×Γ2(a, t)1Γ3λt(da)e−tdt
]
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for all sets Γi in the respective Borel σ-field. Therefore, by almost sure uniqueness of
conditional expectations, it follows that

Λ(Γ1 × Γ2) =
∫

A×[0,∞)
1Γ1×Γ2(a, t)λt(da)dt

holds w.p.1. This almost sure decomposition can be nicely expressed via the formal no-
tation dΛ(a, t) = λt(da) ⊗ dt. Since the time marginal of the random measure Λ is the
Lebesgue measure, it follows that λt(A|ω) = 1 is true P-a.e. �

Applying these general facts to our repeated game contexts, we can draw the follow-
ing conclusions: The previous lemma ensures that any random measure Λ on R(A ×
[0, ∞)) admits the almost sure decomposition

Λ({a} × B) =
∫

B
λt(a)dt ∀B ∈ B([0, ∞), a ∈ A,

where λ is a measurable process with values in ∆(A). This proves Proposition 6.2.

References

Abreu, D., D. Pearce, and E. Stacchetti (1990). Toward a theory of discounted repeated
games with imperfect monitoring. Econometrica Vol. 58(5), 1041–1063.

Alos-Ferrer, C. and K. Ritzberger (2008). Trees and extensive forms. Journal of Economic
Theory 143, 216–250.

Bain, A. and D. Crisan (2000). Fundamentals of Stochastic Filtering. Springer - Stochastic
Modelling and Applied Probability.

Biais, B., T. Mariotti, G. Plantin, and J.-C. Rochet (2007). Dynamic security design: Con-
vergence to continuous time and asset pricing implications. The Review of Economic
Studies 74(2), pp. 345–390.

Billingsley, P. (1999). Convergence of Probability Measures (2nd ed.). Wiley Series in Proba-
bility and Statistics.

Cardaliaguet, P., C. Rainer, D. Rosenberg, and N. Vieille (2013). Markov games with
frequent actions and incomplete information. arXiv:1307.3365v1 [math.OC].
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