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Universitätsstraße 25
D-33615 Bielefeld · Germany

e-mail: jr@uni-bielefeld.de
http://www.imw.uni-bielefeld.de/wp/
ISSN: 0931-6558



� � 2

Abstract

Within this paper we establish the existence of a vNM–Stable
Set for (cooperative) linear production games with a continuum of
players. The coalitional function is generated by r+1 “production
factors” (non atomic measures). r factors are given by orthogonal
probabilities (“cornered” production factors) establishing the core
of the game. Factor r + 1 (the “centralized” production factor)
is represented by a nonantomic measure with carrier “across the
corners” of the market; i.e., this factor is more abundantly avail-
able and the representing measure is not located within the core
of the game.

The present paper continues a series of presentations of this
topic, for Part I,II,III see [1], [2], [3].

We focus on convex vNM–Stable Sets of the game and we
present an existence theorem valid for “Large Economies” (the
term is not quite orthodox). There are some basic assumptions
for the present model which enable us to come up with a com-
prehensive version of an existence theorem. However, in order to
make our presentation tractable (and readable) we wisely restrict
ourselves to a simplified model.

As in our previous models there is a (not necessarily unique)
imputation outside the core such that the vNM–Stable Set is the
convex hull of this imputation and the core. Significantly, this
additional imputation can be seen as a truncation of the “central-
ized” distribution, i.e., the r+1st production factor. Hence there
is a remarkable similarity mutatis mutandis regarding the Char-
acterization Theorem that holds true for the “purely orthogonal
case” ([4],[5]).
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1 Notations and Definitions

Within this paper we present a general existence theorem for convex vNM–
Stable sets for a Semi Orthogonal Game as introduced in [1] and continued
in [2] and [3].

There are some restrictions imposed on the model which are essentially minor.
In the present model, the centralized production factor is available in sectors
Dτ of equal size, in other words, the quantities λτ = λ(Dτ ) (τ ∈ T) are
supposed to be equal, i.e., λτ = 1

t
(τ ∈ T).

We use definitions and notations as provided in [1], [2] and previously in [4]
and [5]. the reader familiar with this setup may well skip this introductory
section . Thus, we consider a (cooperative) game with a continuum of play-
ers, i.e., a triple (I,F, v) where I is some interval in the reals (the players),
F is the σ−field of (Borel) measurable sets (the coalitions) and v (the coali-
tional function) is a mapping v : F → �+ which is absolutely continuous
w.r.t. the Lebesgue measure λ. We focus on “linear production games”, that
is, v is described by finitely many measures λρ, (ρ ∈ {0, 1, . . . , r}) via

(1.1) v(S) := min {λρ(S) | ρ ∈ {0, 1, . . . , r}} (S ∈ F).

or

(1.2) v =
∧{

λ0,λ1, . . . ,λr
}

=
∧
ρ∈R0

λρ ,

(as previously, we use R = {1, . . . , r} and R0 = R ∪ {0}). All measures are
absolutely continuous w.r.t to Lebesgue measure λ. The measures λ1, . . . ,λr

are orthogonal copies of Lebesgue measure on [0, 1]. Accordingly, we choose
the player set to be I := [0, r). The carriers Cρ = (ρ−1, ρ] (ρ = 0, . . . , r)
of the measures λρ are the “cartels” commanding commodity ρ. Further
details of our notation are exactly those presented in [1].

In particular, the measure λ0, (λ0(I) > 1) is assumed to have a piecewise

constant density
•
λ0 w.r.t λ. To this end we consider some family {Dτ}τ∈Tρ

that constitutes a partition of the carrier Cρ of λρ such that
⋃

τ∈Tρ D
τ = Cρ.

λ0 has constant density hτ on each Dτ .

For completenes we repeat the basic definitions of our solution concept, the
vNM–Stable Set (von Neumann-Morgenstern [6]). see also the Part
I,II,III, i.e., [1],[2],[3].

Definition 1.1. Let (I,F, v) be a game. An imputation is a measure ξ
with ξ(I) = v(I). An imputation ξ dominates an imputation η w.r.t S ∈ F
if ξ is effective for S, i.e.,

(1.3) λ(S) > 0 and ξ(S) ≤ v(S)

and if

(1.4) ξ(T ) > η(T ) (T ∈ F, T ⊆ S,λ(T ) > 0)
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holds true. That is, every subcoalition of S (almost every player in S ) strictly
improves its payoff at ξ versus η. We write ξ domS η to indicate domination.
It is standard to use ξ domη whenever ξ domS η holds true for some coalition
S ∈ F.

Definition 1.2. Let v be a game. A set S of imputations is called a vNM–
Stable Set if

• there is no pair ξ,μ ∈ S such that ξ domμ holds true ( “internal sta-
bility”).

• for every imputation η /∈ S there exists ξ ∈ S such that ξ domη is
satisfied ( “external stability”).

The discrete nature of the density of λ0 carries some implications for the
establishment of dominance based on discrete analogues of concepts like im-
putations, coalitions etc. We refer to these analogues as “pre–concepts”.
Again see Part 1, i.e., [1] for the details.

2 The Uniform Model

We simplify the shape of the density
•
λ0 as follows. We assume that the

underlying partition is uniform in the sense that

(2.1) λτ = λ(Dτ ) =
1

t
(τ = 1, . . . , rt)

holds true, in other words, each carrier Cρ is partitioned into t pieces of equal
Lebesgue measure such that

(2.2) Cρ =

ρt⋃
τ = (ρ−1)t+1

Dτ .

As a consequence, for some vector x ∈ �rt
+ and the generated imputation

ϑx, we have ∫
ϑxdλ =

∑
τ∈T

λτxτ =
∑
τ∈T

1

t
xτ ;

hence the set of pre–imputations is slightly simplified to be

(2.3) J(v) =

{
x ∈ �rt

+

∑
τ∈T

xτ = t

}
.

In what follows, we shall refer to the sequences τ as to be the undercutting
if
∑

ρ∈R hτρ < 1 and overstepping if
∑

ρ∈R hτρ ≥ 1 .
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Definition 2.1. 1. Denote by

(2.4)
∨
τ = (

∨
τ 1, . . . ,

∨
τ r)

the/a minimizing sequence, i.e., the sequence with minimal sum

(2.5)
∑
ρ∈R

h∨
τρ

≤
∑
ρ∈R

hτρ (τ ∈ T1 × . . .×Tr) .

2. Let, for σ ∈ R,

(2.6)
∨
Tσ :=

⎧⎨⎩τ ∈ Tσ
∑

ρ∈R\{σ}
h∨
τρ

+ hτ < 1

⎫⎬⎭
and put

(2.7)
∨
T :=

⋃
σ∈R

∨
Tσ .

That is,
∨
T is the set of all indices that belong to some undercutting

sequence.

3. Furthermore let, for σ ∈ R,

(2.8)
∧
Tσ :=

⎧⎨⎩τ ∈ Tσ
∑

ρ∈R\{σ}
h∨
τ ρ

+ hτ ≥ 1

⎫⎬⎭
and put

(2.9)
∧
T :=

⋃
σ∈R

∧
Tσ .

That is,
∧
T is the set of all indices that appear in overshooting sequences

only.

Lemma 2.2. Either |
∨
T| ≥ r + 1 or C(v) is the unique vNM–Stable Set and

not both. In the first case there is some index ◦
τ such that

(2.10)
{∨
τ 1, . . . ,

∨
τ r,

◦
τ
}
⊆

∨
T .

◦
τ is a “next minimizing” index, i.e.,

(2.11) h◦
τ
≤ hτ

(
τ ∈ T \

{∨
τ 1, . . . ,

∨
τ r,
})

.
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Proof:

This follows from Theorem 4.9 in Part I ([1])

q.e.d.

We now specify the basic assumptions for the model under consideration
within this fourth part of our presentation.

Definition 2.3. We call

v =
∧{

λ0,λ1, . . . ,λr
}

=
∧
ρ∈R0

λρ.

a uniform game if the following conditions are satisfied.

1. λ0 is uniform, i.e.

(2.12) λτ = λ(Dτ ) =
1

t
(τ = 1, . . . , rt) .

2. There is
◦
τ ∈ T as described in Lemma 2.2 such that

(2.13)
{∨
τ 1, . . . ,

∨
τ r,

◦
τ
}
⊆

∨
T .

holds true.

In what follows we will always assume that we are dealing with a uniform
game. Thus, in particular the cases treated by Lemma 2.2 and Theorem 4.9
of Part I in which the core turns out to be the unique vNM–Stable Set, are
considered to be settled.

Recall the set of preimputations

(2.14) H = {x ∈ J(v) xa ≥ 1 = v(a) (a ∈ As)}
that serves to provide candidates to generate a vNM–Stable Set. As previ-
ously, we will provide a pre–imputation

◦
x̄ ∈ H such that

(2.15)
◦
H = ConvH

{ ◦
x̄, eTρ

(ρ ∈ R)
}
⊆ H

induces a vNM–Stable Set

(2.16)
◦
H = ConvH

{
ϑ

◦
x̄,λρ(ρ ∈ R)

}
=

{
ϑx x ∈

◦
H

}
.

As a prerequisite we start out by exhibiting a vector x̄ that resembles the
previous candidates for setting up a vNM–Stable Set in Part I,II,III. However,
as it turns out, x̄ is in general just a sub pre–imputation and further work
is necessary in order to exhibit the pre–imputations

◦
x̄ that eventually serve

to generate vNM–Stable Sets as above.
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Definition 2.4. 1. We define a vector x̄ as follows. First of all we put

(2.17) xτ := hτ (τ ∈
∨
T)

such that

(2.18)
∑
ρ∈R

xτρ < 1 whenever
∑
ρ∈R

hτρ < 1 ,

that is, whenever τ is undercutting.

Note that the minimal sequence is undercutting according to our present
convention, i.e.,

(2.19)
∑
ρ∈R

h∨
τ ρ

=
∑
ρ∈R

x∨
τρ

< 1 .

2. Now, for σ ∈ R and all τ ∈
∧
Tσ define

(2.20) xτ := 1−
∑

ρ∈R\{σ}
h∨
τ ρ

such that

(2.21)
∑

ρ∈R\{σ}
h∨
τρ

+ xτ =
∑

ρ∈R\{σ}
x∨
τρ

+ xτ = 1 .

Then in particular

(2.22)
∑
ρ∈R

xτρ = 1

for any sequence τ with

τσ ∈
∧
Tσ and τρ =

∨
τ ρ (ρ ∈ R \ {σ}) .

Remark 2.5. Observe that because of (2.19) and (2.21) we have for σ ∈ R

(2.23) xτ > h∨
τσ

for all τ ∈
∧
Tσ .

Hence, for any sequence τ involving elements h∨
τ•

as well as some xτ for
∧
Tσ

the sum of all elements will exceed 1, e.g.,

xτ1 + xτ2 + x∨
τ 3

+ x∨
τ4

++ . . .+ x∨
τ r

= xτ1 + xτ2 + h∨
τ3

+ h∨
τ 4

+ . . .+ h∨
τ r

≥ xτ1 + h∨
τ 2

+ h∨
τ3

+ h∨
τ 4

+ . . .+ h∨
τ r

= 1
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Moreover, because the sequence
∨
τ = {∨τ ρ}ρ∈R has the minimal sum over all

elements, it follows that for any sequence τ involving elemets of
∧
T as well

as of
∨
T we have

∑
ρ∈R xτρ ≥ 1. Hence, whenever for some sequence τ we

have
∑

ρ∈R hτρ < 1 , then obviously the corresponding relevant vector a⊕

yields a⊕x̄ = 1 as x̄ coincides with h along the coordinates prescribed by
this sequence. We conclude that x̄ satisfies all the equations defining H with
the possible exception that

(2.24) x̄ ∈ J(v) , i.e., x̄ ≥ 0 ,
∑
τ∈T

xτ = t

may be violated.

◦ ˜˜˜˜˜˜ ◦
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3 The Extremals of H

As previously J = J(v) denotes the pre–imputations of the pre–game v.
Using the set As of separating pre–coalitions, we we recall the set

(3.1) H = {x ∈ J xa ≥ v(a) = 1 (a ∈ As)}
of pre–imputations that cannot be dominated via some separating pre–coalition
(SECTION 4 of Part I ). H has been introduced in (4.7.) of Part I (i.e. [1])
and indeed provides a candidate in the special set–up discussed in Parts II
and III. Within the framework establishend in that context, it turned out
that H had just one extremal point apart from the vectors eTρ

(ρ ∈ R).

Within this section we will illuminate the general situation in the context
of uniform games. We will exhibit all the extremals of H which, in general
are finitely many. Of course, all the extremals of the core, i.e., the vectors
eTρ

(ρ ∈ R), are extremals of H as well, we mean to specify the remaining
ones. To this end, define

(3.2) Δ := t−
∑
τ∈T

xτ = t−

⎧⎪⎨⎪⎩
∑
τ∈

∨
T

hτ +
∑
τ∈

∧
T

xτ .

⎫⎪⎬⎪⎭
If Δ < 0 , then we know that

(3.3) H = ConvH
{
eT ρ

(ρ ∈ R)
}

.

That is, H = C(v) equals the pre–core, this is the alternative case men-
tioned in Lemma 2.2 and excluded by our assumtion about the uniform
model. In the uniform case under consideration we have Δ ≥ 0.

Definition 3.1. For Δ ≥ 0 we define

(3.4) x̄σ := x̄+Δeσ (σ ∈
∧
T) .

We are going to prove that

(3.5) H = ConvH
{
eT ρ

(ρ ∈ R) , x̄+Δeσ (σ ∈
∧
T)

}
.

holds true.

Theorem 3.2. Within the uniform model, i.e., for Δ ≥ 0, the pre–imputations
x̄σ are extremals of H.

Proof:

1stSTEP : According to Remark 2.5 we know that x̄ satisfies all the in-
equalities determining H with the exception of the imputation equation∑

τ∈T xτ = 1 and possibly non–negativity. As we assume Δ ≥ 0, we
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know that x̄ ≥ 0 and hence all the x̄σ ∈ H (σ ∈ R) are imputations
as
∑

τ∈T xτ = 1 results from the construction provided in Definition 3.1.

2ndSTEP :

Now we show that every x̄σ is uniquely defined by a set of equations chosen
from the inequalities determining H .

Indeed, pick any relevant vector a⊕ listed in Theorem 3.5 of Part I (i.e. [1])
and let τ 1, . . . , τ r denote the non–zero coordinates. Now, to any such relevant
vector there appear also the permuted versions, say

ā⊕σ :=

(0, . . . , 0, 1, 0 . . . , 0, 1, 0,
1−∑ρ∈R\{σ} hτρ

hτσ

, 0, . . . , 0, 1, 0, . . . , 0) .
(3.6)

with non–zero coordinates at the same positions. Hence there are r equations

(3.7) x̄ā⊕σ = 1 (σ ∈ R) .

satisfied by xτ1 , . . . , xτr . The r coordinates involved are not elements of
∨
T.

Hence the coordinates along τ 1, . . . , τ r of x̄ and the ones of every x̄σ coincide,
actually they equal the coordinates of h. Thus we have also

(3.8) x̄σā⊕σ = 1 (σ ∈ R) .

Now consider the linear system of equations suggested for the r coordinates
under consideration. The coefficient matrix of this system is given by the
vectors ā⊕σ hence it is

(3.9) G :=

⎛⎜⎜⎝
g1, 1, . . . , 1
1, g2, . . . , 1
. . .
1, 1, . . . , gr

⎞⎟⎟⎠
using gσ =

1−∑
ρ∈R\{σ} hτρ

hτσ
>1 . The determinant of this matrix is

g1, 1, . . . , 1
1, g2, . . . , 1
. . .
1, 1, . . . , gr

=

g1 − 1, 0, . . . , 0
0, g2 − 1, . . . , 0
. . .
0, 0, . . . , gr − 1

=
∏
ρ∈R

(gρ − 1) > 0 .

Hence the linear system of equations (3.8) which involves variable xτ1, . . . , xτr

has exactly the solution xτ1 = hτ1 , . . . , xτ r = hτr . These are the coordinates
of x̄ as well as the ones of x̄σ for all σ ∈ R.

Consequently, all coordinates of any x̄σ for indices τ ∈
∧
T are uniquely defined

by equations resulting from the inequalitites of H .

3rdSTEP :



� Section 3: The Extremals of H � 11

However, the coordinates in
∨
T of x̄ are obviously defined by their very defi-

nition which involves equations resulting from inequalities of H as described

in Definition 3.1. But then the coordinates in
∨
T of every x̄σ apart from σ

are uniquely defined by (2.20). Finally coordinate σ is defined by the impu-
tation equation which is equivalent to (2.21), that is, an equation from the
inequalities defining H .

q.e.d.

Theorem 3.3. The extremals of the pre–core
{
eT ρ}

ρ∈R and the pre–impu-
tations {x̄σ}σ∈R are exactly the extremals of H.

Proof:

We know that the pre–core extremals and the {x̄σ}σ∈R are extremals of H .
We have to show that these are the only extremals of H .

To this end, fix some extremal x̂ of H .

1stSTEP :

Let τ = (τ1, . . . , , τr) be a sequence such that

Tτ := {τ1, . . . , , τr} ⊆
∨
T .

Let a⊕ρ be the corresponding separating vectors. The inequalities defining
H in context with the sequence τ and the family a⊕ρ are given by a⊕ρx̂ ≥ 1.
We write xτ := x̂|Tτ for the coordinates of x̂ restricted to the sequence τ .
Then the above inequalities can be described by using the matrix G given
by (3.9) in the 2ndSTEP of the previous proof via

Gxτ ≥ 1 .

Now, inspect the set

(3.10) Hτ = {x ∈ �Tτ x ≥ 0 , Gx ≥ e = (1, , . . . , 1)}

The extremals of this set are given by the projection hτ = h|Tτ and the
unit vectors eτρ . These unit vectors in turn are the projections of the eTρ on
Hτ . Figure 3.1 indicates the situation.

2ndSTEP : Suppose now, that there are at least two indices σ, σ′ ∈ R such
that there is no equation in the corresponding rows of G, i.e., we have

(3.11) a⊕σx̂ > 1 , a⊕σ′
x̂ > 1 .

First assume that x̂ has positive coordinates τσ, τσ′

For ε > 0 let

(3.12) x̂±ε := x̂± εeτσ ∓ εeτσ′ .
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eτσ

eτσ′

eτσ′′

hτ

x+ε

x−ε

x̂τ

Hτ

Figure 3.1: The shape of Hτ
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Then, if ε is sufficiently small, the strict inequalities (3.11) are being pre-
served. The other inequalities or equations are being preserved as the vectors
a⊕ρ have a unit at both coordinates τσ, τσ

′ . See Figure 3.1. Obviously, the
total coordinate sum

∑
τ∈T xτ = 1 is preserved as well. Hence x̂ε and x̂−ε

are imputations and x̂ε, x̂−ε ∈ H . Now x̂ε+x̂−ε

2
= x̂, contradicting our

assumption that x̂ is extremal in H .

Next, it could happen that, say x̂τ1 = 0. Then (inspect Figure 3.1) essentially
the case that x̂|τ = teτ1 for some τ > 1 could pose a problem. Replace τ1 ∈ T1

by some τ ′1 ∈ T1 and repeat the argument. Now, not all the τ ′′1 ∈ T1 can yield
x̂|τ = t′′eτ ′′1 for some t′′ > 1 as it would follow that the total

∑
τ∈T1 xτ > 1

exceeds 1 and x̂ would not be an imputation. Hence we are either back at
the beginning of this step or there is at most one coordinate σ that yields a
strict inequality like in (3.11).

3rdSTEP : So now there is at most one coordinate σ that yields a strict
inequality like in (3.11), let this be coordinate 1. That is we have

(3.13) a⊕1x̂ > 1 , a⊕ρx̂ = 1 (ρ ∈ R \ {1})
(the coordinates correspond to τ , so a⊕ρ has the coordinate 	= 1 at τρ).

Now, again inspecting

(3.14) Hτ = {x ∈ �Tτ x ≥ 0 , Gx ≥ e = (1, , . . . , 1)}
one observes that x̂ must be located on an edge of Hτ connecting h|Tτ and
a unit vector eτ1 ; see again Figure 3.1 .

4thSTEP : Now, by the same argument as used in the second step of the
proof of Theorem 3.2, but reduced to the coefficient matrix G with row σ
deleted, we find that actually x̂τρ = hτρ = for ρ ∈ R \ {1} .

Combining we see that x̂ projected to the coordinates of τ is a convex com-
bination of the projections of h and eτ1 , i.e., for some α, 0 ≤ α ≤ 1, we
have

(3.15) x̂τ = αhτ + (1− α)eτ1 .

Now, replace one τρ ∈
∨
Tρ (ρ > 1) by some τρ′ ∈

∨
Tρ. Repeat the argument

provided in the 2ndSTEP . Now again, if there is a (“second”) inequality
a⊕ρ′x̂ > 1, then we see at once that x̂ is not extremal in H . Otherwise we
have as previously x̂τρ′ = hτρ′ . Continuing this way, we find that

(3.16) x̂τ = αhτ (τ ∈
∨
Tρ) (ρ > 1) .

5thSTEP : Now exchange τ1 ∈
∨
T1 by some τ ′1 ∈

∨
T1. Then exactly as above

we have, for some β > 0,

(3.17) x̂τ ′
= βhτ ′

+ (1− β)eτ ′1 .
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But the coordinates of x̂ in
∨
T2 ∪

∨
T3 ∪ . . .∪

∨
Tr have already been established

to be αhτ , from which we conclude that α = β.

This can be done for all τ1 ∈
∨
T1, so that we come up at this stage with

(3.18) x̂|∨T = αh|∨T + (1− a)eT1

|∨T

for the coordinates of x̂ at
∨
T.

6thSTEP : Within this step we will show that, similarly to (3.18), for the

coordinates in
∧
T we have

(3.19) x̂
|
∧
T

≥ αh
|
∧
T
+ (1− a)eT1

| ∧
T
.

Return to a sequence τ = (τ1, . . . , , τr) such that

(3.20) Tτ := {τ1, . . . , , τr} ⊆
∨
T .

as in the 1stSTEP . We know that

(3.21) x̂
|
∨
T

= αh
|
∨
T
+ (1− a)eT1

| ∧
T
.

Now we replace τ1 ∈
∨
T1 by τ ′1 ∈

∧
T1. Write τ ′ : = (τ ′1, . . . , , τr), then by

definition of
∨
T it follows that

x̂τ ′
= x̂τ ′1e

τ ′1 + α (hτ2 , . . . , hτr)

satisfies

(3.22) 1 ≤ x̂τ ′1 +
∑
τ∈Tτ ′

x̂τ = x̂τ ′1 + α
∑

ρ∈R\{1}
hτρ .

Hence

x̂τ ′1 ≥ 1− α
∑

ρ∈R\{1}
hτρ

= (1− α) + α

⎛⎝1− ∑
ρ∈R\{1}

hτρ

⎞⎠ .

(3.23)

Now let us choose for τ in particular the minimizing sequence
∨
τ as introduced

in Definition 2.1. Then by Definition 2.4, (2.20) we have

(3.24) xτ ′1 = 1−
∑

ρ∈R\{1}
h∨
τ ρ

.
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Combining (3.23) and (3.24) we obtain

(3.25) x̂τ ′1 ≥ (1− α) + αxτ ′1

for all τ ′1 ∈
∧
T1 =

∧
T ∩ T1 .

Next, the same argument can be applied if instead of τ1 we replace, say

τ2 ∈
∨
T2, by some τ ′′2 ∈

∧
T2. Writing τ ′′ : = (τ1, τ

′′
2 , . . . , , τr) and referring to

(3.21), we have this time

x̂τ ′′
=
(
(1− α), x̂τ ′′2 , hτ3 , . . . , hτr

)
.

Again, as τ ′′2 ∈
∧
T2 we have

1 ≤
∑
ρ∈R

x̂τ ′′ρ

= (1− α) + x̂τ ′′2 + α
∑

ρ∈R\{1,2}
hτρ .

(3.26)

Hence

x̂τ ′′2 ≥ α− α
∑

ρ∈R\{1,2}
hτρ

= α

⎛⎝1− ∑
ρ∈R\{1,2}

hτρ

⎞⎠
≥ α

⎛⎝1− ∑
ρ∈R\{2}

hτρ

⎞⎠ .

(3.27)

Specifying τ to
∨
τ once again we now obtain - again consulting (2.20) -

(3.28) x̂τ ′′2 ≥ αxτ ′′2

for all τ ′′2 ∈
∧
T2 =

∧
T ∩ T2 . Of course a similar argument holds true for

ρ ∈ R \ {1, 2}, thus actually

(3.29) x̂τ ′′′ρ
≥ αxτ ′′′ρ

for all τ ′′′ρ ∈
∧
Tρ =

∧
T ∩ Tρ , ρ ∈ R \ {1} .

Combining (3.25) and (3.29) we observe that indeed for the coordinates τ ∈
∧
T

we have

(3.30) x̂ | ∧
T
≥ (1− α)eT1

| ∧
T
+ αx̄ | ∧

T
,

i.e., (3.19). This concludes the present step.
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7thSTEP : In view of (3.30) we can define a nonnegative set of coefficients

(3.31) δ• = {δτ}
τ∈

∧
T

via

(3.32) x̂ | ∧
T

=: (1− α)eT1

| ∧
T
+ αx̄ | ∧

T
+ αΔδ• ,

using the constand Δ that has been specified in (3.2). Then (3.18) and (3.32)
imply

(3.33) x̂ =: (1− α)eT1

+ αx̄ + αΔδ• .

As x̂ is an imputation, we have

t =
∑
τ∈T

x̂τ

= α
∑
τ∈T

hτ + t(1− α) +
∑
σ∈

∧
T

αΔδσ
(3.34)

That is ∑
σ∈

∧
T

αΔδσ = t− t(1− α)− α
∑
τ∈T

hτ

= α

(
t−
∑
τ∈T

hτ

)
= αΔ

(3.35)

in view of the definition of Δ, see (3.2). Thus
∑

τ∈
∧
T
δτ = 1, i.e., δ• is a set

of “convex coefficients”.

Concluding we come up with

x̂ = (1− α)eT1

+ αx̄+ αΔδ•

= (1− α)eT1

+ α

⎛⎜⎝x̄+
∑
σ∈{

∧
T}

δσΔeσ .

⎞⎟⎠
= (1− α)eT1

+ α

⎡⎢⎣∑
σ∈

∧
T

δσ (x̄+Δeσ)

⎤⎥⎦
= (1− α)eT1

+ α

⎛⎜⎝∑
σ∈

∧
T

δσx̄
σ

⎞⎟⎠ ,

(3.36)

that is, x̂ is a convex combination of the extremal vectors exhibited in The-
orem 3.2. As x̂ is assumed to be extremal, this shows that this convex
combination must be a trivial one, i.e., x̂ is one of the extremals already
known.

q.e.d.
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4 The Effective Pre–Imputations

By definition the elements of H are effective for the separating relevant
vectors, i.e., the vectors that are of “first type” a� and of “second type” a	

as introduced in Theorem 3.5 of Part I. Now obviously the question arises
whether effectiveness can be established with respect to the third type of
relevant vectors, i.e., the non-separating vectors a	. Necessarily we must
have a clue to this situation as we want to create a vNM–Stable Set that
calls for using all types of relevant vectors in order to establish internal and
external domination.

As we have seen, the extremals of H apart from those of the core are ob-
tained by constructing x̄ and - as this vector is not a pre–imputation – then

distributing the remaining mass Δ in a natural way over
∧
T . That is, we have

formula (5.7) which we repeat here:

(4.1) H = ConvH
{
eT ρ

(ρ ∈ R) , x̄+Δeσ (σ ∈
∧
T)

}
.

Now, within this section we exhibit those pre–imputations in H that in
additiona are also effective for the relevant vectors of the second type a	.
This amounts to restricting the distribution of the free mass Δ over the basis
vectors {eσ}

σ∈
∧
T

in a suitable way.

We start out by discussing a several examples in detail as this clears the path
to the comprehensiv treatment.

Example 4.1. Let r = t = 2 and consider h = (ε, ε; ε, h4); necessarily
assuming λ0(I) = 1

2
{3ε+ h4} > 1, i.e.

(4.2) h4 > 2− 3ε ; ε <
1

3
.

εε ε h4

1 2 3 4

Figure 4.1: Discussing H in a 2× 2 case

For completeness we list relevant vectors

a⊕ = (0, 1;
1− ε

e
, 0) ; normalized: ā⊕ = (0, ε; 1− ε, 0)

satisfying

e12ā⊕ = ε = c0ā⊕ = v(ā⊕) < (1− ε) = e34ā⊕
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and its twin (0, ε; 1− ε, 0) as well as (1− ε, 0; ε, 0) and (0, 1− ε; ε, 0). There
are two relevant vectors of the first type, namely

a� = (1, 0; , 0, 1) and a© = (0, 1; , 0, 1) .

The inequalities resulting, i.e.,

(4.3) x1 + x4 ≥ 1
x2 + x4 ≥ 1

do not in general determine H nor do they imply H = C(v).

However, we have at aonce
∨
T = {1, 2; 3} ;

∧
T = {4} ,

hence we find for x̄ the coordinates

xτ = hτ = ε (τ = 1, 2, 3).

As x4 = 1 − e we observe that this does not yield an imputation, rather the
only extremal is obtained from the imputation equation

∑
τ∈T xτ = 2; that

is we obtain

(4.4) x̄4 = (ε, ε; ε, 2− 3ε) .

note that this extremal satisfies none of the inequalities provided by (4.3)
with an equation . We have two minimal sequences and clearly

(4.5) H =
{
e12, e34, x̄

}
◦ ˜˜˜˜˜˜ ◦

Example 4.2. Let r = 2 and t = 3. Without specifying h in advance let

(4.6)
∨
T = {1, 2; 4}

∧
T = {3; 5, 6}

1 2 3 4 5 6

Figure 4.2: Discussing H in a 2× 3 case

Considering the relevant vectors a� of the first type we obtain the resulting
inequalities

(4.7)

x1 + x5 ≥ 1

x1 +x6 ≥ 1

x2 + x5 ≥ 1

x2 +x6 ≥ 1

x3+ x4 ≥ 1

x3+ x4 ≥ 1 .
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summing up yields
2
∑
τ∈T

xτ ≥ 6,

that is, the coordinates of x̄ have to satisfy

t = 3 ≥
∑
τ∈T

xτ ≥ 3 .

Consequently all inequalitites involved must be equations. then it follows at
once that

x1 = x2 and x5 = x6 .

therefore, unless h1 = h2, the vectors e123 and e456 are the only solutions of
J(v) to the inequalitiy system above. On the other hand, if we put h1 =
h2 := ε, then it follows that x5 = x6 = 1− ε; hence x̄ has the shape

(4.8) x̄ = (ε, ε, x3; x4, 1− ε, 1− ε)

with x3 + x4 = 1. Now, according to Theorem 3.3 we have

(4.9) x̄ = (ε, ε, 1− h4; h4, 1− ε, 1− ε)

with h4 < 1−ε so that again we have two minimal sequences
∨
τ namely (1, 4)

and (2, 4). We have in this case

(4.10) H =
{
e123, e456, x̄

}
and x̄ is not only the extremal but also satisfies all inequalities (4.7) with an
equation as well as it satisfies the imputation equation

∑
τ∈T xτ = 3 .

◦ ˜˜˜˜˜˜ ◦

Example 4.3. A similar occurrence is observed in the following example
with ρ = 3 and t = 2. We assume

(4.11)
∨
T = {1, 2; 3; 5}

∧
T = {4; 6}

1 2 3 4 5 6

Figure 4.3: Discussing H in a 3× 2 case

The relevant vectors a� of the first type result in inequalities

(4.12)

x1 + x3 +x6 ≥ 1

x2 + x3 +x6 ≥ 1

x1 +x4 + x5 ≥ 1

x2 +x4 + x5 ≥ 1
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which, again by summing up yields

2
∑
τ∈T

xτ ≥ 4.

Again the coordinates of x̄ have to satisfy

t = 2 ≥
∑
τ∈T

xτ ≥ 2 .

Consequently all inequalitites involved must be equations. Then (unless H
equals the core) it follows at once that

x1 = x2 =: ε

and
x3 + x6 = x4 + x5 = 1− ε .

Now again the Extremal Characterization Theorem 3.3 tells us that x3 = h3

and x5 = h5 for the coordinates of x̄; hence we come up with

(4.13) x̄ = (ε, ε; h3, 1− ε− h5; h5, 1− ε− h3) .

Again x̄ is the extremal of

(4.14) H =
{
e12, e34, e56, x̄

}
and it satisfies all the equations resulting from relevant vectors a� as well as
the imputation equation regarding total

∑
τ∈T xτ = 2 .

◦ ˜˜˜˜˜˜ ◦

The above examples show that Δ = 0 may occur in abundance, in which
case we have no problem with effectivenes regarding the third type of relevant
vectors. The following example shows a different picture.

Example 4.4. The example is significant: it turns out that Δ > 0 holds
true. We choose r = 2 and t = 4 and assume

(4.15)
∨
T = {1, 2, 3; 5, 6}

∧
T = {4; 7, 8}

For ε < 1
2

and h4, h7, h8 ≥ 1− ε > 1
2

we represent λ0 by

h = (ε, ε, ε, h4; ε, ε, h7, h8) .

Then that λ0(I) > 1 is guaranteed by

5ε+ h4 + h7 + h8 > 4 i.e., by h4 + h7 + h8 > 4− 5ε .

In particular, if we choose

(4.16) h = (ε, ε, ε, 1; ε, ε, 1, 1) ,
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1 2 3 4 5 6 7 8

Figure 4.4: H in a 2× 4 case with Δ > 0

then

(4.17)
1

5
< ε <

1

2
is equivalent to 1− ε > ε , λ0(I) > 1 .

There are several minimal sequences all of them calling for

x4 = x7 = x8 = 1− ε ,

that is

(4.18) x̄ = (ε, ε, ε, 1− ε; ε, ε, 1− ε, 1− ε)

with a total sum∑
τ∈T

xτ = 5ε+ 3(1− ε) = 3 + 2ε < 4 = t .

Thus, x̄ is not an imputation. We find Δ = 4 − (3 + 2ε) = 1 − 2ε > 0 and
hence the three extremals

x̄4 = (ε, ε, ε, 2− 3ε; ε, ε, 1− ε, 1− ε)

x̄7 = (ε, ε, ε, 1− ε; ε, ε, 2− 3ε, 1− ε)

x̄8 = (ε, ε, ε, 1− ε; ε, ε, 1− ε, 2− 3ε) .

(4.19)

Therefore

(4.20) H =
{
e1234, e5678, x̄4, x̄7, x̄8

}
.

Now the decisive relevant vectors are those of the type a	, e.g.

a	 = a	158 =

(
1, 0, 0, 0;

ε

1− ε
, 0, 0,

1− 2ε

1− ε

)
.

The extremal x̄8 yields

x̄8a	 =
2− 6ε(1− ε)

1− ε
=

2

1− ε
− 6ε .

computing the zeros of the quadratic functin shows that

(4.21) x̄8a	 =

{
> 1 0 < ε < 1

3

< 1 1
3
< ε < 1

2

}
.
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That is, the extremals of H cannot serve for external domination via a	

for the values 1
5
< ε < 1

3
. However, we are successfull when turning to the

barycenter of H . Indeed, let

(4.22)
◦
x̄ :=

1

3

(
x̄4 + x̄7 + x̄8

)
=

(
ε, ε, ε,

4− 5ε

3
; ε, ε,

4− 5ε

3
,
4− 5ε

3

)
,

then we obtain

(4.23)
◦
x̄a	 =

4− 10ε(1− ε)

3(1− ε)
=

4

3(1− ε)
− 10

3
ε

which yields

(4.24)
◦
x̄a	 < 1 for

1

5
< ε <

1

2
.

In view of the specification (4.17) this is exactly the condition we need for to
make sure that

◦
x̄ can be employed for external domination via the relevant

vector a	.

Now within the context of this example, we turn to the general case, i.e.,
instead of (4.16) we choose

(4.25) h = (h1, h2, h3, 1; h5, h6, 1, 1) ,

with

(4.26) h1 + h2 + h3 + h5 + h6 > 1

in order to ensure λ0(I) > 1 and

(4.27) hτ1 + hτ2 < 1 (τ1 ∈ T1, τ2 ∈ T2).

in order to ensure

(4.28)
∨
T = {1, 2, 3; 5, 6}

∧
T = {4; 7, 8}

as previously. We assume that the minimizing sequence is represented by
(h1, h5), i.e.,

(4.29)
∨
τ = (1, 5) .

Then we obtain

(4.30) x̄ = (h1, h2, h3; 1− h5; h5, h; 6, 1− h1, 1− h1)

which implies

Δ = 4− [(h1 + h2 + h3 + h5 + h6) + 2(1− h1) + (1− h5)]

= 1 + h1 − (h2 + h3 + h6) .
(4.31)
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Now we attempt to distribute the mass Δ on coordinates τ = 4, 7, 8 ∈
∧
T

obtaining a vector

(4.32)
◦
x̄ = x̄+Δ4e

4 +Δ7e
7 +Δ8e

8

with Δ4 +Δ7 +Δ8 = 1 . Suitably we choose Δ7 = Δ8 =: Δ2 and Δ4 =: Δ1

this way enumerating the terms by ρ = 1, 2 ∈ R. Then we consider

(4.33)
◦
x̄ = x̄+Δ1e

4 +Δ2e
7 +Δ2e

8 ; Δ1 + 2Δ2 = 1 .

Recall that x̄ and c0 coincide on coordinates τ ∈
∨
T, they equal hτ . Hence, if

we consider a relevant vector a	 and its correponding sequence τ , then along
this sequence the vectors x̄ and c0 differ exactly on the last coordinate, that

is, τ 2 ∈
∧
T2. The same is obviously true for

◦
x̄. E.g, we have along coordinates

158 (i.e., inspecting a	158)

◦
x̄158 = c0158 +

(◦
x8 − c08

)
e8

= c0158 + ((1− h1) + Δ2 − 1) e8

= c0158 + (Δ2 − h1)e
8

.

(4.34)

Similarly, i.e., inspecting the sequence 157 that is attached to a	157,
◦
x̄157 = c0157 +

(◦
x7 − c07

)
e7

= c0157 + ((1− h1) + Δ2 − 1) e7

= c0157 + (Δ2 − h1)e
7

,

(4.35)

while for 541 that is attached to a	514,
◦
x̄514 = c0514 +

(◦
x4 − c04

)
e4

= c0514 + ((1− h5) + Δ1 − 1) e4

= c0514 + (Δ1 − h5)e
4

.

(4.36)

Now, scalar multiplication with the relevant a	 yields
◦
x̄a	158 =

◦
x̄158a

	158 = c0158a
	158 + (Δ2 − h1)a

	158
8

= c0a	158 + (Δ2 − h1)a
	158
8

= 1 + (Δ2 − h1)a
	158
8 .

(4.37)

Analogously
◦
x̄a	157 =

◦
x̄157a

	157 = c0157a
	157 + (Δ2 − h1)a

	157
7

= 1 + (Δ2 − h1)a
	157
7 ,

(4.38)
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and finally
◦
x̄a	514 =

◦
x̄514a

	514 = c0514a
	514 + (Δ1 − h5)a

	514
4

= 1 + (Δ1 − h5)a
	514
4 .

(4.39)

Therefore, if we can find Δ1,Δ2 such that

(4.40) Δ1 + 2Δ2 = Δ , Δ2 < h1 , Δ1 < h5 ,

then
◦
x̄a	158 =

◦
x̄158a

	158 < 0 ,
◦
x̄a	157 =

◦
x̄157a

	157 < 0 ,
◦
x̄a	514 =

◦
x̄514a

	514 < 0 .

(4.41)

That is, we see, that

(4.42)
◦
x̄a	 < 0 ,

for the relevant vectors of the third type listet in (4.41). This inequality
follows for all other relevant vectors of the third type. E.g., for a	268 we
come up immediately with

(4.43)
◦
x̄268a

	268 = c0268a
	258 + (Δ2 − h1)a

	268
8 < 1

as coordinate 8 is again the only one for c0 and
◦
x̄ to differ. Hence, (4.42)

holds true for any relevant vector of the third type.

(4.44)
◦
x̄a	 < 0 ,

But condition (4.40) can be

satisfied as in view of (4.26) we have

h1 + h2 + h3 + h5 + h6 > 1

h5 + 2h1 > 1 + h1 − h2 − h3 − h6

h5 + 2h1 > Δ

h5 + 2h1 > Δ = Δ1 + 2Δ2

(4.45)

allows for a choice of Δ1,Δ2 satisfying (4.40). This way we have found a
candidate

◦
x̄ for the third member of a vNM–Stable Set.

◦ ˜˜˜˜˜˜ ◦

Based in these considerations we are now in the position to formulate the

general theorem. For simplicity we assume hτ = 1 for τ ∈
∧
T .
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Definition 4.5. 1. Given the minimizing sequence
∨
τ let

(4.46) h�
σ :=

∑
ρ∈R\{σ}

h∨
τρ

.

2. We say that a vector Δ = (Δ1, . . . ,Δr) is an admissible distribution
of mass Δ if

(4.47) Δ =
∑
ρ∈R

∧
tρΔρ and Δρ < h�

ρ (ρ ∈ R).

Theorem 4.6. There exists
◦
x̄ ∈ H such that

(4.48)
◦
x̄a	 < 1

holds true for any relevant vector a	 of the second type. this vector is induced
by an admissible distribution of mass Δ over the vectors {eσ}

σ∈
∧
T

.

Proof: Denote
∧
tρ := |

∧
Tρ| (ρ ∈ R).

Then, because of λ0(I) > 1 we have

(4.49) λ0(I) =
∑
τ∈

∨
T

hτ +
∑
ρ∈R

∧
tρ > t .

Next, using the minimizing sequence
∨
τ and the definition

h�
σ :=

∑
ρ∈R\{σ}

h∨
τρ

,

we have (using some self explaining notation)
(4.50)
x̄ = (h1, . . . , hρ1, 1− h�

1, . . . 1− h�
1; . . . ; hρr−1, . . . hρr , 1− h�

r , . . . , 1− h�
r) .

The total mass is

(4.51)
∑
τ∈T

xτ =
∑
τ∈

∨
T

hτ +
∑
ρ∈R

(1− h�
ρ)

∧
tρ

and hence Δ computes to

(4.52) Δ = t−

⎛⎜⎝∑
τ∈

∨
T

hτ +
∑
ρ∈R

(1− h�
ρ)

∧
tρ

⎞⎟⎠ .

In view of (4.49) we have

t−
∑
τ∈

∨
T

hτ <
∑
ρ∈R

∧
tρ ,
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an inserting this in (4.52) we obtain

(4.53) Δ <
∑
ρ∈R

∧
tρ −
∑
ρ∈R

(1− h�
ρ)

∧
tρ =

∑
ρ∈R

h�
ρ

∧
tρ

Therefore we can choose a set of reals Δ = (Δρ)ρ∈R such that

(4.54) Δ =
∑
ρ∈R

∧
tρΔρ and Δρ < h�

ρ

holds true, that is, we can choose an admissible distribution of mass Δ. Using
this distribution we define

◦
x̄ : = x̄+

∑
ρ∈R

Δρ

∑
τ∈

∧
Tρ

eτ

= (h1, . . . , hρ1 , 1− h�
1 +Δ1, . . . 1− h�

1 +Δ1; . . .

. . . ; hρr−1, . . . hρr , 1− h�
r +Δr, . . . , 1− h�

r +Δr)

(4.55)

which is an imputation in view of (4.47). Now consider a relevant vector a	

with corresponding sequence τ = (τ1, . . . , τr, τ r) with some τ r ∈
∧
Tr. Then,

as
◦
x̄ and c0 coincide on coordinates τ ∈

∧
T, we have

◦
x̄a	 = c0a	 + (

◦
xτr − c0τr)a

	
τr

= 1 + ((1− h�
r) + Δr − 1)a	τr

= 1 + (Δr − h�
r)a

	
τr

< 1

(4.56)

the strict inequality in the last line resulting from (4.47).

We may have to consider relevant vectors with corresponding sequences τ
that are obtained by permuting the ordering, so that the element say τ r

appears in
∧
Tρ instead of

∧
Tr. This problem is obviously solved by replacing

r by ρ in (4.56).

q.e.d.

Corollary 4.7. Let the convex (relatively open) set

◦
H :=

⎧⎪⎨⎪⎩ ◦
x̄ ∈ H

◦
x̄ := x̄+

∑
ρ∈R

Δρ

∑
τ∈

∧
Tρ

eτ ,

∑
ρ∈R

∧
tρΔρ = Δ, Δρ < h�

ρ (ρ ∈ R)

}
	= ∅

(4.57)

denote the elements of H that are obtained by an admissible distribution of
mass Δ. Then

◦
H consists exactly of the strictly effective pre–imputations of

H.
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Remark 4.8. Any
◦
x̄ ∈

◦
H together with the pre–core can dominate any

other element x̂ ∈ H that is located within the convex hull of the xσ.
Consequently, the convex hull of such an

◦
x̄ ∈

◦
H and the core can dominate

any element of H that is not located within this convex hull.

For, recall that all preimputations in
◦
H coincide on coordinates in

∨
T, i.e.,

x̂τ =
◦
xτ = hτ (τ ∈

∨
T) ,

hence the only coordinate for these vectors to differ along a sequence τ =

(τ1, . . . , τr, τ r) defining a vector a	 is τ r ∈
∧
T.

Therefore, given x̂,
◦
x̄ ∈

◦
H , choose some τ r ∈

∧
Tr (we assume r for conve-

nience) such that
x̂τr >

◦
xτr ,

then choose τ1, . . . , τr ∈
∨
T arbitrary such that

x̂τρ =
◦
xτρ = hτρ (ρ ∈ R) .

then, for sufficiently small ε1 > 0 the imputation

◦
x1 := ε1e

T1

+ (1− ε1)
◦
x̄ ∈

◦
H

exceeds x̂ at coordinates τ1 and τ r. For, clearly, ε1 can be choosen such
that (“strict”) effectiveness is preserved, i.e., such that a	 ◦

x1 < 1 holds true.
Continuing this way we see that for sufficiently small εr > 0

◦
xr := εre

Tr

+ (1− εr)
◦
xr−1 ∈

◦
H

exceeds x̂ at coordinates τ1, . . . , τr, τ r and still effectiveness is preserved, i.e.,
a	 ◦

xr < 1 holds true. Thus we have

(4.58)
◦
xr doma� x̂ .

To prove the somewhat more general claim at the beginning of this remark,
if ̂̂x is an imputation in H then ̂̂x = αe + (1 − α)x̂ with a suitable core
element e and some x̂ as above. Obviously αe+(1−α)

◦
x̄ serves to dominatê̂x via the same a	.

Thus we observe that any
◦
x̄ ∈

◦
H suggests a vNM–solution G to be con-

structed via
G := ConvH

{
eT1

, . . . , eTr

,
◦
x̄
}

.

◦ ˜˜˜˜˜˜ ◦
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5 The vNM–Stable Set

The results of the previous sections suggest obvious candidates for the con-
struction of a vNM–Stable Set. One has to compute the vector x̄ and then
distribute the remaining mass Δ in an admissible way, that is, take an ele-
ment of

◦
H .Tthe convex hull of this element and the core extremals will yield

the desired vNM–Stable Set.

Theorem 5.1. 1. Let τ̂ be an undercutting sequence, i.e.,∑
ρ∈R

hτ̂ρ < 1

and let a⊕ be the corresponding relevant vector of the second type. Then
a⊕ is efficient for any x̂ ∈ H, more precisely,

(5.1) x̂a⊕ = 1 = v(a⊕) .

2. Next, let τ̂ be an undercutting sequence and let τ ∈
∨
T such that τ =

(τ̂ , τ ) is overshooting. Let a	 denote the relevant vector of the third
type corresponding to τ . Then

(5.2) x̄a	 < 1 ,

that is, a	 is (“strictly”) effective for x̄ (but x̄ is not necessarily a n
imputation).

3. Finally, let τ = (τ̂ , τ) and a	 be chosen as in the second item above.

Then, for
◦
x̄ ∈

◦
H

(5.3)
◦
x̄a	 < 1 ,

that is, a	 is (“strictly”) effective for (the imputation)
◦
x̄.

Proof:

1stSTEP : Obviously by our construction we have for the extremal points
of H

(5.4) x̄σā⊕ = x̄ā⊕ = 1 (σ ∈ R) ;

thus item 1 is an immediate consequence.

2ndSTEP :

Next, regarding x̄ as constructed in Definition 2.4 we have

x̄a	 = (hτ̂1 , . . . , hτ̂r , xτr)

(
1, . . . , 1,

(hτ̂1 + . . .+ hτ̂r−1 + hτr)− 1

hτr − hτ̂r

,
1− (hτ̂1 + . . .+ hτ̂r)

hτr − hτ̂r

,

)
= hτ̂1 + . . .+ hτ̂r−1 + αhτ̂r + βxτr ,

(5.5)
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where α, β are the last two coordinates of a	 which are positive and sum up
to 1. Hence, if hτ̂r ≥ xτr , then

x̄a	 ≤
∑
ρ∈R

hτ̂ρ < 1 .

On the other hand, if hτ̂r < xτr , then

x̄a	 ≤
∑

ρ∈R\{r}
hτ̂ρ + xτr < hτ1 +

∑
ρ∈R\{1,r}

hτ̂ρ + xτr = 1 ,

in view of equations (2.20) (2.21), or (2.22).

3rdSTEP : Follows from 4.8.

q.e.d.

Naturally we define

(5.6)
◦
ϑ̄ := ϑ

◦
x̄ (

◦
x̄ ∈

◦
H) .

We fix some
◦
x̄ ∈

◦
H . Then a candidate for a vNM–Stable set is provided by

(5.7)
◦
H := ConvH

{ ◦
x̄ , eT ρ

(ρ ∈ R)
}

.

and

(5.8)
◦
H = ConvH

{ ◦
ϑ̄ , λρ (ρ ∈ R)

}
.

Now we have

Theorem 5.2. The set
◦
H, i.e., the set of imputations induced by

◦
H, is

internally stable.

Proof:

We can more or less directly appeal to Theorem 3.11 of Part II as
◦
H has just

one extremal apart from the eTρ . For completenes we repeat the argument.

1stSTEP : Whenever a⊕ is a relevant vector of the first or second kind (i.e.
a separating pre–coalitions ), then we know that xa⊕ ≥ 1 = v(a) holds
true. Hence, no separating relevant vector induces a coalition that yields a
domination. Therefore, we can restrict ourselves to domination via the non–
separating relevant vectors of the third type a	 described by items 2, 3 of
Theorem 5.1.

These vectors ā	 are given by a sequence (τ̂1, . . . , τ̂r, ¯̄τr) by
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aτ̂ρ = 1 (ρ ∈ R \ {r})
aτ̂r =

(hτ̂1 + . . .+ hτ̂r−1 + hτr)− 1

hτ r
− hτ̂r

aτr =
1− (hτ̂1 + . . .+ hτ̂r)

hτr − hτ̂r

,

aτ = 0 otherwise

(5.9)

with
hτ̂1 + . . .+ hτ̂r < 1 < hτ̂1 + . . .+ hτ̂r−1 + hτr .

There also the permuted versions a�σ, but for simplicity we assume that
domination takes place via some vector given by (5.9).

Introduce vectors a� of first type with value 1 at coordinates corresponding
to

hτ̂1 , . . . , hτ̂r−1, hτr

and vector a⊕ with non–vanishing coordinates at coordinates corresponding
to

hτ̂1 , . . . , hτ̂r−1, hτ̂r

Now according to Remark 2.5 we have for the vector x̄

(5.10)
∑

ρ∈R\{r}
xτ̂ρ + xτr ≥ 1 that is x̄a� ≥ 1 .

The vector
◦
x̄ exceeds x̄ exactly at coordinate τ r. Hence,

(5.11)
◦
x̄a� ≥ x̄a� ≥ 1 .

The vectors of
◦
H are of the form

(5.12) x =
∑
ρ∈R

αρe
T ρ

+ α
◦
x̄

with a “convex” coefficients (α1, . . . , αr, α) (i.e., nonnegative and summing

up to 1). Suppose now that x doma� y holds true for some x, y ∈
◦
H . Then

y is of a similar form, say,

(5.13) y =
∑
ρ∈R

βρe
T ρ

+ β
◦
x̄ ,

again with a “convex” coefficients (β1, . . . , βr, β).

2ndSTEP : Recall that
◦
x̄ looks like x̄ along the positive coordinates of a�.

Now we write

(5.14) x =

(∑
σ∈R

ασ

)∑
ρ∈R

αρ∑
σ∈R ασ

eT ρ

+ α
◦
x̄ =: (1− α)e+ α

◦
x̄ ;
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in other words, any x ∈ H is a convex combination of a pre–core element
and

◦
x̄. Note that any eT ρ

(ρ ∈ R) and hence any vector e of the pre–core
satisfies

(5.15)
∑
ρ∈R

eτ̂ρ = 1 ,

no matter whether the separating sequence ends up with or without τ r.

Similarly

(5.16) y = (1− β)e′ + β
◦
x̄ .

Now, if domination takes place between x and y via a	, then

(5.17) (1− α)e+ α
◦
x̄ > (1− β)e′ + β

◦
x̄

for coordinates (τ̂1, . . . , τ̂r, τ r).

First of all, consider the separating sequence obtained by omitting τ̂r, i.e.,
(τ̂1, . . . , τ r). Then, according to (5.11) and (5.15) we find by taking the sum∑

ρ∈R\{r} xτ̂ρ + xτr ≥ 1 on both sides and writing ξ :=
∑

ρ∈R\{r} xτ̂ρ + xτr

(1− α) + αξ > (1− β) + βξ

i.e.

α(ξ − 1) > β(ξ − 1)

hence necessarily

α > β .

Now we perform the same operation along the sequence (τ̂1, . . . , τ̂r) not in-
cluding τ ρ. Now coordinate τ r is not involved and we have η :=

∑
ρ∈R xτ̂ρ <

1 can be employed so that summation along the sequence now produces

(1− α) + αη > (1− β) + βη

i.e.

α(η − 1) > β(η − 1)

α(1− η) < β(1− η)

hence

α < β .

This contradiction proves that domination cannot take place inside H via a
non–separating sequence resulting from a relevant vector described by (5.9).

q.e.d.

Theorem 5.3. 1. Let ā⊕ be a separating vector of the second kind with

a sequence τ̂ of positive coordinates (all elements of
∨
T). Let

◦
x be an

imputation such that

(5.18)
∑
ρ∈R

◦
xτ̂ρ <

∑
ρ∈R

hτ̂ρ .
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Then there exists
◦
x̂ ∈

◦
H such that

(5.19)
◦
x̂ domā⊕

◦
x .

2. Let ϑ be an imputation with minima vector m. If

(5.20)
∑
ρ∈R

mτ̂ρ <
∑
ρ∈R

hτ̂ρ ,

then, for sufficiently small ε > 0, there exists an ε–ā⊕ relevant coalition

T ε = T εā⊕ and
◦
x̂ ∈ H such that

◦
ϑ̂ := ϑ

◦
x̂ yields

(5.21)
◦
ϑ̂ domT ε ϑ .

Proof:

1stSTEP : Assume w.l.g. that r minimizes the quotients
◦
xτ̂ρ

hτ̂ρ
(ρ ∈ R),

i.e,
◦
xτ̂r

hτ̂r
≤

◦
xτ̂ρ

hτ̂ρ
, or

(5.22)
◦
xτ̂r

hτ̂r

hτ̂ρ ≤ ◦
xτ̂ρ (ρ ∈ R) .

Define α :=
◦
xτ̂r

hτ̂r
< 1. Now because of

1−
∑
ρ∈R

◦
xτ̂ρ > 1−

∑
ρ∈R

hτ̂ρ

it follows that (
1−∑ρ∈R

◦
xτ̂ρ

)
+

◦
xτ̂r(

1−∑ρ∈R hτ̂ρ

)
+ hτ̂r

>

◦
xτ̂r

hτ̂r

= α ,

or, equivalently

1−∑ρ∈R\{r}
◦
xτ̂ρ

1−∑ρ∈R\{r} hτ̂ρ

> α ,

1−
∑

ρ∈R\{r}

◦
xτ̂ρ > α

⎛⎝1− ∑
ρ∈R\{r}

hτ̂ρ

⎞⎠
which is

(5.23) 1− α >
∑

ρ∈R\{r}

(◦
xτ̂ρ − αhτ̂ρ .

)
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Because of (5.22) the terms under sum in (5.23) are all non negative. There-
fore, (5.23) permits to choose positive reals α1, . . . , αr such that

(5.24) 1− α > 1− αr >
∑

ρ∈R\{r}

(◦
xτ̂ρ − αhτ̂ρ .

)

(5.25) αρ >
◦
xτ̂ρ − αrhτ̂ρ (ρ ∈ R \ {r}) ,

and

(5.26) 1− αr =
∑

ρ∈R\{r}
αρ

holds true. In other words, the αρ are positive convex coefficients,

(5.27)
∑
ρ∈R

αρ = 1 .

Also, we have

(5.28) αr > α =

◦
xτ̂r

hτ̂r

.

Now, as τ̂1, . . . , τ̂r ∈
∨
T the vector

(5.29) x̂ :=
∑

ρ∈R\{r}
αρe

T ρ

+ αrx̄

and the vector

(5.30)
◦
x̂ =

∑
ρ∈R\{r}

αρe
T ρ

+ αr

◦
x̄

coincide along the coordinates of τ̂ . Then clearly for ρ ∈ R \ {r} we have

(5.31) x̂τ̂ρ = αρ + αrhτ̂ρ >
◦
xτ̂ρ

(in view of (5.25)), and for ρ = r

(5.32) x̂τ̂r = αrhτ̂r > αhτ̂r =
◦
xτ̂r

(in view of (5.28)). Moreover

◦
x̂a⊕ = x̂a⊕

=
∑

ρ∈R\{r}
αρe

T ρ

a⊕ + αr

◦
x̄a⊕

=
∑

ρ∈R\{r}
αρe

T ρ

a⊕ + αrx̄a
⊕ =

∑
ρ∈R

αr = 1 .

(5.33)
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Now (5.31),(5.32) and (5.33) imply

◦
x̂ doma⊕

◦
x .

2ndSTEP : If ϑ is an imputation satisfying the condition specified for m,
then m can play the role of

◦
x. Hence by Theorem 4.5. of [1] we find, for

ε > 0 sufficiently small, an ε–relevant coalition T ε = T εa⊕ such that

ϑ
◦
x̂ domT ε ϑ ,

q.e.d.



� Section 5: The vNM–Stable Set � 35

Theorem 5.4. Let a	 be a pre–coalition of the third kind with a correspond-
ing sequence τ̂ = (τ̂1, . . . , τ̂r, τ) of positive coordinates. Let

◦
x ∈ �rt satisfy

the following conditions.

1.

(5.34) 1 >
∑
ρ∈R

◦
xτ̂ρ ≥

∑
ρ∈R

hτ̂ρ .

2.

(5.35)
◦
xτ̂1 +

◦
xτ̂2+, . . . ,+

◦
xτ̂r−1 +

◦
xτ ≥ 1 .

3.

(5.36)
∑
τ∈T

λτ
◦
xτ ≤ 1 i.e.

∑
τ∈T

◦
xτ ≤ t

that is,
◦
x is a “pre–subimputation”.

Then there exists
◦
x̂ ∈

◦
H such that

(5.37)
◦
x̂ doma�

◦
x

holds true.

4. Let ϑ be an imputation with minima vector m. If m satisfies the above
conditions for

◦
x, then, for sufficiently small ε > 0, there exists an ε–ā⊕

relevant coalition T ε = T εā⊕ and x̂ ∈ H such that

(5.38) ϑx̂ domT ε ϑ .

Proof:

1stSTEP :

Define

(5.39) α :=
1−∑ρ∈R

◦
xτ̂ρ

1−∑ρ∈R hτ̂ρ

, 0 < α < 1 ,

and

(5.40) αρ :=
◦
xτ̂ρ − αhτ̂ρ ρ ∈ R .

First of all we assume that

(5.41) αρ ≥ 0 for ρ ∈ R,

for then α1, . . . , αr, α constitute a set of “convex coefficients”, that is, non-
negative and summing up to 1.
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We will have to get rid of this assumption by means of some additional
argument, this will be presented in the 5thSTEP .

2ndSTEP :

Now let
∗
x :=

∑
ρ∈R

αρe
T ρ

+ ᾱx̄ .

and
◦
x̂ :=

∑
ρ∈R

αρe
T ρ

+ ᾱ
◦
x̄ ∈ H .

(5.42)

Then, along coordinates τ̂ρ ∈
∨
T (ρ ∈ R) we observe that

◦
x̂τ̂ρ =

∗
xτ̂ρ while for

τ r we have
◦
x̂τr ≥

∗
xτr .

Now clearly

(5.43)
◦
xτ̂ρ =

∗
xτ̂ρ = αρ + αhτ̂ρ ≥ ◦

xτ̂ρ (ρ ∈ R)

by just rewriting (5.40). Moreover, by Theorem 5.1, items 2,3 i.e., by (5.2)
and (5.3) we know that x̄a	 ≤ ◦

x̄a	 < 1 and as α > 0 it follows that

(5.44)
∗
xa	 < 1 ,

◦
x̂a	 < 1 .

3rdSTEP :

Essentially it remains to show that

(5.45)
◦
x̂τ ≥ ∗

xτ = αr + αxτ >
◦
xτ

holds true. To this end we insert αr =
◦
xτ̂r − αhτ̂r so that equivalently we

need to show
◦
xτ̂r − αhτ̂r + αxτ >

◦
xτ , i.e.

(5.46)
◦
xτ −

◦
xτ̂r < α(xτ − xτ̂r)

Now recall that for the minimal sequence
∨
τ we have

(5.47) xτ = 1−
∑

ρ∈R\{r}
h ∨
τρ

= 1−
∑

ρ∈R\{r}
x ∨
τρ

by Definition 2.20. For all other undercutting sequences τ̂ we have clearly

(5.48) xτ ≥ 1−
∑

ρ∈R\{r}
hτ̂ρ = 1−

∑
ρ∈R\{r}

xτ̂ρ .

Hence

(5.49) xτ − xτ̂r ≥ 1−
∑
ρ∈R

xτ̂ρ



� Section 5: The vNM–Stable Set � 37

On the other hand, in view of our assumption (5.34), we have

(5.50)
◦
xτ < 1−

∑
ρ∈R\{r}

◦
xτ̂ρ .

Hence

(5.51)
◦
xτ −

◦
xτ̂r < 1−

∑
ρ∈R

◦
xτ̂ρ .

Consequently

◦
xτ −

◦
xτ̂r < 1−

∑
ρ∈R

◦
xτ̂ρ .

=

(
1−
∑
ρ∈R

◦
xτ̂ρ

)
1−∑ρ∈R xτ̂ρ

1−∑ρ∈R xτ̂ρ

≤
(
1−
∑
ρ∈R

◦
xτ̂ρ

)
(xτ − xτ̂r)

1−∑ρ∈R xτ̂ρ

= α(xτ − xτ̂r) ,

(5.52)

which is (5.46). Hence (5.45) is verified.

4thSTEP :

Now, inequalitites (5.43) have to be rendered to be strict in order to yield
dominance, i.e.,

(5.53)
◦
x̂ doma�

◦
x .

Now, as
∑

ρ∈R
◦
xτ̂ρ < 1 by (5.34), there exists some δ > 0 such that∑

ρ∈R
(
◦
xτ̂ρ + δ) = 1

and hence the vector

e :=
∑
ρ∈R

(
◦
xτ̂ρ + δ)eTρ ∈ C(v)

has coordinates eτ̂ρ >
◦
xτ̂ρ exceeding the coordinates of

◦
x (ρ ∈ R). Thus, for

sufficiently small but positive ε > 0 the vector

◦
x̃ := (1− ε)

◦
x̂+ εe ∈

◦
H

yields
◦
x̃τ̂ρ >

◦
xτ̂ρ (ρ ∈ R)
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without disturbing inequalities (5.44) and (5.45), i.e., preserving

◦
x̃τr >

◦
xτr and

◦
x̃a	 < 1,

i.e., we have
◦
x̃ doma�

◦
x .

5thSTEP :

We still have to deal with assumption (5.41) in the 1stSTEP . This is done
as in the proof of Theorem 3.14 in Part II; for completeness we copy the
procedure.

Rewrite the terms in the first step such that we have

(5.54) α̂ :=
1−∑ρ∈R

◦
xτ̂ρ

1−∑ρ∈R hτ̂ρ

, 0 < α̂ < 1 ,

and

(5.55) α̂ρ :=
◦
xτ̂ρ − α̂hτ̂ρ ρ ∈ R .

If α̂ρ ≥ 0 for ρ ∈ R, then α̂1, . . . , α̂r, α̂ constitutes a set of “convex coeffi-
cients”, our assumption within the 1stSTEP.

If this is not so, then we adjust the coefficients as follows. First of all observe

α̂(1−
∑
ρ∈R

hτ̂ρ) = (1−
∑
ρ∈R

◦
xτ̂ρ)

i.e.∑
ρ∈R

◦
xτ̂ρ − α̂

∑
ρ∈R

hτ̂ρ = 1− α̂ or
∑
ρ∈R

(
◦
xτ̂ρ − α̂hτ̂ρ) = 1− α̂

i.e.∑
ρ∈R

α̂ρ = 1− α̂ .

Tentatively we write α+ := max{0, α} for real α. Now consider the function

L(•) : [0, 1] → [0, 1]

given by
L(α) :=

∑
ρ∈R

(
◦
xτ̂ρ − αhτ̂ρ)

+ (α ∈ [0, 1])

which is continuous and decreasing in α. We have

L(0) =
∑
ρ∈R

◦
xτ̂ρ < 1

L(1) ≥
∑
ρ∈R

◦
xτ̂ρ −
∑
ρ∈R

hτ̂ρ > 0
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Compare this with the decreasing function α → 1 − α on [0, 1] which has
values 1 and 0 at arguments 0 and 1. Clearly we can find some α ∈ [0, 1], α ≤
α̂, such that both functions are equal, that is

(5.56) 1− α =
∑
ρ∈R

(
◦
xτ̂ρ − hτ̂ρ)

+ ≥
∑
ρ∈R

(
◦
xτ̂ρ − hτ̂ρ) > 0 .

Define α1, . . . , αr,≥ 0 by

(5.57) αρ := (
◦
xτ̂ρ − αhτ̂ρ)

+ ≥ (
◦
xτ̂ρ − αhτ̂ρ)

then ∑
ρ∈R

αρ = 1− α , α < α̂ .

Now, the set of coefficients α1, . . . , αr, α can replace the initial set α̂1, . . . , α̂r, α̂
in a way that (5.45) is satisfied and we may proceed with ourt proof as in
the 2ndSTEP .

We can then proceed as described in the above proof beginning in the 2ndSTEP.

q.e.d.

Remark 5.5. If
◦
x satisfies

◦
xτ1 +

◦
xτ2+, . . . ,+

◦
xτr−1 +

◦
xτr ≥ 1 ,

for all undercutting sequences τ = (τ1, τ2, . . . , τr−1, τr), then
◦
x equals some

eTρ. This follows from Lemma 4.8 and Theorem 4.9 of [1]. Therefore, if ϑ is
an imputation such that the minima vector m satisfies

◦
mτ1 +

◦
mτ2+, . . . ,+

◦
mτr−1 +

◦
mτr ≥ 1 ,

for all sequences τ = (τ1, τ2, . . . , τr−1, τr), then m = eTρ for some ρ ∈ R.
Hence the minima vector is a pre–imputation from which it follows at once
that ϑ = ϑm = ϑeT

ρ

= λρ.

◦ ˜˜˜˜˜˜ ◦

Theorem 5.6. Let v be a uniform game. Let
◦
x̄ ∈ H0,

◦
ϑ̄ := ϑ

◦
x̄, and let

(5.58)
◦
H = ConvH

{ ◦
x̄, eTρ

(ρ ∈ R)
}
⊆ H0.

Then

(5.59)
◦
H = ConvH

{ ◦
ϑ̄,λρ(ρ ∈ R)

}
=

{
ϑx x ∈

◦
H

}
is externally stable, hence a vNM–Stable Set.
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Proof: Extern stability follows from Theorems 5.3, 5.4 and the above Re-
mark 5.5. Intern stability has been verified by Theorem 5.2 ,

q.e.d.

Remark 5.7. The existence theorem provides a generalization of our previ-
ous results studied in Part I,II,III. We exhibit a set of pre–imputations H0

outside the core every element of which, together with the core establishes
a vNM–Stable Set. This set is based on the vector (sub pre–imputation)
x̄ which is obtained by a truncation of the density of λ0 and a suitable
adjustment.

The elements of H0 are then obtained by suitably adding mass on coordinates

τ ∈
∧
T such that an imputation results. One should compare this to the

Characterization Theorem in [4] and [5].

The resemblance is striking. The above existence theorem again points out

an imputation
◦
ϑ̄ that is absolutely continuous w.r.t. λ0 and has a density

bounded by 1; exactly as in the previous Characterization Theorem. Other
than previously however, one cannot choose all densities with these require-
ments but has to observe further restrictions.

At this stage we do not have a charcterization Theorem. Also, our result is
limited to a piecewise constant density

•
λ0. These questions will have to be

delt with in due time.

◦ ˜˜˜˜˜˜ ◦
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