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Abstract

We establish a class of fully nonlinear conditional expectations. Sim-
ilarly to the usage of linear expectations when a probabilistic description
of uncertainty is present, we observe analogue quantitative and qualita-
tive properties. The type of nonlinearity captures the agents sentiments
of optimism and pessimism in an ambiguous environment.

We then introduce an expected utility under a nonlinear expecta-
tion, and show monotonicity and continuity of utility. Risk aversion
is characterized, and the properties of the certainty equivalent are dis-
cussed. Finally, we derive an Arrow–Pratt approximation of the static
certainty equivalent and investigate the dynamic version via recursive
equations.
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1 Introduction

In decision theory under uncertainty, the probabilistic expectation is invariably
utilized as a representation of beliefs and results in a utility under a (linear)
expectation as in Von Neumann and Morgenstern (1953) and Savage (1954).

Based on the standard approach, this (mathematical) expectation is in a
one-to-one correspondence with a probabilistic description of uncertainty, and
leads to the pleasant linearity of expectations. Implications within models in
economics or finance is that, having such a description of beliefs, can only
create conclusions that are in the scope of the supposed linearity.

We advance the concept of expectations, and discuss some implications if
the belief system is no longer linear.

Our formalization of a nonlinear conditional expectation is based on a set of
possible probabilistic scenarios P , and allows for continuous time models. The
description of the resulting expectation operator is determined by a stochastic
weighting scheme that takes value in the unit interval and captures the time–
and state–dependent degree of optimism and pessimism within the set P . As
such, the present expectation model is able to capture sentiments of an agent
or investor in a concrete behavioral manner.

Our approach follows the axiomatization of Ghirardato, Maccheroni, and
Marinacci (2004), Chateauneuf, Eichberger, and Grant (2007) and Cerreia-
Vioglio, Ghirardato, Maccheroni, Marinacci, and Siniscalchi (2011), where the
attitudes towards ambiguity, due to presence of multiple priors, are captured
by a similar but static representation. These preferences allow for a functional
form being consistent with a “generalized Hurwicz” criterion. As indicated in
Proposition 2, the present class of preferences proposes a dynamic and time-
consistent version of Monotonic Bernoullian Archimedean (MBA) Preferences.

Our starting point is the construction of a family of conditional nonlinear
expectations, given an increasing system of information indexed by a finite
time interval. Information, as usual and there is little reason to move on this
assumption, is represented by an increasing sequence of σ-fields or partitions.
The generalization of the conditional expectation relies on the same filtration
and the same space of random variables (with finite variance).

As an initial and basic result of the paper (Theorem 1), we establish the
unique existence of a consistent family of conditional expectations (Et). Apart
from the fundamental additivity, the present class of conditional expectations
satisfies all the fundamental properties. For instance the law of iterated ex-
pectation holds true, which is an equivalent formulation of time consistency,
(see Epstein and Schneider (2003) and Appendix B in Riedel (2009)).

Given a nonlinear expectation, we introduce a nonlinear expected utility
with some utility index u : R → R and show that under standard conditions,
standard properties hold for the nonlinear expected utility, such as continuity
and (strict) monotonicity. Although the nonlinear expected utility is no longer
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concave, we are still able to characterize, as in the linear case, risk aversion in
terms of concavity of the utility index.

Following, we discuss risk preferences via a modified certainty equivalent
and present further properties such as continuity and monotonicity. We
compute a generalized Arrow-Pratt approximation, where the classical
measure of absolute risk aversion is still present, in contrast to Izhakian and
Benninga (2011) and Maccheroni, Marinacci, and Ruffino (2013), where an
ambiguity premium is derived from the utility representation axiomatized by
Klibanoff, Marinacci, and Mukerji (2005). The premium of the present utility
specification is directly encoded in the nonlinear expectation (see equation (6)
and Figure 4). Depending on the type and degree of pessimism, the nonlinear
expectation determines the sign of the sentiment premium.

Setting Static Continuous Time

Maxmin U(c) = minP∈P E
Pu(c) = Eu(c) Ut(c) = E

∫ T
t u(ct)dt

Gilboa and Schmeidler (1989) Chen and Epstein (2002)

α–Maxmin U(c) = αEu(c) + (1− α)Eu(c) Ut(c) = Etu(c)

Ghirardato et al. (2004) This Paper

Smooth U(c) = Eµ[φ(EPu(c))] dU = µdt+ ΣdB

Klibanoff et al. (2005) Skiadas (2013)

Variational U(c) = minP∈P E
Pu(c) + c(P ) Ut(c) = minP∈P E

P
t u(c)+c(P )

Maccheroni et al. (2006) Cheng and Riedel (2013)

Table 1: Functional forms of utility under risk and ambiguity

Likewise, for the formulation of nonlinear expectations and conditional
certainty equivalents, we describe the objects in the language of backward
stochastic differential equations (BSDE)1. In the theory of continuous-time
stochastic processes this is a well-developed concept of recursive integral
equations. For instance, the description of stochastic differential utility of
Duffie and Epstein (1992) is formulated via the solution of a BSDE. From
a conceptional view, one can consider a BSDE as a backward induction
principle in continuous time, such that tools from stochastic analysis become
available. Moreover, Chen and Epstein (2002) apply this approach to model
the continuous-time version of Gilboa and Schmeidler (1989)-type preferences,

1This recursive theory of stochastic processes is introduced by Pardoux and Peng (1990)
and applied to finance and recursive utility in the overview article by El Karoui, Peng,
and Quenez (1997), where, instead of the initial condition, a terminal condition serves as
input data. Recently, this approach is applied to convex optimal stopping problems under
ambiguity in Cheng and Riedel (2013). By virtue of BSDEs, Chiu and Wong (2011) study
the mean-variance portfolio selection problem, and Oksendal, Sandal, and Uboe (2013) study
stochastic Stackelberg equilibria.
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whose description of the uncertainty model is adopted here. In Table 1, we list
some well–known functional forms of utility. Interestingly, all continuous time
extensions of the the static setup are described in the language of BSDE’s.
Proposition 1 clarifies that this observation is by far no coincidence.

In the final part, we study the dynamic certainty equivalent via BSDE’s,
and obtain time consistency of certainty equivalents. A potential application
refers to the indifference-pricing principle. In such a setting, it is possible to
capture the agents sentiment within the pricing.2

The paper is organized as follows. Section 2 starts with the nonlinear
expectation. In Sections 3 and 4, we introduce and analyze the utility and
certainty equivalent. Section 5 concludes and the proofs are collected in the
Appendix.

2 Nonlinear Expectations

Fix a finite time interval [0, T ]. Before we introduce the nonlinear expectation,
we recap the linear case and the construction of priors.

Linear Expectations Let us render more precisely the underlying struc-
ture of a linear benchmark expectation to illustrate how the properties of the
mathematical expectation operators are exploited. These properties are of
importance since conclusions usually depending upon them.

Based on a given probabilistic model (Ω,F ,P), we fix the information struc-
ture of increasing sub σ-fields Ft ⊂ FT = F , t ∈ [0, T ]. The formal definition
of a conditional expectation reads as follows

Et : LT → Lt,

where Lt = L2(Ω,Ft,P) denotes the usual Hilbert space of square P-integrable
and Ft-measurable random variables or payoffs. Existence and uniqueness of
this family of conditioning operations is a classical result in probability theory,
(see Figure 1 for an illustration of the underlying orthogonality principle, in-
duced by the underlying scalar product 〈X, Y 〉 = E0[X · Y ]). Among linearity
and the law of iterated expectation, many other properties hold true.

Figure 1: Orthogonality– a linear conditional
expectation in the least square sense

2see Zimper (2012); Ludwig and Zimper (2014)
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Priors and the Uncertainty Model Let us now model the priors of the
decision theoretic setup. We follow a construction in terms of Girsanov kernels
as in Chen and Epstein (2002) (for details see therein Section 2.4.). Let B
be a Brownian motion on a probability space (Ω,F ,P), and (Ft)t∈[0,T ] is the
filtration generated by B, and completed by P-null sets. We define a density
in terms of an R-valued process θ = (θt) as follows:

zθt ≡ exp
(
−
∫ t

0

θsdBs −
∫ t

0

θ2
sds
)
,

where θ satisfies the Novikov condition EP[exp(1
2

∫ T
0
θ2
sds)] < ∞. Such a den-

sity generator θ determines a new prior P θ via a change of measure with
density

dP θ

dP

∣∣∣
Ft

= zθt . (1)

The density generator θ contains all information of P θ given P. From this
construction we may move to a set of density generators Θ. The corresponding
set of priors is defined as follows:

P =
{
P θ : θ ∈ Θ, P θ is defined by (1)

}
.

Lemma 1 Let Θ : Ω× [0, T ]⇒ R be an adapted set-valued process. For every
(ω, t) the set Θt(ω) is convex and compact valued subset of R. Then the induced
set of prior P is weakly compact and convex.

The lemma follows from Theorem 3.1 in Chen and Epstein (2002).

2.1 A Class of Nonlinear Conditional Expectations

We introduce a novel notion of (behavioral) expectation. The exposition re-
mains close to the connection between an expectation value and its usage to
define the cardinal (expected) utility. Consider a random variable X ∈ LT as
a possible contingent claims or payoff, ‖ · ‖ denotes the usual L2-norm. The
‖ · ‖–closed subspace of Ft measurable elements is again denoted by Lt.

Formally we aim to introduce the following nonlinear expectation operator
E : LT → R based on P . The minimal requirement to remain in the scope of
P is ensured by

E [X] = αX min
P∈P

EP [X] + (1− αX) max
P∈P

EP [X], (2)

where the positive fraction αX ∈ [0, 1] depends on the evaluated X ∈ LT .
From this perspective, αX is the endogenous outcome of a more flexible and
time-dependent weighting that is formulated in the following.
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Definition 1 Fix a set of priors P, via (1). A specification of a nonlinear
expectation is determined by an adapted weighting process (αt), taking values
in [0, 1]. All such processes we denote by |[0, 1]|.

We interpret αt(ω) as the degree of relative pessimism at time t in state ω. In
this regard, there is little reason to assume a constant weight, when the envi-
ronment is uncertain and the arrival of new information makes it reasonable
to adjust this degree in an accurate way.

Remark 1 Definition 1 and the dynamic weighting process therein build the
key primitives in our model. For instance, the constant weight αt ≡ 1

2
results

into a completely different expectation as αt = 1
2
· (1 + sin(t)), t ∈ [0, T ], where

T is a multiple of 2π. In Example 2, we explain that a constant specification
may lead to a sole pessimistic specification with a reduced set of relevant priors.

In comparison with the axiomatization for the generalized α-MEU in Section 6
of Ghirardato, Maccheroni, and Marinacci (2004), the dependence of αX with
respect to an evaluated X is again present. We aim to present a mechanism
for generating αX in (2) that is based on an initial value E0[X] of a family of
time-consistent conditional expectations (Et), induced by P and α ∈ |[0, 1]|. Al-
though there is no general consensus how to update in a multiple prior setting,
we follow the convincing Bayesian updating rule, such that time consistency
holds, as in Epstein and Schneider (2003). For instance, a well–behaved con-
ditional expectation, satisfying especially the iterated law of conditional ex-
pectation, is indispensable when the reasoning (especially in continuous time)
is based on a martingale concept of fair games against nature.

In the light of (2), the weight αX ∈ [0, 1] appears as a rather endogenous
quantity of the given conditional expectation with specification [P , α], being
evaluated by X ∈ LT at the initial time t = 0.

Remark 2 One may ask if the case of constant α-maxmin is plausible in the
present set-up. As shown in Ghirardato, Maccheroni, and Marinacci (2004)
this is strongly related to the issue that all information is contained in the
certainty equivalent (see also Chateauneuf, Eichberger, and Grant (2007)).

In Example 2 below, we examine this issue in the case of κ-ambiguity. In
Section 4, we discuss the conditional certainty equivalent in more detail.

Aiming for a dynamic prospect of utility theory, we introduce the conditioning
of the nonlinear expectation, given the information Ft. For the construction
of a meaningful conditional expectation Et : LT → Lt the following bounds are
needed. As a dynamic version of (2), they are given in the following way,

E t[X] := min
P∈P

EP
t [X] ≤ Et[X] ≤ max

P∈P
EP
t [X] =: E t[X]. (3)

This representation is intuitively reasonable in terms of an implicit stochastic
weighting αXt between the conditional worst and best case. In the light of
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Theorem 1, the functional dependency with the remaining weighting (αs)s∈[t,T ]

persists as the dynamic analog of αX in (2).
Fortunately, we have an alternative formulation of the nonlinear conditional

expectation. Theorem 1 collects properties and establishes unique existence.
Apart from the linearity, all pleasant properties still hold.

Theorem 1 Let P satisfy the condition of Lemma 1. For every α ∈ |[0, 1]|
there is a unique nonlinear expectation E that satisfies (3) and:
For every X ∈ LT , the pair (Et[X], σXt ) uniquely solves of the following BSDE

dEt[X] = e(t, σXt )dt+ σXt dBt, ET [X] = X, (4)

where t 7→ e(t, σt) is an adapted integrable process and only depends on [P , α].3

We have the following properties: For every s, t ∈ [0, T ], X, Y ∈ LT .

(i) Monotonicity: If X ≥ Y , then Et[X] ≥ Et[Y ].

Moreover, if P(X > Y ) > 0, then E0[X] > E0[Y ].

(ii) Constant-preserving: Et[η] = η, if η ∈ Lt and Et[c] = c, for all c ∈ R.

(iii) Time consistency: Es[X] = Es[Et[X]], for all s ≤ t.

(iv) Conditional linearity: Et[X + η] = Et[X] + η, for every η ∈ Lt.
(v) Zero-one law: For any A ∈ Ft, we have Et[X1A] = Et[X]1A.

(vi) Positive homogeneity: Et[ηX] = ηEt[X], for all η ≥ 0.

(vii) Contraction property: There is a constant c > 0 such that,

supt E
P[|Et[X]− Et[Y ]|2

]
≤ cEP [|X − Y |2] .

(viii) Jensen inequality: If u ∈ C2(R) is increasing and concave, then

Et[u(X)] ≤ u (Et[X]) .

Part (iv) still allows for linearity, when the summand η is known, given infor-
mation at time t. (i), (vi) and (viii) can be directly employed for the properties
of the expected utility in Section 3. Clearly, the minimal requirement of (2)
and the dynamic analogue (3) are satisfied by the expectation operator in
Theorem 1, which is given by the initial value

E [X] := E0[X].

Remark 3 Apart from the linearity, the consistent family of nonlinear ex-
pectations of Theorem 1 captures most properties of the classical linear case.
Moreover, further properties are present. From (vii) we can get the ‖ · ‖-
continuity, i.e., if Xn → X in ‖ · ‖, then limn→∞ Et[Xn] = Et[X].

3Specifically, we can write the aggregator of the BSDE which defines the nonlinear ex-
pectation via e(t, σt) = αt maxθ∈Θ θtσt + (1− αt) minθ∈Θ θtσt.
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2.2 A Converse Result of Theorem 1

In this section, we start with the opposite point of view and reason that under
some very intuitive properties for some arbitrary expectation on LT , we im-
mediately end up in the class if expectation that can be formulated in terms
of BSDE’s.

Definition 2 Let E : LT → R be a nonlinear expectation, satisfying (i) and
(ii) in Theorem 1. E is called a dynamic nonlinear expectation if for each
X ∈ LT and t ∈ [0, T ], there exists a random variable η ∈ Lt, such that

E[X1A] = E[η1A], for any A ∈ Ft.

The indicator functions, parametrized for each event in Ft can be considered
as an adequate collection of test–random variable that control the coherence
between X and η on Ft. From the strict monotonicity of the nonlinear expec-
tation E, we know that η is unique, and we denote it by η = Et[X].

Et[X] is called the conditional nonlinear expectation of X under Ft. Addi-
tionally, we suppose that E satisfies the following property: for µ > 0,

E[X + Y ]− E[Y ] ≤ Eµ0 [X], for any X, Y ∈ LT . (5)

where (Eµt [X], σt) solves the BSDE in (4) with e(t, σ) = −µ|σ|. Given these
preparatory notations, we are interested in the generality of Theorem 1. The
following result clarifies that under mild conditions for E, as a model of a belief
system, a kind of converse result in comparison to Theorem 1 holds true.

Proposition 1 Let E be a dynamic nonlinear expectation satisfying (5), con-
ditional linearity and positive homogeneity, i.e., property (iv) and (vi) of The-
orem 1. Then there exists an adapted generator (s, ω) 7→ g(s, ω, ·), such that

E[X] = Eg0 [X], for any X ∈ LT .

where (Egs [X], σs) is the unique solution of the BSDE in (4) with e(s, σ) =
g(s, σ). Moreover, g(s, ·) is Lipschitz continuous, g(·, 0) = 0 and g(s, η × ·) =
ηg(s, ·), for all s ∈ [0, T ].

From this opposite starting point, Theorem 1 refers to a special case. The
refinement via the generator e(s, σ) allows for an interpretation of sentiments
as the following examples aim to illustrate. The direct connection between
a specification α ∈ |[0, 1]| and a family of nonlinear conditional expectations
facilitates assigning a meaning to each nonlinear expectation.
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2.3 Examples

The manifestation of the conditioning strongly depends on the specification
(P , α). In the example below, we illustrate some special specifications.

Example 1 If Θ = {θ} is a singleton, then α is irrelevant and the ex-
pectation boils down to a linear one E [X] = EP θ [X], where the subjective
prior P θ is again given by (1). If α ≡ 1, i.e., maximal pessimism, then
E [X] = minP∈P E

P [X] results in the setting given by Chen and Epstein (2002).

Apart from the unique existence of the this nonlinear expectation we have a list
of plausible and important properties. Next we try to give some intuition for
the new (mathematical) expectation operator. Departing from (2), for every
X ∈ LT , we may find an effective prior PX

α ∈ P , since

E [X] = αX min
P∈P

EP [X] + (1− αX) max
P∈P

EP [X]

= αX EPXmin [X] + (1− αX) EPXmax [X] = EPXα [X],

by the convexity and compactness of P and the linearity of P 7→ EPX. This
linearization depends on X and also holds for the conditional expectation as
well. For an illustration consider Figure 2 departing from Figure 1, where

Figure 2: Illustration of nonlinear conditional expectations

the classical conditional expectation is portrayed. The nonlinear conditional
expectation is described as a deformed least square principle. The following
example illustrates in which sense a constant permanent weight α may cause
only sub-/super-linear expectations. As formulated in Remark 2 and Exam-
ple 2, the case of extreme optimism/pessimism is still possible and serves as
another argument to rely on stochastic weights as specified in Definition 1.

Example 2 In this example, we argue that in the present dynamic setup, con-
stant weights α may lead to extreme pessimism or optimism.

Consider only a constant weighting α ∈ |[0, 1]| and the easiest and well-
known case of κ-ignorance, i.e., Θ = |[−κ, κ]| and κ ∈ R+. By similar argu-
ments as in Chen and Epstein (2002), we derive

e(t, σt) = αmax
θ∈Θ

θtσt + (1− α) min
θ∈Θ

θtσt

= ακ|σt|+ (1− α)(−κ)|σt| = (1− 2ακ) · |σt|

9



We get two regions for α namely 1
2
> ακ and 1

2
< ακ.

In the first case e is convex, which yields a sublinear expectation given by

E [X] = min
P∈PΘ

EP [X], where Θ = [−1 + 2ακ, 1− 2ακ].

In the second region (1
2
< ακ) the nonlinear expectation becomes a superlinear

one E [X] = maxP∈PΘ EP [X] , where Θ = −Θ.
At this stage, since the argument only depends on the concavity (convexity)

of σ 7→ e(t, σ) = (1 − 2ακ) · |σ|, the derivations lead to a sub (super)-linear
expectation even if αt(ω) is stochastic but remains in the sub (super)-linear re-
gion. In Figure 3, we consider a stochastic and time-depending weight αt(ω),

Figure 3: Illustration of α-regions : The upper and lower paths are the bound-
aries of Θ(·, ω), given path ω ∈ Ω. For this ω, at time t1, t2, t3, the sentiment
switches.

where it is possible that the expectation changes between the sublinear (opti-
mistic) and superlinear (pessimistic) region, given ω ∈ Ω. Consider now the
set of (symmetric) density generators Θ = [1

2
− θ, 1

2
+ θ], with θt ≥ 0 for

all t. The sentiment process st = 1
2
− θt(1 − 2αt) detects the degree of opti-

mism/pessimism.

3 Nonlinear Expected Utility

In this section we give a formal definition of a nonlinear expected utility func-
tional on the space of gambles LT . Fix a family of nonlinear conditional
expectations (Et) induced by a specification [P , α] representing the belief sys-
tem of an agent. A further primitive is a utility index u : R → R. In order
to concentrate on the implication of the nonlinear expectation, we omit the
generalization of state or time depending consumption streams.4

4Although it is a natural question, we also ignore a possible recursive structure in the
light of Duffie and Epstein (1992) and Chen and Epstein (2002).
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Definition 3 Fix P and α ∈ |[0, 1]|. The Nonlinear Expected Utility U :
LT → R of a payoff X ∈ LT under E is given by

U(X) = E [u(X)],

the resulting utility process UX
t = Et[u(X)] refers to the predicted utility, given

information Ft at time t ∈ [0, T ].

In the light of Example 1 we compare the associated utility specifications.
When Θ = {θ} is a singleton the nonlinear expected utility boils down to a
linear subjective expected utility specification in the sense of Savage (1954).
While in the case of αt ≡ 1 we receive the Maxmin utility of Gilboa and
Schmeidler (1989). The permanent pessimism builds a corner specification
and results to the extreme case of the highest ambiguity aversion, while α = 0
would capture an extreme optimism. This is consistent with Definition 1,
where α determines the degree of relative pessimism.

Many properties which hold for the standard expected utility remain true
for the case of nonlinear expected utility. Here, transitivity and completeness
follows immediately. We have the following results.

Proposition 2 Let u be continuous and strictly increasing. Then the nonlin-
ear expected-utility functional U : LT → R is

(i) norm continuous: if Xn → X in LT , then U(Xn)→ U(X).

(ii) order continuous: If Xn↘X, P-a.s., then U(Xn)→U(X).

(iii) (strictly) monotone: if X ≥ Y then UX
t ≥ UY

t , for all t ∈ [0, T ]. If also
P(X > Y ) > 0 and u is strictly increasing, then U(X) > U(Y ).

In the following subsection, we discuss the implication of the utility specifica-
tion (P , α, u). A first result clarifies, that risk aversion in the absolute sense
is still encoded in the shape of u. Nevertheless, as we see in Example 3 and
Figure 4 of Section 4, the specification of α can influence the comparative risk
aversion considerably.

Risk Aversion One of the first arising questions refers to the structural
properties of risk preference. Recall the classical von Neumannn Morgenstern
(under the linear expectation E) utility functional. Risk aversion of the utility
specification X 7→ E[u(X)] corresponds to E[u(X)] ≤ u (E[X]) for every
gamble X. As usual let the utility index u be concave, then by the Jensen’s
inequality risk aversion follows. This is true under a linear expectation, but
also, by Theorem 1 (viii), under a nonlinear expectation.

In the present setting, we repeat the same step for the nonlinear expecta-
tion. We follow the fundamental principle to define risk aversion in terms of a
certainty principle.

11



Definition 4 An agent is conditionally E-risk averse on LT if

UX
t ≤ u (Et[X]) , for all X ∈ LT , t ∈ [0, T ].

This modified definition precisely catches up the idea of risk aversion to the
present setting. However, the novelty of the stated risk aversion concept refers
to the dependence of the primitive nonlinear expectation. In the present setup,
preferences for risk depends on the structure of the expectation operator E , so
that α represents preferences for ambiguity.

The following simple but important result clarifies the analogy to the linear
theory of expected utility. Specifically, risk aversion is still explicable in terms
of the certainty equivalent, risk premium and related concepts. Nevertheless
the premia changes in compare to the linear case and heavily depends on
the structure of E , see Figure 3. The following result states the announced
characterization of risk aversion.

Proposition 3 Let u ∈ C2(R) be increasing. The agent is conditionally E-risk
averse if and only if u is concave.

Clearly, the “if” part follows directly from the nonlinear version of the Jensen
inequality, stated in Theorem 1. The reverse direction is technically more
demanding and relies on recent results of Peng’s g-expectation based on partial
differential equations. In sharp contrast to a von Neumann-Morgenstern utility
(linear) or Maxmin utility (superlinear) of Gilboa and Schmeidler (1989) type
the concavity of u does in general not imply the concavity of the nonlinear
expected utility, which is a direct consequence of the expectation’s nonlinear
shape.

4 Certainty Equivalent

To get into the way of analyzing uncertainty preference of a nonlinear expected
utility specification we continue with a discussion of the certainty equivalent.
As mentioned in Remark 2, it is especially important to justify the endogenous
weights αX within the present nonlinear expectation.

4.1 Static Case

We follow the usual argument within a static setting and say that the certainty
equivalent CX ∈ R at X ∈ LT is the solution of the following equation

u(CX) = E [u(X)].

Accomplishing the Arrow-Pratt approximation, we illustrate the quantitative
difference with the linear case. The relation between the certainty equivalent

12



and absolute risk aversion A(x) = −u′′(x)
u′(x)

of Pratt (1964) and Arrow (1970)
is still present. Consider a given wealth w ∈ R. A Taylor expansion on both
sides gives us the following approximative equality5

w − Cw+X ≈ E
[
X − 1

2
A(w)X2

]
(6)

=
1

2
A(w)var(X)− co

(
X,−A(w)X2

)
,

where X with E [X] = 0 denotes a centered risk distortion. For such centered
random variables, the expression var(X) = E [X2], denotes the variance under
the nonlinear expectation. The expression co(X, Y ) = E [X+Y ]−E [X]−E [Y ]
refers to the so-called coexpectation, which can be seen as the compensation
term for the nonlinearity of the expectation under consideration. The polar
case α = 1, yields a super linear expectation, hence co(·, ·) ≥ 0.

The formulation in (6) has an intuitive appeal in compare to the linear
case, where the term in the bracket boils down to the usual variance factor
1
2
A(w)varP (X) under a given prior P . The additional coexpectation captures

the nonlinearity of the expectation, may take positive and negative values and
heavily depends on A(w). On the other hand, if X ∈ {X ∈ LT : E(X) =
−E(−X)}, then the coexpectation in (6) vanishes.

In comparison with the approximation of the (second order) smooth ambi-
guity certainty equivalent in Maccheroni, Marinacci, and Ruffino (2013), the
present certainty equivalent reveals the nonlinear structure of the expectation.
In our approximation this is exposed by the coexpectation.

The following example discusses the implication of the new certainty equiv-
alent and shows differences with the standard expected utility model. To keep
the illustration simple, there are two states of the world and dynamic aspects
are excluded.

Example 3 Suppose that there are only two states of the world (good) and
(bad) and the nonlinear expected utility is given by the following specification
(P , α), where P = {P ∈ ∆2 : P (h) ∈ [2

5
, 3

5
]} and α = (1

3
, 2

3
). The utility index

is given by u(x) = ln(x). Consider the gamble (Xbad, Xgood).
Figure 4 compares the effect of the E-certainty equivalence with the usual

certainty equivalence of an expected utility under the fixed prior P such that
P (bad) = 1

2
. We denote by R(X) the risk premium and by R(X) the uncer-

5We consider the second-order Taylor expansion around w for u(w)

E [u(X + w)] ≈ u(w) + E [u′(w)X +
1

2
u′′(w)X2] = u(w) + u′(w)E [X − 1

2
A(w)X2]

= u(w) + u′(w)
(
− 1

2
A(w)E [X2] + co(X,−1

2
A(w)X2)

)
,

where we applied the concavity of u via u′ ≥ 0, u′′ ≤ 0 and Theorem 1. Using the first-order
Taylor expansion for u(Cw+X) around w: u(Cw+X) ≈ u(w) + u′(w)(Cw+X −w). The above
equalities yield the desired result.
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Figure 4: Illustration of risk premia and certainty equivalents under linear and
nonlinear expectation.

tainty premium, respectively given by the difference between expected value and
the corresponding certainty equivalent. As we emphasize in Proposition 2, non-
linear expected utility does not induce a convex preference relation. However,
as stated in Proposition 3, this does not affect the risk aversion, as illustrated
in Figure 4.

The modified risk premium captures a nonlinear component. Let P ∈ P be
considered as a reference measure. From this we may consider R(X)−R(X) ∈
R as a new uncertainty factor depending on α.

For a small distortion, the example points out that under a nonlinear ex-
pectation the risk premium u−1(E [u(X)]) − E [X] may vary considerably in
comparison to the linear case. This is consistent with the derivations in (6),
where the coexpectation co : LT × LT → R controls this issue. Implicitly the
ambiguity premium, caused by preferences for ambiguity, is manifested in the
nonlinear behavior of the risk premium. As illustrated in Example 3 and Fig-
ure 4 this is determined by the ambiguity averse (pessimism) and ambiguity
loving (optimism) fractions α of the specification [P , α] of the decision maker.

4.2 Dynamic Case

This subsection is concerned with a discussion of the updating behavior of
the certainty equivalent. As a revealing of preferences about uncertainty, we
may check the rationality in the updating behavior. In the dynamic context,
time consistency of the certainty equivalent is a natural property, as it requires
that the certainty equivalent can be indifferently evaluated directly or using
an intermediate time.

14



Conditional Certainty Equivalent In the light of Definition 2, we are
especially interested in the dynamics of the certainty equivalent. The propo-
sition below states a complete description of the conditional certainty equiva-
lent. Moreover, we describe the local decomposition of the risk premium and
its residual compensation due to the nonlinearity of the expectation.

Proposition 4 Let u ∈ C2(R) be strictly increasing. Then the conditional
certainty equivalent, CXt = u−1 (Et[u(X)]), satisfies CXt ≤ Et[X] and is a first
component of the solution of the following BSDE

dCXt =
(σCt
σut

e (t, σut ) +
1

2

(
σCt
)2
A(CXt )

)
dt+ σCt dBt, CXT = X, (7)

where σCt =
σut

u′(CXt )
and σu is the second component in the solution of

dEt[u(X)] = e(t, σut )dt+ σut dBt, ET [u(X)] = u(X).

In general, the differential equation (7) can have many different solutions. In
the light of Remark 2, by selecting one possible conditional certainty equiva-
lent, this selection could not fully capture the underlying utility process.

Dynamic Certainty Equivalent Concerning the notion of time-
consistency of the nonlinear conditional expectation, we may rephrase this
issue as a semi-group property, i.e., Es ◦ Et = Es, for s ≤ t. In a similar form,
homogeneous Markov processes satisfy a related semi-group property. How-
ever, the class of time non-homogeneous Markov processes, where the kernel of
the transition probability from time s to times t does not depend on t− s > 0,
but on (s, t), satisfies a more general semi-group property. In such an anal-
ogy, time consistency of the dynamic certainty equivalent corresponds to the
semi-group property for non-homogeneous Markov processes.

To formulate the time consistency of certainty equivalents, we consider the
following backward stochastic differential equation, for fixed 0 ≤ t <∞,

dEs,t[X] = e(s, σs)ds+ σsdBs, s ∈ [0, t], Et,t[X] = X. (8)

In comparison to the last subsection, we fixed t = T . For given X ∈ Lt, the
above equation has a unique solution by the same arguments. As mentioned,
we introduce two time parameters, so that (8) corresponds to Theorem 1 via
Et,T = Et.

Definition 5 Let u ∈ C2(R) be strictly increasing and concave and X ∈ Lt.
The dynamic certainty equivalent Cs,t : Lt → Ls at X with s ∈ [0, t] is defined
by u(Cs,t(Y )) = Es,t[u(Y )], where and (Es,t[u(X)], σs)s≤t is the unique solution
of the following BSDE on [0, t]:

dEs,t[u(X)] = e(s, σs)ds+ σsdBs, Et,t[u(X)] = u(X).

15



The dynamic certainty equivalent has the following properties. Again, in com-
pare to Proposition 3, we have Ct,T = Ct.

Proposition 5 For 0 ≤ r ≤ s ≤ t < ∞, and X, Y ∈ Lt, the following
properties hold:

(i) Constant-preserving: Ct,t(X) = X.

(ii) Time consistency: Cr,t(X) = Cr,s(Cs,t(X)).

(iii) Monotonicity: If Cs,t(X) ≤ Cs,t(Y ), then Cr,t(X) ≤ Cr,t(Y ).
In particular, if X ≤ Y , then Cr,t(X) ≤ Cr,t(Y ).

(iv) Zero-one law: for any A ∈ Fs, we have Cs,t(X1A) = Cs,t(X)1A and

Cs,t(X1A + Y 1Ac) = Cs,t(X)1A + Cs,t(Y )1Ac .

(v) Dominance: Cr,t(X) ≤ Er,s[Cs,t(X)]. In particular, Cr,t(X) ≤ Er,t[X].

Figure 5 illustrates the time consistency of the dynamic certainty equivalent
for X on [r, t] can be obtained directly or we can first get it for X on [s, t] and

Figure 5: Time consistency of dynamic certainty equivalent

then take Cs,t(X) on [r, s].

Remark 4 For 0 < r < s < t < ∞, if Cs,t(X) = Cs,t(Y ), then from (iii) we
know that Cr,t(X) = Cr,t(Y ). This precisely means that the indifference of the
certainty equivalent of X and Y at time s ∈ (r, t) can carry over to any earlier
time r < s, that is, when less information is available.

In (iv), Cs,t(X1A) = Cs,t(X)1A means that, at time s, we know whether
1A is equal to 1 or 0. If it is equal to 0, then it is obvious that Cs,t(X1A) =
Cs,t(0) = 0.

5 Conclusion

Conditional expectations build a useful tool in many branches of economics
and finance. This paper introduces a new functional form of sentiment–based
belief systems that captures waves of optimism and pessimism.

The resulting utility functionals employ a Hurwicz–type criterion and allow
for a dynamic consistent extension. We presented an approach in continuous
time and characterized risk aversion via the same criterion as for linear ex-
pected utility.
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Furthermore, it is possible to describe the (dynamic) certainty equivalent in
a quite explicit way, so that the classical Arrow–Pratt approximation reveals a
sentiment premium by means of the specification of relative pessimism within
in the belief system.

A Backward stochastic differential equation

In this section we recall some results of BSDEs in order to give readers some
convenience. Pardoux and Peng (1990) introduced the following equation,
called backward stochastic differential equation (BSDE):

dyt = f(t, yt, σt)dt+ σtdBt, t ∈ [0, T ], yT = X,

where the terminal condition X ∈ LT is given and f : Ω× [0, T ]×R×R→ R,
so that f(·, y, σ) is an adapted process for every y, σ ∈ R.

A pair of adapted processes (y, σ) ∈ R×R is called a solution of the above

equation, if EP[supt |yt|2] < ∞, EP[
∫ T

0
|σt|2dt] < ∞ and (Y, σ) satisfies the

above equation. y is called the first component of the solution and σ is called
the second component of the solution.

Pardoux and Peng (1990) obtained the following existence and uniqueness
of the solution of the above equation.

Lemma 2 If f(t, ·, ·) is Lipschitz continuous on R×R, then the above BSDE
has a unique adapted solution (y, σ).

B Proofs

Proof of Theorem 1 We start with the uniqueness and existence of the so-
lution of the BSDE. For all x, y ∈ R, we have

|e(t, x)− e(t, y)|
= |αt max

θ∈Θ
θtx+ (1− αt) min

θ∈Θ
θtx− αt max

θ∈Θ
θty − (1− αt) min

θ∈Θ
θty|

≤ |αt||max
θ∈Θ

θtx−max
θ∈Θ

θty|+ |(1− αt)||min
θ∈Θ

θtx−min
θ∈Θ

θty|

≤ max
θ∈Θ
|θt(x− y)|+ max

θ∈Θ
|θt(x− y)|.

Since Θ is compact, then there exists a positive constant C such that

|e(t, x)− e(t, y)| ≤ C|x− y|.

Therefore, e(t, ·) is uniformly Lipschitz and e(t, 0) = 0, then from Lemma 2 in
Appendix A, equation (4) has a unique solution, and we can get (i)-(v) from
Lemma 36.6 and Theorem 37.3 in Peng (1997).
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For all x ∈ R, β > 0, we have

e(t, βx) = αt max
θ∈Θ

θt(βx) + (1− αt) min
θ∈Θ

θt(βx)

= βe(t, x),

from which we get the positive homogeneity of e(t, ·). It follows from Example
10 in Peng (1997) to get (vi), and (vii) is derived from Lemma 36.9 in Peng
(1997). Since u ∈ C2(R) is increasing and concave, we can get (viii) from
Theorem 1 in Jia and Peng (2010).

Proof of Proposition 1 We can get the first part from Coquet, Hu, Mémin,
and Peng (2002) directly. For η > 0, we define

ḡ(s, z) = ηg(s,
z

η
), for s ∈ [0, T ].

Let (E ḡs [X], σ̄s)s∈[0,T ] be the unique solution of the following BSDE:

dE ḡs [X] = ḡ(s, σ̄s)ds+ σ̄sdBs, s ∈ [0, T ], E ḡT [X] = X.

Then using the uniqueness of BSDE, we have

E ḡ0 [ηX] = ηEg0 [X], for all X ∈ LT .

From the positive homogeneity it follows that

E ḡ0 [X] = Eg0 [X], for all X ∈ LT .

Using the similar arguments as in Jiang (2004, 2008), we obtain

ḡη(s, ·) = g(s, ·), for s ∈ [0, T ].

Consequently,

g(s, η × ·) = ηg(s, ·), for s ∈ [0, T ].

Proof of Proposition 2 (i) The continuity follows from the presence of a
dominating subliner expectation, which implies norm-continuity as stated in
Remark 3.

(ii) We just give the proof when {Xn}n≥1 is decreasing. From the mono-
tonicity of the nonlinear expectation E, we know that {U(Xn)}n≥1 is decreasing.

Since {Xn}n≥1 is decreasing and lim
n→∞

Xn = X, P-a.s., we get that |u(Xn)−
u(X)| ≤ |u(Xn)| + |u(X)| ∈ LT , and lim

n→∞
|u(Xn) − u(X)| = 0, P-a.s. Then

by virtue of the dominated convergence theorem we have, lim
n→∞

EP|u(Xn) −
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u(X)|2 = 0. From (vii) in Theorem 1 we know that, there is a constant C > 0
such that,

|U(Xn)− U(X)|2 ≤ CEP [|u(Xn)− u(X)|2
]
,

from which we can get lim
n→∞

U(Xn) = U(X).

(iii) Since X ≥ Y , P-a.s., and u is increasing, then we have u(X) ≥ u(Y ),
P-a.s. From (i) in Theorem 1 it follows that

UX
t = Et[u(X)] ≥ Et[u(X)] = UY

t .

Moreover, if P(X > Y ) > 0 and u is strictly increasing, then P(u(X) >
u(Y )) > 0. Using (i) in Theorem 1 again

U(X) = E [u(X)] > E [u(Y )] = U(Y ).

Proof of Proposition 3 Since e(t, σ) is a convex combination of an inf and
sup operation, e(t, σ) is positive homogeneous in z. By an application of The-
orem 3.2 in Jia and Peng (2010) to e(t, σ), which is independent of Et[X]),
the conditional E-concavity, i.e., u(Et[X]) ≤ Et[u(X)], can be characterized as
follow

1

2
u′′(x)|σ|2 + e(t, u′(x)z)− u′(x)e(t, σ) ≤ 0

By the positive homogeneity of e(t, ·) this is equivalent to u′′(x) ≤ 0, being
equivalent to concavity.

Proof of Proposition 4 Let (Et[u(X)], σut )t∈[0,T ] be the unique solution of the
following equation:

dEt[u(X)] = e(t, σut )dt+ σut dBt, t ∈ [0, T ],

ET [u(X)] = u(X).

Then from Itô Lemma with respect to u−1 (Et[u(X)]) it follows that

dCt(X) =

(
e(t, σXt )

u′(Ct(X))
− 1

2

u′′(Ct(X))

u′(Ct(X))3
(σut )2

)
dt+

σut
u′(Ct(X))

dBt.

We denote σCt =
σut

u′(Ct(X))
, then

dCt(X) =

(
σCt
σut

e(t, σXt )− 1

2

u′′(Ct(X))

u′(Ct(X))
(σCt )2

)
dt+ σCt dBt

=
σCt
σut

e
(
t, σUt

)
+

1

2

(
σCt
)2
A(CXt )dt+ σCt dBt.
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Proof of Proposition 5 (i) By (vi) in Theorem 1 and the definition of the
dynamic certainty equivalent, we have

Ct(X) = u−1(Et,t[u(X)]) = u−1(u(X)) = X.

(ii) By (iv) in Theorem 1 and the definition of the dynamic certainty equiv-
alent, we have

Cr,t(X) = u−1(Er,t[u(X)])

= u−1(Er,s[Es,t[u(X)]])

= u−1(Er,s[u(Cs,t(X))])

= u−1(u(Cr,s(Cs,t(X))))

= Cr,s(Cs,t(X)).

(iii) From (ii) it follows that

Cr,t(X) = Cr,s(Cs,t(X)) ≤ Cr,s(Cs,t(Y )) = Cr,t(Y ).

In particular, when we take v = t and from (i) it follows that, if X ≤ Y , then
Cr,t(X) ≤ Cr,t(Y ).

(iv) Since u(X1A + Y 1Ac) = u(X)1A + u(Y )1Ac, we have

Cs,t(X1A + Y 1Ac) = u−1(Es,t[u(X1A + Y 1Ac)])

= u−1(Es,t[u(X)1A + u(Y )1Ac ]). (9)

Let us consider the following two BSDEs

dEs,t[u(X)] = ê(σ1
s)ds+ σ1

sdBs, Et,t[u(X)] = u(X), (10)

and

dEs,t[u(Y )] = ê(σ2
s)ds+ σ2

sdBs, Et,t[u(Y )] = u(Y ). (11)

Then (10)× 1A + (11)× 1Ac yields

d(Es,t[u(X)]1A + Es,t[u(Y )]1Ac)

= [ê(σ1
s)1A + ê(σ2

s)1Ac ]ds+ (σ1
s1A + σ2

s1Ac)dBs

= ê(σ1
s1A + σ2

s1Ac)ds+ (σ1
s1A + σ2

s1Ac)dBs,

with the terminal condition

Et,t[u(X)]1A + Et,t[u(Y )]1Ac = u(X)1A + u(Y )1Ac .

Recall the following BSDE

dEs,t[u(X)1A + u(Y )1Ac ] = ê(σs)ds+ σsdBs,

Et,t[u(X)1A + u(Y )1Ac ] = u(X)1A + u(Y )1Ac .
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From the uniqueness of the solution of the above equations, we have

Es,t[u(X)]1A + Es,t[u(Y )]1Ac) = Es,t[u(X)]1A + Es,t[u(Y )]1Ac .

Therefore, from (9) we have

Cs,t(X1A + Y 1Ac) = u−1(Es,t[u(X)]1A + Es,t[u(Y )]1Ac)

= u−1(Es,t[u(X)])1A + u−1(Es,t[u(Y )])1Ac

= Cs,t(X)1A + Cs,t(Y )1Ac .

Let Y = 0, Then by Es,t[0] = 0 we have Cs,t(X1A) = Cs,t(X)1A.
(v) From (ii) we have

Cr,t(X) = Cr,s(Cs,t(X)) = u−1(Er,s[u(Cs,t(X))]).

Therefore, by Jensen inequality in Theorem 1 we get

Er,s[u(Cs,t(X))] ≤ u(Er,s[Cs,t(X)]).

From the above inequalities it follows that

Cr,t(X) ≤ Er,s[Cs,t(X)].

In particular, by using (i) we get Cr,t(X) ≤ Er,t[X].
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