
Center for

Mathematical Economics

Working Papers 545
September 2015

Local and Global Pollution and International

Environmental Agreements in a Network

Approach

Michael Günther and Tim Hellmann

Center for Mathematical Economics (IMW)
Bielefeld University
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Abstract

Increasing concerns about climate change have given rise to the formation of In-
ternational Environmental Agreements (IEAs) as a possible solution to limit global
pollution effects. In this paper, we study the stability of IEAs in a repeated game
framework where we restrict to strategies which are simple and invariant to rene-
gotiation. Our main contribution to the literature on IEAs is that we allow for
heterogeneous patterns of pollution such that additional to a global effect of pollu-
tion there are local pollution effects represented by a network structure. We show
that stable IEAs exist if the network structure is balanced. Too large asymmetries in
the degree of local spillovers may however lead to non-existence of stable structures.
The generality of our approach allows for several applications to general problems
in the provision of public goods.

Keywords: International environmental agreements; Weak renegotiation-proofness; Net-
works; Coalition structures

JEL classification: C72, C73, D85, F53, Q54

∗Center for Mathematical Economics (IMW) and Bielefeld Graduate School of Economics and Man-
agement (BiGSEM), Bielefeld University, michael.guenther@uni-bielefeld.de. This research was carried
out within the International Research Training Group ”Economic Behavior and Interaction Models”
(EBIM) financed by the German Research Foundation (DFG) under contract GRK 1134/2.
†Center for Mathematical Economics (IMW), Bielefeld University, tim.hellmann@uni-bielefeld.de.

The authors would like to thank Florian Gauer, Christoph Kuzmics and Jakob Landwehr, as well as the
participants of various seminars at Bielefeld University and University Paris 1 Panthéon-Sorbonne for
valuable comments and suggestions.

1



1 Introduction

Rising concerns about climate change has led politicians worldwide to rethink their coun-
tries’ emission of greenhouse gases and air pollution. Doing what is best for their own
countries’ interest, however, does not fully internalize the global effects of the emissions
and hence their optimal policy will not reduce pollution efficiently. In other words, coun-
tries free-ride on others’ abatement efforts, similar to the case of private provision of
public goods. To overcome this dilemma and achieve more efficient pollution abatement,
several International Environmental Agreements (IEAs) have been proposed and formed
in recent years.1

Besides their global effects, many forms of pollution have additional negative effects
on countries within the same region of the polluting source. Air pollution, for instance,
can cause smog, acid deposition and eutrophication which are mostly experienced locally
while the global effects (e.g. global warming) are endured worldwide. Short-lived climate
pollutants such as black carbon, methane and tropospheric ozone have both a local and
global impact. Their effects on "regional and global climate, through both direct interac-
tion with atmospheric radiation and indirect effects related to changes in cloud properties
are a growing concern" (Committee on the Significance of International Transport of Air
Pollutants; National Research Council, 2009). As another example, a nuclear power plant
causes higher negative effects in nearby regions by danger of malfunctioning compared
to the global risk. The presence of these local spillovers hence plays a non-negligible role
and adds additional heterogeneity to the problem of forming IEAs.

In this paper, we ask which IEAs form by purely self-interested countries when the
negative externalities of pollution have a local and a global component. In our model,
an IEA coordinates the abatement efforts of its members to maximize joint utility. We
use a repeated game approach of abatement efforts to study the stability of these IEAs.
By stability we mean that an IEA shall be self-enforcing, i.e. no member shall have an
incentive to deviate from cooperation and renegotiation shall be prevented. Formally,
an IEA is stable, if it can be supported by a weak renegotiation-proof equilibrium in the
repeated game, where we focus on simple strategies, i.e. on one-period punishment paths.

Which countries are affected by the local externality of pollution is represented by a
network: a link between two countries indicates whether these countries’ pollution affects
each other locally. Here, a link could mean that two countries share the same border or
are within some distance which is critical for the local externality. Given a local spillover
structure, we derive optimal punishment strategies such that the grand coalition of all
countries can be supported by a subgame perfect equilibrium. In contrast to the general
literature without a local spillover structure, global cooperation may fail to be a weakly
renegotiation-proof equilibrium in very asymmetric networks. However, we also show

1Examples include the Oslo Protocol on sulfur reduction in Europe (also including other states) in
1994, the Montreal Protocol on the depletion of the ozone layer in 1987 and the Kyoto-Protocol on the
reduction of greenhouse gases in 1997.
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that it can always be sustained in regular networks.

The additional local spillover structure adds heterogeneity to the problem of formation
of IEAs which can be shown to have interesting effects such that in some asymmetric
structures, the global IEA is not sustainable as an equilibrium. As global pollution can
be seen as a perfect public bad, the local side of it has the characteristics of a local public
bad. Since reducing pollution has the characteristic of a public good, we also contribute
to the problem of public good provision when the public good has both a local and a
global component. To our knowledge, including both aspects in one model is also new
to the literature of public goods.

Our results have important policy implications. When contemplating an IEA, strict
rules have to be imposed in order to prevent deviation. These rules must specify the
consequences of deviating from the agreed reductions and shall make use of the local
spillover effects. With respect to welfare, we show in Section 6 that it is indeed better to
first appoint neighbors for punishment of a deviation before non-neighbors shall punish.
Moreover, these punishment strategies can also be invoked in order to convince other
countries to join the IEA and to use the cooperation strategy. The process of how such
coalitions may emerge and grow from a local to a global level can also be modeled in our
network approach. We discuss this in our extensions in Section 7.

More generally, the results may serve as a benchmark that can be useful in future
analyses of IEAs. It may very well be extended in several ways that we discuss in our
Conclusion (Section 8). Moreover, it can easily be transferred to other problems of public
good provision and may support a better understanding of free-riding problems.

The rest of the paper is organized as follows: first, we further elaborate on the issue
of local and global pollution and discuss related literature as well as our contributions.
In Section 3 we introduce the basic model of a single-stage game. In Section 4 we extend
the model to an infinitely repeated game and derive conditions on existence of weakly
renegotiation-proof equilibria for several prominent networks. Section 5 focuses on the
welfare-maximizing global IEA. In Section 6 we analyze welfare implications of different
network structures and in Section 7 we discuss several extension possibilities. Finally,
Section 8 concludes. All proofs are presented in the Appendix.

2 Background and Literature Review

International Environmental Agreements (IEAs) have been analyzed in various game-
theoretic models over the past two decades. Starting with the seminal paper by Barrett
(1994), several authors have studied the free-rider problem when joining an agreement by
studying both one-shot and repeated games. For a good overview of the game-theoretic
literature on environmental economics we refer to recent literature surveys such as for
example Jørgensen et al. (2010) or Benchekroun and Long (2012).
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A majority of the models in the literature tackles the problem of air pollution, caused
by the emission of greenhouse gases from fossil fuel combustion. While some models have
at least abstracted from the stark assumption of homogenous countries and introduced
asymmetries to account for different impact and contribution levels of pollution (e.g.,
McGinty, 2007; Hannesson, 2010), the implications of geographical distance to the sources
of air pollution have not been largely accounted for.

However, there is broad scientific evidence for the importance of regional character-
istics for several air pollution effects. Most importantly, short-lived air pollutants, that
include methane, black carbon and tropospheric ozone, have a significant local or regional
impact besides contributing to global problems such as climate change (see e.g., Kühn
et al., 2013, for a study of emissions on local and global aerosol properties for China
and India). Other examples for the regional effects of air pollution include the ozone
level. For instance, the ozone level of the Mediterranean region is not only affected by
local emissions but also perturbed by long-range pollution import from Northern Europe,
North America and Asia (Richards et al., 2013).

Summarizing the above evidence we can conclude that the consideration of local
spillover effects in addition to global externalities of emissions is crucial to better under-
stand and represent the incentives to form IEAs. While Yang (2006) considers an optimal
control problem where countries provide negatively (!) correlated local and global stock
externalities (his example is CO2 and SO2), Dockner and Nishimura (1999) consider a
dynamic game model where each country contributes to a domestic stock of pollution.
Both, however, do not consider the possibility of forming an IEA to reduce pollution.

Hence, to our knowledge there exists no game theoretic model that incorporates both
a local and global spillover effect of air pollution in a standard coalition formation game
for an IEA. This however seems to be crucial in understanding possible solutions to the
problem of reducing pollution as for example Bollen et al. (2009) show in a cost-benefit
analysis, concluding that "combined climate and local air pollution policy generates extra
benefits in terms of climate change mitigation." They therefore recommend that policies
need to be designed such that they jointly implement both global climate change and
local air pollution strategies.

Considering only global pollution as a repeated game, several works have studied IEAs
as a coalition which may punish possible deviators by returning to pollution strategies.
Often, a grim-trigger-strategy is considered such that all members of an IEA punish a
deviator before returning to cooperation. This has been found to limit outcomes in terms
of cooperating countries in equilibrium (e.g., Barrett, 1994, 1999), as the more countries
punish a deviator, the fewer countries cooperate in the punishment phase which then
lowers the punishing countries’ payoffs in this phase. To lower the incentives for renego-
tiation, several authors studied different punishment strategies where not all signatories
punish a deviator. Among those are Asheim and Holtsmark (2009) and Froyn and Hovi
(2008). Another example is Asheim et al. (2006), where artificially two regions are intro-
duced in order to restrict punishment to be executed only by a subset of IEA members.
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By incorporating the regional effects in our model, however, it comes very natural to use
the regional structure for punishment patterns.

The application of network theory to problems of public goods is not new to the
literature. Several authors analyze the provision of public goods in a network and study a
local spillover effect where players can only benefit from their direct neighbors’ provisions
(e.g., Allouch, 2015; Bramoullé and Kranton, 2007; Bloch and Zenginobuz, 2007; Elliott
and Golub, 2013). However, none of these include a global spillover effect that would
be necessary for an adequate representation of the pollution problem. We therefore
contribute to the climate change literature by incorporating elements of the network
theory, an issue that is becoming more and more interesting to researchers of that field
(see Currarini et al., 2014).

3 A Pollution Game of Local and Global Spillovers

3.1 Model Setup

We consider an economy with a finite set of countries N , which are denoted by i =
1, . . . , n. Countries are heterogeneous with respect to their size (i.e. satiation level of
consumption) and their position in the local spillover network. We assume that coun-
tries are represented by one individual.2 Each country derives benefits from consuming a
good xi ∈ R+ with marginal benefits assumed to be decreasing. Likewise, we assume de-
creasing returns from additional abatement efforts (i.e. consumption reduction). Benefits
of consumption are therefore represented by the quadratic and concave function

Bi(xi) = −1

2
(x̄i − xi)2 ,

where x̄i ∈ R is an exogenously fixed satiation level which represents the first-best emis-
sion level if there would be no pollution effects of consumption – or at least there would
be no concern for them.

Note. In the following we will make use of the following notation: x ∈ Rn = (x1, . . . , xn)
describes the output vector of all countries. For a subset A = {i1, . . . , il} ⊆ N , the vector
xA =

(
xi1 , . . . , xil

)
is the output vector of all countries in A. Also, we use the following

abbreviation for the output vector of all countries but country i: x−i = xN\{i}.

Consuming xi emits air pollutants and thus contributes to the stock of pollution which
is accumulated on a local and global level.3 While benefits from consuming xi are private,
the emission of pollutants has spillover effects on all other countries. All countries equally
suffer from the global level of pollution, e.g. the rising level of CO2 in the atmosphere

2We leave out all issues related to opinion formation and political debate within a country but focus
on the negotiations taking place at the global level.

3For example, Battaglini and Harstad (2012) interpret xi to be the level of energy used to produce
some good. For simplicity we assume one unit of consumption to generate one unit of pollution.
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that significantly contributes to global warming. In addition to the global impact, effects
of emissions differ locally and are experienced by a certain subgroup of countries. For
instance, short-lived climate pollutants such as black carbon, methane and tropospheric
ozone have both a local and global impact.4

We model the local spillover effect by a network structure g ∈ GN , where GN =
{g | g ⊆ gN} denotes the set of all possible networks on the set of players N , with
gN denoting the set of all subsets of N of size 2. A link between two countries in the
network then describes the presence of a direct local spillover which could be due to
geographical distance, common borders, sharing an ocean or a lake, or other underlying
assumptions that we exclude from our model. We assume that local emission spillovers
between countries are bidirectional and thus focus on undirected networks, however we
show in Section 7 that this is not restrictive and adapting notation our results also hold
for directed networks. Furthermore, we leave out scaling issues of the effects and consider
only unweighted graphs.

The network structure is captured via the indicator function gij which is equal to 1, if
i and j are neighbors and 0 in all other cases. With respect to the spillover effect, every
country suffers from its own emissions both through the local and the global effect. To
account for this and to incorporate it into our model, we let ḡij = gij for all i 6= j and
ḡii = 1.

We assume linear spillover effects on both the global and local level due to analytical
tractability. The marginal impacts are weighted relative to benefits from consumption
by β > 0 for the global spillover effect and γ > 0 for the local spillover effect.5 The costs
incurred from total pollution are then represented by the cost function

Ki(xi, x−i) = β
∑
j∈N

xj + γ
∑
j∈N

ḡijxj .

The individual profit πi of a country i ∈ N can thus be represented as follows:

πi
(
xi, x−i

)
= Bi(xi)−Ki(xi, x−i) = −1

2
(x̄i − xi)2 − β

∑
j∈N

xj − γ
∑
j∈N

ḡijxj . (1)

In line with the standard literature, we will represent an IEA that is formed among
countries by the game-theoretic concept of a coalition. More specifically, we denote by
C ⊆ N the coalition of k countries i1, . . . , ik that cooperate on the abatement level
to maximize the utilitarian welfare of its members.6 A member of a coalition, called

4Also, usually not only one single pollutant is released during production or consumption but others
are emitted simultaneously and these might only impact certain, local areas. We abstract from this by
summarizing all different pollutants in one representative emission flow xi.

5We shall mention that we abstract from heterogeneities with respect to marginal impacts to focus
on the effect that is derived from the network position.

6In this benchmark model we abstract from the possibility of multiple agreements, thus only one
coalition can form even though the consideration of a local spillover structure may naturally induce
locally organized agreements and thus multiple coalitions. We will come back to this in our discussion
in Section 8.
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signatory, hence chooses a pollution level xi such that it maximizes the sum of all signa-
tories’ utility. Given a coalition C, we denote by C + i the coalition when i joins C. A
main driver of our results will be the number of intra-coalition links, i.e. the number of
neighbors that are part of the coalition, which will be denoted by ki = |Ni ∩ C|.

3.2 The Free-Rider Problem in the Single Stage Game

To illustrate the issues that arise when forming IEAs, we first look at the two extreme
cases of either no or full cooperation, i.e. C = ∅ and C = N . In the one-shot game all
countries simultaneously choose their level of emissions xi.7

In the situation of no cooperation, i.e. C = ∅, every country myopically determines its
emission level to maximize individual profit πi as defined in (1). The first order conditions
(subsequently abbreviated as FOCs) then directly yield the non-signatory Nash outcome

xNSi = x̄i − β − γ. (2)

Hence, in absence of an IEA, every country emits just slightly below its first-best level
x̄i by accounting for the own marginal emission effect β + γ.

Assumption 1. As we assume non-negative emissions, we impose the following condition
for all i ∈ N : x̄i ≥ m1β +m2γ, ∀ 0 ≤ m1,m2 ≤ n.

We think of an IEA such that members choose emissions to maximize the utilitarian
welfare restricted to the members of the IEA. Denoting by C ⊆ N the set of countries
who sign the IEA, the maximization problems for those countries, hence, are given by,

max
(xi)i∈C

∑
i∈C

πi

(
xC , xN\C

)
. (3)

The FOCs yield an optimal emission level for every signatory that depends on the size
of the coalition, k, and the number of intra-coalition links, ki = |Ni ∩ C|,

xSi (C) = x̄i − βk − γ(ki + 1), (4)

such that all non-signatories j /∈ C choose the emission level xNSj given by (2). In the

following, we will denote by x(C) =
(

(xSi (C))i∈C , (x
NS
j )j∈N\C

)
the vector of outputs

when a coalition C is collaborating and denote profits by πi(C) = πi(x(C)).

For the case of full, global cooperation, i.e. C = N , utilitarian welfare of all countries∑
i∈N πi(x) is maximized. We get, xSi (N) = x̄i − βn − γ (ηi + 1), where every country

takes into account the global effects from its pollution as well as the local spillovers to
every respective neighbor. From a global perspective, this would be the first-best solution

7The assumption of simultaneous move is standard in the literature. There are, however, also papers
that study the effects of a coalition that acts as a Stackelberg leader (e.g., Rubio and Ulph, 2006).
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as all externalities are internalized. However, not every individual country is necessarily
better off under full cooperation than under no cooperation. To demonstrate this, let us
denote by ∆i

(
N, ∅

)
the difference in individual profits between global an no cooperation.

We have that

∆i

(
N, ∅

)
=πi(N)− πi(∅) =

1

2
β2 (n− 1)2 + γ

∑
j 6=i

(γgij + β)ηj −
1

2
γ2η2i .

Thus, the potential gains from a full cooperation agreement are positive if and only if

γ2(η2i −
∑
j∈N

gijηj) ≤ β2(n− 1)2 + 2γβ
∑
j 6=i

ηj . (5)

This condition obviously holds if either the network is not too asymmetric (i.e. where
ηi ' ηj ∀i, j ∈ N) or in those cases where the global impact β is large compared to the
local impact γ.8 Instead, very asymmetric network structures and a high local spillover
effect γ can lead to cases where countries actually prefer no cooperation to full cooperation
as we see in Example 1. Thus the first observation that we can take away here is that
the local spillover structure may yield asymmetries between countries incentives which
are difficult to overcome when forming IEAs.

Fig. 3.1: A star network with one central node and 6 peripheral nodes.

Example 1. Consider the star network g∗(n) with one player connected to all other
n − 1 players who are only connected to the center, exemplarily shown in Figure 3.1
for 7 nodes. The center node prefers no cooperation over full cooperation for all values
of γ ≥ β n−1n−3 . For the peripheral nodes, no cooperation is clearly worse than the full-
cooperative solution. Nevertheless, global cooperation is not a Pareto-improving outcome
to no cooperation.

So far, we have only compared global cooperation, when every country chooses emis-
sion as to maximize utilitarian welfare, to no cooperation. As the members jointly maxi-
mize their profits, each signatory takes into account the coalition’s global spillover effect
as well as all the local spillover effects from signatories in the neighborhood. Thus, the
signatories’ strategies are efficient within the coalition C with respect to the utilitarian
welfare function. However, because of the lack of a central agency, an IEA, if formed,
has to be self-enforcing in order to become effective. That is, no member shall have
an incentive to join or to leave an IEA. In other words, formation of an IEA follows an

8Two examples of sufficient conditions for (5) to hold are that either the network is regular, i.e.
ηi = ηj for all i, j ∈ N or that γ ≤ β.
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open membership single coalition game (for more details see e.g., Finus and Rundshagen,
2001; Yi and Shin, 2000). Countries voluntarily decide whether to become member of
the IEA or not and no country can be excluded from membership nor can any member
be forced to stay in the coalition. Given an IEA C, the incentive for a signatory i ∈ C
to leave can be calculated to be,9

πi(C)− πi(C \ {i}) = −β
2

2
k2 − γ2

2
k2i − βγkki + 2β2k + γ(3β + γ)ki −

3

2
β2

= −kiγ
(
β(k − 3) + γ(ki2 − 1)

)
− β2

2 (k − 3)(k − 1). (6)

Thus, the structure of local spillovers plays a crucial role in each country’s decision to
whether or not join a coalition. In particular, no IEA C of k > 3 signatories can contain
a member i with ki 6= 1 neighbors in C since otherwise (6) becomes negative and hence
there is an incentive to leave this IEA. For the IEA including all countries this means
that even those countries that satisfy condition (5) would rather free-ride on the others’
efforts than choosing the full-cooperative output level, if the network is large enough.

Proposition 1. Let n > 3. For all countries i ∈ N with ηi 6= 1 it holds that

πi(N \ {i}) > πi(N).

For those countries with only one neighbor, i.e. ηi = 1, the above holds if and only if

γ < β
(
n− 3 +

√
(n− 3)(2n− 4)

)
.

Hence if and only if the network consists of separated pairs only and the local spillover
effect is significantly larger than the global spillover effect, global cooperation may be a
Nash equilibrium which implies that the IEA where all countries sign is stable. In general
however we can conclude that in the networks we consider the full cooperative outcome
is never a Nash equilibrium of the single-stage game and no country would choose the
full-cooperative output level unilaterally but rather free-ride on the others’ efforts.

4 Stable IEAs in Infinitely Repeated Games

As the nature of pollution and production is rather of repeated form, a one-shot game
may not be the accurate model to consider IEAs. So while in the one-shot game IEAs,
particularly those consisting of many countries, fail to be self-enforcing or stable, there
is hope for stability of IEAs by threat of future punishment in the repeated game. The
main question that we ask here is which IEAs are implementable when the nature of
game is of repeated form. We do not ask how these IEAs form, but rather whether
certain IEAs are stable and which conditions on the local spillover structure foster or

9See a supplementary appendix online, available at https://sites.google.com/site/guenthermichael/.
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harm implementability of an IEA. We informally discuss the formation of an IEA in our
extensions in Section 7.

Similarly to the one-shot case, we model an IEA in the infinitely repeated game by
a coalition of signatories with two stability conditions. First, stability requires that no
signatory has an incentive to deviate from the strategy that maximizes the coalition’s
utilitarian welfare through threats of future punishments by the other signatories. These
threats deter free-rider incentives and allow for the implementation of full cooperation as
a subgame perfect equilibrium (subsequently abbreviated as SGP equilibrium) as long as
the discount factor is high enough (see Fudenberg and Maskin, 1986). Second, stability
requires execution of the punishment strategies such that they are not vulnerable to
renegotiation. In other words, the punishers shall not have an incentive to renegotiate
the terms of the agreement and restart the game.

We rule out this possibility by considering only those equilibria as stable outcomes
that are renegotiation-proof. More specifically, we apply the most frequently used notion
of weak renegotiation-proofness (subsequently abbreviated as WRP).10

4.1 The Infinitely Repeated Game

We briefly introduce a standard infinitely repeated game of the stage game as de-
scribed in Section 3. Time is discrete and indexed by t ∈ N. In each period, coun-
tries choose consumption (i.e. emission levels) xi(t) (with slight abuse of notation). In
other words, the stage game is played in each period. At time t, country i’s choice of
emission may depend on the entire history of the game through period t − 1, denoted
ht−1 =

(
(x1(1), ..., xn(1)), ..., (x1(t − 1), ..., xn(t − 1))

)
. Thus, a strategy si for country

i is a function that, for every date t and every possible history ht−1, defines a period
t action xi(t) ∈ R+. Future payoffs are discounted with a common discount factor
δ < 1 such that each country i receives a discounted payoff for a sequence of emissions{

(xi(t), x−i(t))
}∞
t=0

,

Πi = (1− δ)
∞∑
t=0

δtπi(xi(t), x−i(t)). (7)

In the infinitely repeated game, a weakly renegotiation-proof equilibrium is defined
as a strategy profile of the repeated game s = (si)i∈N such that it satisfies the following.

10Note that there are two limitations of this concept in our subsequent analysis: First, weak
renegotiation-proofness takes account of the possibility of a unilateral deviation of a single country
but does not regard the possibility of a deviation of a subset of countries, which may very well occur as
a result of coordinated action among some countries. Second, by deriving a WRP equilibrium we can
not answer the question of how coordination may be achieved, i.e. how countries agree on a particular
IEA (see also the discussion in Asheim and Holtsmark, 2009).
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Definition 1. [Farrell and Maskin (1989)] A simple strategy profile s is a weakly rene-
gotiation-proof (WRP) equilibrium of the infinitely repeated game if and only if (1) s is
a subgame perfect equilibrium of the infinitely repeated game and (2) there exist no two
continuation equilibria such that all players strictly prefer the one to the other.

As we view an IEA as a coalition of players C ⊆ N that should implement the signa-
tory strategy xSC as defined by (4), the application of the concept of WRP equilibrium
has exactly the conditions desired for our setup.11 Part (1) of Definition 1 ensures that
the coalition is stable with respect to deviations and (2) implies stability with respect
to renegotiations. Hence, we ask whether the signatory emission can be supported by
a WRP equilibrium of the repeated game. To be implementable, credible punishment
paths have to be designed to deter deviations. Due to renegotiation incentives, it may
not be optimal that all other signatories punish. In fact, the harsher the punishment or
the more countries punish, the higher is the incentive to renegotiate.12 Another aspect
of implementability of an IEA is the fact that strategies shall be simple. We use the
notion of simple strategies by Abreu (1988). That is, we focus on punishments that last
only one period, the set of punishers is time-invariant and all punishers use the same
punishment action.

We denote Pi(g) ⊆ C the set of players that punish deviator i ∈ C. Punishment for
a deviating signatory i ∈ C is thus carried out as follows: each country j ∈ Pi punishes
a deviation of country i by emitting the punishment level xPi instead of the signatory
emission xSi where

xPj = x̄j − p(β + γ)

in the period after the deviation. We assume that p ≥ 1 such that the highest punishment
level is the Nash output xNSj (in Subsection 7.1 we relax this assumption). As all non-
signatories l /∈ C play their first-best action, i.e. the Nash equilibrium level xNSl , they
will not punish a deviator but continue with their strategy.

A coalition C = {i1, . . . , ik} is then implemented through a strategy sC, which is
defined for period t = 1 by sCi (∅, 1) = xSi for all i ∈ C and for t ∈ N recursively defined
by

sCi (ht−1, t) =

xPi , if ∃!j ∈ C : xj(t− 1) 6= sCj (ht−2, t− 1) and i ∈ Pj
xSi , else

.

11Note that in the following we will use the notation xSi ≡ xSi (C) unless otherwise stated. Also, to
shorten notation we will omit the vector xN\C .

12It has been shown in other papers, such as Froyn and Hovi (2008) and Asheim et al. (2006), that the
limitation of punishers to a subset of the cooperating players can decrease the incentives for renegotiation.
The same effect can be observed in our model. In our model though, players face heterogeneous costs
from pollution through the local spillover channel. Thus, we have to derive individual punishment paths
and therefore individual sets of punishers for any possible deviator. Whereas for example Asheim et al.
(2006) artificially introduce two separated regions and let a deviating country be punished only by
countries in the same region as the deviator, we allow for more flexible punishment sets and focus on the
impact of the local spillover structure, represented by the network g, on possible equilibrium outcomes.
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Since non-signatories j ∈ N \ C stick to their Nash emission level xNSj throughout

the game, their strategy is simply given by s
N\C
j (·, t) = xNSj for all t ∈ N. This defines a

simple strategy profile in the spirit of Abreu (1988), since it gives rise to the (n+1)–vector
of paths

(aC,pC
1 , . . . ,p

C
n ).

where aC is the agreement path, s.t.

aC =

{(
xSC , x

NS
N\C

)
,
(
xSC , x

NS
N\C

)
, . . .

}
and the punishment paths which are triggered if a single country i ∈ N deviates,

pC
i =

{(
xPPi , x

S
C\Pi , x

NS
N\C

)
,
(
xSC , x

NS
N\C

)
,
(
xSC , x

NS
N\C

)
, . . .

}
In other words, any single deviation of a country i results in a one-period punishment
by the countries Pi who subsequently revert to their signatory strategies, while all others
play as in the agreement path.13 Moreover, only signatories may have an incentive to
deviate and thus need to be punished – non-signatories will always stick to their Nash
output and thus will not be punished directly. All together we ask whether s = (sC, sN\C)
forms a WRP.

It is worth remarking that we consider a very specific punishment rule and simple
punishment strategies. However, as stated before, it is a strategy that is simple to
implement and therefore suitable for the application in an IEA. Moreover, it is the one
that has been frequently used in the repeated games literature on IEAs and our results
show that this may not be sufficient to establish full cooperation as a WRP equilibrium.
In Subsection 7.1 we also briefly discuss what changes if we allowed for other punishment
strategies.

4.2 Weakly Renegotiation-Proof Coalitions

Since implementability of an IEA C depends on the existence of an WRP equilibrium sup-
porting the C optimal punishments sets Pi and punishment level p have to be determined
for each i ∈ C. As spillovers are heterogeneously distributed across the signatories due
to their network position, this might be a quite complex task. Necessary and sufficient
conditions on these punishment sets are presented in the following result.

13Note that only single deviations are considered, that is multiple deviations in a single period are not
punished.
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Theorem 1. The simple strategy profile s that implements the coalition C is a WRP
equilibrium of the repeated game if and only if for all i ∈ C

δ

β2|Pi|(k − p) + βγ

|Pi|(1− p) +
∑
m∈Pi

km + |Pi ∩Ni|(k − p)



+γ2

 ∑
m∈Pi∩Ni

km + |Pi ∩Ni|(1− p)


− 1

2

(
β(k − 1) + γki

)2 ≥ 0 (8)

and for all i ∈ C there exists at least one j ∈ Pi such that

β2(k − p)(|Pi| − p) + βγ

(|Pi| − p)(1− p) +
∑

m∈Pi\{j}

km + |Pi ∩Nj |(k − p)


+
γ2

2

2
∑

m∈Pi∩Nj

km +
(

2|Pi ∩Nj |+ 1− p
)

(1− p)

− 1

2

(
β(k − 1) + γkj

)2 ≤ 0. (9)

First, Equation (8) yields the condition for s to be a subgame perfect equilibrium. In
particular Pi needs to be large enough while p must be low enough in order for Equa-
tion (8) to hold.14. While punishment needs to be harsh enough to deter deviations,
Equation (9) specifies conditions for weak renegotiation-proofness. In particular, pun-
ishment cannot be too harsh to prevent incentives for renegotiation.15

Hence, if both conditions are satisfied, the simple strategy profile that specifies for
every signatory i ∈ C a set of punishers Pi and a punishment level of the punishers p
sustains the coalition C as a WRP equilibrium. Even with the simple strategies that we
consider here, the conditions in Theorem 1 seem quite complex. The complexity stems
from the heterogeneous spillover channels represented by the network. The intuition of
the conditions can be best explained in the following when we focus only on one type
of spillover (global respectively local, Section 4.3) and subsequently explore comparative
statics with respect to changes in the network and punishing sets (Section 4.4).

In order to better understand the conditions of Theorem 1 with respect to the specific
punishment sets and the network, in the following we consider special cases of spillover

14Note that the SPE condition would also entail that no player j ∈ Pi has an incentive to unilaterally
not carry out his punishment. This however is automatically satisfied as we assume p ≥ 1 (see also
Lemma 2 in the Appendix)

15Note that Equation (9) only has to hold for one element of the punishment set which may lead to
results such that enlargement of the punishment group may actually benefit coniditon (8). However, the
results presented in this paper also hold for stronger versions of WRP (e.g. that (8) has to hold for all
j ∈ Pi), which are not available in the literature so far.
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and network structures. For the rest of the paper we will moreover assume that every
country punishes a deviation by emitting its Nash output level, i.e. for all i ∈ N we set
p = 1 for all punishers j ∈ Pi.

4.3 WRP Conditions for Special Spillover Structures

First, suppose that there exists only the global spillover channel, as e.g. in Asheim and
Holtsmark (2009). Hence, the underlying network plays no role and the only hetero-
geneity in the game stems from the exogenously given satiation levels x̄i. However, as
these do not influence the results, the intuition alone implies that it is not important
who punishes, but how many punish, i.e. it is not the composition of the punishment set
that matters but the size. Indeed, setting γ = 0 in (8) and (9), one obtains the following.

Corollary 1. For γ = 0, the conditions of Theorem 1 reduce to

1

2δ
(k − 1) ≤ |Pi| ≤

1

2
(k + 1) ∀i ∈ C.

Without the local spillover effect, the conditions of Theorem 1 determine the number
of punishers allocated to each signatory in order to be part of a WRP coalition. To give
some intuition, the punishment set needs to be large enough in order to deter deviation
(first inequality) while it cannot be too large in order to prevent renegotiation (second
inequality). The conditions of Corollary 1 are equivalent to the conditions of Asheim and
Holtsmark (2009), Theorem 1, with s = k and p = 1.

Second, if we instead consider general spillover effects but very special networks, then
similar observations can be made. For example the empty network g = g∅ is trivially
equivalent to the case where no local spillover effects exist. Further, consider g = gN ,
i.e. the complete network. Then, all countries experience the local spillover from a given
country which immediately implies that this is equivalent to the case where the magnitude
of the global spillover is β+γ while there are no local spillovers. Hence, also for the case
of the complete networks, the conditions for a WRP equilibrium are equivalent to the
ones from Corollary 1.

Third, consider the case when the global spillover channel does not exist. Then,
the game boils down to a local spillover game where countries can only free-ride on the
actions of their direct neighbors.

Corollary 2. Let β = 0. The conditions of Theorem 1 on the punishment set Pi, i ∈ C
reduce to the following:

∀ i ∈ C
∑

m∈Pi∩Ni

km ≥
k2i
2δ ,

∀ i ∈ C, ∃ j ∈ Pi, s.t.
∑

m∈Pi∩Nj

km ≤
k2j
2 .
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When only the local externalities play a role, then the composition of the punishment
sets becomes important. Since only the local spillover channel is present, only neighbors
have a deterring effect. The first condition requires punishment to be harsh enough
in order to deter deviation, which implies that the set of punishers must have enough
neighbors in C. This is due to the fact that emission is increased from xSj = x̄j − kjγ to
xPj = x̄j − γ if j ∈ Pi. With the same reasoning, the incentive to deviate for country i
is determined by ki. On the other hand, total punishment must not be too harsh in the
sense that the punishers shall not have an incentive to renegotiate, which is presented
in the second condition. Incentives to renegotiate occur if the neighborhood structure of
the punishers overlaps too much. Thus, given a punishment level, the set of punishers
should be constructed such that their local spillover channels interfere minimally.

4.4 Comparative Statics

Abstracting from the special cases of only global respectively local spillovers, we further
explore the meaning of the conditions for existence of a WRP equilibrium in simple strate-
gies to support a coalition C ⊆ N given in Theorem 1 by means of comparitive statics.
To understand the effect of the different spillover channels, i.e. the underlying network,
we study the effect of additional links in the network on the conditions of subgame per-
fection and weakly renegotiation-proofness. Further, we ask how an enlargement of the
punishment group may impact these conditions, or more precisely, what the marginal
effect of an additional punishing country is.

4.4.1 The effect of the spillover structure

First, consider the condition on subgame perfection (see Theorem 1, Equation 8). Take
i ∈ C and define the function fi(δ, C, g, Pi) as the left-hand side of (8). The marginal
effect of an additional link (currently not in the network) lm /∈ g, l,m 6= i, on the
subgame perfect condition of player i can be calculated to be,

fi(δ, C, g + lm, Pi)− fi(δ, C, g, Pi) =
(
1Pi(l) + 1Pi(m)

)
δ
(
βγ
(
1Ni(l) + 1Ni(m)

) )
,

where 1A(i) denotes the indicator function such that 1A(i) = 1 if i ∈ A and 1A(i) = 0
else. The marginal effect is positive as long as the link lm involves at least one of i’s
punishers (1P (l) = 1), meaning that condition (8) is more likely to hold for i ∈ C
after link addition since (8) requires fi(δ, C, g, Pi) ≥ 0. Thus, the marginal effect of an
additional spillover channel is largest if the link is between two punishers of i who are also
neighbors with i and lowest if both are neither. The reason is that punishment increases
if a punisher has an additional spillover channel, since emission reduction is higher in the
non-punishment case. Moreover, neighbors cause a larger marginal effect for country i
through the additional spillover channel.
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While the marginal effect of link addition between two countries other than i on i’s
incentive to play the signatory strategy is unambiguously non-negative, the same is not
so clear for the marginal effect if i itself is involved in the additional link:

fi(δ, C, g+ im, Pi)−fi(δ, C, g, Pi) = βγ
(
1Pi(m)δk− (k−1)

)
+
γ2

2
(1Pi(m)2δ− (2ki+1)).

Obviously, if a deviator i has additional spillover channels to non-punishers, i.e. 1Pi(m) =
0, the effect is negative, since i is required to reduce more of its emission in the signatory
strategy, and, thus, more tempted to deviate. If instead the additional link is to a
punishing player, i.e. 1Pi(m) = 1, then punishment also increases. This has an additional
deterring effect which clearly depends on δ such that the effect on subgame perfection is

negative as long as the discount factor δ is small enough, i.e. δ ≤ δ̄(g) =
k−1+ γ

β
(ki+

1
2
)

k+ γ
β

.

Note that the marginal effect is negative for all discount factors if δ̄(g) ≥ 1, which holds
for large enough ki and marginal local spillovers γ.

Next, we turn to the second condition of stability of Theorem 1, i.e. the condition
that ensures weak renegotiation-proofness. Considering a deviator i ∈ C and a punisher
j ∈ Pi, we define hij(δ, C, g, Pi) as the left-hand side of (9). The marginal effect of an
additional link lm /∈ g on the incentives of a punisher j of deviator i is then given by

hij(δ, C, g + lm, Pi)− hij(δ, C, g, Pi) =
(
1Pi(l) + 1Pi(m)

) (
βγ
(
1Ni(l) + 1Ni(m)

) )
.

Since the marginal effect is positive if at least one link involves a punisher of i, condition
(9) is less likely to hold for j ∈ C after link addition since (9) requires hij(δ, C, g, Pi) ≤ 0.
The marginal effect of an additional link between l and m on the incentives of j ∈ Pi to
renegotiate is largest, when both l and m are punishers and neighbors of j.16 If there is
an additional link between two countries that are not in the punishing group Pi, this has
obviously no impact on the WRP condition for j. Thus, an overlapping spillover structure
of punishing group Pi makes renegotiation more attractive (and thus makes the coalition
vulnerable to renegotiation) since the profit under cooperation increases. This effect is
fostered if there is also a connection to the punisher j, as decreasing costs through local
spillovers increase j’s incentives to renegotiate and not carry out the punishment.

Since we study the incentives for j to renegotiate, it makes a difference if j itself is
part of the additional spillover. We obtain

hij(δ, C, g + jm, Pi)− hij(δ, C, g, Pi) =

−βγ(k − 1)− γ2(kj + 1
2), m /∈ Pi

βγ − γ2(kj − km − 1
2), m ∈ Pi

.

For j’s incentive itself to renegotiate, the effect of additional links is ambiguous. First,
if the additional link leads to a non-punisher of i, then j has lower benefits from coop-
eration compared to her Nash strategy making renegotiation less attractive. If instead

16Note that here m = i is not excluded. But since i cannot be part of the punishment group, we
always have 1Pi(i) = 0.
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the additional link is to a punisher of i, then j also suffers from the punishment level of
the additional neighbor during the punishment phase, which harms j through the local
spillover channel and hence works in the opposite direction to make renegotiation more
attractive.

We can conclude: Given the punishment group, higher density of the spillover struc-
ture within the coalition facilitates subgame perfection while it harms the renegotiation-
proofness condition for most countries. Note, however, that this does not necessarily
hold for the potential deviator respectively a potential punisher who is involved in the
additional link. So while the subgame perfection condition (8) has to hold for all i ∈ C
and renegotiation-proofness condition (9) for at least one j ∈ Pi, the overall effect of link
addition on both stability conditions of an IEA may be ambiguous.

4.4.2 Additional punishers

In order to determine an individual, optimal punishment group for every possible deviator
of a coalition, we also have to understand what is the marginal effect of an additional
punisher for the two conditions for WRP coalitions. First, we study the effect on the
SGP condition (8). We have the following marginal effect of an additional punisher l on
the deviator i:

fi(δ, C, g, Pi ∪ {l})− fi(δ, C, g, Pi) = (β + 1Ni(l)γ)(β(k − 1) + γkl).

Obviously, any additional punisher will increase the deterring effect on a deviator and
if the punisher is a neighbor, then the additional spillover channel gives rise to a larger
effect. For the WRP condition (9), we have the following marginal effect of an additional
punisher l on a punisher j:

hij(δ, C, g, Pi ∪ {l})− hij(δ, C, g, Pi) = (β + 1Nj (l)γ)(β(k − 1) + γkl).

Here, the more punishers the higher incentives to renegotiate, again the effect is enhanced
if the punishers are also neighbors.

The comparative statics have shown that there is a trade-off in characterizing the
optimal punishment group for each coalition-member: the more punishers and the higher
the connectedness among them, the higher the threat of punishment and the easier to
sustain an SGP equilibrium. In turn, incentives to renegotiate increase with the size of
the punishment group and its clustering. In the next section we will study how to find a
punishment group for each signatory to sustain a coalition as a WRP equilibrium.

5 The Stability of a Global IEA

Having determined general conditions for the stability of an IEA, the question of exis-
tence of such a sustainable IEA has not yet been answered. We focus here on the stability
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of a worldwide IEA, i.e. an IEA where every country plays the signatory strategy and has
no incentive to deviate or renegotiate. However, it is rather obvious that not all network
structures allow for a WRP equilibrium that supports a global IEA. For instance, from
Example 1 we already know that the center player of a star network prefers no cooper-
ation to global cooperation if the local externality is large enough, i.e. γ ≥ β n−1n−3 . This
immediately implies that a subgame perfect equilibrium supporting global cooperation
cannot exist in the repeated game for γ ≥ β n−1n−3 . Clearly, adding the WRP condition (9)
to this, makes the existence of a stable global cooperation even more restrictive. In fact
it can be shown that for large star networks, a WRP supporting global cooperation fails
to exist.

Proposition 2. Consider the star network g∗(n) and let γ and β be independent of n.
Then for n→∞, there does not exist a WRP equilibrium in simple strategies supporting
the global IEA.

The intuition behind this result is that as n grows, the players become more and more
heterogeneous in terms of degree. While the center player of the star has to reduce his
emission increasingly in the number of his neighbors, the set of punishers has to grow
as well in order to deter deviation by the center player. This, however, gives increasing
incentives to renegotiate – implying non-existence of a WRP.17 This is a fundamental
difference to the existing models in the literature that study the possibility of global
cooperation as a stable outcome of the climate game. Unlike in Asheim and Holtsmark
(2009), we have shown that for very asymmetric networks such as the star network, global
cooperation may fail to be a WRP coalition for the specific punishment rule.

Hence, it seems to be the asymmetry of the network – in particular the asymmetry
of degrees – which leads to failure of a global IEA. Instead, we may also look at the
other extreme case of spillover networks where there are not heterogeneities in terms of
degree, i.e. a network where the number of neighbors of all players are the same. Such a
structure is defined as a regular network.

Example 2. Consider a regular network of n = 12 players with ηi = 4 ∀ i ∈ N ,
illustrated in Figure 5.1. Let β = γ and for simplicity δ → 1. Which punishment sets Pi
sustain full cooperation as a WRP coalition?

The conditions for the grand coalition to be a WRP equilibrium (cf. Theorem 1) then
read:

|Pi|+ |Pi ∩Ni| ≥ 7.5 ∀ i ∈ N, (10)
|Pi|+ |Pi ∩Nj | ≤ 8.5 ∀ j ∈ Pi, ∀ i ∈ N. (11)

17This result is not restricted to the star network only. Suppose the parameter setting is such that we
can sustain full cooperation as a WRP coalition in the star network. Then, as seen in the comparative
statics section above, the addition of one single link may change the marginal incentives such that the
punishment structure needs to be redesigned and may end up to not sustain full cooperation as a WRP
coalition. For instance, in the 5-player star network with γ = 2β, full cooperation is a WRP equilibrium.
However, if two peripheral nodes are linked, this is no longer the case.
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Pi ⊂ Ni Pi = Ni Pi = Ni \ {j1} ∪ {l}

Pi = Ni \ {j1} ∪ {l1, l2} Pi = Ni \ {j1} ∪ {l1, l2, l3}

Fig. 5.1: Different scenarios in a circle network.
Green nodes represent a WRP punishing set.

Denote the neighbors of player i by Ni = {j1, j2, j3, j4}. While for Pi ⊂ Ni, Pi 6= Ni,
the punishment can be calculated to be too low, choosing Pi = Ni both conditions (10)
and (11) are satisfied:

(10)⇔ 4 + 4 = 8 > 7.5,

(11)⇔ 2 + 3 = 5 < 8.5.

Another possible punishment set giving rise to a WRP equilibrium supporting the global
IEA can be calculated to be Pi = Ni\{j1}∪{l1, l2} with l1, l2 /∈ Ni. However, punishment
sets like Pi = Ni \ {j1} ∪ {l1} with l1 /∈ Ni do not satisfy (10) while Pi = Ni \ {j1} ∪
{l1, l2, l3} with l1, l2, l3 /∈ Ni do not satisfy (11). The different scenarios are displayed in
Figure 5.1.

While for very asymmetric network structures WRP equilibria supporting the global
IEA fail to exist (cf. Proposition 2), a symmetric network structure as given in Example 2
allows for stability of the global IEA. If symmetry in the degree is given, these findings
can indeed be generalized by considering regular networks such that ηi = ηj = η for all
i, j ∈ N .

Focusing on the global IEA in regular networks yields that ki = η for all i ∈ N ,
implying that conditions (8) and (9) then simplify such that

δ
(
|Pi ∩Ni|γ + |Pi|β

)
≥ 1

2

(
β(n− 1) + γη

)
∀ i ∈ N (12)(

|Pi ∩Nj |γ + (|Pi| − 1)β
)
≤ 1

2

(
β(n− 1) + γη

)
∀ j ∈ Pi, ∀ i ∈ N. (13)
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Using the results from the comparative statics analysis, we can now directly derive
the main result of this section.

Proposition 3. Let δ → 1. Then, for every regular network there exists a WRP equi-
librium supporting the global IEA.

This result underlines the intuition that in very symmetric settings it is easier to
achieve cooperation than in very asymmetric network settings such as the star. More
specifically, this proposition yields that if countries are sufficiently patient, we can always
find a punishment set Pi such that the simple strategy profile s sustains the grand
coalition as a WRP equilibrium of the infinitely repeated game.18

Note that the condition δ → 1 is not a binding condition. It is impossible to consider
all possible punishment sets for all possible regular networks, but it is easy to argue
that the complete network is the most restrictive case, since there clustering is 1 and
all spillover channels are present. For the complete network, the threshold value for the
discount factor δ can be easily determined and coincides with the the threshold in Asheim
and Holtsmark (2009) since full cooperation can be established as a WRP equilibrium if
the discount factor δ fulfills the following conditions:

δ ≥ n− 1

n+ 1
for n odd,

δ ≥ n− 1

n
for n even.

Thus, if δ ≥ 1− 1
n , the grand coalition is a WRP equilibrium in the complete network.

We conclude that whenever countries are homogeneous with respect to the number of
neighbors in the network, global cooperation can be sustained as a WRP coalition. As
derived in the comparative statics section, the more asymmetric the network becomes, the
harder it is to restrain countries from renegotiation. For example, in the very asymmetric
case of the star network, the grand coalition fails to be a WRP coalition.

Obviously, when the marginal local impact becomes negligible, the network structure,
even if very asymmetric, becomes less significant, implying that global cooperation can
be sustained in all networks.

Proposition 4. Let δ → 1 and the local spillover be small enough. Then for every
network there exists a WRP equilibrium supporting the global IEA.

The result comes without proof since it follows immediately from Asheim and Holts-
mark (2009), where γ = 0 is assumed and holds by continuity in γ.

18Note that in the proof of Proposition 3 we even show that it is possible to find an WRP equilibrium
supporting the grand coalition such that none of the punishers wants to renegotiate. Such an equilibrium
concept is more restrictive and therefore the existence result is even stronger. Further it prevents
unreasonable equilibria to appear for instance by adding isolated countries to the punishment sets.

20



6 Social Benefits and Costs

6.1 Social Benefits

While we have shed some lights on the conditions for individual rational behavior with
respect to membership in a coalition, it is important to know for e.g. policy implications
what the collective or total welfare effect of an International Environmental Agreement
is. We consider the utilitarian welfare composed of the sum of all countries’ utilities,
which is given by

W(x(C)) = n
(1

2
(γ2 − β2)

)
− nβ

∑
i∈N

x̄i + γβ
(∑
i∈N

ηi + n2
)

+ β2n2 + γ2
∑
i∈N

ηi

+ β2k(k − 1)
(
n− 1

2
(k + 1)

)
+ βγ

∑
i∈N

ki(k − 1) + γ2
∑
i∈N

∑
m∈C

ḡimkm

+ βγn
∑
m∈C

km −
1

2
γ
∑
m∈C

km(2βk + γkm + 2γ)− γ
∑
i∈N

∑
j∈N

ḡij x̄j .

Since in the global IEA all countries already maximize W, it is immediate to see that
the global IEA maximizes welfare. Further, because emission reduction always has a
positive effect on all and the members of a coalition maximize the sum of utilities of their
members, it is also quite immediate to see every IEA yields higher welfare than any of
its subsets. Given an IEA C, the marginal effect of an additional member m on welfare
can be calculated to be

∆(C∪{m}, C) = β2k
(

2n− 3

2
(k+1)

)
+βγ

(∑
i/∈C

ki+km(2n−2−k)
)

+
γ2

2
km(km−1),

which is obviously positive. Thus, even though it might not be individually rational for
some countries to join a coalition, the total welfare effect remains positive as the other
countries’ additional benefits outweigh the losses of that one individual country.

Further, it is easy to see that increasing spillovers, either through the relative effect
β or γ, or the spillover structure (by adding links to the network) have negative effects
on welfare.

6.2 Social Costs of Punishment

Besides the social benefits of a coalition there are also social costs whenever a country
needs to be punished. Although this is off-equilibrium, one might ask what the welfare
effect of punishment is and who should punish in cases when there is more than one
possible punishment group that sustains global cooperation (see e.g., Example 2).
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Therefore, assume a player j has deviated and the set of punishers Pj is called upon to
punish. To study the effect of an additional punisher, denote by ∆W

(
Pj , i

)
the marginal

effect on welfare when player i joins the set of punishers Pj .

Lemma 1. Suppose player j has deviated. Then,

∆W
(
Pj , i

)
= −1

2

(
β(n− 1) + γηi

)2
.

Now when allocating the set of punishers, the question arises who should punish;
neighbors or non-neighbors? Recall that the marginal deterring effect of an additional
punisher i ∈ N on deviator j ∈ N is given by

fj(δ, C, g, Pj ∪ {i})− fj(δ, C, g, Pj) = (β + 1Nj (i)γ)(β(k − 1) + γki).

Then it is clear that in order to achieve an equal deterring effect, a non-neighbor m /∈ Nj

must punish more, i.e. have more neighbors than a neighbor i ∈ Nj , i.e. ηm > ηi which
implies higher social costs. Hence, consider the case that two instead of one non-neighbor
punishes.19 Similarly to above, if we have ηm > ηi for a m ∈ Pj , m 6∈ Nj , then the social
cost of punishment will be larger when the non-neighbors punish. Instead, consider
the case where both non-neighbors have smaller degree than a punishing neighbor, but
together achieve the same deterring effect. The following result characterizes conditions
on β and γ such that it is socially optimal to have a neighbor with higher degree punish.

Proposition 5. Suppose that β ≤ (1 +
√

2)γ. Then, punishment of a deviator by one of
its neighbors is socially preferred to punishment by one or two non-neighbors such that
the deterring effect is the same.

Thus, if the global spillover effect β is not too large relative to the local spillover
effect γ, it will be better in terms of welfare to have neighbors punish instead of non-
neighbors since to achieve the same deterring effect, total punishment emission is higher
when non-neighbors punish.

7 Extensions

7.1 Other Punishment Strategies

Besides the very specific penance punishment strategy we consider in our analysis above,
there are of course numerous other ways to punish a possible deviator. Here, we want
to discuss two possible variations of punishment strategies and their implications on the
existence of WRP coalitions in the the repeated game.

19Of course, this may also have negative effects on the WRP condition since potentially two punishers’
neighbors instead of one join the set of punishers. Here, however, we are only interested in the social
cost of punishment.
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7.1.1 Stronger Punishment

We have seen that in very asymmetric networks, such as the star, the grand coalition
fails to be a WRP equilibrium with punishment levels xPj = xNSj . Let us now consider
what happens if the punishment level that is emitted by the punishers is larger than their
respective Nash output, i.e. what if xPj > xNSj holds?

First, consider again the example of the star network.

Example 3. Let γ = 1.5β, n = 5 and δ → 1. For p = 1, the grand coalition can not
be sustained as a WRP equilibrium but can we find a level p∗ < 1 such that global
cooperation is a WRP coalition? Suppose we want only three peripheral stars to punish
the center node i, i.e. |Pi| = 3, and let us now determine the required punishment level p∗

that yields a punishment strategy that sustains full cooperation as a WRP equilibrium.
The center i has no incentive to unilaterally deviate from the signatory emission level if

(8) ⇔ 3(5− p) + 1.5(3(7− 2p)) + 2.25(3(2− p)) ≥ 50

⇔ p∗ ≤ 0.53. (14)

is fulfilled. Furthermore, we have to ensure that no punisher j ∈ Pi wants to unilaterally
deviate from the punishment strategy. In the proof of Theorem 1 we used Lemma 2
to reduce the number of conditions for subgame perfection. As the Lemma generally
only holds for p ≥ 1, we can not directly transfer the conditions of Theorem 1 to this
setting with a different punishment level. However, as long as kj > 0 for all j ∈ N , the
Lemma also holds for p ≥ 0 and therefore if (14) is satisfied, full cooperation is an SGP
equilibrium.

For the WRP conditions we have

(9) ⇔ (5− p)(3− p) + 1.5((3− p)(1− p) + 2) +
2.25

2
(1− p)2 ≤ 15.125

⇔ p∗ ≥ 0.6.

Thus, |Pi| = 3 does also not yield a different result.

For |Pi| = 2 and |Pi| = 1, the condition for subgame perfection requires p∗ < 0, thus
xPj > x̄j – a contradiction! Therefore, in this setting global cooperation fails to be a
WRP equilibrium for any punishment level if only emitted for one period.

A more general statement, though, is not possible as the comparative static effects on
the conditions for subgame perfection and weak renegotiation-proofness work in opposite
directions for decreasing p. We therefore conclude that our restriction on Nash punish-
ment levels is not too critical. Moreover, as mentioned before, it is obvious that even
with these simple strategies the design of suitable punishment strategies is everything
but straightforward as proposed in previous papers.
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7.1.2 Longer Punishment

As a second variation, consider punishment strategies that punish a deviator for more
than one period. More specifically, we change the simple strategy profile s to sT such
that we allow punishments over multiple but finite periods T ∈ N , i.e. the punishment
path is given by

pC
i (T ) =

{(
xPPi , x

S
C\Pi , x

NS
N\C

)
, . . . ,

(
xPPi , x

S
C\Pi , x

NS
N\C

)
︸ ︷︷ ︸

T periods

,
(
xSC , x

NS
N\C

)
, . . .

}
.

We assume that if during a punishment phase a new deviation occurs, either by the same
or by another player, punishment switches to the beginning of the punishment path of
that player. The conditions for subgame perfection and weak renegotiation-proofness
then read as follows. First, there are no unilateral deviations from the equilibrium if

T∑
t=1

δt
(
πi(x

S
C)− πi(xSi , xPPi , x

S
C\Pi)

)
≥ πi(xNSi , xSC\{i})− πi(x

S
C) (15)

is satisfied for all i ∈ N . Furthermore, deviations from the punishment are deterred if

δT
(
πj(x

S
C)− πj(xSj , xPPj , x

S
C\Pj )

)
+
T−1∑
t=1

δt
(
πj(x

P
Pi , x

S
C\Pi)− πj(x

S
j , x

P
Pj , x

S
C\Pj )

)
≥ πj(xSj , xPPi\{j}, x

S
C\Pi)− πj(x

P
Pi , x

S
C\Pi) (16)

is fulfilled for all j ∈ Pj and for all i ∈ N . Finally, for weak renegotiation-proofness, we
need for all i ∈ N at least one j ∈ Pi such that

T−1∑
t=0

δt
(
πj(x

P
Pi , x

S
C\Pi)− πj(x

S
C)
)
≥ 0

is satisfied, which is obviously equivalent to the original condition (9) of Theorem 1 with
only one punishment period, i.e. T = 1. Consequently, the extension of the punishment
period has no effect on the renegotiation incentives of the punishers.

Meanwhile, an increase in punishment periods does affect subgame perfection: the
series on the left-hand side of (15) is equal to

δ(1− δT )

1− δ

(
πi(x

S
C)− πi(xSi , xPPi , x

S
C\Pi)

)
,

which obviously increases for larger T but is bounded from above by

δ

1− δ

(
πi(x

S
C)− πi(xSi , xPPi , x

S
C\Pi)

)
.
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We receive that independent of the parameters, an extension of the punishment yields
that fewer punishers are sufficient to deter a country from deviating from the signatory
strategy. In line with the folk theorem we can conclude that in any given network g, if
players are patient enough, i.e. if δ is sufficiently large, we can always find a duration of
punishments T such that for (15) to be fulfilled, a single punisher is sufficient. Also, this
punisher does not need to be a neighbor.

Additionally, for small enough Pi, the left-hand side of (16) is always positive such
that we can have that for a large enough T , (16) is always satisfied, too. Thus, we can
achieve full cooperation as an SGP coalition. As WRP is not affected and for |Pi| = 1 it
is always satisfied, we can conclude without proof the following theorem:

Proposition 6. For δ sufficiently large, for every network g there exists a duration of
punishments T such that the simple strategy profile sT sustains full cooperation as a WRP
coalition.

Note, however, that this result requires very long punishment and hence lots of pollu-
tion. Such a threat might not be credible, if e.g. the negative consequences of accumulated
pollution are increasing in the amount of pollution. We therefore conclude again that our
restriction on the simple strategy profile is not too restrictive and already offers several
interesting insights into the structure of the model.

Example 4. Let γ = 1.5β, n = 5 and δ → 1. We have seen that for p = 1, the grand
coalition can not be sustained as a WRP equilibrium and also harsher punishment has
not changed this result due to the large asymmetry between the center and peripheral
nodes. Now for p = 1, we can find T > 1 such that global cooperation is a WRP coalition:

Let T = 2. Then, as WRP remains unchanged, for the center node i the punishment
group must not be larger than 3. Condition (15) for the center node yields Pi ≥ 2 so
it remains to check condition (16). Let us choose Pi = 3. For any peripheral node j,
condition (15) yields that the center node is sufficient to punish, i.e. |Pj | = 1. Then, with
these punishment sets given, (16) is satisfied for the center and also for the peripheral
nodes. Thus, when the punishment phase is extended to two periods, full cooperation
can be sustained as a WRP equilibrium in this network.

7.2 Directed Networks

In our model we have restricted ourselves to the consideration of undirected networks,
i.e. local spillovers are assumed to be bidirectional. Of course, this may often not be the
case. For example, the direction of the winds play an important role for the effects of air
pollution and the direction a river flows influences the pollution effects along the stream.

Intuitively, to analyze for directed networks in our model, we only have to slightly
modify our notation and denote by ij the link in the network that represents a spillover
from player i to player j. Denote by

−→
Ni the set of outgoing links, i.e. players that player i

25



is connected to and by
←−
Ni the set of incoming links, i.e. players that are connected to i. We

also alter the definition for ηi and ki accordingly. When choosing the optimal signatory
output emission xSi , country i considers its own contribution to the global spillover and
its local impact on the countries it is directly linked to. That is, the signatory’s output
is given by xSi = x̄i − βk − γ(

−→
ki + 1).

For stability, we now have to distinguish between the incoming and the outgoing links.
For example, the more outgoing links, the higher the incentive to deviate. The more in-
coming links, the less punishers are necessary to credibly deter a deviation. Therefore,
the asymmetry in a network can now be two-folded and prevent the global IEA to be
sustainable as WRP equilibrium. In order to extend our existence result of Proposition 3
to directed networks, we need to adapt the definition of regularity: we call a directed
network a regular network, if for all players the number of incoming links and the number
of outgoing links are equal, i.e. if ←−ηi = −→ηi = η for all i ∈ N . Then, the proof of Proposi-
tion 3 is analogous and we receive that also in directed networks, global cooperation can
be sustained as WRP equilibrium if there is no asymmetry with respect to the network
structure.

7.3 Formation of an IEA

So far we have restricted the analysis to the question of stability of IEAs by means of WRP
equilibria without modeling the formation of an IEA. We briefly and informally outline
here, how such an IEA could come into place. First, of course, we could always imagine
a climate conference where the local spillover structures are taken into account. Since
there are potentially many equilibria of the repeated game even for a given coalition,
it is difficult to model the strategies used by the countries to select among the WRP
equilibria of repeated game.

In fact we could also imagine that a small subset of all countries (e.g. the US and
Canada, or the countries within the EU) start out with a coalition to obtain a critical
mass and then approach countries outside the coalition, particularly those exposed to
local spillovers of the coalition by offering those countries to reduce emission if they
themselves do so. In other words, they threaten punishment by non-implementation
of an IEA (which is equivalent to business as usual) if other countries do not reduce
themselves. Thus, given a coalition C1, rank all other countries i ∈ N \ C1 by the
ration |Ni∩C1|

|Ni| . Coalition C1 then agrees to the terms of an IEA conditional on additional

countries joining. Those with large ratio |Ni∩C1|
|Ni| are the ones that are most likely to

join C1 since for them the SGP condition (8) is easiest to be satisfied by the threat of
non-implementation of signatory strategies of C1. Thus i1 would join C1 if there exists
a punishment set Pi1 ⊂ C1 such that the conditions of Theorem 1 are satisfied. After
acquiring the highest ranked country i1 to C1, for C2 = C1 ∪ {i1} repeat the procedure
for C2 etc.
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Since small coalitions are easy to sustain even without threats of future punishment
(cf. Section 3.2), it may be the case that such a procedure actually leads to the imple-
mentation of a global IEA (if stable for the given spillover structure). In this way, an
initially small IEA may spread to a large IEA, i.e. from an initially local IEA can emerge
a global IEA (cf. also Section 3.4.2 in Currarini et al., 2014).

8 Conclusion

We have merged local and global pollution spillovers into one model by introducing a
network structure. In the single-stage game model this has not dramatically changed
the well-known results. Caused by the free-rider incentives, self-enforcing cooperation
is only achieved for very few countries and does thus not significantly contribute to the
reduction of global pollution.

In the repeated game, using a specific punishment strategy, weakly renegotiation-proof
agreements can be achieved via the threat of punishments. If the punishing countries
suffer too much from punishment themselves, they may want to renegotiate. To account
for this, we characterize an individual group of punishing countries for each coalition
member and therefore decrease the incentives to renegotiate. However, when the network
is very asymmetric, as for example in the star network, full cooperation may not be a
WRP coalition. In turn, when players are symmetric with respect to their spillover
impacts and sufficiently patient, in regular networks the grand coalition can be sustained
as a weakly renegotiation-proof equilibrium.

Finally we analyzed welfare implications of the network structure. More links in the
network have a negative impact on global welfare as the local spillover effects outweigh
the higher efforts by signatories that internalize the additional externality.

Due to the generality of our approach, our model can serve as benchmark model
which should be extended and refined in the future. Yet we can already see that, along
the lines of Bollen et al. (2009), a pollution policy that takes account of the effects of
both global and local (air) pollution can help sustain global cooperation and ultimately
increase global welfare. By taking into account the local spillover structure, punishment
mechanisms can be designed more appropriately and therefore help deter countries from
free-riding without making the agreement vulnerable to renegotiation. In this way, a few
countries (e.g. US and Canada or EU countries) who initially agree to certain terms of
reduction conditional on others joining them, may achieve global cooperation by partic-
ularly taking the spillover structure into account. Our model is also not limited to the
application in the strive for joint emission reduction. It can easily be adapted to other
problems in the provision of public goods.

In a next step, some simplifications we have taken may be relaxed. Of course, further
heterogeneities imply less analytical tractability but as it is frequently done in the IEA
literature, simulations could be considered to compare the outcomes of our model to other

27



existing ones. Furthermore, other punishment strategies and the possibility of multiple
coalitions may be worth studying, too.

Regarding multiple coalitions, as long as we strive for the socially optimal outcome of
global cooperation, there is no need for more than a single agreement. However, when-
ever global cooperation can not be sustained as a self-enforcing equilibrium, one could
study what happens if multiple coalitions would form. In the case of linear costs of
pollution, one could reach an outcome where every country is a signatory in a (possibly
only very small coalition). Then, individual contributions to abatement may not sub-
stantially improve the business as usual outcome as all countries only account for very
few externalities of their coalition members.

Also, there are several ways the model proposed in this paper could be extended. As
noted in Currarini et al. (2014), there is a large potential for network economics to be
applied in environmental economics. In the following, we want to discuss several of the
aspects that could emerge from our model.

First, the extension of the model to incorporate transfers and side-payments is natural.
One could then interpret the underlying network structure, i.e. the links between coun-
tries, also as established ways of communication or negotiation through which countries
can offer side-payments to incentivize non-cooperators to join the coalition.

Second, the network could also represent a different underlying structure, for instance
an established trade structure that enables countries to link pollution and trade strategies
(issue-linkage). Trade and other related issues have been subject of the environmental
economics research and our model could generate new results using techniques from
network economics.

Third, while reduction of emissions is one way to contribute to the global effort of
fighting climate change, investments in R&D is another possibility to mitigate pollution.
And as it is standard in the (network) literature, spillovers from R&D play an important
role in the decision of optimal investments. Thus, bringing together the literature of R&D
spillovers and the mitigation of pollution through an IEA is another possible extension
of our model.

Fourth, there already exist some models that study local and regional agreements that
may lead to global cooperation. Methods from Evolutionary Game Theory have been
used to study whether or not local agreements may facilitate the formation of global
cooperation.20 By applying results from opinion formation in a network, our model may
serve as an approach to better understand the chances of such a formation process. In
our benchmark model we only consider the formation of a single IEA, but the extension
to multiple coalitions should be natural and thus offer a promising area of future research.

20Regional agreements and initiatives have been formed to tackle the problem of regional pollution
effects (visit the Global Atmospheric Pollution Forum online for a list of regional initiatives worldwide).
One example is the "Climate and Clean Air Coalition" that strives for a reduction of short-lived air
pollutants and has been gaining influence over the past years.
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Appendix

A Proofs

Proof of Proposition 1. When all countries cooperate on abatement, the profit of free-
riding on these efforts is given by

πi(N \ {i}) =− 1

2
(β + γ)2 − (β + γ)(x̄i − β − γ)− β

∑
j 6=i

(
x̄j − β(n− 1)

−γ(ηj + 1− gij)
)
− γ

∑
j 6=i

gij

(
x̄j − β(n− 1)− γ(ηj + 1− gij)

)
.

Thus, we have for all i ∈ N

πi(N)− πi(N \ {i}) =− 1

2

((
βn+ γ(ηi + 1)

)2 − (β + γ)2
)
− (β + γ)

(
−βn− γ(ηi + 1) + β + γ

)
−
∑
j 6=i

(β + γgij)
(
−βn− γ(ηj + 1) + β(n− 1) + γ(η+1− gij)

)
=− 1

2

((
βn+ γ(ηi + 1)

)2 − (β + γ)2
)

+ (β + γ)
(
β(n− 1) + γηi

)
+
∑
j 6=i

(β + γgij)
2

= β2
(

2n− 3

2
− 1

2
n2
)

+ βγηi

(
3− n

)
+ γ2ηi

(
1− 1

2
ηi

)
,

which is clearly negative for n > 3 and ηi 6= 1.

For ηi = 1, the difference above reduces to

β2
(

2n− 3

2
− 1

2
n2
)

+ βγ
(

3− n
)

+
γ2

2
,

which is negative if and only if γ < β
(
n− 3 +

√
(n− 3)(2n− 4)

)
holds.

Proof of Theorem 1. In order for s to be a subgame perfect equilibrium (SGP), there are
two conditions that need to be fulfilled for all signatories i ∈ C:

(i) No signatory i ∈ C has an incentive to deviate from xSi

(ii) Given country i ∈ C deviates, no punishing country j ∈ Pi has an incentive to not
punish i

For condition (i) to be satisfied, we have to derive conditions such that the following
holds for all i ∈ C:

πi(x
S
C) + δπi(x

S
C) ≥ πi(xNSi , xSC\{i}) + δπi(x

S
i , x

S
C\Pi , x

P
Pi)

⇔ δ
(
πi(x

S
C)− πi(xSi , xSC\Pi , x

P
Pi)
)
≥ πi(xNSi , xSC\{i})− πi(x

S
C) (17)
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If all signatories i ∈ C play the signatory strategy xSi as agreed upon, the discounted
payoff for i is

πi(x
S
C) =− 1

2

(
βk + γ(ki + 1)

)2 − β ∑
m∈C

(
x̄m − βk − γ(km + 1)

)
− β

∑
l /∈C

(x̄l − β − γ)

− γ
∑
m∈C

ḡim
(
x̄m − βk − γ(km + 1)

)
− γ

∑
l /∈C

ḡil(x̄l − β − γ).

Consider now a situation when country i ∈ C deviates from xSi in period t. Then, by
s, in the next period t+ 1 we have

xj(C, t+ 1) =


x̄j − βk − γ(kj + 1), if j = i

x̄j − p(β + γ), if j ∈ Pi ∪ (N \ C)

x̄j − βk − γ(kj + 1), if j ∈ C \ Pi
.

This yields the stage payoff

πi(x
S
i , x

S
C\Pi , x

P
Pi) =− 1

2

(
βk + γ(ki + 1)

)2 − β ∑
m∈C\Pi

(
x̄m − βk − γ(km + 1)

)
− β

∑
l∈Pi

(
x̄l − p(β + γ)

)
− β

∑
l /∈C

(x̄l − β − γ)− γ
∑
l /∈C

ḡil(x̄l − β − γ)

− γ
∑

m∈C\Pi

ḡim
(
x̄m − βk − γ(km + 1)

)
− γ

∑
l∈Pi

ḡil
(
x̄l − p(β + γ)

)
,

and we receive for the payoff loss from a one-shot deviation

πi(x
S
C)− πi(xSi , xSC\Pi , x

P
Pi) = −β

∑
m∈C

(
x̄m − βk − γ(km + 1)

)
− γ

∑
m∈C

ḡim
(
x̄m − βk − γ(km + 1)

)
+ β

∑
m∈C\Pi

(
x̄m − βk − γ(km + 1)

)
+ β

∑
l∈Pi

(
x̄l − p(β + γ)

)
+ γ

∑
m∈C\Pi

ḡim(x̄m − βk − γ(km + 1))

+ γ
∑
l∈Pi

ḡil(x̄l − p(β + γ))

= −β
∑
l∈Pi

[(x̄l − βk − γ(kl + 1))− (x̄l − p(β + γ))]

− γ
∑
l∈Pi

gil[(x̄l − βk − γ(kl + 1))− (x̄l − p(β + γ))]

= β
∑
l∈Pi

[β(k − p) + γ(kl + 1− p)] + γ
∑
l∈Pi

gil[β(k − p) + γ(kl + 1− p)]. (18)

30



Furthermore we have for the short-term payoff gain from a one-shot deviation

πi(x
NS
i , xSC\{i})− πi(x

S
C) =

1

2

(
βk + γ(ki + 1)

)2
− 1

2

(
β + γ

)2
−
(
β + γ

)(
β(k − 1) + γki

)
=
β2

2
(k − 1)2 + βγ(ki(k − 1)) +

γ

2
k2i

=
1

2

(
β(k − 1) + γki

)2 ≥ 0. (19)

Multiplying with δ and rewriting equation (18), then substracting (19), we obtain that
condition (i) is satisfied if (8) holds.

Let us now consider condition (ii). Suppose country i deviated in period t − 1. In
order to ensure that all j ∈ Pi actually punish the deviator, the following condition has
to hold for all j ∈ Pi:

πj(x
P
Pi , x

S
C\Pi) + δπj(x

S
C) ≥ πj(xSj , xPPi\{j}, x

S
C\Pi) + δπj(x

S
j , x

S
C\Pj , x

P
Pj )

δ
(
πj(x

S
C)− πj(xSj , xSC\Pj , x

P
Pj )
)
≥ πj(xSj , xPPi\{j}, x

S
C\Pi)− πj(x

P
Pi , x

S
C\Pi) (20)

For the single-stage payoffs we have

πj(x
S
j , x

P
Pi\{j}, x

S
C\Pi) =− 1

2

(
βk + γ(kj + 1)

)2 − β ∑
m∈Pi\{j}

(
x̄m − p(β + γ)

)
− β

∑
m/∈C

(x̄m − β − γ)

− β
∑

l∈C\(Pi\{j})

(
x̄l − βk − γ(kl + 1)

)
− γ

∑
m∈Pi\{j}

ḡjm
(
x̄m − p(β + γ)

)
− γ

∑
m/∈C

ḡjm(x̄m − β − γ)− γ
∑

l∈C\(Pi\{j})

ḡjl(x̄l − βk − γ(kl + 1))

and

πj(x
P
Pi , x

S
C\Pi) =− 1

2

(
p(β + γ)

)2 − β ∑
m∈Pi

(
x̄m − p(β + γ)

)
− β

∑
m/∈C

(x̄m − β − γ)

− β
∑

l∈C\Pi

(
x̄l − βk − γ(kl + 1)

)
− γ

∑
m∈Pi

ḡjm
(
x̄m − p(β + γ)

)
− γ

∑
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ḡjm(x̄m − β − γ)− γ
∑
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ḡjl
(
x̄l − βk − γ(kl + 1)

)
.

We will show that (17) already implies (20). To prove this, we need the following
Lemma.

Lemma 2. For all β, γ, k, kj and p ≥ 1 it always holds

− 1

2
(βk + γ(kj + 1))2 +

1

2
(p(β + γ))2 + (β + γ)(β(k − p) + γ(kj + 1− p))

≤ 1

2
(βk + γ(kj + 1))2 − 1

2
(β + γ)2 − (β + γ)(β(k − 1) + γkj). (21)
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Proof. As xPj ≥ xSj , we have p(β + γ) ≤ βk + γ(kj + 1) for all j in Pi and thus we have

0 ≤
(
β(k − 1) + γkj

)2 − 1

2

(
(p− 1)(β + γ)

)2
= β2

(
(k − 1)2 − 1

2
(p− 1)2

)
+ γ2

(
k2j −

1

2
(p− 1)2

)
+ βγ

(
2kj(k − 1) + (1− p)2

)
= β2

(
k2 − 1

2
(1 + p2)− (2k − p− 1)

)
+ γ2

(
(kj + 1)2 − 1

2
(1 + p2)− (2kj + 1− p)

)
+ βγ

(
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)
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(
βk + γ(kj + 1)

)2
− 1

2

(
(β + γ)2 + (p(β + γ))2

)
− (β + γ)

(
β(2k − p− 1) + γ(2kj + 1− p)

)
,

which is nothing else but (21) and proves the lemma.

We can now rewrite the left-hand side of (20) and receive

πj(x
S
j , x

P
Pi\{j}, x

S
C\Pi)− πj(x

P
Pi , x

S
C\Pi)

=− 1

2

(
βk + γ(kj + 1)

)2
+

1

2

(
p(β + γ)

)2 − β (x̄j − βk − γ(kj + 1)
)

+ β
(
x̄j − p(β + γ)

)
− γ

(
x̄j − βk − γ(kj + 1)

)
+ γ

(
x̄j − p(β + γ)
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=− 1
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(
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)2
+

1

2

(
p(β + γ)

)2
+ (β + γ)

(
β(k − p) + γ(kj + 1− p)

)
≤ 1

2

(
βk + γ(kj + 1)

)2 − 1

2
(β + γ)2 − (β + γ)

(
β(k − 1) + γkj

)
=

1

2

(
β(k − 1) + γkj

)2
= πi(x

NS
i , xSC\{i})− πi(x

S
C).

Thus, whenever (17) is satisfied, (20) has no bite and s therefore constitutes an SGP
equilibrium if and only if (17) holds.

Let us now turn to the condition of weak renegotiation-proofness. As given in Defini-
tion 1, a subgame perfect equilibrium s is weakly renegotiation-proof (WRP) if there do
not exist two continuation equilibria such that all players strictly prefer the one to the
other. That is, we have to derive conditions such that all punishing countries j ∈ Pi will
actually punish instead of ignoring the deviation and continuing with another equilibrium
path, e.g. essentially renegotiating to playing cooperate again.

For any period t, there are k+1 possible continuation equilibria that implement either
the agreement path aC or the punishment path pC

j for any signatory j ∈ C.

Assume that the strategy profile s is an SGP, thus condition (8) is satisfied. In
accordance with the definition, for weak renegotiation-proofness we now need to consider
all continuation equilibria and the respective incentives of each player.

Obviously, all signatories prefer the agreement continuation equilibrium to the one
generated from their respective punishment path pC

i , i.e. πi(x
S
C) > πi(x

S
C\Pi , x

P
Pi

) ∀ i ∈ C.
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Thus, any country that is punished would obviously not block a renegotiation to the
agreement path.

All non-signatories j /∈ C will continue to free-ride on the others’ efforts in any
continuation equilibrium. They will not block a renegotiation either. Also, all signatories
j ∈ C \ Pi that do not punish prefer the equilibrium path with payoffs πj(xSC) to a
continuation equilibrium from following the punishment path pC

i .

Thus, it remains to check the incentives of the punishers. If πj(xSC) > πj(x
P
Pi
, xSC\Pi)

holds for all j ∈ Pi, all punishing countries prefer the continuation equilibrium when
no punishing is carried out to the one where i deviated. Thus, all players strictly pre-
fer the agreement path to the punishment path and therefore s would not be weakly
renegotiation-proof. Therefore, if there exists a punisher j ∈ Pi such that πj(xSC) ≤
πj(x

P
Pi
, xSC\Pi), renegotiation would be blocked and s would indeed be a WRP equilib-

rium.

Hence, for s to be a WRP equilibrium the following condition needs to be satisfied
for at least one j ∈ Pi:

πj(x
P
Pi , x

S
C\Pi)− πj(x

S
C) ≥ 0. (22)

We have

πj(x
P
Pi , x

S
C\Pi)− πj(x

S
C) =− 1

2

(
p(β + γ)

)2
+

1

2

(
βk + γ(kj + 1)

)2
− β

∑
l∈Pi

(
x̄l − p(β + γ)

)
+ β

∑
m∈Pi

(
x̄m − βk − γ(km + 1)

)
− γ

∑
l∈Pi

ḡjl
(
x̄l − p(β + γ)

)
+ γ

∑
m∈Pi

ḡjm
(
x̄m − βk − γ(km + 1)

)
=− 1

2

((
p(β + γ)

)2 − (βk + γ(kj + 1)
)2)− β ∑

m∈Pi

(
β(k − p) + γ(km + 1− p

)
− γ

∑
m∈Pi

ḡjm
(
β(k − p) + γ(km + 1− p)

)
and thus (22) is equivalent to

β2

2

(
(k − p)(k + p− 2|Pi|)

)
+βγ

kkj − |Pi ∩Nj |(k − p)−
∑
m∈Pi

(km + 1− p) + p(1− p)


+
γ2

2

k2j − 2
∑
m∈Pi

gjm(km + 1− p)− 1 + p(2− p)

 ≥ 0, (23)

which we can rewrite such that we obtain (9).

Concluding, if the strategy s satisfies (9) for all i ∈ C, i.e. is subgame perfect, and
additionally is such that for any i ∈ C there is a punishment set Pi such that there exists
at least one j ∈ Pi that satisfies condition (9), s is weakly renegotiation-proof.
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Proof of Corollary 1. For γ = 0 we have that the strategy s that implements coalition C
is a subgame perfect equilibrium if and only if for all i ∈ C

δβ2|Pi|(k − 1) ≥ 1

2

(
β(k − 1)

)2
holds. Furthermore, it is weakly renegotiation-proof if and only if for all i ∈ C

β2(k − 1)(|Pi| − 1) ≤ 1

2

(
β(k − 1)

)2
.

For k ≥ 2 This gives

|Pi| ≥
k − 1

2δ
∧ |Pi| ≤

k + 1

2

⇔ 1

2δ
(k − 1) ≤ |Pi| ≤

1

2
(k + 1).

Proof of Proposition 2. As we have already seen in Example 1, global cooperation can
not be supported as an SGP equilibrium in the star network if γ > β n−1n−3 holds.

Let us now suppose γ ≤ β n−1n−3 and consider again the center i of the star network.
Then, we can find a punishment group Pi such that full cooperation can be sustained
as an SGP coalition, that is we can find Pi such that |Pi| ≥ (n−1)2(β+γ)

2(β(n−1)+γ) is satisfied
(compare condition (8) of Theorem 1). Clearly, whenever this lower bound is larger
than the upper bound from the WRP condition (9), full cooperation can not be a WRP
coalition. We have

(n− 1)2(β + γ)

2(β(n− 1) + γ)
>
β(n− 1) + γ

2β

⇔ n > n1 := 2 +
β

γ

(
1 +

√
1 + 2

γ

β
+ 3(

γ

β
)2 + (

γ

β
)3

)
. (24)

Hence, given parameters γ and β, for n large enough (24) is always satisfied and global
cooperation fails to be a WRP coalition.

Proof of Proposition 3. Denote by Ψi the set of permutations of players ψi : N \ {i} →
N \ {i} such that ψi(j) < ψi(m) for all j ∈ Ni, m /∈ Ni. Further, given a permutation
ψi ∈ Ψi, let Mψi(ν) denote the first ν elements of the permutation, i.e. Mψi(ν) :=
{ψi(1), . . . , ψi(ν)}. This defines a possible punishing set Pi.

Let ν∗ := arg min1≤ν≤n−1{Pi = Mψi(ν) satisfies (12)} be the lowest integer such that
the set Mψi(ν

∗) deters a signatory from deviating.
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First suppose that ν∗ ≤ η. Then by construction we have Mψi(ν
∗) ∩ Ni = Mψi(ν

∗)
and for any j ∈ Mψi(ν

∗), j is also in Ni. Thus, j /∈ Mψi(ν
∗) ∩Nj and therefore we get

for any ψi ∈ Ψi that
|Mψi(ν

∗) ∩Nj | ≤ |Mψi(ν
∗) ∩Ni| − 1 (25)

holds for all j ∈Mψi(ν
∗).

Hence, the following holds for all ψi ∈ Ψi :

|Mψi(ν
∗) ∩Nj |γ + (|Mψi(ν

∗)| − 1)β ≤ (|Mψi(ν
∗) ∩Ni| − 1)γ + (|Mψi(ν

∗)| − 1)β. (26)

Suppose now the opposite, i.e. ν∗ > η. We show that there still exists a permutation
ψ∗i ∈ Ψi such that (26) holds for all j ∈Mψ∗i

(ν∗).

From (12) we get that ν∗ ≥ 1
2(n − 1) − 1

2
γ
βη since for Pi = Mψi(ν

∗) we have that
Mψi(ν

∗) ∩Ni = Ni. Moreover, because of minimality and ν∗ being an integer, we have

ν∗ =

⌈
1

2
(n− 1)− 1

2

γ

β
η

⌉
. (27)

For all neighbors j ∈ Mψi(ν
∗) ∩ Ni of the deviator i, (25) still holds and there is

nothing to show.

From (27) we receive that additional to the neighbors of i there are ν∗ − η =⌈
1
2(n− 1)− γ

2βη
⌉
− η non-neighbors in the punishing set Mψi(ν

∗).

Denote by ψ̃i ∈ Ψi the permutation which minimizes the number of those non-
neighbors j ∈ Mψi(ν

∗) \ Ni that have all their links within the set Mψi(ν
∗), i.e. such

that ηj(g|Mψi
(ν∗)) = η holds.21 Suppose that this number is different from zero, i.e.

at least one country in Mψi(ν
∗) \ Ni has all neighbors in Mψi(ν

∗). Then, by (27),

from the set Mψ̃i
(ν∗) there are at most η

⌈(
1
2(n− 1)− 1

2
γ
βη
)⌉
− 2η links into the set

N \
{
Mψ̃i

(ν∗) ∪ {i}
}
.

As |N \
{
Mψ̃i

(x∗) ∪ {i}
}
| = n− 1− ν∗, we have that the sum of degrees of members

of the set N \
{
Mψ̃i

(x∗) ∪ {i}
}

satisfies

η

∣∣∣∣N \ {Mψ̃i
(ν∗) ∪ {i}

}∣∣∣∣ = η

n− 1−

⌈(
1

2
(n− 1)− 1

2

γ

β
η

)⌉
= η

⌈(
1

2
(n− 1) +

1

2

γ

β
η

)⌉
> η

⌈(
1

2
(n− 1)− 1

2

γ

β
η

)⌉
− 2η.

21Note that all permutations ψi ∈ Ψi =
{
ψi : N \ {i} → N \ {i} s.t. ψi(j) < ψi(m) ∀j ∈ Ni,m /∈ Ni

}
,

deliver the same ν∗ due to regularity of the network.
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Thus, the number of all links of members of the set N \
{
Mψ̃i

(ν∗) ∪ {i}
}

exceeds the
maximum amount of links coming into the set from its complement, meaning that there
has to exist a link lm between members l,m of the set N \

{
Mψ̃i

(ν∗) ∪ {i}
}
.

Considering a permutation ψ̂i ∈ Ψi that is obtained from ψ̃i by switching a member
ofMψ̃i

(ν∗), who has all her links withinMψ̃i
(ν∗), with l ∈ N \

{
Mψ̃i

(ν∗) ∪ {i}
}
, who has

a link lm ∈ g|
N\

{
Mψ̃i

(ν∗)∪{i}
}, contradicts the assumption that ψ̃i yielded the minimal

number of j with ηj(g|Mψi
(ν∗)) = η. Hence, there exists a permutation ψ∗i ∈ Ψi such that

for all j ∈ Mψi(ν
∗) we have |Mψ∗i

(ν∗) ∩ Nj | ≤ |Mψ∗i
(ν∗) ∩ Ni| − 1, implying that (26)

holds.

Finally, choosing Pi := Mψ∗i
(ν∗) yields first that trivially (12) is satisfied. Moreover,

because of minimization we have that (12) cannot be satisfied by any subset of Pi.
Thus

(
(|Pi ∩Ni| − 1)γ + (|Pi| − 1)β

)
< 1

2

(
β(n− 1) + γη

)
and since (26) holds for Pi =

Mψ∗i
(ν∗), we get that (13) is satisfied. Hence, both conditions of Theorem 1 are satisfied

by choosing a punishment set Pi := Mψ∗i
(ν∗) for every i ∈ N , implying that there exists

a WRP equilibrium.

Note that we have shown here a slightly general result since we have shown that the
WRP condition holds for all punishers.

Proof of Lemma 1. Suppose a player j has deviated and players Pj are called upon to
punish. When a player i joins the punishment group Pj , the marginal effect on total
welfare W can be calculated to be

∆W(Pj , i) = −
(
βn+ γ(ηi + 1)

)(
β(n− 1) + γηi

)
− 1

2

(
(β + γ)2 −

(
βn+ γ(ηi + 1)

)2)
= −

(
βn+ γ(ηi + 1)

)(
β(n− 1)− 1

2
βn+ γηi −

1

2
γ(ηi + 1)

)
− 1

2
(β + γ)2

= −1

2

(
βn+ γ(ηi + 1)

)(
β(n− 1) + γηi − β − γ

)
− 1

2
(β + γ)2

= −1

2

(
β(n− 1) + γηi

)2
+

1

2
(β + γ)

(
βn+ γ(ηi + 1)− β(n− 1) + γηi

)
− 1

2
(β + γ)2

= −1

2

(
β(n− 1) + γηi

)2
+

1

2
(β + γ)

(
βn+ γ(ηi + 1)− β(n− 1) + γηi − β − γ

)
= −1

2

(
β(n− 1) + γηi

)2

Proof of Proposition 5. Suppose a player j has deviated and players Pj are called upon
to punish. Let i ∈ Nj and l,m /∈ Ni ∪{i} be such that fj(·, Pj ∪{i}) ≤ fj(·, Pj ∪{l,m}).

36



That is, we have that

β
(
β(n− 1) + γηl + β(n− 1) + γηm

)
≥ (β + γ)

(
β(n− 1) + γηi

)
⇔ β2

(
β(n− 1) + γηl + β(n− 1) + γηm

)2
≥ (β + γ)2

(
β(n− 1) + γηi

)2
⇔ β2

(β + γ)2︸ ︷︷ ︸
=:a

([
β(n− 1) + γηl

]2
+
[
β(n− 1) + γηm

]2
︸ ︷︷ ︸

=:ξ1

+ 2
[ (
β(n− 1) + γηl

) (
β(n− 1) + γηm

) ]︸ ︷︷ ︸
=:ξ2

)

≥
[
β(n− 1) + γηi

]2
.︸ ︷︷ ︸

=:ξ3

Next, note that ξ1 ≥ ξ3 if ξ1 ≥ a(ξ1 + ξ2), i.e. ξ1 − aξ2
1−a ≥ 0. This is equivalent to

0 ≤
[
β(n− 1) + γηl

]2
+
[
β(n− 1) + γηm

]2
−

2β2
[
(β(n− 1) + γηl)(β(n− 1) + γηm)

]
2βγ + γ2

.

Choosing γηl =
(
β(n− 1) + γηm

)
β2

2βγ+γ2
− β(n− 1) minimizes the right-hand side and

thus above is implied by

⇐ 0 ≤
[
β(n− 1) + γηm

]2[
1 +

(
β2

2βγ + γ2

)2 ]
− 2

(
β2

2βγ + γ2

)2 [
β(n− 1) + γηm

]2
,

which in turn is equivalent to β2 ≤ 2βγ+ γ2. For positive values, we get β ≤ (1 +
√

2)γ,
which concludes the proof.
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