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Abstract

Two individuals are involved in a conflict situation in which pref-
erences are ex ante uncertain. While they eventually learn their own
preferences, they have to pay a small cost if they want to learn their
opponent’s preferences. We show that, for sufficiently small positive
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of the resulting game of incomplete information the probability of
getting informed about the opponent’s preferences is bounded away
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If you know the enemy and know yourself, you need not fear the
result of a hundred battles. If you know yourself but not the enemy,
for every victory gained you will also suffer a defeat. If you know

neither the enemy nor yourself, you will succumb in every battle.

— Sun Tzu, The Art of War, approximately 500BC

1 Introduction

It is probably rare in a conflict situation that we know the exact cardinal
preferences of our opponent.! Consider, for instance, a penalty kick in
soccer. This is as close as one can imagine to a pure conflict (i.e. zero-
sum) situation. The kicker wants to score, the goalkeeper wants to prevent
that. Imagine then that the goalkeeper incurred, earlier in the game, a
slight injury, a bruising on her left side, which might induce her to have a
slight additional preference for jumping to the right. The question we are
interested in in this paper is whether or not the other player, the kicker,
would, at some small cost, like to find out about this slight injury and its
consequences for her opponent’s preferences.

This cost can be in terms of effort or even money going into the ac-
tual acquisition or purchase of this piece of information. Alternatively it
could also be in terms of mental costs. If the kicker saw the slight injury,
will she reason through its preference consequences for her opponent? The
latter interpretation leads us to the term “cognitive empathy” in our title,
as defined in psychology as the process of understanding another person’s
perspective (see e.g. Davis, 1983), which can be traced back to at least
Kohler (1929), Piaget (1932), and Mead (1934).? Building the possibil-

ity of empathy acquisition (or, respectively, information acquisition) into

In the quote from Sun Tzu stated above, it is difficult to know what he meant
with “knowing yourself” and “knowing your enemy”. The last sentence of the quote, for
instance, seems to suggest that it is in fact impossible that two generals know neither
themselves nor their enemy, as presumably we cannot have that both “succumb” in the
battle between them. What we take from the quote, however, is the idea implicitly
suggested there that “knowing your enemy” is something one can acquire.

2This is in contrast to “affective empathy” which is defined as a person’s emotional
response to the emotional state of others (see again Davis, 1983) and the two are not
necessarily related. Shamay-Tsoory et al. (2009) find that different areas of the human
brain are responsible for “cognitive” and “affective” empathy. Rogers et al. (2007) find
that people with Asperger syndrom lack “cognitive” but not “affective” empathy.



a conflict game with incomplete information, we are then interested in the
following questions. To which extent do players acquire empathy in equi-
librium? How does the possibility of empathy acquisition affect players’
action choices in the game? Finally, how do the answers to these questions
depend on the value of the cost of empathy acquisition?

To answer these questions we build a simple model. There are two
players and two actions for each player. Each player can be one of a finite
number of different preference types. The distribution over all preference
types is commonly known (to avoid confounding our results with higher-
order belief effects). Both players, before learning their own types (this
is for convenience), simultaneously decide whether or not to pay a small
amount of cost ¢ > 0 in order to learn the opponent’s type. Players do
not observe their opponent’s choice of empathy acquisition. After learning
their own and, if appropriate, their opponent’s type, players then choose,
as a function of what they know, a (possibly mixed) action. We focus
on two-player two-action Bayesian conflict games. These are such that
if the types of players were common knowledge then any such complete
information “realized type game” must have a unique Nash equilibrium
and that Nash equilibrium must be in completely mixed strategies. We
investigate Bayesian Nash equilibria of these games.

For such games we show that for sufficiently low positive costs of empa-
thy acquisition the probability of empathy acquisition is strictly bounded
away from zero and one in any Bayesian Nash equilibrium of this game.3
These bounds do not depend on the costs of empathy acquisition beyond
the requirement that these costs are sufficiently small. In other words, in
any equilibrium of this game, players randomize strictly between acquiring
empathy and not acquiring it. It turns out that even if the cost is zero, the
game, besides a “full empathy equilibrium”, still has such an equilibrium
with strict mixing between acquiring empathy and not acquiring it.

There are at least two different interpretations of our model. One,
along the lines as suggested above, is such that players are highly rational
but have some small costs of reasoning about their respective opponent’s

preferences. This model could then be about the two individuals engaged

3In fact, for a player’s equilibrium probability of empathy acquisition to be strictly
greater than zero, her opponent must have (at least two) distinct payoff types.



in the penalty kick, but could also be about firms engaging in conflict or
indeed, as in the quote by Sun Tzu above, military generals engaged in war.

We prefer to think of this model, however, in its evolutionary inter-
pretation. That is there is mother nature (or evolution) who works on
everyone of her subjects independently and has their material interests at
her heart. Nature knows that her subjects will be involved in all sorts
of conflict situations throughout their life. Nature then decides whether
or not she should spend some small amount of fitness cost to endow her
subject with cognitive empathy, which would allow her subject to always
learn (in fact, to always know) the opponent’s preferences. Whether or not
the subject has cognitive empathy is not observable by her opponent. Our
results then imply that nature (guiding play to Bayesian Nash equilibrium)
endows some but not all of her subjects with cognitive empathy even if the

costs of doing so are essentially zero.

1.1 Related Literature

This paper is related to the literature on the evolution of preferences for
strategic interaction, initiated by the so-called “indirect evolutionary ap-
proach” of Giith and Yaari (1992) and Giith (1995). Individuals who are
randomly matched to engage in a given form of strategic interaction are
first given a utility function by mother nature. Mother nature works on
every player separately and aims to maximize this player’s material pref-
erences. Players evaluate outcomes of play with the preferences given to
them by mother nature. There are two kinds of results in this literature.
Assuming that individuals (automatically) observe their opponents’ pref-
erences, in many settings non-material preferences arise as mother nature’s
optimal choice (see e.g. Kockesen et al., 2000a,b; Heifetz et al., 2007a,b;
Dekel et al., 2007; Herold and Kuzmics, 2009). On the other hand, assum-
ing that individuals cannot observe their opponents’ preferences, essentially
only allows material preferences as mother nature’s optimal choice (see
e.g. Ely and Yilankaya, 2001; Ok and Vega-Redondo, 2001). This induced
Robson and Samuelson (2010) to wish that the potential observability of



preferences is also made subject to evolutionary forces.* Some work in that
direction has recently been begun by Heller and Mohlin (2015a,b).> Our
model can be seen as to tackle the question of the evolution of observability
of preferences without modelling the evolution of preferences.

Another such model is given in Robalino and Robson (2012, 2015). In
their model, individuals are interacting in ever changing environments. An
individual with “theory of mind” is able to use past experiences of opponent
play to predict more quickly how her opponent will play. Thus, even if it is
somewhat costly, there is a strict benefit from having a “theory of mind”.
One could argue that the incomplete information (about opponents’ pref-
erences) in our model is somewhat akin to the ever changing environment
in Robalino and Robson (2015). Our model has no explicit learning. One
could perhaps argue it is implicit in our use of Bayesian Nash equilibrium.
Our example of a non-conflict game provides a similar result as that in
Robalino and Robson (2015) in that any Bayesian Nash equilibrium must
exhibit “full” cognitive empathy, i.e. with probability one. When we focus
on conflict games alone, we find a starkly contrasting result in that any
Bayesian Nash equilibrium must exhibit “partial” cognitive empathy, i.e.
the probability of acquiring empathy is bounded from below as well as from
above, even when costs of acquiring empathy tend to zero.

Aumann and Maschler (1972), provide an example of a complete in-
formation bimatrix game, due to John Harsanyi, to discuss the relative
normative appeal of maxmin and Nash equilibrium strategies. The game is
a two-player two-action game and not quite zero sum with a unique Nash
equilibrium which is in completely mixed strategies. In this game, Nash
equilibrium strategies and maxmin strategies differ for both players. Yet
the expected payoff to a given player in the Nash equilibrium is the same

as the expected payoff that this player can guarantee herself by playing her

4Similarly (Samuelson, 2001, p. 228) states: “Together, these papers highlight the
dependence of indirect evolutionary models on observable preferences, posing a challenge
to the indirect evolutionary approach that can be met only by allowing the question of
preference observability to be endogenously determined within the model.”

5The former is a model in which, while individual preferences evolve, so do individu-
als’ abilities to deceive their opponents. The latter asks the question whether cooperation
can be a stable outcome of the evolution of preferences in the prisoners’ dilemma when
players can observe and condition their play on some of their opponent’s past actions
(in encounters with other people).



maxmin strategy. Pruzhansky (2011) provides a large class of complete in-
formation bimatrix games that have this feature. If this is the case, would
one not, for this class, recommend players to use their maxmin strategies?
In our model, in which players have uncertainty about their opponent’s
preferences, and therefore in some sense greater uncertainty about their
opponent’s strategy, one might think that the appeal of maxmin strate-
gies is even greater. Yet, in our model there may be a strict benefit from
deviating from maxmin strategies.

The literature on level-k thinking (see e.g. Stahl and Wilson, 1994, 1995;
Nagel, 1995; Ho et al., 1998; Costa-Gomes et al., 2001; Crawford, 2003;
Costa-Gomes and Crawford, 2006; Crawford and Iriberri, 2007) typically
finds that individuals engaged in game theory experiments do not all reason
in the same way as individuals seem to have different “theories of mind”. In
that sense, our paper can be loosely interpreted as a model to understand
why there may be individuals of different levels of strategic thinking.

There is a literature on information acquisition in oligopoly mod-
els as in e.g. Liet al. (1987), Hwang (1993), Hauk and Hurkens (2001),
Dimitrova and Schlee (2003), and Jansen (2008), where firms can ac-
quire information about the uncertain market demand before engaging in
oligopoly competition. Market demand enters all agents’ profit functions,
whereas in our model the information a player might acquire is exclusively
about the opponent’s preferences. More general models in which play-
ers acquire information about an uncertain parameter affecting all players’
preferences are given in Hellwig and Veldkamp (2009), Myatt and Wallace
(2012), and Amir and Lazzati (2014), as well as in Persico (2000) and
Bergemann et al. (2009) in a mechanism design context.

Solan and Yariv (2004) consider a sequential model of two-player two-
action interaction in which one player chooses a (possibly mixed) action
first, then a second player can buy, at some cost, information about the
first player’s (realized) action before finally then also choosing an action
herself. The second player can also choose the precision of the information
purchased. The structure of the game is common knowledge. In particular
the first player is fully aware that she might be spied upon. Thus “spying”
in their model is about the opponent’s already determined action with

complete information regarding payoffs, whereas in our model “spying” (or



cognitive empathy as we call it) is about the opponent’s preferences.

Closest is perhaps Mengel (2012), who studies a model in which indi-
viduals play many games and ex ante do not know which game they are
playing. Individuals can partition the set of games in any way they like,
with the understanding that any two games in the same partition element
cannot be distinguished. The individual can condition her action only on
the partition element. Adopting a partition comes at some cost, called rea-
soning costs, and finer partitions are more costly than coarser ones. One
difference between Mengel (2012) and what we do here is, therefore, that
in our model players always learn their own payoff type, while in Mengel
(2012) individuals do not necessarily even learn their own payoff type. An-
other difference is in the choice of solution concept, we study Bayesian Nash
equilibria while Mengel (2012) studies asymptotically stable strategy pro-
files under some evolutionary process. Both these differences are probably
only superficial. The real difference between the two papers is the class of
games they study within their respective models. Our main results deal
with the case of conflict games. Mengel (2012) does not explicitly study
this class. Therefore, the nature of our results is also different.®

The rest of the paper is organized as follows. Section 2 states the model.
Section 3 provides the main result, further characterizes equilibrium strat-
egy profiles, and provides a uniqueness result. Finally, Section 4 concludes
with a discussion of further properties of equilibria in Bayesian conflict

games as well as a discussion of possible variations of the model.

6The main results in Mengel (2012) are that strict Nash equilibria, while (evolu-
tionarily) stable if the game is commonly known, can be made unstable under learning
across games; that weakly dominated strategies, while unstable if the game is commonly
known, can be stable under learning across games; and that, if all games have distinct
Nash equilibrium supports, learning across games under small reasoning costs leads to
individuals holding the finest partition with probability one. Our paper is silent on all
these results as our conflict games do not have strict Nash equilibria, do not have weakly
dominated strategies, and are such that all (what we call realized type) games are such
that their Nash equilibria all have full support. All our results, thus, add to the results
in Mengel (2012). One could probably translate our main result into the language of
Mengel (2012) as follows. If having the finest partition in the model of Mengel (2012) is
essentially the same as acquiring cognitive empathy in our model, then our result, that
in conflict games we expect proper mixing between acquiring empathy and not acquiring
it, suggests that, in conflict games, learning across games as in Mengel (2012) would
lead to individuals properly mixing between different partitions, including the finest as
well as the coarsest.



2 The Model

There are two players p € {B, R}, “blue” and “red”. Each player p can
have one of a finite number n? of possible (payoff) types 07 € ©F. There
are commonly known full support probability distributions over types given
by u? : ©F — (0, 1] for both players p € {B, R}. Abusing notation slightly
we sometimes write pu? instead of pP(07). The types of the two players
are then drawn from the respective distribution statistically independently
from each other. Every type of every player has the same finite set of
possible actions at her disposal, given by A = {ay,...,a,}.” Payoffs to
player p € {B, R} are then given by the utility function v? : A x A — R,
where the first argument depicts the action taken by player p and the second
the one taken by her opponent —p. Note that different types have different
utility functions and that utility functions do only depend on the chosen
action pair and not directly on the opponent’s type.

Before players learn their own type, i.e. at the complete ex-ante stage,
each of them can independently and secretly invest a cost of ¢ > 0 in order
to acquire cognitive empathy. This cost is then simply subtracted from the
player’s payoff. A player who acquires empathy then, at the interim stage,
learns not only her own type but also the type of her opponent. These
player types are then called informed. Note, however, that an informed
type is not able to observe her opponent’s choice of empathy acquisition.
We further assume that there is only no empathy or full empathy. When we
speak of a player having partial empathy we mean that this player random-
izes between no and full empathy.® A player who does not acquire empathy
learns, at the interim stage, only her own type. The corresponding player
types are then called uninformed.

A strategy of player p € {B, R} is then given by a pair (pp, (crep)gpe@p)
where pP € [0, 1] is the probability of empathy (or information) acquisition,

"In principle, one could consider action sets of different cardinality for both players.
The paper, however, focuses on what we call conflict games. A crucial feature of conflict
games is that its “realized type games” (defined below) have a unique equilibrium and
that equilibrium is in completely mixed strategies. One can verify that this implies that
the two players must have the same number of actions.

8Throughout the paper, partial empathy usually comprises the case that the corre-
sponding player acquires empathy with probability zero while it always excludes empathy
acquisition with probability one.



and 0 : ©P U {0} — A(A), the action strategy, is the (mixed) action to
be played by player p of type 67 € ©OF against any opponent of known type
0P € ©P, when informed, and of unknown type (which is indicated by
the player receiving the uninformative “signal” ()), when uninformed.

Our solution concept is Bayesian Nash equilibrium. One interpretation
of equilibrium play is that it is the outcome of a long and slow evolutionary
process. It is well known (see e.g. Nachbar, 1990) that if any strategy
profile is the outcome of a reasonable evolutionary process, it must be an
equilibrium. As our main result holds for all equilibria of the game, it is
therefore true for all candidates of an evolutionary stable outcome.”

The paper almost exclusively focusses on what we call Bayesian conflict
games.'? For any pair of types 67 € ©8 and 6% € ©F we define the realized
type game as the complete information game that would result if it were
common knowledge among the two players that they are of exactly these
two types. The Bayesian game is then a Bayesian conflict game if every
possible realized type game has a unique Nash equilibrium and if this Nash

equilibrium is in completely mixed strategies.!!

3 Results

We first show that for positive costs of empathy acquisition there cannot be
an equilibrium of a conflict game in which both players choose to acquire

empathy with probability one.

Proposition 1. Consider a Bayesian conflict game. If costs of empathy
acquisition are positive, then no strateqy profile with full empathy, i.e. with
(B, p) = (1,1), can be a Bayesian Nash equilibrium. On the contrary, if

costs are zero, there is such a full empathy equilibrium.

9Tt is also well known that not all games have evolutionary stable outcomes. There
can, for instance, be cycles in behavior. Such cycles then tend to cycle around equilibria
(see e.g. Hofbauer and Sigmund, 1998, Chapter 7.6).

10Gection 4.3 provides an example of a non-conflict game.

1Tn our main theorem and propositions we write “Bayesian conflict game”, to ensure
that a reader who only browses the paper understands that the conflict games studied
in this paper have incomplete information. Everywhere else in the paper we simply
write “conflict game” with the understanding that we are nevertheless dealing with a
Bayesian conflict game. Analogously, we refer to Bayesian Nash equilibria of Bayesian
conflict games simply as equilibria of conflict games.



Proof of Proposition 1. Suppose a conflict game has an equilibrium with
(pB, p%) = (1,1). Then whenever two types 0% € ©F and 6% € ©F meet,
it is common knowledge that this is the case and, as this happens with
positive probability, they must play a Nash equilibrium of the correspond-
ing realized type game. Any realized type game by definition has a unique
Nash equilibrium and this Nash equilibrium is in completely mixed strate-
gies. Thus, every type of every player in every situation is always indifferent
between all her pure actions. Hence, when costs are positive, any player
would be better off not acquiring empathy, thus saving ¢ > 0, and play-
ing any (mixed) action. Arriving at a contradiction, we therefore have the
proof for ¢ > 0. Observe however that this saving opportunity disappears
for ¢ = 0 meaning that in this case the above strategy profile is indeed an

equilibrium of the conflict game. O

Note that Proposition 1 leaves open the possibility that one (and only
one) player acquires empathy with probability one. Turning to a population
interpretation of (mixed) equilibrium (as in evolutionary game theory),
Proposition 1 states that we expect at least a fraction of the population for
at least one player position to not have cognitive empathy in equilibrium.

Suppose we consider symmetric conflict games, such as a Bayesian ver-
sion of the well known rock-scissors-paper game. Suppose we are interested
in the single population evolutionary model. That is, there is one popula-
tion of individuals from which repeatedly two are randomly drawn to play
the game. Then the appropriate solution concept is symmetric Bayesian
Nash equilibrium and Proposition 1 then implies that this single population
has a fraction of individuals without cognitive empathy.

Proposition 1 leaves open the possibility that, as costs of empathy ac-
quisition tend to zero, the equilibrium probability of empathy acquisition
tends to one. To see that this is at least not generally true, we turn to
our main result and our analysis of two-action Bayesian conflict games,
conflict games in which each player has two actions available. In such
games one player, termed B (or blue) throughout the paper, always wants
to coordinate actions while the other, termed R (or red) throughout the
paper, wants to mis-coordinate actions. The Bayesian uncertainty is then

only about the intensity of these preferences. One could thus alternatively

10



describe a two-action conflict game as a non-zero sum version of matching
pennies with incomplete information.

The following theorem is the main result of this paper. It establishes
that in any equilibrium of a two-action conflict game for any of the two
players the probability of empathy acquisition is bounded away from zero
(if the considered player’s opponent has at least two distinct types) and,
even more importantly, bounded away from one for all sufficiently small
positive costs. In order to state this theorem we require one additional
piece of notation. In a two-action conflict game, for any player p € {B, R}
of any type 67 € ©P denote by z(0”) the probability of action H that, if
played by the opponent, makes 7 indifferent between the two actions.!?
One could call z(6P) the indifference probability of type 7. By assumption
we have z(6P) € (0,1) for all 0?7 € OF and p € {B, R}. Further, denote by

o7 .. (0 ..) a type with maximal (minimal) indifference probability x(6?).

max man

Theorem 1. Consider a two-action Bayesian conflict game. There ex-
ists C' > 0 such that for all p € {B, R} we have in any Bayesian Nash

equilibrium that

(i) " = 2(0,5,) — 2(60,2,) if ¢ € [0,C) and

(ii) p* < max {x(0,2,),1— 2(0,%,)} if c € (0,C).

The proof of this theorem is delegated to the appendix. The proof
rests on two lemmas that are of some independent interest. We now state
these lemmas, one after the other, give their respective proof (or a sketch
thereof with the full proof in the appendix), and then sketch how they
combine with some additional work to establish that equilibrium empathy
acquisition probabilities are bounded away from zero and one.

We first show that in equilibrium any uninformed player type must
be indifferent between both actions. Just as we do this for the indifference
probabilities, we omit the subscript H for ease of notation when considering

action strategies in two-action conflict games from here on.

2For a player p € {B, R} we call two types 0,05 € ©F distinct if z(07) # z(605).

11



Lemma 1. Consider a two-action Bayesian conflict game. Then there
exists C' > 0 such that for all ¢ € [0,C), p € {B, R} and 6 € ©F

S (et @)+ (=g e ) =2 (1)

0—PcO-P
in any Bayesian Nash equilibrium.

Sketch of Proof of Lemma 1. Suppose there is a player, w.l.o.g. blue, of
some type that is uninformed and not indifferent between her two actions.
Suppose, w.l.o.g. that she prefers action H. As she is uninformed, she is
facing a (mixed) action that is a convex combination of all (mixed) actions
of all opponent (red player) types. As she prefers H against this mixture,
and as she prefers to coordinate actions, this mixture must place a relatively
high probability on H. But as this mixture is a convex combination of
mixed actions of all red types there must be one red type who also plays H
with higher probability. Thus, the same blue player type, when informed
and facing that red type, also plays H. But then the red player, the mis-
coordination player, of this type, when informed and playing against the
considered blue type, must play T as she is facing the pure action H. This
can then be argued to imply on the one hand that the red player is not
acquiring empathy with high probability and on the other hand that she
is not playing close to T'" when of the considered type and uninformed.
But then, as costs are small, she should deviate to acquire empathy with

probability one and to play 7" when meeting this given blue type. O

The second result we need is that, for positive costs, in equilibrium for
each of the two players there must be a type who, when informed cannot

be indifferent between both actions against all opponent types.

Lemma 2. Consider a two-action Bayesian conflict game.*® If ¢ > 0, then

for any Bayesian Nash equilibrium and p € {B, R} with pP > 0 there must

I3The reader may feel that we use an overabundance of different types in the statement
of this lemma. This is, unfortunately, necessary. There are three different types for each
player, denoted 67, or ,and 6P, It is important to realize that generally it may well be
that all three types on each side are different from each other. In the case where there
are only two types for one player, then some of these three types naturally must coincide.
This additional structure allows us to prove more in such cases. See Proposition 3.

12



exist P € OP and é’p, 0" € ©" such that

p-pa?‘%ép) + (1= p)o" " (0) > 2(0), (2a)

pra” T (07) + (1= p7")o" T (0) < 2 (67). (2b)

Forp= B (p= R) this induces a” (0%) = 1 and o®” (%) = 0 (o*" (67) =
0 and " (67) = 1),

Proof of Lemma 2. This proof is similar to that of Proposition 1. Suppose
a player p € {B, R} does acquire empathy with some positive probability
PP > 0 in equilibrium while costs are positive, i.e. ¢ > 0. Now assume that
every type 6P of player p, when informed, is indifferent between the two ac-
tions H and T against any opponent type 677. Then player p could benefit
strictly from deviating to acquiring empathy with probability zero (thus,
saving costs ¢ > 0 with probability p? > 0) and playing any (mixed) action
(not losing anything because of the complete indifference). Arriving at a
contradiction, we therefore have that there must be at least one player type
67 strictly preferring H or T against some opponent type here. Together
with Lemma 1 this concludes the proof. O

For the special case that the opponent —p only has one possible type,
Lemma 2 has the obvious implication that for any positive cost of empathy
acquisition player p does not acquire empathy in any equilibrium.

Consider first Part (i) of Theorem 1, which states that there is a specific

lower bound on the equilibrium probabilities of empathy acquisition.

Sketch of Proof of Theorem 1(i). The key to this part is Lemma 1. It
states that every type of any player, when uninformed, must be indiffer-
ent between both actions as long as costs are sufficiently small. Consider,
) (otherwise the
lower bound is trivially satisfied). Now both player types 6%, and 6%

max min

w.l.o.g., the red player and assume that z(67% ) > z(6%,
must be indifferent between both actions when uninformed. These two red
types, however, face the same distribution over actions if the blue player’s
probability of empathy acquisition is zero. Why? If the blue player did not
acquire empathy, she cannot recognize the red player’s type and cannot
condition her action strategy on that information. On the other hand, the

two (extreme) red types cannot be both indifferent between the two actions

13



if they are facing the same distribution. Thus, arriving at a contradiction,
it must be that the blue player acquires empathy with positive probability.
In fact the exact lower bound can be obtained by taking the difference

between Equation(s) (1) for the extreme types 0%, and 62 O

maz min:*

The key statement in Part (ii) of the theorem is that it establishes an
upper bound, strictly below one, for each player’s equilibrium probability
of empathy acquisition. What this upper bound is, is less important. In the
appendix we, in fact, prove two results that imply the existence of an upper
bound strictly below one. One is as stated in Theorem 1(ii), the other is
stated in the appendix as Theorem 1(ii). The respective statements are
similar but neither implies the other. The former is more elegant in its
expression, the latter is more intuitive in its proof. Therefore, we choose

to present the sketch of proof for Theorem 1(ii)’ here.

Sketch of Proof of Theorem 1(i1)’. W.l.o.g. we focus on the blue player
(the coordination player). Assume that the blue player acquires empa-
thy with a probability greater than the stated bound and close to one. By
Lemma 2 we know that, in equilibrium, there must be a type of blue player
who, when informed, strictly prefers to play H against some type of red
player. This type of red player, when informed herself and meeting the
given type of blue player, then faces with high likelihood an informed blue
player who plays H. Her best response then (being the mis-coordination
player) is to play 7" against this blue type. But as the informed blue type’s
equilibrium action against this red type is H, two things must be true about
the red player. First, she cannot be too informed, i.e. her probability of
acquiring empathy must be low, and second, when she is of the considered
type and uninformed, she must play H with a high probability. But then,
as the cost of empathy acquisition is small, the red player could strictly
benefit from deviating to acquire empathy and then, when she is of this

type, play T" against this blue type. We thus arrive at a contradiction. [

While we do not know whether there are equilibria in general two-action
conflict games in which a player’s probability of empathy acquisition is close
to the upper bound stated in Theorem 1, for small costs, there is always

an equilibrium in which the lower bound is achieved.
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Proposition 2. For every two-action Bayesian conflict game there exists
C' > 0 such that for all ¢ € [0,C') it has a Bayesian Nash equilibrium with
P =x(0,2.) — x(6,r,) for both p € {B, R}.

max man

The proof of this proposition is given in the appendix. The key to
reaching the lower bound for the probability of empathy acquisition is to
let all informed types of player p € {B, R} play H against opponent type

P
min*

0P and T against type 0 Taking into account Lemma 1, this im-

mediately pins down the equilibrium probability of empathy acquisition of
player p and it is exactly the lower bound. The equilibrium is then fur-
ther constructed by letting uninformed types mix in a way that makes the
opponent —p indifferent between acquiring empathy and not doing so.

With more than two types for one player and at least two for the other,
this kind of equilibrium can be constructed in different ways. In general,
this gives rise to a continuum of equilibria that differ in terms of players’
action strategies but not in terms of their information strategies. In what
follows, any representative of this class is called a partial empathy equilib-
rium. Note, however, that a player acquires empathy with probability zero
in such an equilibrium if her opponent does not have distinct types.

We do not know whether general two-action conflict games with positive
costs of empathy acquisition can actually have equilibria in which a player’s
probability of empathy acquisition is strictly greater than this lower bound.
For any such game with either two types for both players or a single type
for one player we can show, however, that the partial empathy equilibrium

considered in the proof of Proposition 2 is indeed the only equilibrium.

Proposition 3. For every two-action Bayesian conflict game with only
one type for one player and more than one type for the other player or
with exactly two types for both players there exists C' > 0 such that for
all ¢ € (0,C) and p € {B, R} the probability of empathy acquisition is
pP = (0.2 ) —x(6,2 ) in any Bayesian Nash equilibrium. In these cases
the Bayesian Nash equilibrium is uniquely determined by the strategy profile
considered in the proof of Proposition 2 if there is a unique maximal type
0P and a unique minimal type O, for both players p € {B, R}.*

max min

141n the case in which one player has a single type the equilibrium is in fact unique
only in terms of action strategies played with positive probability in equilibrium.
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The proof is again given in the appendix. The key for this proposition
is to realize that with a limited number of types for at least one player we
can pin down behavior of all types of this player fairly quickly with the help
of Theorem 1. Things turn out to be much more complex if both players
have many types, as then all we know is, for instance, that there is one
type of player red who plays H against some type of player blue, but we do
not know which types these are. If there are only two types on both sides,
for instance, then by starting with one type who does something specific

against one opponent type all other types’ behavior follows.

4 Discussion and Conclusion

In this paper we study two-player conflict situations with ex-ante uncer-
tainty over (the exact) opponent preferences for both players. We allow
players, before learning their own payoff type, to acquire cognitive empa-
thy at some (small) cost. Cognitive empathy enables a player to learn the
preferences of her opponent in all situations. There are at least two ways we
can interpret this model. The first interpretation is that there are indeed
two strategic opponents (the two soccer players from the introduction, two
firms, two military generals, etc.) who are involved in a conflict situation
and who can acquire information about their opponent’s ex-ante unknown
preferences. Given this interpretation, we find that in equilibrium these
strategic players do not fully acquire information about their opponent’s
preferences, even if the cost of doing so is vanishingly small. A second in-
terpretation is that there are many individuals who are often and randomly
engaged in pairwise conflict situations and mother nature can endow these
individuals (each individual separately) with cognitive empathy, i.e. with
the ability to understand opponents’ preferences, at some positive cost (e.g.
by providing an additional brain function). Under the assumption that na-
ture then guides play to an evolutionary stable state, which must be a
Bayesian Nash equilibrium of this game, our results imply that nature en-
dows some but not all of her subjects with cognitive empathy, even if the
costs of doing so are essentially zero.

Our model is simple and sparse and many alterations and additions

are conceivable. In what follows we discuss additional consequences of our
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results as well as some possible modifications of our model.

4.1 Empathy Acquisition at Zero Costs

In this subsection we provide a corollary to (the proof of) Proposition 2
for the special case of zero costs of empathy acquisition that allows us to

provide additional intuition for our main result.

Corollary 1. Any two-action Bayesian conflict game with ¢ = 0 has a

Bayesian Nash equilibrium with partial empathy, i.e. pP € [0,1), and

pPa® (077) + (1= p)o” (0) = (677)
forallp € {B,R},0P € ©P 7P € ©7P,

This corollary implies that an outside observer who can observe the
two players’ types would observe, for any pair of types, a frequency of ac-
tions exactly as given by the Nash equilibrium of the realized type game
(in which that game is common knowledge) and, therefore, the same fre-
quency of actions as in the full empathy equilibrium. In other words, even
though, when the two types meet, players are far from having common
knowledge that the two are of these particular types, they nevertheless, on
average, manage to play “as if” they had common knowledge of this fact.!?
If an outside observer, however, were to be able to track individuals be-
havior throughout many interactions, then this observer could distinguish,
by means of the observed frequency of behavior, those individuals that are
empathic from those that are not. This observer could then also distinguish

whether the partial or full empathy equilibrium is played.

4.2 Equilibrium Payoffs

In this subsection we turn to a discussion of equilibrium payoffs in two-
action conflict games with the (costly) possibility of empathy acquisition.
Note that, when we talk about the payoff to an (informed) type, we mean

the payoff without taking into account the costs of empathy acquisition

15This insight could be useful if one were to attempt to generalize our result to more
than two actions.
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that players have to bear. In contrast, these costs are included when we
consider players’ ex-ante expected payoffs. In what follows, the full em-
pathy equilibrium under zero costs, which we know from Proposition 1, is

referred to as the benchmark case. Consider first the case of small costs.

Corollary 2. Consider a two-action Bayesian conflict game. There exists

C > 0 such that for all c € (0,C) in any Bayesian Nash equilibrium

(i) every player obtains an ex-ante expected payoff equal to her ex-ante

expected payoff in the benchmark case,

(ii) every uninformed type for each player obtains the same expected pay-

off as she does in the benchmark case, and

(iii) for each player acquiring empathy with positive probability there is at
least one type who, when informed, obtains a strictly higher expected

payoff than she obtains in the benchmark case.

This set of statements is a corollary to Lemma 1, Theorem 1, and Propo-
sition 1. Part (i) follows from the fact that all types, when uninformed, are
indifferent between both actions in any equilibrium by Lemma 1 and all
players acquiring empathy with positive probability are ex-ante indifferent
between acquiring empathy and not doing so by Theorem 1(ii). Part (ii)
follows from Lemma 1 alone. Part (iii) follows from Part (i) and the fact
that players have to bear a cost of ¢ > 0 to acquire empathy.

This corollary states that there is a sense in which in two-action conflict
games, for all sufficiently low cost levels, all equilibria are ex ante payoft
equivalent (if we consider payoffs net of costs). As costs are positive, this
implies that some types of players must, when informed, expect higher
payoffs than they expect when they are uninformed. Omne can show by
example that this need not be the case for all types and may even be true
for only one type.

Before we turn to the case of large costs, it is fruitful to partition
the class of conflict games into two subclasses. These are inspired by
Pruzhansky (2011). For every type 67 € OF of a player p € {B, R} de-
fine the type-induced zero-sum game as the complete information game in

which player p has preferences given by her type, i.e. given by u?", and her
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% We call a type immunizable (or robustly

opponent has preferences —u
immunizable) if the type induced zero-sum game has no strictly dominated
mixed action strategy (or no weakly dominated mixed action strategy)

16 We call a conflict game immunizable if every type of

for both players.
every player is immunizable. If in a conflict game there is at least one
non-immunizable type, then this game is called non-immunizable.

We choose the label “immunizable” because of a result due to
Pruzhansky (2011, p. 355). He shows that in any complete information
game with two immunizable players both players have “equalizer” strate-
gies. If a player adopts an “equalizer” strategy, she gets the same expected
payoff regardless of the action taken by the opponent. He then shows in his
Lemma 1, that in any complete information game with immunizable play-
ers on both sides every equalizer strategy is a maxmin strategy. Moreover,
he then shows in his Lemma 2 that in such games equalizer strategies guar-
antee the player the Nash equilibrium payoff. This generalizes the insight
found by Aumann and Maschler (1972) in their example.

Remark 1. Consider a two-action Bayesian conflict game with costs of
empathy acquisition so high that any strategy including empathy acquisition
is dominated by one without empathy acquisition. If this game is immuniz-

able, then in any Bayesian Nash equilibrium

(i) every player of every (necessarily uninformed) type obtains an ex-

pected payoff that is at least as large as in the benchmark case, and

(ii) every player p € {B, R} with at least two robustly immunizable types
07,605 € OF with x(0)) # x(65) obtains an ex-ante expected payoff

strictly larger than her ex-ante expected payoff in the benchmark case.
If this game is non-immunizable, then in any Bayesian Nash equilibrium

(iii) every player of every (necessarily uninformed) non-immunizable type

obtains an expected payoff that strictly exceeds her maxmin payoff.

In a Bayesian Nash equilibrium of a non-immunizable game there can be

16Note that in a conflict game no type has a dominated action strategy. A type in a
conflict game is therefore (robustly) immunizable if her fictitious zero-sum opponent in
the type-induced zero-sum game has no strictly (weakly) dominated strategy.
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(iv) (necessarily uninformed) types of a player who obtain an expected
payoff that is strictly larger, resp. strictly lower, than her expected

payoff in the benchmark case, and even

(v) players with an ex-ante expected payoff that is strictly larger, resp.

strictly lower, than her ex-ante expected payoff in the benchmark case.

Part (i) of the remark follows from the result of Pruzhansky (2011)
that in such games any type of any player’s maxmin payoff is equal to her
Nash equilibrium payoff in any realized type game. The latter payoff is the
payoff this type of player obtains in the benchmark case. As she can always
guarantee herself this payoff by playing her maxmin action strategy, she can
certainly never receive less in any equilibrium for any cost level. Moreover,
as players are uninformed here, each type faces the same average opponent
action strategy. Under the additional assumption of Part (ii) this means
that in any equilibrium at least one of the two robustly immunizable types
must have incentives to play a pure action strategy which makes her strictly
better off than in the benchmark case. This, together with Part (i), then
proves Part (ii). Part (iii) of the remark follows from the observation that
in a two-action conflict game, to prevent a non-immunizable player type
from obtaining strictly more than the maxmin payoff, the opponent needs
to play a pure action. However, one can show that in any equilibrium of
such a game the opponent, on average, does not use a pure action strategy.
Therefore every such player type must receive a payoff that is strictly larger
than her maxmin payoff. Finally, to see Parts (iv) and (v) of the remark,

consider the following example.

Example 1. Consider the two-action Bayesian conflict game with action

set A ={H, T}, type sets OF = {08 08} and ©F = {61 0%}, probability

distributions over types u? = pft = (%, %), and payoffs given in Figure 1

with a,b € R (where player B chooses rows and R chooses columns).

In this example, types 67 and 67 are (robustly) immunizable, while
types 62 and 61 are non-immunizable. The indifference probabilities are
given by z(07) = 3, z(07) = 2, z(0f") = 1, and z(65) = 3.

One can verify that the following is an equilibrium of this game under
large costs. Obviously, we need to have p® = p® = 0, i.e. no empathy is

acquired. Furthermore, let o/ (0) = 0% (0) = 1 and 0% () = o' (0) = 0.
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Figure 1: Payoffs of the conflict game in Example 1.

One can then verify that type 0F receives an equilibrium payoff of %
while in any realized type game her payoff in the unique Nash equilibrium
would be % Her payoff in the considered equilibrium of the conflict game
under large costs is thus strictly lower than her payoff in the benchmark
case. On the other hand, type % receives an equilibrium payoff of —%
which is strictly larger than her payoff of —% which she obtains in any re-
alized type game and, thus, in the benchmark case. As in the considered
equilibrium all other types expect the same payoff (of zero) as in the bench-
mark case, player B receives a lower ex-ante expected payoff here than in

the benchmark case, while for player R the opposite is true.

4.3 A Non-Conflict Example

In this subsection we provide, as a point of contrast to our main results, a

non-conflict example.

Example 2. Consider a symmetric setup in which both players p € {B, R}
can have one of three types OF = O = {0,,0,,03} chosen uniformly (i.e.
pl = % for all 6 € ©P) for the two players. Both players can choose
between two actions H and T'. Type 01 finds action H strictly dominant,
type O3 finds action T strictly dominant, and type 0 has pure coordination

preferences. These payoffs, in matriz form, are given in Figure 2.

H T H T H T
CABEE H[TI]O H[O0

01. 02. 03.

o o0 R O VR RO N IS

Figure 2: Payoffs of the non-conflict game in Example 2
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For costs of empathy acquisition sufficiently low (¢ < %) this game has
no equilibrium in which a player acquires empathy with probability less
than one. Suppose a player (say blue) attaches positive probability to not
acquiring empathy. Red makes her choice of action dependent on her own
type with dominant action types playing their dominant actions. Now
consider the uninformed coordination type of blue. The best she can do
is to play a best response to the given (mixed) action of the coordination
type of red. W.l.o.g. let this best response action be H. The uninformed
coordination type of blue then receives a payoff of zero against the red
type with dominant action 7'. For blue switching to acquiring empathy
with probability one and playing T against the 7" dominant action type of

red is then beneficial if ¢ < %.17

4.4 The Timing of Decisions

Given the evolutionary interpretation of our model in which nature’s sub-
jects play many conflict games with often different preferences and oppo-
nents throughout their life, it seems appropriate that nature makes the
decision about empathy acquisition at the very beginning. Also for the
other interpretation, in which players are consciously strategic about their
choice of information acquisition, it can make sense to have the information
acquisition decision before knowing the exact nature of the conflict situa-
tion. A soccer team may study the opposing goalkeeper for the eventuality
of a penalty kick before knowing which of their own players will actually
take the penalty kick. A military general might want to spy on her oppo-
nent’s strengths (and thus preferences) before knowing the future strength
of her own troop or on which terrain, in which place, at which state of
the war etc. the actual battle will take place. One could imagine a firm
to acquire information about another firm’s cost structure before knowing
the exact demand function in markets the two firms compete in.

Yet, there are certainly cases, in which the reverse timing, in which play-

ers consider acquiring the information about their opponent’s preferences

17 Suppose individuals choose whether or not to acquire empathy after they learn
their own type. The two dominant action types do not acquire empathy now, but for ¢
small enough (now ¢ < %) coordination types acquire empathy with probability one in
any equilibrium of this game.
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only after they know their own preferences, is more plausible.

We do not believe that reversing the timing in our model would change
the main messages of our paper. We did not go through this model thor-
oughly, but only looked at two examples. First, as mentioned in Footnote
17, for the given non-conflict example (see Example 2), the main insight
there does not change even if we reverse the timing. We have also looked at
the reverse-timing model for a two-action two-type conflict example. While
small details change, the main result, that for small positive costs of em-
pathy acquisition any equilibrium has partial cognitive empathy, seems to
remain unchanged.'® In fact, in the equilibrium in this example, all types
acquire partial empathy: the probability of empathy acquisition is, as in

our main result, bounded from below and above.

4.5 Degrees of Cognitive Empathy

Another issue, especially for the evolutionary interpretation of our model,
is this. If nature has to make her decision on cognitive empathy at the
beginning once and for all possible situations, then these “all possible situ-
ations” should probably cover more than just conflict games. And, if these
situations include, for instance, the three possible types (for both players)
as given in our non-conflict example, then for small costs nature would al-
ways endow her subjects with full empathy. One could now state that it is
then a question of which is smaller, the cost of empathy acquisition or the
probability of these three types, but this is not where we want to go in this
discussion. Instead, we think that a better model in such cases would be
one in which nature can give her subjects degrees of empathy. For instance,
nature could give us enough cognitive empathy to always check whether or
not our opponent has a dominant action strategy, but if our opponent does
not, nature may not give us more cognitive empathy to differentiate our
opponent’s preferences further. The result would then be as in our model.

A related consideration is the following. Consider, for convenience, two-
action conflict games with two types per player. For these games Proposi-

tion 3 implies that a player’s probability of empathy acquisition is exactly

18To be precise, we used one such example and Gambit by McKelvey et al. (2014) and
found exactly one equilibrium. We have not attempted to prove that this equilibrium is
unique but we conjecture that it is.
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given by the difference of the two indifference probabilities of her two oppo-
nent types. This means that the more similar her two opponent types are,
the more similar are their indifference probabilities and the less empathy is
acquired by her in equilibrium. This is also true for the lower bound estab-
lished for the probability of empathy acquisition in our main theorem. In
particular, this implies that the more different kinds of situations a person
faces, i.e. the bigger the possible difference between the possible opponent
types, the more empathy is acquired. If this goes as far as to include even
dominant strategy types, she will acquire full empathy in equilibrium.
But if we insist in considering a large set of possible situations, we
believe our model of full or no empathy acquisition is too simple. A more
appropriate model in this case would be one of “rational (in)attention” as
in the decision theoretic models of Sims (2003, 2006); Matéjka and McKay
(2012, 2015). Adapting these models to our strategic interaction setting
could be done by allowing players to buy signals about their opponent’s
preferences of any precision with costs increasing in the information content
of these signals. Another model would be to allow individuals to acquire
multiple signals of whatever precision, one after the other, about their
opponent’s preferences, before making their final action decision. While we
do not think that the main insight of our paper would change in such a
model, especially of the latter variety, such a model might nevertheless add

substantial additional insights.

A  Proofs

Throughout this section we again abuse notation of action strategies in
two-action conflict games slightly by denoting by % (-) € [0, 1] the prob-
ability of H chosen by player p of type 6P. For ease of notation, when
it comes to the arguments of utility functions u®
the probabilities of action H. And finally, let L{}gﬁfg denote the (interim)

expected payoff of a type 87 € OF of player p if she acquired empathy and

, we also only mention

before she learns her opponent’s type. Similarly, 4% denotes the expected

payoff of a type P of player p who did not acquire empathy.
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A.1 Proof of Lemma 1

For p € {B, R}, 6? € OF we define

CPr (08,07 .= u®"(0,1) — u®" (x(67), 1),
CPr (65, 6%) .= u?"(1,0) — u®" (2(67),0),
CRr(98, 0% .= u®”(1,1) — u®” (x(6%),1), and
CRr (97 0%) .= u®”(0,0) — u?” (x(67),0).

Notice that C% (6%,0%) > 0 (CR' (68,67) > O) for all 0% € ©8 % € OF as
player R wants to mis-coordinate (as player B wants to coordinate). Let

. . B R
C = min min p® p?"C (08, 6%).
a€{Bg,Br,Ru,Rr} 05,08

W.l.o.g. we consider player p = B and assume that we have
R R, = R =
Sou? (e (0%) + (1= p")o"" (0)) > 2(67)
R

for some 6% € ©F.1 Since player B wants to coordinate actions, this
implies 0" () = 1 (if p? < 1). Furthermore, if a probability weighted sum
of terms exceeds 2(A7) then at least one term must exceed z(07) as well.

Thus, there must exist a type #% such that

P’ (%) + (1= p™)o”" (0) > 2(6"), (3)
In turn, this implies o?” (0%) = 1 (if p® > 0), meaning that
pPa® (0R) + (1 = pP)a?” (D) = 1 > =(6%).

Moreover, it is obvious that this equality and inequality also hold for p? = 0
and pP = 1. As player R wants to mis-coordinate, this implies 6" (65) = 0
(if pR > 0). Inserting the latter into Inequality (3) gives (1 — p®)o?" (0) >
z(0P). Again, it is obvious that this inequality is satisfied for p® = 0 as
well. Tt follows from this that 1 — p® > (%) and o®" () > x(67). Hence,

90bserve that the subsequent line of argument is almost identical for the reversed
inequality as well as for p = R. Thus, we can omit these cases.
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for ¢ € [0,C) player R can improve her payoff by deviating to a strategy
with pf = 1 and obtaining an additional payoff of at least

(1= ") (0" (a7 (0.1) = o (0" (0). 1)) )
>x(93)(ﬂe’m93 (a(0,1) =" (2(6%), 1)) — c) >0,

We thus arrive at a contradiction.

A.2 Proof of Theorem 1
An additional technical lemma is needed in order to prove Theorem 1.

Lemma 3. Consider o, 5, 5", v € R where ' — 3" < a. Then (at least)

one of the following three conditions must be satisfied:

ot (1—a)y=F and (1—a)y = 3", (40)
at+(1—a)y>p or (4b)
(1—ay <" (40)

Proof of Lemma 3. Suppose none of the three conditions is satisfied. Then

at+(1-a)y<(<)f and (1 -a)y > (>)8".

In either case, subtracting the second from the first inequality yields o <
B — B" < a, a contradiction. 0

We can now turn to the proof of Theorem 1.

Part (i): Lower Bound
Lemma 1 and Equation (1) imply for p € {B, R}
P (S H 0" Ortr) = S0 O) ) = wlOr) ~ 2 (0%)

<1 >0

Hence, we have that p? > z(6-? ) — z(6,F ).

max ) min

Part (ii): Upper Bound
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Consider player p. If p? = 0 then the statement is trivially satisfied. Thus,
suppose that p? > 0. We need to distinguish two different cases.

Case 1: p 7 =0

Given the lower bound we proved in Part (i), we then must have that
(67 ,..) = z(6",,). Lemma 2 then implies that there are two opponent
types 7P and 7 such that o?(0) > z(6) and o7 " (0) < x(6) for
all 0?. For p = B (p = R) this induces o (0?) = 1 and o (§7) = 0
(crep(é*p) =0 and ¢ (#77) = 1) for all 7 € ©P. Applying Lemma 1 yields

(S0 (0) =S 0" (G7) ) = 2lf ) — 2l67).

or opr

=1 (=0) =0 (=1)

Taking into account Part (i) this gives

P =x(0,5,) — (0,2,) < min{z(6,5,),1 - z(0,7,)} (5)

< max {z(6,2,),1 - z(0,%,)}.
Case 2: p? >0
The reasoning is very similar for both players and w.l.o.g. we consider the
case p = B. Again, Lemma 2 implies that there is a type 6” and that there

are two opponent types 8% and 6% such that

with o = pP and v = 0?”(). As we have already seen that z(A% ) —

max
R
T <9mzn

) is a lower bound for p?, according to Lemma 3 one of the following

three subcases must apply:

Subcase 2(a): pP0?” (%) + (1 — pP)o?” (§) = 2(%) and
PP (%) + (1~ ") (0) =

This subcase is straightforward. We simply have

PP = 2(0%) — 2(6%) < z(0F ) — 2(0F

maz min

) < max {x(@R ), 1 — x(@ﬁm)}

max
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Subcase 2(b): pPa?” (97) + ( — )0 (0) > (%)
This subcase implies that o’ ( B) = 0. Moreover, by Lemma 1 there must
exist 68 # 68 such that

pPa? (0%) + (1= pP)o” (0) < 2(0"). (6)
This induces ¢?" (#%) = 1. Furthermore, due to Inequality (2a) we have

2(6%) < p"a” (07) +(1 - pM)e” (0) = (1 - p™)o”" (B).

=0

Applying Lemma 3 again — here with a = pft, 5/ = x(éB), B" = z(#P), and
GR .
v =" (0) — then gives

2(6%) < p® + (1= p™)o (0) = pR® (65) + (1 — pN)a™ (0).  (7)

This induces o?” (%) = 1, which put into Inequality (6), yields p? + (1 —
pP)a?” (0) < 2(0) and pP < 2(07) < max {x(0%,,),1 - z(6F,,)}.

max mwn

Subcase 2(c): pBa?” (87) 4 (1 — pB)o?” (0) < 2(0F)

This subcase proceeds analogously to the previous one and is omitted.

A.3 An Alternative to Theorem 1

Theorem 1(ii)’. Consider a two-action Bayesian conflict game. For all
€ > 0 there exists C > 0 such that for allp € {B, R} and ¢ € (0,C) we
have pP < min{ 0.2 ), 1—x(0,r )}—l—e in any Bayesian Nash equilibrium.

max min

Proof of Theorem 1(ii)’. From Inequality (5) in Case 1 of the proof of
Part (ii) of Theorem 1 we already know for p € {B, R} that p? <
min{ 0. r),1— :E(Qm’;n)} in any equilibrium with p™ = 0. Therefore,

we only need to consider the case p™ > 0.
For p € {B, R}, 6” € ©F we define

CBH (e, 05,0%) :=u
CB7(e,08,0%) :=u’
Ch(e,08,0%) :=u’



CRr(e,67,07) :=u®” (0, 2(6%) — €) — u®” (x(8%), 2(87) — ¢).

Notice that, as in the proof of Lemma 1, we have C% (e, 67 0%) > 0
(C’R'(e, 68, 6%) > 0) for all 67 € 68, 0% € OF as player R wants to mis-

coordinate (as player B wants to coordinate). Based on this let

. . 0B 0F ~a B pR
= 0”.0'").
O = e B ery BB 1 O, 07,67)

Now assume that the statement of the theorem does not to hold. Then
there must exist ¢ € (0,C/(¢€)) such that

(a) p? > x(02 )+ €or
(b) pP >1—x(0,5,) +¢

for some p € {B, R} in an equilibrium. Again, the reasoning is almost

identical for both players and w.l.o.g. we consider p = B.

Case (a): p? > z(0%,.) +¢€
By Lemma 2 there exist types 68 € ©8, % € OF such that créB(éR) = 1.
We then have

pPo? (%) + (1= pP)o™" (0) = 2(8") + € > x(67). (8)

This implies that aéR(éB ) = 0 as player R wants to mis-coordinate and as
p® > 0. Inserting this into Inequality (2a) gives (1 — p®)o?" (0) > z(65).
From this we deduce that 1 — p® > x(6") and aéR(Q)) > x(0%). Now

consider an alternative strategy for player R with pf* = 1 and o?" (6P) a
best response for all 0% € ©F 0% € ©F. By Inequality (8) deviating to this
strategy player R would obtain an additional payoff of at least

(1= ) (" (" 0.7 0% + (1 = o)™ (@)
= (0" (©), 7™ (0F) + (1= P () - )
>(1—pf) (uéBuéR (uéR(O, 2(0%) + €) — u?" (67" (1), 2(B%) + e)) — c)

>2(67) (MGBuéR (uéR(O, 2(0F) + €) — uéR(:L’(éB), (0% + e)) — c) > 0
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as we have ¢ € (0,C(¢)). We, thus, arrive at a contradiction.

Case (b): p? >1—x(0%,) +

The proof is analogous to that of Case (a) and omitted. O

A.4 Proof of Proposition 2

The proof is by construction. We identify a particular strategy profile
or
(/?p7(0' )epe@p)pe{B’R}

an equilibrium. Let

with the desired property and then show that it is

P = a(02,) — 2(0;0). (9)
() = —u(070) VB € OP\{O, 6P} (9b)

VP € OF,07P € ©7P.

(9¢)

L,, (0°7) = x(0,7,)) if P >0
0 if pP=0

Note that ¢ (62 ) = 1 and 0% (6,2,) = 0 for all p € {B, R} and 6” € ©F

max man

if 2(0P ) > x(0,F).2° The strategy profile is, thus, fully specified except

max min

for the behavior of uninformed extreme types. In the case that z(6? ,.) >
z(67.) let a%ex () and o¥min (()) be chosen to satisfy

man

> n (w7 (1, e (077) + (1= )" ()

C

— UG*P(O’ppaefnax(g—p) + (1 - pp)UG?nax(@))) = m (10)
and
o o7
pomes g pomin g 1 .

———— 0 " (0) + ——————o i (D) = Ormin 11
e )+l e (1) = 0. (1)

In the case that z(0F, ) = z(6 ) however let

o or 1 P

oo (0) = o7 () = 2 (Oin)- (12)

L—pP

20This means that in case that they are informed, both players of any type play pure
action strategies against extreme type opponents.
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For the remainder of the proof we distinguish these two cases.
Case 1: z(0F ) > x(0V,.)

Before we move on to prove that the considered strategy profile is indeed
an equilibrium in this case, we need to make sure that it is well-defined.
For this we need to show that Equation (10) has a feasible solution for

¢ =0 and ¢ > 0 sufficiently small. Consider

i G 2(0,) + ¢
max — 9 P =
o 0) = 7= (k) + €)= T S ey

where € € R. For ¢ = 0 let ¢ = 0. We then have g% (()) € (0,1) and

LHS of (10) =Y u*" (ue_p(l,x((?’p)) — ue_p(O,:c(pr))) = 0 = RHS of (10)

since player —p of type 677 is indifferent between both actions if the oppo-
nent plays z(6~"). Equation (11) then implies o%min () = g¥ma= ().

Now consider ¢ > 0. Notice first that the left-hand side of (10) is a
linear function in €’ which is strictly decreasing (increasing) for p = B
(p = R). To see this, consider temporarily and w.l.o.g. —p = B and some

type 0P whose payoffs are represented by the matrix

H T

H U H | UHT

T | urg | urr

where wy g, ugr, ur g, urr € R. As player B wants to coordinate actions,

we must have ug g > ur g and urr > ug . Further, we calculate z(0%) =

U, T—UHT
UH,H—UT,H+UT T—UH,T

. Our claim follows immediately as this gives

u?” (1, 2(07) + ™) — u?” (0, 2(07) + €7)
=up (2(07) + €) +up (1 —2(0%) — ) -
—ur,(2(07) + €) —urgr(1 — 2(07) — )
=(umu — ura + ury — upr)(@(0°) + ) — (urr — unr)

=(ugyg —urpg+urr — UH,T)ER-

>0
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So, generally speaking, we have that for every ¢ > 0 sufficiently small there
exists a unique €? < 0 (¢f* > 0) such that both Equations (10) and (11)
are fulfilled and %= (), o () € [0, 1].

We now turn to proving that the proposed strategy profile is indeed an
equilibrium. Suppose that in the conflict game both players B and R are
playing a strategy as considered above. Then player —p € {B, R} cannot

improve by deviating if the following conditions are satisfied:

o o777(07) is a best response to pPa? (7P) + (1 — pP)o? (0) for all 6 €
OP.07Pc O,

e o777 (() is a best response to 3 gp u%” (ppaep (O7P)+ (1 —pP)a?” ((Z))) for
all 97 € O,

L ZG_I’ IU/G [nfo 29 plu +C

In the following let ¢ = 0 or ¢ > 0 sufficiently small as mentioned above.
Further let p = B (p = R). Consider first the action strategies that types
of player —p face when they are informed. We calculate for 677 € ©7P,
0P € OP\{6P

max’ mm}

ol (B7) 4 (L= pP)oies () =a(67) & < (2)a(67),

Pt (077) + (L= pP)o"n (D) =a(677) = Gp=e > (<)(077),

pra® (077) + (1= p")o™ (D) = 2(07).
(13)

Hence, o "(67 ) = 1 and o/ " (0%,

max man

p € {B,R}, 77 € ©7P. Against all other types 07 € ©P\{6? ., 0" 1 any

informed type 677 € ©77 is indifferent between both actions.

) = 0 are indeed best responses for all

Beyond that, any uninformed player type 677 € ©7P faces

Zu“( po” (077) + (1= p)a” (0))

Mgfnax

=y fmas (:c(@fp) + ep) + pifmin (:1:(«9*”) - ep) + > u” w(67")

6P
pmen 0P {07, 00,07, }
=x(077)

and is therefore indifferent between both actions.
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Finally, we have to examine the expected payoffs. For an uninformed
player type 677 € ©~P we have

U = (O (P 07+ (1= )" 0)) )

op

= " (o (0),2(077)).
If 677 is informed, then her expected payoff (ex costs) is given by

Uto = 1" (" (07), o™ (0°77) + (1= p")o” (D))
op
= IquP"MuG_p(l, ppaegm(ﬁfp) +(1- pp)a%”(@))+

mamw@,%(gg(e—p)— 5 M"(ppo“’(e-ma—f)oep(ﬂ)))))*

ILL min prgp

min

S w0 (0m), 2(077))

OPE{Omax 0

= yfmes (u(’_p (1, pPgimas (07P)+ (1 — p”)aegm ((Z)))—
u®" (0, pPo e (677) + (1 pp)aefnaw(@))) T+ (0,2(677))

Notice that according to (13) we have U7, 7, > u®" (0, ;p(@*p)) = U7 for
all 077 € ©7P. Taken together we get

(10) &> u’" <Mgf”“" <u“ (1, g0 (077) + (1 =)o (D))

9—p
— (0, pPo e (077) + (1 - p%%(@))) +u’" (0, x<9p>))
=> (aefp(@), x(@’p)) +c
9—p
UL, = U e
9—p 9—p
This means that player —p is indeed indifferent between acquiring empathy

and not acquiring it. Thus, we established that player —p has no incentives

to deviate from the considered strategy in this case.

Case 2: z(62 ) = z(6"

max main )

Suppose again that both players B and R are playing a strategy as
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considered above. As according to Equation (9a) we have p™ = 0 in this
case, player —p cannot improve by deviating if the following conditions

are satisfied:

e o77"(D) is a best response to g u?” (ppa(’p(é’*p) +(1— pp)a(’p(@)) for
all 7P € ©7P,

o Sovan i TpU T (SO). " (07) + (1~ 2)o”(0) <
o0 10U + ¢ for all (597”(910))9717 » € A(A) 3",

Taking into account Equations (9) and (12), concerning the first condition

we simply have

zw”( o (O077) + (1= )™ (0)) = 3 px(077) = 2(677).
op
Hence, this condition is obviously fulfilled as any uninformed type 677 is
indifferent between both actions.

The second condition states that the ex-ante expected payoff of player
—p from not acquiring empathy must be greater than or equal to the maxi-
mal payoff (minus costs) she could get instead from acquiring empathy and
playing freely choosable action strategies which can be conditioned on the

opponent’s type. For all 677, (59_p(9p))0p we have

S (), 007 + (L= )0 0)) = (a0 7)),

:;)3(9—1))

On the contrary, type 077 receives
Uy =" ("7 (0),2(077))
if she is uninformed. Thus, we have

ST (), 0 (67 + (L= ) (0) = 2w U

017617

for all (sgfp(ﬁp))

as a whole.

poror € A(A)™ "% This concludes Case 2 and the proof
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A.5 Proof of Proposition 3

Recall the proof of Theorem 1. In Case 1 of Part (ii) we already established

that we must have

o = a(0,2,) - 2(6,0,) (14)

if p# = 0 for p € {B,R}. Notice that p» > 0 then implies
x(0,2 ) > x(0,F). Taking into account Theorem 1(i) in this situa-

tion we also have that 0 = p® > z(6%,,,) — =(6h,,) > 0, and thus

p P = xOF ) — x(6F

max min

). In what follows we distinguish the two cases

considered in the proposition.

Part 1: n® =1 and nf* > 1 (n® > 1 and nf! = 1, respectively)
W.lLo.g. consider the case n” =1 (such that ©F = {6}) and n® > 1 and
let ¢ € (0,C) sufficiently small. Assume that p > 0 in an equilibrium.

Then according to Lemma 2 there must exist 0% and 68,68 fulfilling
Inequalities (2). This however implies 6B # #P which is a contradiction
as we have n® = 1. Thus, we must have pf* = 0 which (together with the
above considerations) establishes uniqueness of the empathy levels for this
part of the proof.

By assumption we have that x(6%, ) > x(6%) > x(0%, ) for all 67 €
OR”\{0x 0F 1. We now show that the equilibrium considered in the proof
of Proposition 2 is unique up to variations of the action strategies UGR(QB)
which are played with probability p® = 0. Notice first that according to

Lemma 1 we must have
B B
pPo” (07) + (1 = p%)o” () = 2(6") (15)
for all 6% € ©F. Taking into account Equation (14) this gives

) (0" (0F ) — o*" (0%

mazx min

(@(Omaz) — 2 (O

mazx min

)) = pP (" (0F,,) — " (6F,.))
=z(0%,) — z(OF

max mzn) .

Hence, we must have " (02 ) =1 and ¢?” (A7

max man

) = 0. Again according
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to Lemma 1 this implies that

(0%) = o (07) — 0" (07, >:=-3§<x<0R> z(0%.)) & (9c)

min min
p

for all 6% € ©F. Moreover, by Equation (15) this induces

" (0) = ——52(0h;,) < (9b).

As (0B, ) > z(0%) > z(%,) we have 0" (6%) € (0,1) for all 9% <
@R\{emafL"

ponent type 6 € ©F\ {9 9% 1
o (0) = 2(0P) for all #F € OF\{HR

then transforms to

6. 1. This means that % must be indifferent against any op-
if she is informed. Thus, we must have

6F. 1. Equation (1) of Lemma 1

mazx?

ZMGE 0R® — (eB)

R
M maz GR [/L min 9R B
e O+ o () = (07) e (1),

Together with Equation (10) (for p = R) this then uniquely determines
oR

gmaz () and oPmin (0). The reasoning is the same for n? > 1,n® = 1.
Part 2: n? =nft =2
In this case we have P = {02 6" 1 for p = B, R. We already know

that uniqueness of the empathy levels follows immediately if we have

max?

pP = 0 for some p € {B, R}. So in this regard we only need to consider the
case that p?, pft > 0. Again, we recall the proof of Theorem 1 and take

Case 2 with p = B as a starting point. Consider its three subcases.

Subcase (a): pBa‘?B(Q:R) +(1— pB)OQ:B(@) = :E(Q:R) and
PP (67) + (1 = p)o”" (0) = 2(6")

This subcase is again straightforward as we simply have p? = z(8)—z(0F)
and know already that it is p? > (02 ) — 2(6%, ). Therefore it must be
O =08 and OF = 08

Subcase (b): pPa?” (8%) 4 (1 — p?)a?” (0) > z(6F)
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Recall Inequality (7). Lemma 1 then implies that

o™ (67) + (1 p™)o”" (0) < 2(67)

as here it is {07 € ©F | 97 £ HR} = {67}, In turn, this induces o (67 )
0. Moreover, recall that it is o?” (§%) = 0, 0" (#%) = 1 and o "(6R) =

Further, we know again by Lemma 1 that it must be

O CRED Wi U] BRI ESICN

If it were 0% = 08 9% = @2 then this would imply p? = x(@,ﬁm) —
(Hﬁax) < 0. So it must be o = Hﬁax,é = Qﬁm which implies p”

2(Opnaz) = T(Orkin)-

max man

Subcase (c): pPa?” (%) + (1 — pP)a?” (D) < (A7)

This subcase proceeds analogously to Subcase (b) and is therefore omitted.
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