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James P. LeSage, Colin Vance, and Yao-Yu Chih 1

A Bayesian Heterogeneous Coeffi  cients 
Spatial Autoregressive Panel Data
Model of Retail Fuel Price Rivalry

Abstract
We apply a heterogenous coeffi  cient spatial autoregressive panel model from Aquaro, 
Bailey and Pesaran (2015) to explore competition/cooperation by Berlin fueling stations 
in setting prices for diesel and E5 fuel. Unlike the maximum likelihood estimation 
method set forth by Aquaro, Bailey and Pesaran (2015), we rely on a Markov Chain 
Monte Carlo (MCMC) estimation methodology. MCMC estimates as applied here with 
non-informative priors will produce estimates equal to those from maximum likelihood, 
a point we demonstrate with a Monte Carlo experiment. We explore station-level price 
mark-ups using over 400 fueling stations located in and around Berlin, average daily 
diesel and e5 fuel prices, and refi nery cost information covering more than 487 days. 
The heterogeneous coeffi  cients spatial autoregressive panel data model uses the large 
sample of daily time periods to produce spatial autoregressive model estimates for 
each fueling station. These estimates provide information regarding the price reaction 
function of each station to neighboring stations. This is in contrast to conventional 
estimates of price reaction functions that average over the entire cross-sectional 
sample of stations. We show how these estimates can be used to infer competition 
versus cooperation in price setting by individual stations. The empirical results reveal a 
mix of competitive and collusive price setting, with some evidence that stations located 
near others of the same brand tend toward collusion, while those located near rival 
brands tend toward competition.

JEL Classifi cation: C11, C23, L11
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1 Introduction

There is a great deal of literature on regional tax competition between local governments

within a country (Allers and Elhorst, 2005, Elhorst and Fréret, 2009), gas station pricing

(Pennerstorfer, 2009, Kihm et al. 2016) hospital pricing (Mobley, 2003), research activity

competition between economics departments (Elhorst and Zigová, 2014), and so on. Empir-

ical investigations often rely on spatial econometric methods developed to analyze spatially

dependent cross-sectional and panel data.

The basic methodology involves comparing behavioral outcomes in one region (or ob-

servational unit such as gas station, hospital, etc.) to actions taking place in neighboring

regions, or behavioral reactions taken by an individual or institution to actions taken by

a more general type of neighbor, a peer group or a set of peer institutions. Spatial au-

toregressive processes/models represent a parsimonious way to specify a global relationship

between a sample of (say N) regions/institutions/individuals and the average behavior of

neighboring regions/insitutions/peers in the sample. By global, we mean that the sample

of size N produces a scalar parameter indicating the average strength, sign, and statistical

significance of reaction, where averaging takes place over the sample of size N . This allows

an inference regarding the presence or absence of a positive/negative/insignificant reaction

by the typical observational unit (region, institution, or individual) to actions of neighbors.

For example, we might be able to conclude that on average over the sample of N regions

we see statistical evidence of a negative and significant reaction function involving tax rates

set by the typical region to average tax rates set by neighboring regions. This could be

interpreted as evidence in favor of tax competition between regions in our sample.

A more ideal situation would allow inference regarding how each of the individual ob-

servational units i = 1, . . . , N react to actions taken by each unit i’s neighboring units.

Some regions/institutions/individuals might exhibit competitive reactions vis à vis their

neighbors, while others react in a cooperative fashion, or do not react at all. This is an

ideal situation because competition/cooperation reflect outcomes of institutional/individual

decisions, which we might expect to vary across the sample of observational units.

Aquaro, Bailey and Pesaran (2015) make the observation that space-time panel data

samples covering longer time spans are becoming increasingly prevalent. If we let N denote

the number of spatial units in the sample and T the number of time periods, panel data sets
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with sufficiently large T allow us to exploit sample data along the time dimension to produce

spatial autoregressive parameter estimates for all N spatial units. In our setting where

we wish to examine competition/cooperation between price setting behavior of individual

fueling stations, individual estimates of the reaction function for each station to neighboring

stations’ pricing actions holds a great deal of intuitive appeal. The majority of studies that

address competition in the retail gasoline market average over the sample of stations, not

allowing for the possibility that some stations interact with their neighbors in a collusive

manner while others interact in a competitive manner.

Our heterogeneous coefficient spatial autoregressive model is in contrast to conven-

tional static spatial panel models where a single (scalar) dependence parameter is estimated

that relates the NT decision outcomes in the vector y and the NT−vector of spatial lags

(IT ⊗ W )y, representing a linear combination of neighboring unit decisions. The scalar

dependence parameter averages the relationship over all N fueling stations and T time pe-

riods.1 Aquaro, Bailey and Pesaran (2015) argue there are a large number of situations

where it is plausible to believe that the level of interaction between observational units

differs greatly when considering spatial interaction patterns, and our fueling station price

setting interaction represents one such situation.

In section 2 we set forth the heterogeneous coefficient SAR model from Aquaro, Bailey

and Pesaran (2015), and discuss how it will be applied to our examination of Berlin fueling

station price setting behavior. Section 2.1 discusses interpretation of the model estimates,

a topic not covered in Aquaro, Bailey and Pesaran (2015).

Section 3 develops a model of (station-level) price conjectural variations that explicitly

identifies station-level reaction functions, and shows how this relates to our HSAR spec-

ification. Estimates of net spatial spillovers consisting of spill-in plus spill-out effects for

each station reflect unobservable conjectural price variations. The relative size of spill-in

versus spill-out impacts associated with neighboring station price markup actions determine

cooperative versus competitive price markup rivalry at the station-level.

In section 4 we outline a Markov Chain Monte Carlo (MCMC) procedure for estimation

of the model parameters. Appendix A validates the algorithm by replicating some Monte

Carlo experiments from Aquaro, Bailey and Pesaran (2015).

1Of course, the conventional static space-time panel model can allow for station-specific and time-specific
fixed effects in an attempt to ameliorate the restrictiveness of the model. This however amounts to allowing
for station-specific and time-specific differences in the model intercept.
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In section 5 we apply the model to daily price mark-ups of more than 400 fueling

stations located in and around Berlin, Germany.2 Given estimates that we can use to

infer competition versus cooperation in price-setting behavior, section 5.3 turns attention

to analysis of factors that enhance or deter competition in price setting.

2 The heterogenous spatial autoregressive model

The heterogeneous SAR model of Aquaro, Bailey and Pesaran (2015) (which we label

HSAR hereafter) can be written as in (1), where wij represents the i, jth element of a

row-normalized spatial weight matrix with wii = 0.

HSAR : yit = αi + ψi

N∑
j=1

wijyjt + εit, i = 1, 2, . . . , N, t = 1, 2, . . . , T (1)

The disturbances εit are assumed distributed independently, and for our purposes we

can assume independent normal distributions, εit ∼ N(0, σ2
i ).

3

The HSAR model can be written in matrix notation shown in (2) by stacking regional

units,

yt = α+ΨWyt + εt (2)

where α = (α1, α2, . . . , αN )′, Ψ = diag(ψ), ψ = (ψ1, ψ2, . . . , ψN )′, W = wij , i, j = 1, . . . , N ,

εt = (ε1t, ε2t, . . . , εNt)
′, εit ∼ N(0, σ2IN ), σ2 = (σ2

1, σ
2
2, . . . , σ

2
N )′.

The data generating process for the HSAR model can be written as:

yt = (IN −ΨW )−1(α+ εt), t = 1, . . . , T (3)

2The fueling stations employed are not a sample, but rather the universe of stations in the Berlin region.
3Aquaro, Bailey and Pesaran (2015) show that quasi-maximum likelihood (QML) estimates are robust

with respect to two error generating processes, a Gaussian εit ∼ IIDN(0, σ2

i ), as well as a non-Gaussian
IID chi-square variate where: εit/σ

2

i ∼ IID(χ2(2) − 2)/2, with σ2

i generated as independent draws from
χ2(2)/4 + 0.5, for i = 1, . . . , N . This requires use of a variance matrix estimate based on the sandwich
formula (which they provide) for their QML procedure.
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2.1 Interpreting the HSAR model coefficients

The HSAR specification data generating process is shown in (4), where we have replaced

the dependent variable yt with pt = pricet − costt, where costt is the refinery cost of diesel

or e5 fuels, making pt the price markup. This is the dependent variable we employ in our

empirical application.

pt = (IN −ΨW )−1(α+ εt), t = 1, . . . , T (4)

Consider the partial derivatives of the reduced form HSAR model shown in (5). These

expressions are derived from the reduced form (3), after taking into account the fact that

Ψ, α do not change over time. The partial derivatives show how price markup respond to

(random) changes in price markups by rival stations.

∂P/∂ε =

⎛
⎜⎜⎜⎜⎜⎜⎝

∂p1/∂ε1 ∂p1/∂ε2 . . . ∂p1/∂εN

∂p2/∂ε1 ∂p2/∂ε2 . . . ∂p2/∂εN
...

...
. . .

...

∂pN/∂ε1 ∂pN/∂ε2 . . . ∂pN/∂εN

⎞
⎟⎟⎟⎟⎟⎟⎠

= (I −ΨW )−1 (5)

Expression (5) is an N × N matrix, since a change in a single station’s price markup

could (potentially) impact price markups of all other stations, with the strength of these

other-station impacts determined by the levels of dependence between rivals (Ψ) and their

relative spatial locations (indicated by non-zero weights assigned to rivals by the matrix

W ).

The main diagonal of the matrix represent own-partial derivatives (∂pi/∂εi), while the

off-diagonal elements are cross-partial derivatives (∂pj/∂εi) showing external impacts on

rival stations. If we sum the off-diagonal elements across row i of the matrix, we have the

cumulative spill-in impact, that of rival station’s (j �= i) price changes on station i behavior.

Summing off-diagonal elements down the column i produces a cumulative spill-out impact

showing how changes in station i price markup impacts rival stations j �= i.

The model provides estimates of αi, ψi, σ
2
i , i = 1, . . . , N for each station i. We can inter-
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pret the parameters αi as station-specific fixed effects that reflect differences that arise from:

branding or location advantages, station cost factors, traffic access patterns, etc. We note

also that separate variance scalar estimates for each station accommodate heteroscedastic-

ity.

3 A theoretical motivation for the SAR specification

3.1 A price reaction function motivation

A price conjectural variation is firm i’s anticipated response from a rival firm when firm

i changes its price. Liang (1989) shows that if station i has a price conjectural variation,

the equilibrium price and output that results can range from a competitive to monopolistic

outcome depending on this conjecture.

We first show that the price conjectural variations of each station can be estimated

directly in the station’s price reaction function. We specified the demand function for

station i as a simple linear relationship:

qi = ai − bipi + fiWiP (6)

where qi is output for station i, pi is the price of station i and WiP represents the ith row

of the N × N matrix W that has non-zero elements in row i for each rival station. P is

an N × 1 vector of prices, so that WiP reflects a linear combination of prices by station i’s

rivals.

Price reaction functions arise in oligopolistic markets as our representative station i

realizes that changes in price may provoke subsequent price changes by its rivals. Given

this type of situation, station i’s first order profit maximization conditions can be expressed

in terms of its price reaction function Ri(WiP ) to it rivals prices (WiP ).

Assume station i’s cost (ci) is independent from its pricing strategy.4 Station i’s profit

function is:

4We use the same refinery cost of fuel for all stations in our empirical implementation.

8



πi = pi × qi − ci = pi(ai − bipi + fiWiP (pi))− ci

= aipi − bip
2
i + fipiWiP (pi)− ci (7)

The first-order profit maximization condition is:

∂πi
∂pi

= ai − 2bipi + fiWiP + fipi(∂WiP/∂pi) = 0 (8)

Let the N × N adjacency matrix W = [wij ] identify rival stations using wij > 0 and

zero values for other stations. If we let the conjectural variation cvi = (∂WiP/∂pi), station

i’s price reaction function Ri(WiP ) from (8) is:

Ri(WiP ) : pi =
ai

2bi − ficvi
+

fi
2bi − ficvi

WiP, (9)

where Wi is ith row vector of W , and P is an N × 1 price vector.

Under the assumption that station i’s sales are more responsive to own price than

the substitute/rival’s price (bi > fi > 0), the slope of station i’s price reaction function is

positive (Liang 1989) when cvi < 2bi/fi. This condition requires that firm i’s price elasticity

of sales are more responsive to own price changes than to (an average of) rivals prices, which

seems reasonable. We note also that the slope becomes steeper if stations assume (cv1 > 0),

and flatter if station i has a conjecture (cv1 < 0).

To illustrate the relationship between station i’s conjectural variation about price (cvi)

and its strategic pricing behavior, two cases are considered under general assumptions and

under symmetry.

Case 1: station i anticipates rivals’ price setting (cvi = ∂WiP/∂pi > 0)

Beginning from the Bertrand equilibrium A with equilibrium price (p1i ,WiP
1), when

station i’s rivals decide to increase fuel prices5, other stations’ (which we reference as j)

reaction functions shift from R1
j (pi) to R2

j (pi) (see Figure 1).

5We are assuming this is for reasons other than a response to station i’s increase in fuel price.
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WiP

pi

R1
i (WiP )

R1
j (pi)

WiP
1

p1i A

B

R2
j (pi)

εj,j �=i

εi(c.v.)

R2
i (WiP )

WiP
2

p2i

spill-in

spill-out

pi = αi + ψiWiP

Figure 1: Case 1: Cooperative outcome

In case 1, station i expects that when station i increases price in response to the price

change of its rivals, rivals will “cooperate” by not cutting their price in response (cvi > 0). A

result of this conjecture is that station i becomes more reliant on rivals’ price decisions, and

therefore, station i’s price reaction function becomes steeper (from R1
i (WiP ) to R2

i (WiP )).

After this adjustment, the Bertrand equilibrium changes from A to B with equilibrium price

(p2i ,WiP
2).

By connecting two equilibria, we get station i’s equilibrium price strategy as shown by

the line pi = αi + ψiWiP in Figure 1. Specifically, if station i’s price conjectural variation

is positive (cvi > 0), we have a positive slope (ψi > 0) reflecting equilibrium price behavior.

Case 2: station i anticipates rivals price setting (cvi = ∂WiP/∂pi < 0)

In this scenario where station i expects that rivals will reduce their price in response to

a station i’s price increase (cvi < 0), the slopes of the reaction functions are upward sloping

as shown in Figure 2. However, this type of price conjecture (cvi < 0) makes station i less

sensitive to price decisions of its rivals. This leads to station i’s price reaction function
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WiP

pi

R1
i (WiP )

R1
j (pi)

p1i

WiP
1 WiP

2

A

B

A’

R2
j (pi)

εj,j �=i

εi(c.v.)

R2
i (WiP )

p2i

spill-in

spill-out

pi = αi + ψiWiP

Figure 2: Case 2: Competitive outcome

becoming flatter (e.g., moving from R1
i (WiP ) to R2

i (WiP ) in Figure 2), but the reaction

function is still positively sloped.

Despite this, there exist conditions where the equilibrium can move from A to B when

station i’s rivals decide to increase price. In this type of situation, station i’s equilibrium

price behavior has a negative slope (ψi < 0), as shown in Figure 2. As can be seen from the

figure, the negative slope arises when net spillovers = spillin effects + spillout effects are

negative. We note that although the case considered here was that of an increase in price

(markup), the model produces a symmetric result for decreases in price.

3.2 SAR as a steady-state equilibrium process

The price reaction function assumes that stations learn over time about the price setting

behavior of rivals. An econometric motivation for how the simultaneous autoregression

model specification can be viewed as a steady-state process that arises from stations ob-

serving/learning from past prices of rivals is given here.6

The parameters ψi for each station show how the price markup of station i relates to

that of a linear combination of price markups by neighboring stations. (We will refer to

6This motivation follows along the lines of an argument developed in LeSage and Pace (2009).
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price rather than price markups in the sequel for the sake of brevity, but we are referring

to the price markup dependent variable pit.)

We begin with a situation where each station sets price on day t after examining neigh-

boring station prices on the previous day, using the partial adjustment relation in (10).

pi,t = αi + ψi

N∑
j=1

wi,jpj,t−1 + εi,t (10)

We can view (10) as a partial adjustment mechanism whereby station i (partially)

adjusts (−1 < ψi < 1) to prices markups of neighboring stations. Station i also adds a

station-specific factor αi into its pricing markup decision.

Rewriting (10) in matrix/vector form shown in (11), we can recursively replace the

lagged N × 1 vector pt−1 on the right-hand-side. Doing this for q periods leads to:

pt =
(
IN +ΨW +Ψ2W 2+, . . . ,+Ψq−1W q−1

)
ιNα+ΨqW qpt−q + ut

ut = εt +ΨWεt−1+, . . . ,+Ψq−1W q−1εt−(q−1)

where pt, ut, α, εt are N × 1 vectors, Ψ is an N × N diagonal matrix and W is an N ×

N spatial weight matrix. These expressions can be simplified by noting that E(εt−r) =

0, r = 0, . . . , q − 1, implies that E(ut) = 0, and, the magnitude of elements in the N × 1

vector ΨqW qpt−q becomes small for large q. This magnitude becomes small because spatial

autoregressive processes assume that |ψi| < 1, i = 1, . . . , N , and that the matrix W is

normalized to have row-sums of unity. This results in the matrix W having a maximum

eigenvalue of one.

A consequence of this is that we can interpret the empirical spatial autoregressive model

relationship as the outcome or expectation of a long-run equilibrium or steady state shown

in (11).

lim
q→∞

E(pt) = (IN −ΨW )−1ιNα (11)

The expectation in (11) is however equal to the expectation of the data generating
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process for our spatial autoregressive model of price markup setting behavior. The HSAR

specification can be viewed as modeling a simultaneous dependence process that arises as a

steady state equilibrium when individual stations use a partial adjustment reaction function

in response to past period price markup actions taken by neighboring stations.

It should be noted there is no dynamic component to our HSAR specification, which is

essential to our exploiting the time dimension of the sample data to produce estimates αi, ψi

for each observational unit. Rather, we interpret the coefficient estimates α̂i, ψ̂i as reflecting

(a sample data-based) estimate of station i’s reaction to a change in the steady-state equi-

librium markup behavior of neighboring stations. These estimates reflect changes required

to ultimately produce a new steady-state equilibrium. The story is one of comparative

statics, with no information regarding the dynamics of how we move from one steady-state

to another, nor the speed of this movement.7

4 MCMC estimation of the model

Bayesian estimation requires that prior distributions be assigned for the model parame-

ters. However, we use normal priors for the parameter αi, ψi, i = 1, . . . , N , with zero prior

means and extremely large variances, to produce posterior estimates equivalent to those

from maximum likelihood estimation.8 We also rely on uninformative priors for the param-

eters σi, i = 1, . . . , N , as prior information for these is unlikely to be available in applied

modeling situations. As is traditional, we assume the priors for the parameters αi, ψi, σ
2
i

are independent.

An advantage of MCMC estimation may be computational speed. Basically, MCMC

estimation decomposes a complicated problem involving N × 1 parameter vectors αi, ψi, σ
2
i

into a sequence of simpler problems involving conditional distributions which are typically

simple. Our MCMC estimation proceeds by sequentially sampling from the complete se-

quence of conditional distributions for: 1) the N different parameters αi, the N different

scalar parameters ψi and N different scalar noise variances σ2
i . A single pass through the

sampler involves evaluating only 3N different conditional distributions. Each of these con-

7The interested reader should consult LeSage and Pace (2009) for detailed discussion of how simultaneous
dependence specifications are interpreted, along with a wide variety of economic motivations for this type
of specification.

8Use of a normal prior for the parameters ψi might be viewed as problematical given a theoretical upper
bound of unity for this parameter. However, during MCMC estimation we reject candidate values of ψi that
exceed unity inside our Metropolis-Hastings sampling scheme.
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ditional distributions is relatively simple to sample from, and involves calculations based

on matrices or vectors of small dimensions. In contrast, QML estimation (as set forth in

Aquaro, Bailey and Pesaran (2015)) requires optimization of the likelihood in (12) over

N × 3 parameters.

ln L(ψi, αi, σ
2
i ) =

−NT

2
ln(2π)−

T

2

N∑
i=1

lnσ2
i + T ln|IN −ΨW |

−
1

2

N∑
i=1

(yi − ψiy
∗
i )

′(yi − ψiy
∗
i )/σ

2
i (12)

y∗i =
N∑
j=1

wi,jyj

In our case, N equals over 400 stations, making this a computationally challenging

optimization problem.

Markov Chain Monte Carlo estimation consists of sampling draws from the complete

sequence of conditional posterior distributions. These are derived from the log likelihood

in (12), considering each parameter sequentially while assuming all others are known. In

our case, where extremely large prior variances are used, the prior distributions do not play

a material role in the posterior estimates or the conditional distributions. We are simply

using MCMC as an alternative to maximizing the likelihood function.

Sampling begins with arbitrary values for the parameters α(0) = αi, ψ
(0) = ψi, σ

(0) = σ2
i

for all i = 1, . . . , N . We need to sample updated values for the parameters αi, ψi, σ
2
i for

each i = 1, . . . , N . One pass through the sampler involves: 1) producing a draw for αi=1

used to update the arbitrary starting value α(0), a draw for σ2
i=1 to replace σ(0) and a draw

for ψi=1 that updates ψ(0), 2) sampling from the three conditional distributions to update

αi=2, σ
2
i=2, ψi=2, and 3) continue drawing from the three conditional distributions until we

have updated αi=N , σ2
i=N , ψi=N . One pass through the sampler requires sampling from 3N

conditional distributions.

A number m such passes are carried out, with draws from some initial number of passes

b discarded to allow the sampler to “burn-in”. Posterior means, standard deviations, and

other summary statistics for these distributions for the parameters are analyzed using the

sample of m−b retained draws. The number of passes usually is in the thousands to produce
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an adequate sample of size m− b on which to base posterior inference.

Despite the apparent computational intensity of evaluating these 3N conditional dis-

tributions thousands of times, the conditional posteriors for the parameters αi, σ
2
i take

distributional forms that are known, and therefore easy to sample from. Further, calcula-

tion of values needed to produce samples from these distributions are easy to calculate and

involve matrices/vectors of small dimension.

Specifics regarding the 3N conditional posterior distributions are presented, where we

ignore the subscript i for notational simplicity when presenting the MCMC sampling scheme.

It should also be noted that several simplifications arise in the conditional distributions

because of our use of zero prior means and very large prior variance settings. This essentially

allows us to ignore the prior distributions when constructing conditional distributions.

We calculate the mean and variance-covariance for α using the conditional posterior

based on arbitrary starting values, that we label ψ(0), σ(0) = σ2 in (13), where we let y∗

represent
∑N

j=1wi,jyj .
9

p(α|ψ(0), σ(0)) ∼ N(α∗,Σ∗) (13)

α∗ = Σ∗(ι′N (y − ψ(0)y∗)

Σ∗ = (1/N)σ(0)

An updated value that we label α(1) can be obtained from a univariate normal distribution

with mean α∗ and variance equal to Σ∗. The updated values α(1) will be used in place

of α(0) when calculating the conditional posterior for updating σ(0) based on the inverse

Gamma distribution shown in (14).

p(σ2|α(1), ψ(0)) ∼ IG(a1, b1) (14)

a1 = T/2

b1 = (y − ψ(0)y∗ − ιNα1)′(y − ψ(0)y∗ − ιNα(1))/2

We label the updated value produced by this draw σ(1) which replaces the initial value

9Recall, we are suppressing the subscript i.
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σ(0) in the conditional posterior expression for ψ.

While the conditional posteriors for the parameters αi, σ
2
i take known distributional

forms that are easy to sample from, the conditional posterior for the parameters ψi do

not have this property. A Metropolis-Hastings (M-H) approach is used to sample these

parameters based on the conditional posterior. For (M-H) sampling we require a proposal

distribution from which we generate a candidate value for the parameter ψi, which we label

ψ�
i .

We use a normal distribution as the proposal distribution along with a tuned random-

walk procedure suggested by Holloway, Shankara, and Rahman (2002) to produce the can-

didate values for ψ. The procedure involves use of the current value ψc, a random deviate

drawn from a standard normal distribution, and a tuning parameter c as shown in (15).10

ψ� = ψc + c ·N(0, 1) (15)

Expression (15) should make it clear why this type of proposal generating procedure is

labeled a random-walk procedure. The goal of tuning the proposals coming from the normal

proposal distribution is to ensure that the M-H sampling procedure moves over the entire

conditional distribution. We would like the proposal to produce draws from the dense part

of this distribution and avoid a situation where the sampler is stuck in a very low density

part of the conditional distribution where the density or support is low.

To achieve this goal, the tuning parameter c in (15) is adjusted based on monitoring the

acceptance rates from the M-H procedure during the MCMC drawing procedure. Specif-

ically, if the acceptance rate falls below 40%, we adjust c′ = c/1.1, which decreases the

variance of the normal random deviates produced by the proposal distribution, so that new

proposals are more closely related to the current value ψc. This should lead to an increased

acceptance rate. If the acceptance rate rises above 60%, we adjust c′ = (1.1)c, which in-

creases the variance of the normal random deviates so that new proposals range more widely

over the domain of the parameter ψ. This should result in a lower acceptance rate. The

goal is to achieve a situation where the tuning parameter settles to a fixed value resulting

in an acceptance rate between 40 and 60 percent. At this point, no further adjustments

to the tuning parameter take place and we continue to sample from the normal proposal

10Recall, we are ignoring the subscript i in the expressions that follow.
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distribution using the resulting tuned value of c.

We note that Aquaro, Bailey and Pesaran (2015) show that theoretical bounds on the pa-

rameters ψi are supi|ψi| < max{1/‖W1‖, 1/‖W‖∞}, where ‖W1‖ = max1≤j≤N (
∑N

i=1 |wij |),

the maximum absolute column sum norm, and ‖W‖∞ = max1≤i≤N (
∑N

j=1 |wij |, the maxi-

mum absolute row sum norm.11 A sufficient, but not necessary condition for invertability

of (IN − ΨW ) is that −1 < ψi < 1 for all i. The MCMC algorithm was coded to reject

candidate values that fell outside the (-1,1) range, and draw a new candidate value in these

cases until a value within the (-1,1) interval arose. However, as a practical matter, estima-

tion did not produce candidate values outside the (-1,1) interval, so there appears to be no

issue regarding inference at the boundary of the parameter space.12

The candidate value ψ� as well as the current value that we label ψc are evaluated in the

expression for the (logged) conditional posterior for ψ in (16). Note that we use updated

sampled values for α(1) and σ(1) when evaluating the conditional posterior in (16).

ln(p(ψ)|α(1), σ(1)) = −(NT/2)lnπσ(1) + T ln|IN − ψW | − ln(e′e/2σ(1)) (16)

e = (y − ψy∗ − ιNα(1))

If (lnp(ψ�)− lnp(ψc)) > exp(1), we accept the candidate value ψ� as an update for the

current parameter ψc. If this condition is not true, we compare ν(ψc, ψ�) calculated using:

ν(ψc, ψ�) = min

[
1,

p(ψ�|α(1), σ(1))

p(ψc|α(1), σ(1))

]
(17)

with a uniform random deviate (say r), and decide acceptance based on: r < ν(ψc, ψ�)

(accept), set ψ(1) = ψ∗, otherwise (reject). If we reject the candidate value, we simply set

ψ(1) = ψc, that is, we stay with the current value of ψ.

Having completed one pass through of the MCMC sampler updating all parameters:

α(1), σ(1) and ψ(1), we return to sample a second update of the parameters α, that relies on

the most recently updated values σ(1), ψ(1), producing an updated vector that we label α(2).

This vector is used in the update based on the conditional distribution for σ2 to produce a

11These bounds reduce to the condition in Lemma 2 of Kelejian and Prucha (2010) for the homogeneous
case where ψi = ψ for all i.

12The proportion of MCMC draws outside the (-1,1) interval can be interpreted an estimate of the posterior
probability that ψi lies outside the interval.
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new parameter draw σ(2), which is used when updating ψ to ψ(2). This process continues

making m passes through the sampler to produce m − b sets of draws for the parameters,

where values from the first b (burn-in) passes are discarded to allow the sampler to achieve

a steady-state and begin sampling from high density regions of the conditional posterior

distributions of the parameters. The set of parameter draws α(m−b), σ(m−b), ψ(m−b) can

be used to calculate posterior means and standard deviations for the parameters. These

draws reflect not conditional distributions of the parameters but rather the joint posterior

distribution from which we draw inferences.

Appendix A presents results from a Monte Carlo experiment that follows the design set

forth in Aquaro, Bailey and Pesaran (2015). Bias and root mean squared errors from the

Monte Carlo experiment using our MCMC estimation approach are similar to those from

QML estimation presented in Table A.1 of Aquaro, Bailey and Pesaran (2015).

5 The model applied to Berlin fueling stations

5.1 The sample data

Since September 2013, stations in Germany are legally obligated to post every price change,

the precise time stamp, the geographic coordinates of the station, the operating hours

and brand on an online portal, the so-called Market Transparency Unit for Fuel (Haucap,

Heimeshoff, and Siekmann 2015). To access these data, a script was used to continuously

retrieve entries from the site and store these on a server (Frondel, Vance and Kihm 2015).

From the raw data, a balanced panel of daily station-level prices was created for over 14,000

filling stations in Germany.

We drew a sub-sample of N = 414 diesel and N = 411 e5 (unleaded gas) prices for

fueling stations located in and around Berlin. Fuel prices were available for these stations

over the period from June 1, 2014 to September 30, 2015, or T = 487 days. Prices are in

nominal terms and include excise and value-added taxes, which were subtracted from the

variable we designate as price (pricet). To measure the cost variable (costt), we use the

daily refined diesel and gas prices reported in Rotterdam, where one of the major pipelines

into Germany originates. As already noted, we use pt = pricet − costt as the dependent

variable in our model.
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5.2 Model estimates

In specifying the model, the issue of how to define neighboring stations that are specified in

the matrix W arises. This issue was explored by comparing the log-likelihood function for

model estimates based on 6, 8 and 10 nearest neighboring stations. Given the large number

of stations, and a model that specifies a single matrix W for all stations, use of a weight

matrix based on the number of nearest neighboring stations has the virtue of simplicity. A

drawback to this approach is that the relevant market/competitor stations might differ for

each station, a feature that our heterogeneous SAR model does not allow for. A related

point is that LeSage and Pace (2014) show that estimates from spatial autoregressive models

are not sensitive to small deviations in the weight structure around one that maximizes the

model likelihood.

Table 1 shows the log-likelihood for models based on 6, 8 and 10 nearest neighbors.

This involved evaluating the (log) likelihood shown in (12) using posterior means of the

parameters (αi, ψi, σ
2
i ) constructed from 1,000 draws retained from a sample of 2,500 draws.

Table 1: Comparison of results based on 6, 8, and 10 nearest neighboring stations

Model 6 neighbors 8 neighbors 10 neighbors

Log Likelihood diesel -202161.87 -201896.79* -202245.01
Log Likelihood e5 (gas) -202701.91* -203521.03 -202807.15

* indicates log-likelihood maximum

From the table we see that models based on eight nearest neighbors for diesel and

six neighbors for e5 gas exhibited the highest likelihood function values. In the following

analysis of estimation results, we rely on estimates for diesel based on eight neighbors and

for e5 based on six neighbors.

As already motivated, the model predicts that in cases where the net spillover effects

(spill-out plus spill-in) are negative, we should see estimates of the parameters ψ̂i < 0, and

where these are positive we have ψ̂i > 0. Figure 3 shows a plot of net spillovers (spillout plus

spillin) versus parameter estimates ψ̂i based on the diesel fuel price model, and Figure 4 a

similar plot for e5 fuel. In the figures, stations for which estimates of ψ were not significantly

different from zero based on lower 0.05 and upper 0.95 credible intervals are excluded.13

Although stations where ψ is not significant are eliminated from the figures, we did not

13For diesel, 86 of 414 stations were not significant, and for e5, 63 of 411 stations.
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suppress stations where net spillovers were not significant. Recall, our theoretical model

predicts that negative ψ will result from negative net spillovers, which was one motivation

for this decision. Also note that a zero estimate for ψi indicates that station i does not

react to neighboring station price markups.
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Figure 3: Diesel ψ estimates vs. net spillout effects
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Figure 4: e5 fuel ψ estimates vs. net spillout effects
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From figure 3, we see estimates of ψi that are highly consistent with our theoretical

model. In the case of diesel, there were 328 significant ψ estimates and only a single

case/station with a theoretically inconsistent positive estimate for ψi and negative net

spillovers (the single ‘x’ in quadrant II). For e5 fuel shown in figure 4 we have 8 of the

348 theoretically inconsistent cases where ψ was positive and significant and net spillovers

negative (‘x’ points in quadrant II). We note that our theoretical model does not rule out

results in quadrant IV where net spillovers are positive, but ψ < 0. However, our interest

centers on outcomes reflecting a cooperation scenario (quadrant I) and competitive scenario

(quadrant III). For diesel fuel, of the 328 cases where ψ was statistically significant, there

were 180/328 = 0.5488 cooperation scenario (quadrant I) outcomes, and 133/328 = 0.4055

competitive (quadrant III) outcomes. In the case of e5 fuel, there were 184/348 = 0.5287

cooperative cases and 144/348 = 0.4138 competitive.

To illustrate the locational/spatial aspect of competition (negative and significant net

spillovers) versus cooperation (positive and significant net spillovers), these are mapped in

Figure 5 and Figure 6 for diesel and e5 fuels. Spatial clustering of stations (along roadway

segments) engaged in competitive price rivalry denoted with a ‘∗’ symbol, and clustering

of stations involved in cooperative price setting (those with a ‘o’ symbols is evident in the

maps. This clustering is indicative of interaction between spatially neighboring stations in

their price markup decisions.

5.3 Analysis of competition/cooperation

The relationship between net spillover magnitudes and brands of fuel sold by each station

was explored. We have six categories of fuel brands, Aral, Jet, Esso, Shell, Total, and a

category for independents that we label Other.

A set of 12 regressions were run, six regressions that related net spillovers to the number

of own-brand neighboring stations among the 8 neighbors for diesel, and among the 6

neighbors for e5 fuel. For example, net spillovers for the sample of 80 Aral brand stations

was regressed on a constant term and a count of Aral stations among the 8 nearest neighbors

of these 80 stations, and similar regressions for the samples of stations associated with other

brands. We would expect a positive influence of same brand stations on the net spillovers,

suggesting more cooperation in cases with higher counts of same brand stations among

the neighboring stations. Results from these regressions are shown as the main diagonal
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Figure 5: Diesel fuel map

52.2 52.3 52.4 52.5 52.6 52.7 52.8 52.9
13

13.1

13.2

13.3

13.4

13.5

13.6

13.7

13.8

13.9

14

longitude

la
tti

tu
de

cooperative
competitive

Figure 6: e5 fuel map

elements of the matrix shown in Table 2.

Another set of six regressions were carried out that related each sample of stations of

brand i to counts of the number of other brand j stations among the set of 8 neighbors
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for diesel (and another six regressions for the set of 6 neighbors for e5 fuel). Estimates

from these regressions are presented as off-diagonal elements in the two matrices shown in

Table 2.

For off-diagonal elements, we would expect a negative relationship between net spillovers

for brand i stations and the counts of other brand j stations. A negative relationship would

point to more competitive price markup behavior in situations where neighboring rival

other brand stations were present. The regression coefficients on counts of each other brand

station should indicate how the presence of one additional station of brand j impacts net

spillovers.

Table 2: Brand rivalry regression results

8 neighbors diesel

Brands Aral Jet Esso Shell Total Other Sample size
Aral 0.1794*** 0.0468 -0.1242 -0.1685* -0.2720*** -0.1644** 80
Jet -0.1356 0.1694 -0.1231 -0.0771 -0.0811 -0.1896 33
Esso -0.1510 -0.4574* -0.0047 0.0010 -0.0228 -0.0184 30
Shell 0.0525 -0.1131 -0.3957*** 0.1039 -0.1946** -0.1704** 71
Total -0.1175 -0.1864 0.0959 -0.0188 -0.0087 -0.02258 53
Other 0.0129 0.0610 -0.0494 -0.0509 -0.1241* 0.0081 147

6 neighbors e5 fuel

Brands Aral Jet Esso Shell Total Other Sample size
Aral 0.1262 -0.0320 -0.0844 -0.0285 -0.2142 -0.1565 80
Jet -0.3304 0.5437** -0.5900* -0.5218* -0.3885 -0.4576* 33
Esso 0.2962 0.2403 -0.4015* -0.6413** -0.4994* 0.3477 30
Shell -0.0479 -0.0865 0.0694 -0.0134 -0.0995 0.1467 70
Total -0.1004 0.1622 -0.0479 0.0189 -0.0215 -0.0182 53
Other -0.0798 0.1007 -0.0760 -0.1591* -0.0356 -0.0023 145

* = 90% significance, ** = 95% significance, *** = 99% significance

From the table main diagonal we see a positive and significant (at the 99% level) coeffi-

cient for Aral stations with higher counts of Aral neighbors, pointing to higher net spillovers

(cooperation) in these cases for diesel fuel, with no other diagonal coefficients significant.

For e5 fuel, we have a positive and significant (at the 95% level) diagonal coefficient for

Jet stations with more Jet-brand neighbors, but an unexpected negative and significant (at

the 90% level) diagonal coefficient for Esso, with more Esso-brand neighbors. As noted, we

would expect more same-brand neighboring stations have a positive impact on net spillovers

reflecting more cooperative price markup behavior.

The significant off-diagonal elements in the table are all negative, as we would expect,

since higher counts of rival brand stations should lead to a decrease in net spillovers, pointing
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to more competition.

Considering the diesel table from a row-wise perspective, no significant off-diagonal

coefficients are found for Jet and Total brand stations in the case of diesel fuel, with three

negative and significant coefficients in the rows for Aral and Shell rivals, and only a single

negative and significant row-coefficient for Esso and the Other brands stations. Taking a

column-wise perspective of the diesel table, we see that every column except the first has

at least one negative and significant off-diagonal coefficient, pointing to some (competitive)

brand rivalry impacting all brands but Aral. Counting negative and significant off-diagonal

coefficients down the columns of the matrix indicate that the presence of Total brand

neighboring stations produces the largest brand rivalry impact on net spillovers (competitive

price markup behavior), in the case of diesel fuel.

The e5 fuel results show no significant off-diagonal row-coefficients for Aral, Shell and

Total brand stations, pointing to no brand rivalry here. There are three negative and

significant coefficients for Jet brand stations, two for Esso brand stations, and a single

negative and significant coefficient for the Other brand stations. Considering the e5 fuel

table from a column-wise perspective, we see no significant coefficients in the Aral and

Jet brand columns, but at least one negative and significant coefficient in all other brand

columns. The greatest amount of (competitive) brand rivalry arises when Shell brand

stations are neighbors (three cases).

6 Conclusion

We introduce a heterogeneous coefficient spatial autoregressive (HSAR) panel model that

is capable of producing station-level estimates of gas station price rivalry. Our approach

allows for inferences regarding how each of the individual observational units (stations)

i = 1, . . . , N react to actions taken by each unit i’s neighboring units (stations). It seems

plausible that some stations make decisions to react competitively to neighboring station

price markup actions, while others will react in a cooperative fashion, or not react at all.

Conventional homogeneous coefficient panel models average over the sample of economic

agents to produce estimates that reflect the typical agent’s behavior, when in fact we would

expect behavior to vary across the sample of observational units (agents).

A Markov Chain Monte Carlo approach to estimation of the HSAR model is set forth,
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along with a Monte Carlo study showing that this approach to estimation produces results

equivalent to those from quasi maximum likelihood estimation.

Partial derivatives that allow interpretation of estimates from the HSAR model are set

forth, a topic not previously considered in the literature. We show that estimates from the

HSAR model provide a very different interpretation than those from conventional spatial

autoregressive model specifications. Model estimates allow for station-level spill-in and

spill-out impacts arising from changes in actions taken by neighbors (nearby stations j).

Spill-in impacts show how actions of neighboring stations impact each station i. Spill-out

impacts show how actions taken by station i impact neighboring stations j.

We derive a model of (station-level) price conjectural variations that explicitly identifies

station-level reaction functions, and show that this takes the form of our HSAR specification.

Estimates of net spatial spillovers consisting of spill-in plus spill-out effects for each station

reflect unobservable conjectural price variations. The relative size of spill-in versus spill-out

impacts associated with neighboring station price markup actions determine cooperative

versus competitive price markup rivalry at the station-level. The model is applied to a

sample of more than 400 fueling stations in or around Berlin, for which we have daily price

information for diesel and e5 fuels covering June 1, 2014 to September 30, 2015, or 487

days.

Estimates from the empirical application are highly consistent with predictions of our

theoretical model concerning the station-level price reaction functions. The theoretical

model rules out positive spatial dependence estimates in cases where net spillovers esti-

mates (spill-in plus spill-out impacts) are negative, and we find only 1 of 328 such cases for

diesel fuel, and only 8 of 348 such cases for e5 fuel. The model also predicts cooperative

price markup behavior in cases where both spatial dependence and net spatial spillovers

are positive, and competition when both spatial dependence and net spatial spillovers are

negative. This result allows us to consider how the presence of own- or rival-brand sta-

tions in the neighborhood impact cooperative versus competitive price markup behavior of

individual stations.
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Elhorst, J.P. and K. Zigová (2014) Competition in research activity among economic

departments: Evidence by negative spatial autocorrelation. Geographical Analysis,

46, 104-125.

Frondel, M., C. Vance and A. Kihm (2015) Time lags in the pass-through of crude

oil prices: Big data evidence from the German gasoline market. Applied Economics

Letters, Nov 11: 1-5.

Haucap, J., U. Heimeshoff and M. Siekmann (2015) Price dispersion and station

heterogeneity on German retail gasoline markets (No. 171). DICE Discussion Paper.

Kelejian, H.H. and I.R. Prucha (2010) Specification and estimation of spatial au-

toregressive models with autoregressive and heteroskedastic disturbances, Journal of

Econometrics 157, 53-67.

Kihm, A, N. Ritter and C. Vance (2016) Is the German retail gas market competitive?

A spatial-temporal analysis using quantile regression. Land Economics, forthcoming

LeSage, J.P. and R.K. Pace. (2009) Introduction to spatial econometrics. Boca Raton:

CRC Press.

LeSage, J.P. and R.K. Pace (2014) The biggest myth in spatial econometrics, Econo-

metrics, 2(4): 217-249. http://www.mdpi.com/2225-1146/2/4/217

26



Liang, J.N. (1989) Price reaction functions and conjectural variations: An application

to the breakfast cereal industry. Review of Industrial Organization, 4(2), 31-58.

Mobley, L.R. (2003) Estimating hospital market pricing: an equilibrium approach

using spatial econometrics. Regional Science and Urban Economics, 33(4), 489-516.

Pennerstorfer, D. (2009) Spatial price competition in retail gasoline markets: Evidence

from Austria. The Annals of Regional Science, 43(1), 133-158.

27



Appendix A

To test our MCMC algorithm we replicated a part of the Monte Carlo study carried out

by Aquaro, Bailey and Pesaran (2015). This involved generating 1,000 different y vectors

based on a fixed set of parameters. We use the HSAR data generating process, relying on

an approach set forth in Aquaro, Bailey and Pesaran (2015).

The matrix W was based on a two-ahead, two-behind spatial configuration that is

consistent with regions oriented in a line with two left- and right-neighbors.

The 1,000 different sets of disturbances were generated as Gaussian, εit/σi0 ∼ N(0, 1),

with σ2
i0 generated as N independent draws from a χ2(2)/4+0.5 deviate for σ2

i , i = 1, . . . , N .

A single set of parameters generated from iid uniform (IIDU) and normal (IIDN) dis-

tributions: ψi ∼ IIDU(0, 0.8), αi ∼ IIDN(1, 1), were used in all experiments.

Table 3 shows results comparable to those in Table A1 of Aquaro, Bailey and Pesaran

(2015), where W is based on two connections. The table shows (average over the N regions)

bias calculated using: (NR)−1
∑N

i=1

∑R
r=1(γ̂i,r−γ(i, 0)), where γ̂i,r represent parameter es-

timates for αi, ψi, βi and γ(i, 0) the true values, and R = 1000 Monte Carlo runs. RMSE was

calculated (also averaged over the N regions) using: N−1
∑N

i=1[
√
R−1

∑R
r=1(γ̂i,r − γi,0)2].

As in the results from Aquaro, Bailey and Pesaran (2015), we see that bias and RMSE

decline with increases in T from 25 to 200. Changes in N do not seem to reduce bias

and RMSE, a result consistent with theoretical results from Aquaro, Bailey and Pesaran

(2015). These results are also consistent with the intuition that we are exploiting the time

dimension of the space-time panel data to produce estimates, so increases in this dimension

of the sample size should improve accuracy and precision.

Aquaro, Bailey and Pesaran (2015) present Monte Carlo results for bias and RMSE for

sub-samples of individual observations to demonstrate that the average (over regional units)

bias and RMSE statistics are representative of accuracy and dispersion that would be found

at the observation-level in applied practice. An examination of our observation-level results

showed the same pattern.
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Table 3: Monte Carlo results for α, ψ HSAR model

N = 25
Average Bias, RMSE α bias α RMSE ψ bias ψ RMSE
T = 25 -0.0707 0.3922 0.0520 0.2153
T = 50 -0.0657 0.3538 0.0386 0.1623
T = 100 -0.0244 0.2550 0.0179 0.1332
T = 200 -0.0057 0.1738 0.0066 0.0929

N = 50
Average Bias, RMSE α bias α RMSE ψ bias ψ RMSE
T = 25 -0.1288 0.3945 0.0688 0.1919
T = 50 -0.0591 0.3503 0.0291 0.1668
T = 100 -0.0130 0.2460 0.0122 0.1379
T = 200 -0.0087 0.1813 0.0046 0.1007

N = 75
Average Bias, RMSE α bias α RMSE ψ bias ψ RMSE
T = 25 -0.1153 0.4086 0.0717 0.1972
T = 50 -0.0526 0.3092 0.0318 0.1563
T = 100 -0.0223 0.1992 0.0154 0.1249
T = 200 -0.0076 0.1611 0.0066 0.0956

N = 100
Average Bias, RMSE α bias α RMSE ψ bias ψ RMSE
T = 25 -0.0861 0.3835 0.0625 0.1984
T = 50 -0.0551 0.3578 0.0291 0.1671
T = 100 -0.0303 0.2309 0.0197 0.1262
T = 200 -0.0076 0.1594 0.0055 0.0915
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