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Negative Price Spikes at Power 
Markets – The Role of Energy Policy

Abstract
In Germany, substantial drops in wholesale power prices have become a regular 
phenomenon. While such price drops have far-reaching implications for the functioning 
of the power market, their underlying determinants remain poorly understood. To fill 
this gap, we propose a Markov regime-switching model to investigate low-price events 
at the European Power Exchange. Our analysis focuses on the role of energy policies that 
promote renewable energies and have led to significant reductions of nuclear capacities 
after the Fukushima accident. We find that high electricity infeed from renewable 
sources increases negative price spike probabilities, while the decommissioning of 
nuclear plants under the Nuclear Moratorium has an opposing effect. Simulations 
of market outcomes under different energy policies indicate that reaching ambitious 
renewable energy targets increases the frequency of low-price events and compromises 
the financial viability of conventional generation units, while a nuclear phase-out or an 
increase in storage capacities mitigates these effects.
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1. Introduction

On September 1, 2008, negative bids were allowed for the first time at the day-ahead market

of the European Power Exchange (EPEX). Since then, negative price spikes – sometimes quite

large – have become a regular phenomenon. For example, on October 4, 2009, the day-ahead

price plunged to -500 EUR per megawatt-hour (MWh) in the trading hour between 2 and 3

a.m., a huge drop given that average price levels during that trading hour amounted to about

38 EUR per MWh in 2009.

In addition to the typically low demand levels in the evenings, particularly on weekends, a key

reason for this phenomenon is the rapid growth of electricity supply from renewable technologies

in Germany. Between 2000, when Germany introduced the Renewable Energy Sources Act to

support investments in renewable energy technologies, and 2015, the share of “green” electricity

in Germany’s electricity production almost quadrupled, increasing from almost 7 to some 33%.

The support regime established by the Renewable Energy Sources Act grants a technology-

specific feed-in tariff per kilowatt-hour (kWh) of renewable electricity that is far above the

utilities’ production cost of conventionally generated electricity. Furthermore, irrespective of the

level of demand, utilities are obliged to preferentially accept the feed-in of renewable electricity

onto the grid. When demand is low, this regime is one of a confluence of factors, including the

absence of sufficient storage possibilities for electricity as well as costly and long ramp-up times

of baseload power plants, that impel producers to accept even negative prices, reflecting the

high opportunity costs of a production stop in conventional plants (Andor et al., 2010; Nicolosi,

2010).

Besides the strong support for renewable energies, another defining feature of Germany’s

energy policy in recent years has been the Nuclear Moratorium in response to the catastrophe

in Japan’s Fukushima. The moratorium, which was issued by the German government on March

15, 2011, eventually led to the permanent shut-down of 8 out of a total stock of 17 nuclear power

plants and, hence, an immediate capacity reduction of 8,409 Megawatt (MW) (BNetzA, 2016).

The remaining nuclear capacities are legally stipulated to be permanently shut down by 2022.

This contrasts with Germany’s ambitions to steadily increase the share of renewables in gross

electricity consumption to 35% by 2020 and 80% by 2050 (BRD, 2010).

Drawing on day-ahead prices from the EPEX spanning from November 1, 2009, until October

31, 2012, and using Markov regime-switching models to separate times of both negative and low

4



prices from a normal price regime, this article econometrically investigates the effects of both

Germany’s substantial expansion of renewable energy technologies in electricity production and

its Nuclear Moratorium of 2011 on day-ahead prices. By specifying a model that endogenously

distinguishes a low-price regime with low or even negative prices from a base regime capturing

mean price levels, we analyze the impact of both policies on the frequency of low-price events.

Furthermore, to investigate the impact of different policy scenarios on the financial viability

of conventional plants, we simulate spot prices and compare them to variable cost of modern

lignite- and hard coal-fired power plants with 2010 technology.

Given the efforts to foster the development of renewable energies all over the world, it is

crucial to understand the interplay between increasing shares of renewables and the occurrence

of price drops, as the latter may have substantial implications for the functioning of the power

sector. Negative prices, in particular, can result in welfare losses if they are caused by renewable

energy technologies that do not respond to prices signals because of fixed feed-in tariffs (Andor

and Voss, 2016). Moreover, even modest price drops can cause “hidden system cost” (Mount

et al., 2012) by endangering the profitability of conventional power plants that are needed to

maintain reliability of electricity supply when intermittent renewable energy sources are absent.

The financial burden of price drops is particularly large for inflexible baseload power plants,

because reducing production levels implies large cost, originating from both ramping cost and

opportunity cost due to missed trading opportunities in subsequent hours.

The present study builds on the literature of electricity spot price models that often presume

multiple price regimes to account for positive price spikes. As an early contribution to this

literature, Ethier and Mount (1998) propose a model for electricity prices that captures positive

price spikes by applying Hamilton’s (1994) Markov regime-switching framework. Building on

the same model framework by expanding it to distinguish between mean-reversion in the ab-

sence of a price spike and after a spike, Huisman and Mahieu (2003) introduce an additional

regime, whereas Huisman and Jong (2003) and Weron et al. (2004) propose to model inde-

pendent regimes. To take advantage of fundamental data for modeling time-varying switching

probabilities, Mount et al. (2006) introduce a model that employs data on capacity utilization,

while Huisman (2008) as well as Kosater and Mosler (2006) employ temperature data.

Several empirical studies support the adequacy of regime-switching models for modeling elec-

tricity prices, such as Higgs and Worthington (2008) for the Australian electricity market, Jong

(2006) for eight distinct electricity markets and Bierbrauer et al. (2007) for day-ahead prices at
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the EEX. As identified by Janczura and Weron (2010), one of the main drawbacks of existing

Markov regime-switching models is implausible classifications of observations into regimes. To

avoid such misclassifications, these authors propose modeling the spike regime by a shifted log-

normal distribution, which prevents prices below or above a certain threshold value from being

classified as a spike.

By proposing a Markov regime-switching model that captures price drops instead of positive

price spikes, we are able to investigate the determinants of price drops and to simulate the

impact of different policy scenarios on the profitability of conventional generation technologies.

Our estimation results indicate that governmental regulations concerning renewable energies

and nuclear capacities influence the occurrence of price drops. More specifically, we find that

high electricity infeed from renewable sources increases the probabilities for price drops, while

the reduction of nuclear capacities after the Nuclear Moratorium decreased them. Using the

estimated Markov regime-switching models to simulate price trajectories, we demonstrate that

reaching an 80% share of renewables decreases the profitability of conventional power plants sub-

stantially, with prices falling below variable cost in as many as 47 and 77% of the trading hours

for modern lignite- and hard coal-fired power plants, respectively. Further simulations indicate

that a nuclear phase-out or the construction of additional storage capacities for load-shifting

can mitigate the occurrence of low-price events and thus ease the integration of renewables.

The remainder of the article is structured as follows. Section 2 describes the data, while

Section 3 introduces the econometric model. Section 4 presents the estimation results, evaluates

the model and discusses results from policy simulations. Section 5 summarizes and concludes.

2. Data

In this section, we present data on day-ahead prices for electricity, as well as on important

influencing factors, such as load, fuel prices, the infeed of renewable energy technologies and

available nuclear power capacities. We obtain hourly day-ahead prices for the market zone

comprising Germany and Austria from the EPEX.1

At the EPEX, all 24 hourly day-ahead prices for electricity are simultaneously determined the

day before delivery. Therefore, they constitute panel data of cross-sectional prices for each of the

trading hours that vary from day to day (Huisman et al., 2007). Although estimating a panel

data model could potentially increase forecasting precision by exploiting the auto-correlation of

1Cf. http://www.epexspot.com/en/.
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Table 1: Summary Statistics

Data n Min Max Mean Std. dev. Skewness Kurtosis
Day-ahead price hour 1 1,096 -119.9 57.3 38.4 10.0 -4.1 58.9
Day-ahead price hour 2 1,096 -120.0 54.0 34.8 11.0 -3.3 38.5
Day-ahead price hour 3 1,096 -120.0 52.1 31.8 12.2 -3.0 28.6
Day-ahead price hour 4 1,096 -149.9 51.1 29.4 13.4 -4.1 47.3
Day-ahead price hour 5 1,096 -120.0 52.1 29.9 12.1 -2.8 28.9
Day-ahead price hour 6 1,096 -120.0 53.5 33.6 11.6 -2.8 30.4
Day-ahead price hour 7 1,096 -200.0 73.3 40.0 16.1 -4.4 53.1
Day-ahead price hour 8 1,096 -199.9 183.5 48.8 18.7 -2.2 34.0
Day-ahead price hour 21 1,096 10.8 136.0 52.7 10.1 0.7 7.4
Day-ahead price hour 22 1,096 17.9 94.9 48.3 8.1 0.3 4.2
Day-ahead price hour 23 1,096 16.1 79.7 47.9 7.2 -0.1 4.0
Day-ahead price hour 24 1,096 -36.8 60.4 41.9 8.1 -2.0 17.5
Day-ahead price off-peak 1,096 -80.6 68.0 39.8 9.6 -2.3 25.4
Load hour 7 1,096 31,650 67,297 51,435 8,166 -0.5 2.2
Wind prognosis hour 7 1,096 288 23,610 4,695 3,849 1.6 6.0
Avail. nuclear capacity 1,096 4,297 18,360 13,098 3,197 0.0 2.0
Coal price (API 2) 1,096 50 101 76 12 -0.4 2.3

Notes: Day-ahead prices are in EUR/MWh, electricity load, wind power forecasts and available nuclear capacities
in MW and daily coal prices (API 2 index) in EUR per metric ton.

hourly electricity prices, Markov regime-switching models are unavailable for panel data. For

this reason, we model day-ahead prices separately for each trading hour.

The analysis is restricted to the trading hours during the off-peak period between 8 p.m. and

8 a.m., which is when negative price spikes occur, and to an off-peak index as their arithmetic

average. To avoid any effects from unbalanced seasonality, the time period under investigation

comprises three complete years, spanning from November 1, 2009, until October 31, 2012.

The descriptive statistics in Table 1 demonstrate that day-ahead prices in the hours from 23

p.m. to 7 a.m. (i.e. in the trading hours 24 to 7) have homogeneous characteristics, displaying

negative price spikes, negative skewness and excess kurtosis. In contrast, during trading hours

21 to 23 and 8 positive, rather than negative, price spikes occur, leading to positively skewed

price distributions in some of these trading hours.

Day-ahead prices for trading hour 7 are depicted in Figure 1, indicating that prices in the range

of 40 - 50 EUR per MWh occur most often, low positive prices occur on a regular basis, whereas

pronounced negative prices are scarce. Furthermore, a periodic yearly seasonality cannot be

observed. Comparing day-ahead prices to coal prices shows that they have very similar trends,

which is due to the fact that in Germany hard coal-fired power plants are the price-setting power

plants in most low- and medium-load situations (BKartA, 2011, p.167).2

2Data on the coal prices (API 2 index) was obtained using Thomson Reuters Datastream. As the API 2 index
is not given for weekends, we calculated such values as the average of the respective Fridays and Mondays.
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Figure 1: Day-Ahead Prices (Trading Hour 7) in EUR per MWh and Coal Prices
in EUR per Metric Ton
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Notes: Day-ahead prices in trading hour 7 are represented by black points, while daily coal prices (API 2 index)
are given by the grey line. Day-ahead prices below -40 EUR per MWh are not displayed.

Considering hourly load levels, which we obtain from the European Network of Transmission

System Operators (ENTSO-E) website, we find that they vary quite substantially, ranging from

32,000 to 67,000 MW during trading hour 7, for example (Table 1).3 Differences in load originate

mainly from seasonal patterns as well as from different levels of economic activity during holidays

and workdays.

The first part of Figure 2 visualizes available capacities of German nuclear power plants and

the impact of the Nuclear Moratorium in Germany after the Fukushima accident.4 On March

15, 2011, the German government announced mandatory security checks for eight nuclear power

plants, which led to a shutdown of 8,409 MW of capacity in the subsequent days (BNetzA,

2016). Within a short period of time, this decision caused substantial variation in available

nuclear capacities, falling from 17,000 MW on March 15, 2011, to some 4,300 MW on May 30,

2011.

With regard to renewable energy technologies, we exclusively focus on wind power and neglect

solar power, which is not relevant for the off-peak hours considered here. Data on day-ahead

forecasts of wind power is available from the transmission system operators (TSOs) in Germany.5

3Cf. https://www.entsoe.eu/resources/data-portal/consumption.
4Cf. http://www.transparency.eex.com/de/.
5http://www.50hertz.com/de/152.htm, http://www.amprion.net/bilanzkreis-eeg#, http://www.

transpower.de/site/Transparenz/veroeffentlichungen/netzkennzahlen/, http://transnet-bw.de/
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Figure 2: Available Nuclear Capacities in MW (Trading Hour 7)
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As Table 1 illustrates for trading hour 7, wind power is extremely volatile, with a standard

deviation of roughly 3,800 MW and values ranging from 300 to 24,000 MW.

To capture the amount of load that is satisfied by the price-elastic part of electricity supply,

we calculate residual load as the difference between load and wind power levels. Figure 3 shows

that low residual load levels are typically associated with low day-ahead prices, a relationship

that is not linear. When residual load falls below 40,000 MW, day-ahead prices in the range of

0 and 20 EUR per MWh become much more frequent and negative prices may occur, indicating

that the price behavior changes when low residual load levels are reached. In short, Figure 3

provides some first intuition on the kind of regime switches that are predominant in the data.

Figure 3: Residual Load in MW and Day-Ahead Prices in EUR per MWh (Trading
Hour 7)
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3. The econometric model and estimation

Following the model framework proposed by Hamilton (1994), the time series of day-ahead

prices pt is modeled as a Markov regime-switching process. Its basic building blocks are stochas-

tic processes for each regime and a latent state variable st that evolves according to a Markov

chain. To account for fundamental information that determines the spiking behavior, the switch-

ing probabilities between the states are modeled as a function of explanatory variables, as for

example described by Diebold et al. (1994). We distinguish the mean-reversion after a spike from

normal mean-reversion by modeling two independent regimes, a base and a low-price regime,

which are denoted by the superscripts b and l, respectively.

More specifically, for the base regime we follow Knittel and Roberts (2005) and model the

differences of day-ahead prices from their mean by an AR(1) process:

(pbt − μt) = φ(pbt−1 − μt−1) + εt,

where μt denotes the time-varying mean of prices, εt ∼ N(0, σb) is a normally distributed error

term with a standard deviation of σb and the AR parameter φ is assumed to be smaller than

one in absolute value. The mean is specified as a linear function of residual load, coal prices

and available nuclear capacities: μt = α+ β resloadt + γ coalt + δ nucleart.

This specification reflects the mean-reverting nature of day-ahead prices and captures the

trend and seasonality patterns inherent in the explanatory variables. For example, its time-

changing mean allows modeling weekly periodicity in the data that stems from changing demand

patterns over the week. Moreover, it can also capture situations where increased residual load

levels lead to price changes, which occur, for example, when less efficient power plants of the

same fuel type become price-setting.

In contrast, the low-price regime captures deviations from the mean that are more pronounced.

For that purpose, we model that regime by:

(plt − μt) = τ − LNt,

where LNt denotes a lognormally distributed random variable with ln(LNt) ∼ N(μl, σl), and τ

is a threshold parameter that determines an upper limit for price deviations that can occur in

that regime. The use of shifted lognormal distributions has been suggested by Weron (2009), as

they capture leptocurtic behavior while avoiding implausible spike classifications.
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We add further flexibility to the model by not predetermining τ to a certain quantile of prices

but rather by treating it as an additional parameter to be estimated. This is in line with the

reasoning of Zachmann (2013), who argues that distinct price regimes may reflect different types

of price-setting power plants. Determining τ endogenously allows identification of the regime

switch that is predominant in the data.

The states st are assumed to follow a Markov chain with time-varying switching probabilities

P ij(zt) = P (st = j|st−1 = i, zt), where zt denotes the variables influencing the switching

behavior. The probability to stay in the base regime in period t is modeled by the following

logistic function:

P bb(resloadt, nucleart) =
exp(ab + bbresloadt + cbnucleart)

1 + exp(ab + bbresloadt + cbnucleart)
. (1)

Note that in the case of two regimes the probability to stay in the base regime, P bb(resloadt,

nucleart), and the probability to switch from the base to the low-price regime, P bl(resloadt,

nucleart), must add up to unity so that it is sufficient to specify one of these probabilities.

In addition, the probability to stay in the low-price regime, P ll(resloadt, nucleart), is modeled

accordingly.

While the model structure is similar to the approach by Mount et al. (2006), two features

distinguish our analysis: First, we allow for a low-price regime instead of a regime capturing

positive price spikes, which is motivated by our focus on price drops. Second, to avoid the

problem of biased mean-reversion parameters, as for example described by Huisman and Jong

(2003), we model regimes independently, so that the autoregressive process in the base regime

in period t remains unaffected by price drops in t− 1.

The model is estimated by maximum likelihood, where the log-likelihood is constructed re-

cursively as detailed in Mount et al. (2006) and Hamilton (1994). Central to the construction of

the log-likelihood are the state probabilities P (st), which are computed in a sequence of forecast

and update steps. Furthermore, the independence of the two regimes makes further adjustments

necessary. When switches from the low-price to the base regime occur, the lagged price in the

base process pbt−1 is latent, so that the computation of the conditional densities becomes more

burdensome. With a latent variable pbt−1 in the base process, the conditional density of an

observation in the base process not only depends on the lagged price, the explanatory variables

and the state variable, but on the entire history of prices, on all possible paths of the state
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variable, and on the entire history of the explanatory variables (Janczura and Weron, 2011).

To minimize data storage requirements and to speed up the estimation procedure, we follow

the approach by Janczura and Weron (2011), who propose a recursive formula to approximate

the latent pbt−1 by their conditional expectation E(pbt−1|pt−1, zt−1), where zt denotes the ex-

planatory variables and the bold letters indicate the entire information set up to period t-1.

The model is estimated by using a nonlinear maximization routine in R.6

4. Results

In the following, we discuss the estimation results on the impact of intermittent renewable

energies and the Nuclear Moratorium on the occurrence of low-price events. After evaluating

the adequacy of the model to capture price dynamics, we conduct simulations of alternative

energy policies to investigate their impact on the frequency of low-price events and particularly

the economic viability of lignite- and hard coal-fired power plants. This has become a highly

relevant issue for Germany’s electricity market in the aftermath of the country’s energy sector

transition, characterized by a strong expansion of renewable energy technologies.

4.1. Model results

We focus the discussion on the trading hours for which the model is successful in separating

two distinct regimes. For the trading hours 8, 21, 22 and 23, this is not the case, as we

document in Section A of the Appendix. Recalling that prices in these trading hours have

distinct characteristics, this finding does not come as a surprise and we do not consider those

trading hours further.

Because the model estimates are very similar for the remaining off-peak trading hours 1 to 7

and 24, we focus the presentation of results on trading hour 7, while reporting the comprehensive

set of estimates in Section B of the Appendix. Analyzing the parameter estimates given in

Table 2, we find that β̂ and γ̂ are positive, indicating that higher residual load levels and coal

prices are associated with higher day-ahead prices. With regard to the switching probabilities,

the parameter estimate b̂b is positive and statistically significant, which demonstrates that the

probability to stay in the base regime increases in residual load. Conversely, as we have two

6As initial values for the filter inferences we assume (0.5, 0.5)′ for period 1. For the starting value needed to
approximate the latent pbt−1, we set E(pb1) = μ1. To avoid non-defined functional values, we reparameterize
the parameters θ, σb and σl. As the log-likelihood function turns out to have multiple local maxima, we
randomly draw 50 starting values for the estimation routine and choose the coefficient estimates that lead to
the highest log-likelihood.
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Table 2: Estimation Results (Trading Hour 7)

Parameters of the base process Parameters of the low-price process

α̂ β̂ γ̂ δ̂ φ̂ σ̂b τ̂ μ̂l σ̂l

-12.74*** 9.13*** 0.27*** -0.59*** 0.33*** 4.66*** -1.08 2.63*** 0.66***
(2.18) (0.27) (0.02) (0.08) (0.08) (0.11) (1.37) (0.12) (0.07)

Parameters of the switching probabilities Log-Likelihood and number of obs.

âb âl b̂b b̂l ĉb ĉl Log-likelihood n
-10.77*** 11.27*** 5.17*** -4.66*** -0.53*** 0.45** 3,428.68 1,096
(1.88) (3.41) (0.67) (1.02) (0.09) (1.18)

Notes: Asymp. standard errors in parantheses. *, **,*** denote significance at the 10%, 5%, 1% level.

regimes, this finding implies that higher residual load levels decrease the probability to switch

from the base to the low-price regime, as illustrated in the first part of Figure 4. The parameter

estimate on the effect of nuclear capacities, ĉb, is negative and statistically significant. By the

same logic, it implies that switching probabilities to the low-price regime fall when nuclear

capacities are reduced.

The second part of Figure 4 shows that switching probabilities from the low-price to the base

regime increase in residual load and are higher after the Nuclear Moratorium reduced nuclear

capacities. This pattern is reflected by the negative parameter estimates b̂l and the positive

estimate ĉl, both of which are statistically significant.

Furthermore, we use the functional form of the switching probabilities to determine the

changes in residual load that would have had the same impact on switching probabilities as

the Nuclear Moratorium.7 As both a reduction in nuclear capacities and an increase in residual

load lead to a higher utilization of dispatchable capacities, their effects on switching probabilities

should be similar. Indeed, the results from Table 3 show that nuclear capacity reductions by the

Nuclear Moratorium are equivalent to an increase in residual load between 4,100 and 6,400 MW,

depending on the trading hour. Bearing in mind that the Nuclear Moratorium reduced nuclear

power capacities by 8,409 MW, these findings imply that some 50 to 80% of the shut-down

nuclear capacity translated into a shift of the switching probabilities, depending on the trading

hour. Accordingly, lower residual load situations had to be reached for low-price observations

to occur, so that their likelihood was reduced.

To investigate the nature of the different price regimes further, we calculate the smoothed

7Using the functional form as displayed in Equation (1), such changes in residual load can be calculated as:
Δresloadt = (ĉb/b̂b) ·(nuclearaf −nuclearbe), where nuclearaf (nuclearbe) corresponds to the average nuclear
capacities after (before) the Nuclear Moratorium and ĉb and b̂b correspond to the estimates of the respective
model parameters.
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Figure 4: Switching Probabilities Before and After Germany’s Nuclear Moratorium
(Trading Hour 7)
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Notes: P bl (P lb) represents the probability to switch from the base (low-price) to the low-price (base) regime.
Switching probabilities before and after the Nuclear Moratorium are calculated using average nuclear capacities in
the respective period.

Table 3: Nuclear Moratorium Effect in Terms of Equivalent Residual Load Changes,
in MW

Hour 1 Hour 2 Hour 3 Hour 4 Hour 5 Hour 6 Hour 7 Hour 24

P bl:Δresload 4,775 5,796 6,162 6,429 6,187 6,333 5,744 4,112

Notes: The table gives the change in residual load that would have the same impact on switching probabilities as
the Nuclear Moratorium.

probabilities that an observation belongs to the base or the low-price regime (a visualization of

the regime classifications is given in Section C of the Appendix). Smoothed probabilities take

advantage of the entire data to classify observations into regimes and are calculated using the

method proposed by Kim (1994). In the following, an observation is classified into the low-price

regime if the corresponding smoothed probability is larger than 0.5.

When comparing the median prices of the observations that are classified into the low-price

regime to those of the base regime, as displayed in Table 4, we find that median prices in

the low-price regime range from 13 to 27 EUR per MWh. Moreover, low-price observations

occur rather frequently in 7 to 32% of the cases, depending on the trading hour. One might

suspect that the regimes merely capture differences between workdays and weekends. To rule

out this possibility, we analyse how often observations are classified into the low-price regime

14



Table 4: Differences Between Base and Low-Price Regime Observations

Hour1 Hour2 Hour3 Hour4 Hour5 Hour6 Hour7 Hour24 Off-peak
Median price (low-price reg.) 24 21 19 16 18 18 13 26 27
Median price (base reg.) 41 38 37 35 36 38 44 43 42
Share (low-price reg.) 14% 19% 23% 26% 32% 20% 13% 7% 15%
Share among Saturdays 11% 13% 13% 16% 24% 26% 18% 13% 13%
Share among Sundays 29% 38% 44% 46% 57% 55% 56% 13% 41%
Coal (1970): Price < Cost 72% 86% 93% 97% 97% 89% 50% 55% 65%
Coal (2010): Price < Cost 19% 31% 45% 57% 55% 34% 20% 7% 17%
Lignite (1970): Price < Cost 12% 20% 27% 36% 34% 22% 15% 4% 10%
Lignite (2010): Price < Cost 3% 6% 11% 14% 13% 9% 8% 1% 2%

Notes: Median prices are in EUR per MWh. Shares of observations where prices are below variable cost are
calculated for different generating technologies and given in percent.

during weekends. During trading hour 7, for example, only 56% of all Sundays and 18% of all

Saturdays were classified into the low-price regime (Table 4).

Taken together, these findings show that the low-price regime not only captures negative

prices, but also moderately positive prices that occur on a rather regular basis. To investigate

the price regimes further, we compute the variable cost of producing 1 MWh of electricity from

lignite- and hard coal-fired power plants with old and modern technology from 1970 and 2010.8

For those plants, rows 6 to 9 of Table 4 present the share of trading hours when spot prices are

below variable cost, ranging from 1% for modern lignite-fired power plants in trading hour 24

to some 97% for 1970 hard coal-fired power plants in trading hour 4.

Comparing the share of low-price regime observations from the third row of Table 4 with the

share of trading hours when prices fall below variable cost of 1970 lignite-fired power plants

(as given in row eight) shows that they coincide closely. This finding may indicate that the

low-price regime captures situations when spot prices are close to the variable cost of inflexible

baseload power plants, such as lignite-fired plants, which then become price-setting. Further

model results support this interpretation. For inflexible baseload power plants, the decision not

to produce in a given trading hour has opportunity costs, as it may prevent production in the

hours that follow. Such opportunity costs are typically higher when the more profitable peak

hours approach. Thus, baseload power plants should accept lower prices shortly before the peak

hours compared to, for example, at midnight. This is the pattern we find when looking at the

median spot price of low-price regime observations from Table 4, which is highest in trading

8Variable cost are composed of fuel cost, CO2 emission cost and operations and maintenance cost (O&M). For
hard coal-fired power plants with 1970 (2010) technology we assume (Klaus et al., 2009, IFEU, 2007): heat
rates of 36% (46%), specific CO2 emission rates of 0.939 t/MWh (0.735 t/MWh), O&M cost of 1 EUR/MWh
as well as coal prices (API 2) as introduced in Table 1. For lignite-fired power plants with 1970 (2010)
technology we assume (Klaus et al., 2009, BKartA, 2011): heat rates of 36% (46%), specific CO2 emission
rates of 1.263 t/MWh (0.940 t/MWh), combined fuel and O&M cost of 10 EUR/MWh (4 EUR/MWh). As
the CO2 emission price, we use the price of carbon emission futures due in December 2016 (CFI2Z6).
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hour 24 and lowest in trading hour 7.

4.2. Model evaluation

To judge the ability of the model to capture the characteristics of electricity spot prices, we

compare the quantiles from simulated to actual price trajectories. The results from Table 5

show that for most trading hours, the simulated and actual quantiles differ from each other by

less than 2%. Only for the 10% quantiles and the trading hours 2-4 do we see deviations in the

order of 5%, thereby indicating that the lognormal distribution cannot perfectly approximate

the empirical distribution of low prices during these hours.

Table 5: Simulated and Actual Quantiles of Spot Prices, in EUR per MWh

Q(0.1) Q(0.25) Q(0.5) Q(0.75) Q(0.9)

Hour 1(act.) 26.55 33.80 39.57 44.79 48.60
Hour 1(sim.) 26.74 (+0.7%) 34.02 (+0.7%) 39.69 (+0.3%) 44.62 ( -0.4%) 48.58 (-0.0%)

Hour 2(act.) 21.16 29.83 36.86 41.95 45.94
Hour 2(sim.) 20.60 (-2.7%) 30.22 (+1.3%) 36.57 (-0.8%) 41.68 (-0.7%) 45.78 (-0.3%)

Hour 3(act.) 17.19 26.11 34.19 39.93 44.04
Hour 3(sim) 16.35 (-4.9%) 26.64 (+2.0%) 34.05 (-0.4%) 39.49 (-1.1%) 43.85 (-0.4%)

Hour 4(act.) 13.80 22.68 31.62 38.05 42.58
Hour 4(sim.) 13.34 (-3.3%) 22.97 (+1.3%) 31.43 (-0.6%) 37.33 (-1.9%) 41.96 (-1.5%)

Hour 5(act.) 14.62 23.36 31.94 37.96 42.86
Hour 5(sim) 14.46 (-1.1%) 22.90 (-2.0%) 31.54 (-1.2%) 37.53 (-1.1%) 41.94 (-2.1%)

Hour 6(act.) 18.07 28.88 35.55 41.17 45.47
Hour 6(sim) 17.62 (-2.5%) 28.64 (-0.8%) 35.74 (+0.5%) 40.95 (-0.5%) 45.10 (-0.8%)

Hour 7(act.) 19.30 35.62 43.03 48.99 54.25
Hour 7(sim.) 19.82 (+2.7%) 34.78 (-2.4%) 43.03 (+0.0%) 49.58 (+1.2%) 54.84 (+1.1%)

Hour 24(act.) 32.86 37.90 42.61 47.22 51.15
Hour 24(sim.) 32.67 (-0.6%) 37.59 (-0.8%) 42.49 (-0.3%) 47.19 (-0.1%) 51.11 (-0.1%)

Off-peak(act.) 27.55 34.76 40.79 45.97 50.73
Off-peak(sim.) 27.79 (+0.9%) 34.69 (-0.2%) 40.67 (-0.3%) 45.73 (-0.5%) 49.87 (-1.7%)

Notes: Q(0.1) denotes the 10% quantile, etc. Values represent means over 1000 simulations.

Table 6: Difference Between Actual and Simulated Spot Prices in Terms of In-
terquartile and Interdecile Ranges, in %

Hour 1 Hour 2 Hour 3 Hour 4 Hour 5 Hour 6 Hour 7 Hour 24 Off-peak

Δ IQR -3.6 -5.4 -7.0 -6.6 +0.2 +0.1 +10.7 -2.9 -1.5
Δ IDR -0.9 +1.6 +2.5 -0.6 -2.7 +0.3 +0.2 +0.8 -4.

Notes: ΔIQR (ΔIDR) denotes the difference between simulated and actual interquartile (interdecile) ranges.
Values represent means over 1000 simulations.

A further evaluation is based on calculating the interquartile range (IQR) and the interdecile

range (IDR) as the difference between the first and third quartile and the first and ninth decile,

respectively. Comparing the IDR of simulated and actual prices in Table 6 shows that in all

cases the difference is below 3%, while the differences in terms of the IQR are slightly larger,
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reaching a maximum of some 10% in trading hour 7. These values can be compared to results

by Janczura and Weron (2010), who evaluate different Markov regime-switching models. For

their preferred model and EEX data, these authors obtain differences of the IQR in the range

of -4 to 5% and differences of the IDR in the range of -2 to 3%. Compared to these values, our

model performs well for the majority of trading hours, notably trading hours 1, 2, 5, 6, 24 and

the off-peak index, while it has a slightly worse fit in terms of the IQR for the trading hours 3

to 4 and 7.

4.3. Simulation results

To demonstrate the effect of different energy policies on the profitability of conventional power

plants, we use the Markov regime-switching models to simulate spot price trajectories based on

the estimated model parameters, as well as the time series of load, wind power, coal prices

and nuclear capacities. Comparing simulated prices to the variable cost of modern lignite- and

hard coal-fired power plants with technology levels as of 2010, the simulations allow us to gauge

the profitability of conventional production technologies that will be available in the upcoming

decades. For expositional purposes, we present the results for trading hour 4, which experiences

most price drops, and hour 1, where price drops are less frequent, as well as for an average over

all considered off-peak trading hours, while reporting the comprehensive simulation results in

Section D of the Appendix.

To establish a reference point for the price behavior, we first simulate price trajectories under

the assumption of zero “green” electricity generation. As the first row of Table 7 illustrates,

the share of off-peak trading hours with prices below variable cost lies between 0 and 3% for

lignite-fired power plants, with an average of 2% in the off-peak trading hours. For hard coal-

fired power plants, this share amounts to 18% on average, which reflects the larger variable cost

of this generating technology. Furthermore, in a baseline scenario that corresponds to actual

wind power levels and a 20% share of renewables in electricity production, the average share of

trading hours with prices below variable cost increases to 8% for modern lignite-fired and 39%

for hard coal-fired plants.

To provide for a future perspective, we consider the effect of reaching renewables shares of

35%, 50%, 65% and 80%, which are the official targets of the German government for 2020, 2030,

2040 and 2050, respectively. In these simulations, we scale up renewable electricity generation

under the constraint that production levels cannot surpass total load, which mimics regulatory
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Table 7: Policy Simulations on the Share of Trading Hours with Prices Below Vari-
able Cost

Lignite-Fired Plants (2010): Hard Coal-Fired Plants (2010):
Prices < Variable Cost Prices < Variable Cost

Hour 1 Hour 4 ∅ off-peak Hour 1 Hour 4 ∅ off-peak

0% renew. share 0% 3% 2% 6% 37% 18%
Baseline (actual data) 3% 15% 8% 23% 63% 39%
Baseline; no moratorium 5% 28% 15% 38% 79% 52%
35% renew. share 10% 31% 19% 41% 75% 54%
50% renew. share 18% 45% 30% 55% 83% 64%
65% renew. share 26% 55% 39% 65% 87% 72%
80% renew. share 33% 63% 47% 72% 90% 77%
80% renew.; no moratorium 39% 75% 54% 80% 95% 84%

Adaptation strategies under an 80% renewables share

1 GW storage 31% 60% 44% 69% 88% 75%
5 GW storage 24% 47% 35% 55% 78% 63%
10 GW storage 17% 34% 25% 40% 63% 48%
20 GW storage 8% 17% 12% 21% 34% 25%
0% nuclear 13% 24% 20% 36% 48% 43%

Notes: The table gives the share of days when prices are below variable cost of modern lignite- or hard coal-fired
power plants (with 2010 technology) for the trading hours 1 and 4, as well as an average over all off-peak trading
hours that are analyzed (1 to 7 and 24), denoted by ∅ off-peak. Values represent means over 1,000 simulations.

action that would cap electricity generation from renewables by command and control measures

in case of excess supply. As visualized by Table 7, the average share of unprofitable trading hours

increases dramatically with a rising share of renewables, amounting to 77% for hard coal-fired

power plants and 47% for lignite-fired power plants in the scenario of an 80% renewables share.

By demonstrating that even the profitability of modern lignite-fired power plants decreases

considerably, the results indicate that substantial displacements of conventional generation can

be expected upon reaching ambitious renewable targets.

By simulating spot prices under the assumption that average nuclear capacities after the

moratorium match pre-Fukushima levels, we investigate the hypothetical scenario that the Nu-

clear Moratorium had not been issued. The simulation results in the second and third row

of Table 7 establish that the moratorium had a mitigating effect on the share of unprofitable

off-peak trading hours: in its absence, this share would have increased substantially for both

lignite-fired power plants (from 8 to 15%) and hard coal-fired power plants (from 39 to 52%).

Moreover, the mediating effect of the Nuclear Moratorium is still present when considering an

80% renewable scenario. As demonstrated by the seventh and eighth row of Table 7, the average

share of unprofitable trading hours would increase from 47 to 54% for lignite-fired and from 77

to 84% for hard coal-fired power plants in the absence of the moratorium.

Finally, we analyze two developments that may reduce the occurrence of low-price events
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in the future: the advent of storage technologies for load-shifting and a phase-out of nuclear

capacities. Both electrical storage solutions (Dunn et al., 2011) and deferrable demand systems

that shift load into off-peak trading hours (Jeon et al., 2015) promise to ease the integration of

intermittent renewable energies and to decrease the frequency of price drops. By treating storage

technologies as additional load in the off-peak trading hours considered here, we simulate their

impact on the occurrence of low-price events and the profitability of conventional power plants.

The bottom part of Table 7 shows that additional storage capacities for load-shifting of 20 GW –

a considerable increase, compared to the existing stock of 9.2 GW of pumped storage capacities

in Germany (BNetzA, 2016) – can decrease the average share of unprofitable trading hours from

47 to 12% and from 77 to 25% for lignite- and hard coal-fired power plants, respectively.

To gauge the impact of a nuclear phase-out, we additionally simulate spot prices under an

80% renewable share and zero nuclear capacities. The last row of Table 7 illustrates that –

compared to a 80% renewables scenario – the average share of trading hours with prices below

variable cost is roughly cut by half, amounting to 20 and 43% for lignite- and hard coal-fired

power plants, respectively. This result highlights that a phase-out of nuclear can contribute

considerably to sustain the financial viability of lignite- or hard coal-fired power plants when

reaching ambitious renewable energy targets.

5. Summary and conclusions

Using Markov regime-switching models with time-varying switching probabilities to separate

times of normal prices from times of low or even negative prices, this article has investigated

the effects of both Germany’s rapid increase of renewable energy capacities in electricity pro-

duction and the Nuclear Moratorium of 2011 on day-ahead power prices. Analyzing off-peak

trading hours individually reveals that, apart from some exceptions, the model predicts price

trajectories fairly well. Moreover, the investigation of the endogenously determined low-price

regime indicates that the model not only captures extreme negative prices, but also low prices

in the magnitude of 13 to 27 EUR per megawatt-hour (MWh) that result when lignite power

plants become price-setting.

Our estimation results indicate that governmental regulations with respect to renewable en-

ergy and nuclear capacities have unintended side effects in influencing the occurrence of negative

price spikes. Specifically, when renewable energy capacities cover a large share of the load, the
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probability of negative price spikes increases significantly. In contrast, our results indicate that

negative price spikes were reduced substantially in the aftermath of the Nuclear Moratorium.

To investigate the impact of alternative energy policies on the economic viability of conven-

tional power plants, we use the estimated Markov regime-switching models to compare simulated

prices to variable cost of modern lignite- and hard coal-fired power plants. The simulation results

demonstrate that reaching ambitious renewable energy shares of 80% threatens the financial vi-

ability of conventional plants: the share of unprofitable off-peak trading hours jumps to some

47 and 77% for modern lignite- and hard coal-fired plants, compared to 2 and 18%, respectively,

in a scenario without renewables.

Further simulations document the potential of nuclear capacity reductions and increases in

storage capacities for load-shifting to reduce the frequency of negative price spikes and to secure

the economic viability of lignite- and hard coal-fired generation capacities. We find that in

the hypothetical absence of the Nuclear Moratorium, the average share of unprofitable off-peak

trading hours would have increased from 8 to 15% and from 39 to 52% for lignite- and hard

coal-fired power plants, respectively. When considering a 80% renewables scenario, a full nuclear

phase-out cuts the share of unprofitable off-peak trading hours roughly by half, from 47 to 20%

and from 77 to 43% for lignite- and hard coal-fired plants, respectively. Similarly, increasing

capacities for load-shifting by 20 GW per trading hour reduces the share of unprofitable off-peak

trading hours to 12 and 25% for lignite- and hard coal-fired power plants.

In summary, our simulation exercise documents that reaching ambitious renewable energy

shares of 80% can pose serious threats to the profitability of even modern conventional genera-

tion technologies, particularly if nuclear power or storage capacities were to remain at today’s

levels. To the extent that dispatchable conventional plants are necessary to meet peak demand

when electricity from intermittent renewable energies is unavailable, regulatory instruments that

ensure the financial viability of those plants – e.g. in the form of capacity markets – may there-

fore become increasingly relevant. However, our simulations also illustrate the potential of both

a nuclear phase-out and additional storage capacities to sustain the profitability of dispatchable

conventional technologies.

To account for the impact of energy policies on the financial viability of dispatchable gen-

eration technologies will become increasingly important as strategies to decarbonize electricity

generation based on renewable energies progress all over the world. Because price drops can trig-

ger reductions in the stock of dispatchable conventional capacities that are required to sustain
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system reliability, future research on the relationship between increasing shares of renewables

and the frequency of price drops is warranted. For example, comparing electricity markets both

with and without capacity payments could help to understand how different market designs

moderate the impact of increasing shares of renewables on spot prices behavior. Moreover,

given that the proposed econometric model is the first to capture negative spikes of spot elec-

tricity prices, some model refinements may prove useful. Econometric advances that account

for the panel structure of day-ahead prices in a Markov regime-switching framework could help

to further increase the model fit and thus the accuracy of spot price simulations.
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Appendix

A. Estimation results for the trading hours 8, 21, 22 and 23

For the trading hours 8, 21, 22 and 23, hardly any observation is classified into the low-price

regime. Table A.1 illustrate this finding by the blown-up threshold parameter estimates τ̂ for

the trading hours 8, 21 and 22, and the very large standard errors of the estimates for the

switching probability parameters âl, b̂l and b̂l in trading hour 23.

Table A.1: Estimation Results

Hour 8 Hour 21 Hour 22 Hour 23

Parameters α̂ -19.13 -0.58 6.17*** 10.49***
of the (x) (3.11) (2.22) (2.23)

base process β̂ 13.21*** 6.88*** 5.62*** 4.68***
(0.21) (0.24) (0.24) (0.27)

γ̂ 0.30*** 0.35*** 0.32*** 0.31***
(0.02) (0.02) (0.02) (0.02)

δ̂ -0.84*** -0.51*** -0.81*** -0.64***
(0.07) (0.10) (0.08) (0.07)

φ̂ 0.98 0.46*** 0.72 0.46***
(x) (0.15) (0.54) (0.10)

σ̂b 45.57*** 5.65*** 4.43*** 4.07***
(7.13) (0.18) (0.18) (0.09)

Parameters τ̂ 118.41*** 22.50*** 44.96 -5.90
of the (31.57) (6.46) (28.48) (3.87)

low-price process μ̂l 4.87*** 3.38*** 3.84*** 2.00***
(0.23) (0.22) (0.61) (0.59)

σ̂l 0.05*** 0.13*** 0.08* 0.55*
(0.01) (0.03) (0.04) (0.31)

Parameters âb -5.20 0.51 -5.09** -19.55***
of the (172.09) (3.28) (2.30) (4.29)

switching âl 3.49* 3.91 -15.31* 25.42
probabilities (2.03) (2.87) (9.23) (2,097.15)

b̂b 45.90 1.20* 0.44 6.41***
(185.54) (0.63) (0.38) (1.24)

b̂l 0.99*** 0.58 1.27 -11.12
(0.32) (0.70) (1.34) (2,097.15)

ĉb -21.29 -0.22** 0.44*** -0.21
(75.00) (0.11) (0.12) (0.16)

ĉl -0.31*** -0.23 0.84*** -1.23
(0.09) (0.18) (0.30) (3,632.38)

Log-likelihood 3676.64 3344.75 3152.70 3118.19
n 1,096 1,096 1,096 1,096

Notes: Asymp. standard errors in parantheses. *, **,*** denote significance at the 10%, 5%, 1% level. (x)
indicates that numerical issues occurred, leading e.g. to undefined standard error estimates.
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B. Estimation results for the hours 1-7, 24 and the off-peak index

Table B.1: Estimation Results

Hour 1 Hour 2 Hour 3 Hour 4 Hour 5
Parameters α̂ 0.51 -4.99*** -7.15*** -3.65 -3.66
of the (2.25) (1.90) (1.79) (2.59) (2.55)
base process β̂ 5.88*** 6.72*** 7.48*** 7.91*** 6.84***

(0.36) (0.32) (0.30) (0.35) (0.40)
γ̂ 0.30*** 0.30*** 0.28*** 0.23*** 0.24***

(0.02) (0.02) (0.02) (0.02) (0.03)
δ̂ -0.57*** -0.55*** -0.63*** -0.91*** -0.67***

(0.08) (0.07) (0.07) (0.10) (0.08)
φ̂ 0.50*** 0.51*** 0.56*** 0.63** 0.74

(0.14) (0.15) (0.18) (0.26) (0.53)
σ̂b 3.43*** 3.19*** 3.23*** 3.56*** 2.92***

(0.09) (0.10) (0.10) (0.12) (0.11)
Parameters τ̂ 1.88 -2.10** -4.15*** -2.18** 2.20
of the (1.68) (1.00) (0.58) (0.85) (1.41)
low-price process μ̂l 2.48*** 2.24*** 2.06*** 2.27*** 2.56***

(0.15) (0.12) (0.10) (0.10) (0.11)
σ̂l 0.57*** 0.66*** 0.79*** 0.65*** 0.49***

(0.08) (0.07) (0.07) (0.06) (0.05)
Parameters âb -12.50*** -7.12*** -6.82*** -5.32*** -7.34***
of the (2.79) (1.18) (1.14) (1.06) (1.27)
switching âl 9.45*** 12.61*** 7.36*** 9.72*** 10.31***
prbabilities (3.05) (2.79) (1.51) (2.03) (1.81)

b̂b 5.43*** 3.80*** 3.85*** 3.15*** 3.64***
(0.88) (0.41) (0.41) (0.35) (0.41)

b̂l -3.66*** -5.67*** -3.31*** -3.97*** -3.90***
(0.99) (1.14) (0.52) (0.70) (0.60)

ĉb -0.46*** -0.39*** -0.42*** -0.36*** -0.40***
(0.08) (0.07) (0.06) (0.06) (0.06)

ĉl 0.33*** 0.63*** 0.37*** 0.41*** 0.39***
(0.11) (0.14) (0.07) (0.09) (0.08)

Log-likelihood 3,164.15 3,186.79 3,272.88 3,374.21 3,262.94
n 1,096 1,096 1,096 1,096 1,096

Hour 6 Hour 7 Hour 24 Off-peak
Parameters α̂ -8.41*** -12.74*** 0.90 -0.66
of the (2.47) (2.18) (2.17) (1.80)
base process β̂ 6.87*** 9.13*** 5.40*** 7.43***

(0.26) (0.27) (0.29) (0.23)
γ̂ 0.29*** 0.27*** 0.32*** 0.25***

(0.02) (0.02) (0.02) (0.02)
δ̂ -0.43*** -0.59*** -0.48*** -0.81***

(0.08) (0.08) (0.08) (0.07)
φ̂ 0.64*** 0.33*** 0.57*** 0.71**

(0.24) (0.08) (0.15) (0.30)

σ̂b 2.79*** 4.66*** 3.39*** 2.63***
(0.09) (0.11) (0.08) (0.07)

Parameters τ̂ 0.55 -1.08 2.49 -0.40
of the (1.77) (1.37) (1.85) (0.79)
low-price process μ̂l 2.54*** 2.63*** 2.43*** 1.97***

(0.15) (0.12) (0.20) (0.13)
σ̂l 0.53*** 0.66*** 0.62*** 0.63***

(0.07) (0.07) (0.11) (0.07)
Parameters âb -7.91*** -10.77*** -15.69*** -16.38***
of the (1.26) (1.88) (2.77) (2.47)
switching âl 11.11*** 11.27*** 4.78* 11.93***
probabilities (1.96) (3.41) (2.81) (3.01)

b̂b 4.08*** 5.17*** 6.08*** 6.05***
(0.47) (0.67) (0.88) (0.80)

b̂l -3.72*** -4.66*** -3.45*** -3.73***
(0.55) (1.02) (1.15) (0.75)

ĉb -0.46*** -0.53*** -0.45*** -0.42***
(0.07) (0.09) (0.10) (0.08)

ĉl 0.28*** 0.45** 0.57** 0.32***
(0.08) (1.18) (0.26) (0.11)

Log-likelihood 3,099.53 3,428.68 3,024.65 2,827.48
n 1,096 1,096 1,096 1,096

Notes: Asymp. standard errors in parantheses. *, **,*** denote significance at the 10%, 5%, 1% level.

23



C. Regime classifications (trading hour 7)

Figure C.1: Classifications of day-ahead prices into the base and low-price regime
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Notes: The lower panel gives the smoothed probabilities that the respective observations belong to the low-price
regime, P (st = l). Observations with probabilities P (st = l) > 0.5 are displayed as triangles. The upper panel
displays the time series of day-ahead prices and highlights observations that are classified into the low-price regime
by triangles. The classifications work fairly well, as most observations have state probabilities close to zero or one
and can thus be clearly attributed to one of the two regimes.
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