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Abstract

We propose a random network model incorporating heterogeneity of agents

and a continuous notion of homophily. Unlike the vast majority of the cor-

responding economic literature, we capture homophily in terms of similarity

rather than equality by assuming that the probability of linkage between two

agents continuously decreases in the distance of their characteristics. A ho-

mophily parameter directly determines the strength of this effect. As a main

result, we show that for any positive level of homophily our model exhibits

clustering, that is an increased probability of linkage given a common neigh-

bor. As opposed to this, the seminal Bernoulli Random Graph model à la

Erdős and Rényi (1959) is comprised as the limit case of no homophily. More-

over, simulations indicate that, although the average distance between agents

increases in homophily, the well-known small-world phenomenon is preserved

even at high homophily levels. We finally provide a possible application in form

of a stylized labor market model, where a firm can hire a new employee via the

social network.
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1 Introduction

Suppose you own a firm and want to fill an open vacancy through the social contacts

of one of your current employees. Whom would you ask to recommend someone?

Most probably you would address the worker who would himself perform best in the

position in question. While this seems to be intuitively reasonable, why do we expect

it to be optimal? One important reason is that people tend to connect to similar

others. This phenomenon is known as homophily (Lazarsfeld and Merton, 1954).

In this paper, we introduce a continuous notion of homophily based on incorpo-

rating heterogeneity of agents into the Bernoulli Random Graph (BRG) model as

examined by Erdős and Rényi (1959). To this end, we propose a two-stage random

process which we call Homophilous Random Network model. First, agents are as-

signed characteristics independently drawn from a continuous interval and second a

network realizes, linking probabilities being contingent on a homophily parameter

and the pairwise distance between agents’ characteristics. This enables us to account

for homophily in terms of similarity rather than equality of agents, capturing the

original sociological definition instead of the stylized version up to now commonly

used in the economic literature.

As a first result, we determine the expected linking probabilities between agents

(Proposition 1) as well as the expected number of links (Corollary 2). We then calcu-

late the expected probability that an agent has a certain number of links (Proposition

2), showing that the according binomial distribution of the original BRG model is

preserved to some degree. Further, we establish a threshold theorem for any given

agent to be connected (Proposition 3). For all these (and further) results we demon-

strate that the BRG model is comprised as the limit case of no homophily and we

thus provide a generalization thereof. As a main result, we show that in our model

homophily induces clustering (Theorem 1), two stylized facts frequently observed in

real-world networks which are not captured by the BRG model.1 Furthermore, clus-

tering proves to be strictly increasing in homophily. As a second important feature

of our model, two simulations indicate that, although the average distance between

agents increases in homophily, the well-known small-world phenomenon is preserved

even at high homophily levels.2 We finally provide an application of the Homophilous

Random Network model within a stylized labor market setting to answer the intro-

ductory questions.

1A network exhibits clustering if two individuals with a common neighbor have an increased
probability of being connected.

2The small-world phenomenon describes the observation that even in large networks on average
there exist relatively short paths between two individuals.
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In the literature the presence of homophily has been established in a wide range of

sociological and economic settings. Empirical studies on social networks discovered

strong evidence for the similarity of connected individuals with respect to age (see

e.g. Verbrugge, 1977; Marsden, 1988; Burt, 1991), education (see e.g. Marsden, 1987;

Kalmijn, 2006), income (see e.g. Laumann, 1966, 1973), ethnicity (see e.g. Baerveldt

et al., 2004; Ibarra, 1995) or geographical distance (see e.g. Campbell, 1990; Well-

man, 1996). For an extensive survey see McPherson et al. (2001). In recent years,

economists have developed an understanding of the relevance of network effects in

a range of economic contexts. Thus, bearing in mind the presence of homophily in

real-world networks can be of great importance for creating meaningful economic

models.

There already exists a strand of economic literature examining homophily effects

in different settings (see e.g. Currarini et al., 2009). Most of the models assume a

finite type space and binary homophily in the sense that an agent prefers to connect

to others that are of the same type while not distinguishing between other types.3

Thus, these models rather capture the idea of equality than of similarity. However,

in reality people are in many respects neither “equal” nor “different”. We therefore

believe that a notion that provides an ordering of the “degree of similarity” with

respect to which an agent orders his preference for connections can capture real-

world effects more accurately. This gives rise to a continuous notion of homophily in

networks.

This approach is followed by Gilles and Johnson (2000) and Iijima and Kamada

(2014), who examine strategic, deterministic models of network formation. In both

models individual utility is shaped directly by homophily such that individuals con-

nect if (and only if) they are sufficiently similar. Iijima and Kamada (2014) consider

the extreme case of purely homophilous utility functions, entailing that a high level

of homophily is directly identified with efficiency. As opposed to this, in our random

graph model, a novel continuous homophily measure is incorporated as a parameter

that may be freely chosen to reflect a broad range of possible situations. In their

multi-dimensional framework, Iijima and Kamada (2014) examine clustering and the

average path length as functions of the number of characteristics agents take into

account when evaluating their social distance to others. In contrast, we investigate

the direct relation between homophily and these network statistics. The differences

in methodology especially lead to opposing results concerning the small-world phe-

nomenon. While in Iijima and Kamada (2014) small worlds only arise if agents

3For several homophily measures of this kind see Currarini et al. (2009).
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disregard a subset of characteristics, we show that this phenomenon is well present

in our one-dimensional setting.

Besides the presence of homophily, stylized facts such as the small-world phe-

nomenon and high levels of clustering have indeed been empirically identified in real-

world networks (see e.g. Milgram, 1967; Watts and Strogatz, 1998). As in many cases

these networks are very large and remain unknown for an analysis, typically random

networks are used as an approximation.4 This constitutes a challenge to design the

random network formation process in a way to ensure it complies with the observed

stylized facts.

Since the seminal work of Erdős and Rényi (1959), who developed and analyzed

a random graph model where a fixed number out of all possible bilateral connections

is randomly chosen, a lot of different models have been proposed (see e.g. Wasserman

and Pattison, 1996; Watts and Strogatz, 1998; Barabási and Albert, 1999). The most

commonly used until today is the BRG model where connections between any two

agents are established with the same constant probability. It has been shown that for

large networks this model is almost equal to the original model of Erdős and Rényi

(1959) (for details see Jackson, 2006; Bollobás, 2001).5 It is well understood that

this model reproduces the small-world phenomenon but does not exhibit clustering.

Also, a notion of homophily is not present as the described random process does

not rely on individual characteristics. The latter is also true for the small-world

model proposed by Watts and Strogatz (1998). Starting from a network built on a

low-dimensional regular lattice, they reallocate randomly chosen links and obtain a

random network showing a small-world phenomenon. According to their notion this

encompasses an increased level of clustering. However, the socio-economic causality

of this occurrence remains uncertain. In this regard our model can to some extend

serve as a socio-economic foundation of the work of Watts and Strogatz (1998). An

approach to generate random graphs more similar to ours is proposed by the recently

emerging graph-theoretic literature on random intersection graphs (see e.g. Karonski

et al., 1999). Here, each node is randomly assigned a set of features. Connections are

then established between any two nodes sharing a given number of features. It has

been shown that the resulting graphs also exhibit clustering (Bloznelis, 2013).

In general, not much work has yet been dedicated to the incorporation of ho-

mophily into random networks. However, some papers exist that include similar

ideas. Closest to our work is perhaps Jackson (2008a), who analyzes the impact of

4For instance, this might be of interest, when investigating the formation of opinions, buying
decisions, social mobility, the spreading of information or diseases, etc. in societies.

5In fact, the BRG model rather than their original one is nowadays also known as the Erdős-Rényi
model.
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increasing homophily on network statistics such as clustering and the average dis-

tance of nodes. A finite number of types, linking probabilities between these, as well

as agents’ expected degrees are exogenously given. While Jackson (2008a) uses a pre-

defined partition of agents into groups and then considers a random network model

based on Chung and Lu (2002), we consider a two-stage random process where (in-

stead of only the network) also agents’ characteristics are determined randomly and

which yields a generalization of the BRG model. Additionally considering the con-

crete functional form of homophilous linking probabilities, our model is immediately

available as an approximation tool for large societies. However, the major difference

between the two papers is revealed by a contradictory result on the average distance

between agents. While Jackson (2008a) finds that the average distance is invariant

with respect to changes in homophily, our Simulation 1 indicates that it increases in

homophily (see Section 5).6

Another, however less closely related paper in this strand of literature is the one by

Golub and Jackson (2012) who also assume a finite number of types as well as the

linking probabilities between them to be exogenously given. Based on this they ana-

lyze the implications of homophily in the framework of dynamic belief formation on

networks. Bramoullé et al. (2012) combine random link formation and local search

in a sequentially growing society of heterogeneous agents and establish a version of

binary homophily along with a degree distribution.

In all cases, besides the concrete continuous notion of homophily, a major distinc-

tion of our approach is the sequential combination of two random processes where

agents’ characteristics are considered as random variables that influence the random

network formation. We thus account for the fact that in many applications, in which

the network remains unobserved, it seems unnatural to assume that individual char-

acteristics, which in fact may depict attitudes, beliefs or abilities, are perfectly known.

We conclude this paper by providing an application of our model for the labor

market, proposing an analysis of the introductory question: When is it optimal for

a firm to search for a new employee via the contacts of a current employee? We

assume the characteristic of each worker to be her individual ability to fill the open

vacancy and use our Homophilous Random Network model as an approximation of

6In fact, our results indicate that his finding crucially depends on the assumption that – as
opposed to our setting (see Section 3) – agents’ degrees do not depend on homophily. Note that,
being based on Chung and Lu (2002), this assumption is inevitable in his model. However, we
think that this is up for discussion as in many applications (political attitude, income, social status,
etc.) agents with extreme characteristics will tend to have fewer links than those with intermediate
characteristics and the extent of this difference will heavily depend on the actual level of homophily.
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the workers’ network. Given an agent and her characteristic, we determine the ex-

pected characteristic of a random contact (Proposition 4). This gives rise to a simple

decision rule stating in which constellations firms should hire via the social network.

In particular, given sufficiently high levels of homophily and the current employee’s

ability, it proves to be optimal to always hire via the social network.

Within the job search literature, Horváth (2014) and Zaharieva (2013) incorpo-

rate homophily among contacts into job search models. However, these models are

again based on a binary concept of homophily and do not include an explicit notion of

networks. This research strand traces back to the work of Montgomery (1991), who

was the first to address this issue. Finally, to some extent, our application captures

an idea proposed by Ioannides and Loury (2004) to combine this class of models with

a random network setting à la Erdős-Rényi.7

The rest of the paper is organized as follows. In Section 2 we set up the model.

Section 3 reveals basic properties of homophilous random networks while results on

clustering can be found in Section 4. In Section 5 we simulate the model focusing on

the small-world phenomenon. Section 6 contains the labor market application and

Section 7 concludes. Proofs of most results are provided in the appendix.

2 The Model

We set up a model of random network formation where first each agent is randomly

assigned a continuous characteristic which then influences the respective linking prob-

abilities. We refer to this as the Homophilous Random Network model. Consider a

set of agents N = {1, 2, ..., n}. A connection or (undirected) link between two agents

i, j ∈ N is denoted by ij = ji := {i, j}. By gN := {ij | i, j ∈ N} we denote the

complete network, that is the network where any two agents are connected. Then,

we let G := {g | g ⊆ gN} be the set of all possible non-directed graphs or networks.

Further, we define Ni(g) := {j ∈ N | ij ∈ g} to be the set of neighbors of agent i in

network g, and let ηi(g) := |Ni(g)| denote the number of her neighbors. This is some-

times also referred to as the degree of agent i. Each agent is assigned a characteristic

pi where the vector p = (p1, p2, ..., pn) denotes a certain realization of the random

7Ioannides and Loury (2004, p. 1068) state “It would be interesting to generalize the model of
social structure employed by Montgomery, by assuming groups of different sizes. For example, one
may invoke a random graphs setting (Paul Erdős and Alfred Rényi 1960; Ioannides 1997), where a
fraction of the entire economy may be in groups whose sizes are denumerable but possibly large.”
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variable P = (P1, P2, ..., Pn). The underlying distribution of each Pi is assumed to be

standard uniform. Hence, all Pi are identically and independently distributed.

Subsequent to the assignment of characteristics a random network forms. Here,

based on the Bernoulli Random Graph (BRG) model as introduced by Erdős and

Rényi (1959), we assume the following variation. The linking probability of two agents

i, j ∈ N is given by

q(pi, pj) := λa|pi−pj |, (1)

where the scaling parameter λ ∈ [0, 1] and the homophily parameter a ∈ [0, 1] are

exogenously given and independent of agents i and j. Note that, in situations where

the vector of characteristics is unknown, q(Pi, Pj) is a random variable such that the

linking probability q(pi, pj) is in fact a conditional probability. Figure 1 depicts the

linking probabilities q(pi, pj) for different homophily parameters a, first as a function

of the distance of characteristics and second as a function of pj for given pi = 0.25.

As in our model λ simply serves as a scaling parameter corresponding to the linking

probability in the BRG model, in Figure 1 it is fixed to one for simplicity.
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Figure 1: Left: Linking probability for all distances of characteristics for several
homophily parameters a; Right: Linking probabilities for an agent with characteristic
pi = 0.25 for several homophily parameters a

Let us shortly elaborate on the role of the homophily parameter a. Observe

that the linking probability q is decreasing in |pi − pj| as a takes values only in

[0, 1]. In particular, for a = 1 the model is equal to the BRG model as all linking

probabilities are equal to λ and hence independent of the agents’ characteristics.

On the contrary, if we have a = 0, then solely agents with identical characteristics
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pi = pj get connected with probability λ while all other linking probabilities are zero.

Insofar, the parameter a serves as a measure of homophily in the model. Here, lower

parameter values correspond to a higher homophily level in the network. The notion

at hand measures homophily in a continuous instead of a binary manner since the

distance function | · | is continuous. Note, however, that an increase in homophily

which leads to a decreased linking probability then also implies a decreased ex-ante

expected degree of agents. Whenever suitable, one may therefore choose the scaling

parameter λ dependent on a such that the expected degree is kept constant for any

level of homophily (see Remark 1).

3 Basic Properties of Homophilous Random Net-

works

This section constitutes a foundation for the upcoming main results. To this end,

we first need to collect several important properties of the Homophilous Random

Network model, such as the expected linking probabilities and the number of links

of agents. Moreover, we discuss a threshold theorem for an agent to be isolated.

This is of particular importance for the labor market application provided in Section

6. Throughout this section we explore, on the one hand, situations in which the

realization of one considered agent i ∈ N is known while all others are not and, on

the other hand, situations in which the whole vector of characteristics is unknown.

In any case we demonstrate that the BRG model is recuperated as the limit case of

no homophily and we thus provide a generalization thereof.

We start by determining the expected linking probabilities for two given agents

i, j ∈ N in the following proposition.

Proposition 1. Given agent i’s realized characteristic Pi = pi while all other char-

acteristics p−i are unknown, the expected probability that a certain link ij forms is

E
P
[

P
G (ij ∈ G | P )

∣
∣
∣ Pi = pi

]

=
λ

ln(a)

(

api + a1−pi − 2
)

=: ϕ(λ, a, pi). (2)

If the vector p is unknown, the expected probability that the link ij forms is

E
P
[

P
G (ij ∈ G | P )

]

=
2λ

ln(a)2

(

a − 1 − ln(a)
)

=: Φ(λ, a). (3)

The proof of Proposition 1 as well as all subsequent proofs can be found in the

appendix. It is straightforward to understand that the function ϕ indeed has to
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depend on characteristic pi as it makes a difference whether pi tends to the center or

to the boundaries of the interval [0, 1]. In what follows, a characteristic of the former

(latter) kind is said to be “intermediate” (“extreme”). The closer pi is to 0.5 the

smaller is the expected difference with respect to other agents’ characteristics, hence,

the higher is the expected linking probability ϕ. In particular, it is arg maxpi
ϕ =

0.5 and arg minpi
ϕ = {0, 1} for all a ∈ (0, 1). To this respect, it is obvious that

ϕ(λ, a, 0) ≤ Φ(λ, a) ≤ ϕ(λ, a, 0.5) for all λ, a ∈ [0, 1]. Also, it is important to note that

the expected linking probability is decreasing in homophily, that is for all a ∈ (0, 1]

we have

∂

∂a
Φ(λ, a) =

∂

∂a

[

2λ
a − 1 − ln(a)

ln(a)2

]

= 2λ
2(1 − a) + ln(a)(1 + a)

a ln(a)3
> 0.8

To verify intuition that our model reproduces the BRG model as a limit case and to

gain insights on the behavior in boundary cases, the following corollary is concerned

with the limits of the expected linking probabilities with respect to the homophily

parameter a.

Corollary 1. For maximal homophily, i.e. for a → 0, the expected linking probability

is

lim
a→0

ϕ(λ, a, pi) = lim
a→0

Φ(λ, a) = 0. (4)

In case of no homophily, i.e. for a → 1, the expected linking probability is

lim
a→1

ϕ(λ, a, pi) = lim
a→1

Φ(λ, a) = λ. (5)

As usual, a proof is provided in the appendix. Maximal homophily in this model

means that only agents with identical characteristics would have a strictly positive

linking probability. However, since the standard uniform distribution has no mass

point, such two agents do not exist with positive probability. Therefore, both accord-

ing expected linking probabilities ϕ and Φ tend to zero. In case of no homophily, as

mentioned before, the model indeed reproduces the BRG model such that all linking

probabilities are alike, independent of individual characteristics p.

Based on Proposition 1, we also immediately get the expected number of links of

an agent.

8We indeed can include the value a = 1 here as it happens to be a removable discontinuity of the
derivative. On the contrary, at a = 0 the right-handed derivative is infinity as the expected number
of links is zero with probability one.

9



Corollary 2. The expected number of links of an agent i with given characteristic

Pi = pi is

E
P
[

E
G [ηi(G) | P ]

∣
∣
∣ Pi = pi

]

= (n − 1)ϕ(λ, a, pi). (6)

Similarly, if p is unknown, we have

E
P
[

E
G [ηi(G) | P ]

]

= (n − 1)Φ(λ, a). (7)

A proof of this corollary is omitted as it is clear that all expected linking prob-

abilities are independent and, hence, the result follows directly from the proof of

Proposition 1. Observe that from this result, we can also calculate the ex-ante ex-

pected number of links in a network to be

n(n − 1)

2
Φ(λ, a).

Together with Corollary 1 this gives that the ex-ante expected number of links is zero

for maximal homophily while in case of no homophily, again as in the BRG model,

one gets λn(n − 1)/2 links in total in expectation. More generally, agents’ ex-ante

expected degree in a network depends on the level of homophily and the number of

agents in the network. For reasons of comparability, however, it is sometimes required

to keep agents’ ex-ante expected number of links fixed (see e.g. Section 5). In this

context, consider the following remark.

Remark 1. For a ∈ (0, 1) and n ∈ N consider some number ηexp ∈ R+ and the

function

λ̄(a, n, ηexp) :=
ηexp ln(a)2

2(n − 1)(a − 1 − ln(a))
.

Note that, for ηexp

n
reasonably small, we have λ̄(a, n, ηexp) ∈ [0, 1].9 Any agent’s

ex-ante expected number of links is then given by

E
P
[

E
G [ηi(G) | P ]

]
∣
∣
∣
∣
λ=λ̄(a,n,ηexp)

= (n − 1)Φ(λ̄(a, n, ηexp), a) ≡ ηexp,

meaning that it is invariant with respect to changes in homophily as well as in the

number of agents.

However, for the expected number of links of an agent i with given characteristic

9Also, note that for a = 1, i.e. for the limit case of no homophily, it is consistent to define
λ̄(1, n, ηexp) := lima→1 λ̄(a, n, ηexp) = ηexp

n−1 .

10



Pi = pi we calculate

E
P
[

E
G [ηi(G) | P ]

∣
∣
∣ Pi = pi

]
∣
∣
∣
∣
λ=λ̄(a,n,ηexp)

= (n − 1)ϕ(λ̄(a, n, ηexp), a, pi)

= ηexp ln(a)(api + a1−pi − 2)

2(a − 1 − ln(a))
, (8)

meaning that it still depends on a and pi.

Thus, it is important to note that, in our model, fixing agents’ ex-ante expected

degree does not imply that an agent’s expected degree, given her realized charac-

teristic, is invariant with respect to changes in the level of homophily.10 Indeed, it

seems plausible to expect agents with an extreme characteristic (i.e. with pi close

to zero or one in our model) to have fewer links than agents with an intermediate

characteristic.11 And moreover, this effect’s magnitude should heavily depend on

the actual level of homophily. This can indeed be observed in Figure 2 where an

agent’s expected degree as in (8) is plotted for ηexp = 1 as a function of her realized

characteristic pi ∈ [0, 1] and the level of homophily a ∈ (0, 1).

At a = 1, which depicts the limit case of no homophily, independently of her

characteristic, any agent has an expected degree of ηexp. If a decreases, that is if

homophily increases, then the expected number of links of agents with an intermediate

characteristic (with an extreme characteristic) increases (decreases). This is because

for an agent with an intermediate characteristic there will be more agents with a

similar characteristic than for an agent with an extreme characteristic.12 However,

the higher the level of homophily, the stricter is the interpretation of similarity in our

model. This implies that, from some (relatively high) level of homophily on, there is

an expanding range of characteristics for which agents’ expected degrees reapproach.

On the contrary, for sufficiently extreme characteristics, the effect described first

keeps dominating and becomes even stronger as homophily increases. Finally, for the

limit case of maximal homophily, we have

lim
a→0

E
P
[

E
G [ηi(G) | P ]

∣
∣
∣ Pi = pi

]
∣
∣
∣
∣
λ=λ̄(a,n,ηexp)

=







ηexp for pi ∈ (0, 1)
1
2
ηexp for pi ∈ {0, 1}

.

10This is in contrast to the model considered by Jackson (2008a), where any agent’s degree with
given characteristic is fixed.

11In other words, one should expect the degree of an agent i with characteristic pi to be decreasing
in |pi − 0.5|.

12The reason for this is simply that U [0, 1] has a finite support, meaning that, for extreme char-
acteristics, nearby other ones are rather onesided whereas for intermediate characteristics it will
typically be the case that there are nearby other ones being smaller and greater.
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Figure 2: Expected degree of an agent with realized characteristic pi, given homophily
level a ∈ (0, 1) and the ex-ante expected degree being fixed at one (created with
MATLAB, 2014)

To sum up, we have that, for all levels of homophily a ∈ (0, 1), there exist two

ranges of extreme characteristics (one close to zero and the other one close to one)

where agents have relatively few links in expectation. While these ranges shrink

in homophily, the expected degrees of the respective agents decrease even further.

Apparently, the latter is of great importance when considering the average distance

between agents at different levels of homophily (see Simulation 1 in Section 5).

In what follows, we calculate the expected probability for an agent with given

characteristic to have a certain number of links. This entails that the model inherits

a version of the binomial distribution known from the BRG model.

Proposition 2. The expected probability that an agent i with given characteristic

Pi = pi has k ∈ {0, 1, ..., n − 1} links is given by

E
P
[

P
G (ηi(G) = k | P )

∣
∣
∣Pi = pi

]

=

(

n − 1

k

)

· ϕ(λ, a, pi)
k · (1 − ϕ(λ, a, pi))

n−k−1.

(9)

Observe that this form can be interpreted as a binomial distribution with param-
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eters ϕ(λ, a, pi) and n − 1. Further, it is worth noting that the extreme cases meet

the expected outcome as we have

lim
a→0

E
P
[

P
G (ηi(G) = k | P )

∣
∣
∣Pi = pi

] (4)
=

(

n − 1

k

)

· 0k · 1n−k−1 =







1, if k = 0

0, else
,

lim
a→1

E
P
[

P
G (ηi(G) = k | P )

∣
∣
∣Pi = pi

] (5)
=

(

n − 1

k

)

· λk · (1 − λ)n−k−1 ,

where the latter term, unsurprisingly, is equal to the probability for any agent to have

k links in the BRG model with independent linking probability λ. Unfortunately, the

calculation in case that the whole vector of characteristics p is unknown is analytically

not tractable.

One major reason why random network models are used frequently is to match

qualitative characteristics of real-world networks. The law of large numbers in this

case yields that large networks indeed meet these characteristics with a high probabil-

ity (see e.g. Jackson, 2008b, Chapter 4). A seminal contribution of Erdős and Rényi

(1959) was to provide so called threshold theorems for the case of the BRG model.

These results state that, if the network size n goes to infinity while the linking prob-

ability λ(n) goes to zero slower than some threshold t(n), then the limit network has

a certain property with probability one. On the contrary, if λ(n) goes to zero faster

than t(n), then the limit network has the same property only with probability zero.13

It is clear that this kind of results can only be found for monotone properties, that is

for those which yield that, if any network g has the property, then also any network

g′ ⊇ g has it. One example is the property that a given agent has at least one link

which we establish in the next proposition. For instance, regarding our application

of the labor market (Section 6) this feature is of great importance. In that context,

we assume this as a prerequisite as determining the expected characteristic of a given

agent’s contact is meaningful only if this agent is not isolated.

Proposition 3. Assume a minimal level of homophily to be guaranteed as the network

size becomes large. Then the function t(n) = 1/(n−1) is a threshold for a given agent

to be non-isolated in the following sense:

E
P
[

P
G (ηi(G) ≥ 1 | P )

∣
∣
∣Pi = pi

]

→ 1 ∀ pi ∈ [0, 1] if
−λ(n)/ ln(a(n))

t(n)
→ ∞,

E
P
[

P
G (ηi(G) ≥ 1 | P )

∣
∣
∣Pi = pi

]

→ 0 ∀ pi ∈ [0, 1] if
−λ(n)/ ln(a(n))

t(n)
→ 0.

13For a more elaborate characterization of thresholds as well as several results see Bollobás (1998).
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First, note that in Proposition 3 the right-hand side conditions are equivalent

to ϕ(λ(n), a(n), p̂)/t(n) converging to infinity or zero, respectively, for any arbitrary

p̂ ∈ [0, 1]. For details refer to the proof in the appendix. What is surprising about

this (as well as about other threshold theorems), is the sharp distinction made by the

threshold t(n), in the sense that if the growth of probability ϕ passes the threshold

t(n), then the probability of any agent to be isolated changes “directly” from zero to

one. What is more, notice that the threshold t(n) = 1/(n−1) is actually the same as

in the BRG model. However, it has to hold for ϕ rather than just for λ since in this

model both λ and a may vary with respect to the size of the network. Indeed, it does

not seem farfetched to assume that homophily increases with the network size as the

assortment of similar agents gets larger. Having understood this, one can directly

deduce the cases where only one of the two parameters varies with n.

Corollary 3. If a ≡ a(n) depends on n but λ does not, one gets that if a(n) goes

toward zero faster than exp(−n), then any given agent is isolated with probability one

in the limit while if a(n) does not go toward zero or at least slower than exp(−n),

then any given agent has at least one link with probability one in the limit.

If λ ≡ λ(n) depends on n but a does not, the condition collapses to the threshold of

t(n) for λ(n) as in the BRG model where any given agent has at least one link if

λ(n) grows faster than t(n) while if λ(n) grows slower than t(n), any given agent is

isolated with probability one.

Both parts of the corollary follow directly from Proposition 3 such that a proof

can be omitted.

4 Clustering

As mentioned in the introduction, a main criticism of the Bernoulli Random Graph

(BRG) model is that the resulting networks do not exhibit clustering while most

examples of real-world networks do so (see e.g. Watts and Strogatz, 1998; Newman,

2003, 2006). In this section, we show that our Homophilous Random Network model

indeed exhibits clustering and one can use the homophily parameter a to calibrate it

to a broad range of degrees of clustering.

The notion of clustering in general captures the extent to which connections in

networks are transitive, that is the frequency with which two agents are linked to

each other given that they have a common neighbor. Watts and Strogatz (1998), who

introduced this concept, measure the transitivity of a network by a global clustering

coefficient which denotes the average probability that two neighbors of a given agent

14



are directly linked as well. A random graph model is said to exhibit clustering if the

coefficient is larger than the general, unconditional linking probability of two agents

(see Newman, 2006). Considering the set of networks that contain some link ij ∈ gN ,

that is Gij := {g ⊆ gN | ij ∈ g} ⊂ G, this can be transferred to our model in the

following way:

Definition 1 (Clustering). For the Homophilous Random Network model with λ ∈
[0, 1] and a ∈ (0, 1) the clustering coefficient is defined as

C(λ, a) := E
P
[

P
G (G ∈ Gjk | P )

∣
∣
∣ G ∈ Gij ∩ Gik

]

where i, j, k ∈ N . The model is said to exhibit clustering if we have C(λ, a) > Φ(λ, a).

The choice of the agents i, j and k obviously cannot have an influence in this

context since ex ante, i.e. before characteristics realize, all agents are assumed to be

equal. Further, recall that Φ gives the probability of two agents to be connected,

characteristics being unknown. The function C captures this probability as well,

however, conditional on the existence of a common neighbor. It should be clear that

the original BRG model does not exhibit clustering since every link is formed with

the same independent probability. As a main result of this paper, we discover next

that, apart from the limit case of no homophily, our Homophilous Random Network

model has this feature and is insofar more realistic.

Theorem 1 (Clustering in Homophilous Random Networks). In the Homophilous

Random Network model the clustering coefficient is given by

C(λ, a) = λ
3
(

ln(a)a2 + ln(a) − a2 + 1
)

2
(

2 ln(a)a + 4 ln(a) + a2 − 8a + 7
) .

Given a non-extreme homophily parameter, the model exhibits clustering, that is we

have

C(λ, a) > Φ(λ, a)

for all λ ∈ (0, 1], a ∈ (0, 1).

The intuition for the proof of this theorem (which is again presented in the ap-

pendix) is the following: If there is homophily to some degree and two agents have a

common neighbor, then this fact contains additional information. The expected dis-

tance between these two agents is smaller than if there is no assumption about a com-

mon neighbor. Again due to homophily, it is therefore more likely that a link between

15



these two agents forms. Also, Figure 3 might contribute to a better understanding

of the situation. Note here that C(λ, a)/λ ≡ C(1, a) and Φ(λ, a)/λ ≡ Φ(1, a). One

can additionally perceive that the difference C(λ, a) − Φ(λ, a) is strictly decreasing

in a ∈ (0, 1) for all λ ∈ (0, 1], that is clustering is strictly increasing in the degree of

homophily.

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

3/8

Φ(1, a)

C(1, a)

a

Figure 3: Clustering coefficient C(1, a) and unconditional linking probability Φ(1, a)
for all homophily parameters a ∈ (0, 1)

Again, it is of interest to consider the limit cases of maximal and no homophily

which we do in the following corollary.

Corollary 4. For maximal homophily, i.e. for a → 0, we have

lim
a→0

C(λ, a) = lim
a→0

[C(λ, a) − Φ(λ, a)] =
3

8
λ.

In case of no homophily, i.e. for a → 1, we get

lim
a→1

C(λ, a) = lim
a→1

Φ(λ, a) = λ.

If there is no homophily, we are again back in the BRG model which we already

know not to exhibit clustering. Insofar, the second part of the corollary is consis-

tent. However, the more interesting case is the one of maximal homophily. Though
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in the limit no link forms with positive probability, one can deduce properties re-

garding the case of homophily being high, yet not maximal, due to continuity of the

functional forms. Let us clarify the intuition why the clustering coefficient takes a

value strictly between zero and λ if homophily is maximal. Recall first that we have

lima→0 Φ(λ, a) = 0 since for maximal homophily only agents with identical character-

istics are linked with positive probability and such two agents exist with probability

zero. However, the clustering coefficient is a probability conditioned on the existence

of links to a common neighbor. This additional information implies that either char-

acteristics are equal or links have formed despite differing characteristics. Though

both events occur only with probability zero, this does not preclude them per se.

Having understood this, it should be clear that in the former case the probability of

the third link would indeed be λ while in the latter case it would still be zero. Taken

together, this yields lima→0 C(λ, a) ∈ (0, λ). It remains surprising, however, that the

clustering coefficient takes the specific value 3
8
λ.

5 The Small-World Phenomenon

Besides the presence of homophily and clustering, another stylized fact is frequently

observed in real-world networks which is widely known as the small-world phe-

nomenon. It captures the finding that, even in large networks, there typically exist

remarkably short paths between two individuals. The original BRG model is known

to reproduce this feature (see e.g. Bollobás, 2001; Chung and Lu, 2002).

Thus, in this section, we aim to establish the small-world phenomenon to be pre-

served in our Homophilous Random Network (HRN) model even in case of homophily

being high. For this purpose, we present and analyze simulations of homophilous ran-

dom networks as this issue seems to be no longer analytically tractable. Our simula-

tions provide a strong indication that also in cases of high homophily the small-world

phenomenon remains present. Additionally, we apply two alternative statistical no-

tions of clustering. It turns out that their values are not significantly different from

the analytical measure given in Definition 1. In the following, Figure 4 may already

provide a first intuition regarding the differences between cases of high and low ho-

mophily. In particular, while the total number of links is almost the same in both

simulated 100-agent networks, one observes clustering merely in the first case.

The notion of the small-world phenomenon usually grounds on the average short-

est path length between all pairs of agents belonging to a network and having a

connecting path. We also refer to this as the “average distance” between agents.
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Figure 4: Top: HRN with λ = 0.5, a = 10−8; #links = 484
Bottom: BRG with linking probability Φ(0.5, 10−8) = 0.0513; #links = 496
(created with MATLAB, 2014)

With regard to real-world networks the small-world phenomenon is a rather vague

concept since it is typically based on subjective assessments of path lengths rather

than on verifiable, definite criteria. However, most people will agree that the values

for several real-world networks as for instance compiled by Watts and Strogatz (1998)

and Newman (2003) are surprisingly low. Insofar, it could be said that most of these

networks exhibit the small-world phenomenon. A formal definition of the small-world

phenomenon applicable to most random network models is formulated by Newman

(2003) and reads as follows:

Definition 2 (Small-World Phenomenon). A random network is said to exhibit the

small-world phenomenon if the average distance d̄ between agents scales logarithmi-

cally or slower with network size n while keeping agents’ expected degree constant,

that is if d̄/ ln(n) is non-increasing in n.

As already mentioned, it has been established that the original BRG model ex-

hibits the small-world phenomenon according to Definition 2 (see e.g. Bollobás, 2001;

Chung and Lu, 2002). It is not clear, however, whether this still holds for our general-

18



ization, given a considerably high level of homophily, but the results of the following

simulations provide some indication.

Prior to this, let us additionally introduce two statistical notions of clustering

which are frequently used in the literature and closely related to the one given in

Definition 1. The simulations allow to compare these for our model. Here, clustering

is associated with an increased number of triangles in the network. More precisely,

both alternative clustering measures are defined based on the ratio of the number

of triangles and the number of connected triples. A triangle is a subnetwork of

three agents all of whom being connected to each other while a connected triple is a

subnetwork of three agents such that at least one of them is linked to the other two.

Formally, this amounts to the following definition.

Definition 3 (Statistical Clustering). For a given network with set of agents N =

{1, ..., n}, the (statistical) clustering coefficients C(1) and C(2) are determined by

C(1) :=
3 × number of triangles in the network

number of connected triples in the network
and

C(2) :=
1

n

∑

i∈N

number of triangles containing agent i

number of connected triples centered on agent i
.

The coefficient C(1) counts the overall number of triangles and relates it to the

overall number of connected triples in the network. The factor of three accounts for

the fact that each triangle contributes to three connected triples. The second one,

C(2), which goes back to Watts and Strogatz (1998), first calculates an individual

clustering coefficient for each agent and then averages these. Compared to the first

one, C(2) gives more weight to low-degree agents.14 Additionally, note that C(2) is

only well-defined if there are no isolated or loose-end agents in the network.

To capture both the heuristic and the formal approach to the small-world phe-

nomenon, we present the outcomes of two different simulations. In Simulation 1, we

fix the number of agents n = 500 and the ex-ante expected degree of any agent to

ηexp = 15. Recalling Remark 1, the latter is done by choosing λ ≡ λ̄(a, 500, 15) =
15 ln(a)2

998(a−1−ln(a))
. We then select several homophily levels ranging from no homophily, i.e.

the limit case of the BRG model, to very high homophily, represented by a = 10−8.

For each parameter value of a, we then simulate a homophilous random network

R = 1000 times and assess the averaged network statistics. The parameters and net-

work statistics of this simulation are stated in Table 1. Note that fixing the ex-ante

14Referring to C(2), Newman (2003, p. 184) states “This definition effectively reverses the order
of the operations of taking the ratio of triangles to triples and of averaging over vertices – one here
calculates the mean of the ratio, rather than the ratio of the means.”
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expected degree enables us to compare our results for different homophily levels as

this implies identical values for Φ(λ, a) in all cases. Recall that Φ captures the ex-ante

expected probability of two agents to be connected, that is for characteristics being

unknown (recall Proposition 1 and Corollary 2).

Parameter / Statistics a = 1 a = 10−2 a = 10−4 a = 10−6 a = 10−8

n 500
R 1000
Exp. Degree ηexp 15
Exp. Linking Prob. Φ 0.0301

λ̄(a, n, ηexp) 0.0301 0.0882 0.1553 0.2239 0.2928

Avg. Degree η̄ 14.9990 15.0074 15.0098 14.9899 15.0037
(0.2475) (0.3064) (0.2986) (0.2925) (0.2839)

Avg. Distance d̄ 2.5944 2.6288 2.8086 3.0806 3.3939
(0.0113) (0.0164) (0.0277) (0.0429) (0.0611)

d̄/ ln(n) 0.4175 0.4230 0.4519 0.4957 0.5461
(0.0018) (0.0026) (0.0045) (0.0069) (0.0098)

Clustering Coeff. C 0.0301 0.0411 0.0641 0.0892 0.1147

Clustering Coeff. C(1) 0.0301 0.0411 0.0642 0.0891 0.1147
(0.0013) (0.0016) (0.0023) (0.0029) (0.0035)

Clustering Coeff. C(2) 0.0301 0.0411 0.0642 0.0892 0.1148
(0.0015) (0.0019) (0.0026) (0.0032) (0.0039)

Table 1: Results of Simulation 1 comparing network statistics for different homophily
levels ranging from no homophily (BRG) to extreme homophily; Standard errors
stated in parentheses (carried out with MATLAB, 2014)

Regarding the results of Simulation 1, we find that the average distance increases

in homophily. This is in line with intuition as agents with (widely) differing char-

acteristics are increasingly likely to be distant in the network. Moreover, in Section

3 we revealed that (and how) the expected degree of an agent with given character-

istic varies in homophily (see again Remark 1 and Figure 2). To be more precise,

the increase in average distance seems to be due to the fact that there are typically

agents with extreme characteristics whose expected degrees decrease as homophily

increases.15 However, it increases by less than one link from no to highest homophily.

Also, an average distance of less than 3.4 between two agents can still be considered

relatively small in a network of 500 agents with about 15 links on average. Thus,

regarding the heuristic approach, it seems reasonable to accept the small-world phe-

15The results of Jackson (2008a) can be regarded as a confirmation thereof as in his model, where
agents’ expected degrees are exogenously given and therefore invariant with respect to homophily,
the average distance remains unchanged if homophily increases.
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nomenon to be exhibited for all homophily levels.16

Furthermore, we observe an increasing level of clustering for the simulated ho-

mophilous random networks. This is in line with the findings in Section 4. If ho-

mophily is highest, the probability that two agents are linked, given they have a

common neighbor, is about four times as high as in the case of the Bernoulli Random

Graphs where this probability coincides with the unconditional linking probability

Φ(λ, a). Another expectable, yet important observation is that there are no sig-

nificant differences between the expected clustering coefficient C (recall Definition

1) and the values we determined for the statistical coefficients C(1) and C(2) (recall

Definition 3).17 To sum up, Simulation 1 indicates that the Homophilous Random

Network model exhibits the small-world phenomenon and clustering at the same time

for all a ∈ (0, 1). In what follows, we consider the most interesting case of highest

homophily captured by a = 10−8 in more detail.

Simulation 2 focuses on the formal Definition 2 of the small-world phenomenon.

For this purpose, we simulate a collection of R = 100 networks for each size n =

150, 200, 250, ..., 1000, again keeping agents’ ex-ante expected degree fixed, and com-

pute the respective averages of the relevant network statistics. To this end, we con-

sider the parameter of highest homophily that is regarded in Simulation 1. The

precise data is stated in Table 2. Note that, for each network size, this second simu-

lation is structurally the same as the first one, merely a smaller number of iterations

is chosen due to computational restrictions. However, as can be seen in Table 1, all

standard errors and especially the one of the ratio d̄/ ln(n) are very low. Thus, 100

iterations should be sufficient to generate a precise estimate.

In Figure 5, we plot the ratio of the average distance and the logarithm of the

network size d̄/ ln(n) for the different network sizes n. This ratio is decreasing in n as

the illustration reveals. From this, we deduce that the average distance d̄ increases

slower in n than ln(n) does. Thus, the homophilous random networks exhibit the

small-world phenomenon according to Definition 2.

Finally, one would expect to observe the less triangles of links between agents, that

is the less clustering, the larger the network. This is because we keep agents’ ex-ante

expected degrees fixed while increasing the number of possible neighbors. Indeed,

the statistical clustering coefficients C(1) and C(2) are decreasing in the network size

n (see Table 2). By increasing the network size even further, our simulation indicates

16To calculate the average distance, one commonly restricts to agents having a connecting path
if the network has more than one component. However, such a network realized extremely rarely in
this simulation, namely only in 0.06% of all cases.

17Note that isolated and loose-end agents never appeared in the simulation, guaranteeing that
C(2) was steadily well-defined.
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Parameter / Statistics n = 150 200 250 300 350 400
R 100
a 10−8

Expected Degree ηexp 15

λ̄(a, n, ηexp) 0.980 0.734 0.587 0.489 0.419 0.366
Average Degree η̄ 15.10 14.98 14.96 15.00 14.95 14.98

Average Distance d̄ 3.027 3.109 3.189 3.235 3.284 3.323

d̄/ ln(n) 0.6042 0.5868 0.5776 0.5671 0.5606 0.5546
Clustering Coeff. C(1) 0.385 0.287 0.229 0.191 0.164 0.143
Clustering Coeff. C(2) 0.386 0.288 0.229 0.191 0.164 0.143

Parameter / Statistics n = 450 500 550 600 650 700
R 100
a 10−8

Expected Degree ηexp 15

λ̄(a, n, ηexp) 0.325 0.293 0.266 0.244 0.225 0.209
Average Degree η̄ 15.04 15.00 14.98 15.02 15.02 14.97

Average Distance d̄ 3.356 3.401 3.417 3.459 3.466 3.501

d̄/ ln(n) 0.5493 0.5472 0.5416 0.5408 0.5352 0.5345
Clustering Coeff. C(1) 0.128 0.115 0.104 0.095 0.088 0.082
Clustering Coeff. C(2) 0.128 0.115 0.104 0.095 0.088 0.082

Parameter / Statistics n = 750 800 850 900 950 1000
R 100
a 10−8

Expected Degree ηexp 15

λ̄(a, n, ηexp) 0.195 0.183 0.172 0.162 0.154 0.146
Average Degree η̄ 15.02 14.98 14.98 14.99 15.01 15.00

Average Distance d̄ 3.519 3.541 3.546 3.575 3.599 3.605

d̄/ ln(n) 0.5315 0.5297 0.5257 0.5255 0.5249 0.5218
Clustering Coeff. C(1) 0.076 0.072 0.068 0.064 0.060 0.057
Clustering Coeff. C(2) 0.076 0.072 0.068 0.064 0.061 0.057

Table 2: Results of Simulation 2 computing average degrees, distances and small
world ratios of the HRN model for a growing network size (carried out with MATLAB,
2014)

that both clustering coefficients will approach zero as the network becomes infinitely

large. Note that this is in line with the behavior of the expected clustering coefficient

C where we simply have a factor of (n − 1) in the denominator if we insert λ =

λ̄(a, n, ηexp) (see Theorem 1 and Remark 1).
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Figure 5: Small World of HRN as indicated by Simulation 2 (created with MATLAB,
2014)

6 An Example of the Labor Market

While in the previous sections, a theoretical analysis of the suggested Homophilous

Random Network model is presented, we now provide one possible economic appli-

cation. In recent years, more and more research in the field of labor economics has

been dedicated to understanding the mechanisms of different hiring channels. One of

these channels, which is commonly used in reality, relies on the contacts of current

employees. Starting with the seminal contribution of Montgomery (1991), a lot of

researchers decided to model connections between workers as a social network (see

e.g. Calvó-Armengol, 2004; Calvó-Armengol and Jackson, 2007; Dawid and Gemkow,

2014).18 As known from the extensive sociological literature (see Section 1), in these

social networks, one should expect to observe homophily with respect to skills or com-

petence, performance, education, level of income, and geographical distance. While

there are lots of empirical studies confirming the existence of homophily in workers’

social contacts and analyzing the implications thereof (see e.g. Mayer and Puller,

2008; Rees, 1966), only few work has yet been dedicated to developing theoretical

models capturing this effect.19

18For an extensive survey including both empirical and theoretic literature from sociology and
economics see Ioannides and Loury (2004).

19Exceptions are Horváth (2014), van der Leij and Buhai (2008) and Zaharieva (2013), however,
all using binary notions of homophily.
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In our application, we consider a risk-neutral firm that plans to fill an open va-

cancy. Two possible hiring channels are available. On the one hand, there is the

formal job market and, on the other hand, the possibility to hire a contact of its cur-

rent employee. Based on the model introduced in Section 2, we consider n workers

and a vector of characteristics p capturing the ability of each worker to do the vacant

job. W.l.o.g. we assume that agent 1 is the current employee of the firm while all

other agents 2, ..., n are supposed to be available on the job market. While we fix p1 as

a parameter of the model, meaning that the firm knows the ability of its current em-

ployee, p−1 = (p2, .., pn) is again considered as a realization of the (n−1)-dimensional

random variable P−1. Given this situation and based on individual linking probabil-

ities (1) for parameters λ, a ∈ (0, 1), we assume that a homophilous random network

forms.

Knowing the distribution function of the random variable P−1 and the conditional

linking probabilities but not the realization, the firm has to decide on one hiring

channel. For this purpose, the expected characteristic of a contact of agent 1 is the

crucial statistic. It can be calculated as follows.20

Proposition 4. Given some homophily parameter a ∈ (0, 1), the expected charac-

teristic of a neighbor j ∈ {2, ..., n} of agent 1 with given characteristic p1 ∈ [0, 1]

is

E
P [Pj | G ∈ G1j] =

1

2
+

(ap1 − a1−p1)(1
2

− 1
ln(a)

) + 2p1 − 1

2 − ap1 − a1−p1
. (10)

In Figure 6, the expected characteristic of an agent’s neighbor as in (10) is plotted

as a function of p1 ∈ [0, 1] and a ∈ (0, 1). However, an analytical investigation reveals

some intuitive properties, at least for some special cases. These might contribute to

a better understanding of the rather complicated functional form and its appearance.

We collect these properties in the following corollary. Note that all of them can be

detected in Figure 6.

Corollary 5. Function (10) in Proposition 4 yields:

(i) E
P [Pj | G ∈ G1j]

∣
∣
∣
p1= 1

2

= 1
2

∀a ∈ (0, 1),

(ii) lima→0 E
P [Pj | G ∈ G1j] = p1 ∀p1 ∈ [0, 1], and

(iii) lima→1 E
P [Pj | G ∈ G1j] = 1

2
∀p1 ∈ [0, 1].

20Note that this probability is meaningful only if agent 1 has at least one link. For large networks,
however, this is guaranteed whenever the corresponding condition of the threshold theorem (recall
Proposition 3) is fulfilled.
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Figure 6: Expected characteristic of a neighbor of agent 1 with realized characteristic
p1 ∈ [0, 1], given homophily level a ∈ (0, 1) (created with MATLAB, 2014)

If, for simplicity, one assumes that the expected characteristic or rather ability of

a worker hired via the formal job market is some value p̄ ∈ (0, 1) which is independent

of the homophily parameter a and the ability of the current employee p1. Given this

situation, the firm faces a simple decision rule when to hire via the social network.

We have that, for sufficiently high p1 and low a, respectively, the expected ability of

the current employee’s contact exceeds any ability level p̄. More precisely, for any

parameter value a ∈ (0, 1), solving the equation E
P [Pj | G ∈ G1j] = p̄ yields a min-

imum ability level p1 (if existing at this homophily level) that has to be reached for

the expected ability of the current employee’s contact to exceed p̄. Similarly, given

p1 ∈ [0, 1], we obtain a maximum level of a, that is a minimum level of homophily.

Thus, the decision rule is that the firm should hire a randomly chosen contact in-

stead of recruiting via the formal job market if and only if the respective calculated

minimum level is exceeded (or at least reached).

Finally, note that this would still hold, at least qualitatively, if one would consider

the best contact of agent 1, that is the neighbor j with maximal pj instead of the

neighbors’ average ability. Certainly, the adapted minimum levels of homophily and

current employee’s ability (see above) would be smaller in this case, meaning that

it would be optimal for the firm to hire via the social network for an even broader

range of parameter combinations (a, p1).
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7 Discussion and Conclusion

In this paper, we set up a novel Homophilous Random Network model incorporating

heterogeneity of agents. In a two-stage random process, first each agent (or vertex)

is assigned a one-dimensional characteristic. Second, based on these realized charac-

teristics, the links of a random network form whilst taking into account a continuous

notion of homophily. This captures the frequently observed propensity of individuals

to connect with similar others. Exploiting this continuous formalization of homophily,

our approach allows for a broad range of homophily levels ranging from the extreme

case of maximal homophily where only equal agents get linked with positive proba-

bility up to the case where there is no homophily at all. The latter case corresponds

to the Bernoulli Random Graph (BRG) model, often referred to as the Erdős-Rényi

model. Insofar, our model can also be regarded as a generalization thereof. Most

importantly, unlike the vast majority of related economic models, we indeed capture

homophily as it is defined and used in the sociological literature, namely in terms of

similarity rather than equality.

In our work, we first reveal some basic properties and network statistics of the

Homophilous Random Network model and establish a threshold theorem. The com-

parison with the BRG model provides additional insight. To derive one of our main

results, we focus on another stylized fact of real-world networks, namely the occur-

rence of clustering. Although homophily and clustering are frequently observed in

reality, both phenomena are not captured by the original BRG model. While re-

vealing by simulations that the small-world phenomenon is apparently preserved, we

are able to show analytically that homophily induces clustering in our model. This

gives rise to the conjecture that also in reality there might be a considerable causality

between the two. It might be worthwhile for future research to pursue this question.

Finally, we provide an easily accessible application of our model for labor economics.

Assuming homophily with respect to abilities to do a certain job, we consider workers

being connected through a homophilous random network. We determine the expected

ability of a given worker’s random contact depending on the level of homophily and

the given worker’s own ability. This yields a simple decision rule for a firm which

intends to fill an open vacancy and needs to decide whether to hire through a current

employee’s contacts or the formal job market.

Our Homophilous Random Network model is now available as a tool which can be

used to understand and predict diffusion processes in social networks. As it complies

with those important stylized facts which we frequently observe in social networks,
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it might yield meaningful results, for instance, regarding the spread of information

or a disease.

Beyond that, there are certainly several further questions which remain open for

future research. Although our simulation results yield a strong indication in this

direction, one task would be to show analytically that the small-world phenomenon

is generally preserved in our model. As a second point, it could be of interest to

expand our considerations about threshold theorems and to establish those for differ-

ent properties such as connectedness in our model. Also, a calibration of the model

to real-world data is yet to be done. Performing this in a meaningful way is most

certainly a challenge, especially as the level of homophily in a given network is not

clearly observable. However, one way to deal with this could be to calibrate the model

to the observable degree of clustering which we showed to be directly connected to

homophily in our model.

Further, it would be a natural, yet analytically challenging extension to check the

qualitative robustness of our findings for different distributions of characteristics. For

many applications, a distribution that puts more weight on intermediate character-

istics might represent reality more accurately. For instance, this could be captured

in our model by drawing agents’ characteristics from an appropriate beta distribu-

tion. In fact, we found that replacing the uniform distribution by a beta distribution

with different shape parameters, does not change the results of our simulations qual-

itatively. In particular, choosing a combination of shape parameters such that it is

scarcer for agents to have extreme characteristics, entails that the average distance is

still increasing in homophily, however less strongly. This is interesting as it confirms

our explanation that the increase of the average distance in homophily is due to the

fact that, in our model, agents with extreme characteristics become relatively less

connected as homophily increases. Furthermore, an extension of our model to multi-

dimensional characteristics would be valuable, in particular if one would succeed to

combine characteristics of both continuous and binary nature.

Finally, within our labor market application, one could pursue the idea as it is

outlined at the end of Section 6, that is to calculate the expected maximum charac-

teristic of a given agent’s neighbor. In this way, one could determine the firm’s gains

from giving bonuses to its current employee for recommending her best instead of a

random neighbor.
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A Proofs

A.1 Proof of Proposition 1

We calculate the expected probability:

E
P
[

P
G (ij ∈ G | P ) | Pi = pi

]

= E
P
[

λa|Pi−Pj | | Pi = pi

]

= λ
( ∫ 1

0
fPj

(pj)
︸ ︷︷ ︸

1

a|pi−pj |dpj

)

= λ
(∫ pi

0
api−pj dpj +

∫ 1

pi

apj−pidpj

)

= λ
(

api

∫ pi

0
a−pj dpj + a−pi

∫ 1

pi

apj dpj

)

= λ
(

api
1 − a−pi

ln(a)
+ a−pi

a − api

ln(a)

)

=
λ

ln(a)

(

api + a1−pi − 2
)

. (11)

Moreover, by integrating equation (11) with respect to pi, we get the expected prob-

ability if p is unknown:

E
P
[

P
G [ij ∈ G | P ]

]

= E
P
[

λa|Pi−Pj |
]

= λ

(
∫

[0,1]2
fPi,Pj

(pi, pj)
︸ ︷︷ ︸

=fPi
(pi)fPj

(pj)=1

a|pi−pj |d(pi, pj)

)

(11)
= λ

( ∫ 1

0

(api + a1−pi − 2)

ln(a)
dpi

)

=
λ

ln(a)

[

api − a1−pi − 2pi ln(a)

ln(a)

] ∣
∣
∣
∣
∣

pi=1

pi=0

=
λ

ln(a)2
[a − 1 − 2 ln(a) − 1 + a]

=
2λ

ln(a)2
[a − 1 − ln(a)] .
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A.2 Proof of Corollary 1

Using l’Hôpital’s rule, we calculate the limit of ϕ as

lim
a→0

ϕ(λ, a, pi) = lim
a→0

λ(api + a1−pi − 2)

ln(a)
= lim

a→0

λ(pia
pi−1 + (1 − pi)a

−pi)

1/a

= lim
a→0

λ(pia
pi + (1 − pi)a

1−pi) = 0.

Similarly, we get

lim
a→1

ϕ(λ, a, pi) = lim
a→1

λ(api + a1−pi − 2)

ln(a)
= lim

a→1

λ(pia
pi−1 + (1 − pi)a

−pi)

1/a

= lim
a→1

λ(pia
pi + (1 − pi)a

1−pi) = λ.

For the case of Φ, by now using l’Hôpital’s rule twice, we get

lim
a→0

Φ(λ, a) = lim
a→0

2λ
a − 1 − ln(a)

ln(a)2
= lim

a→0
2λ

1 − 1/a

2 ln(a)/a
= lim

a→0
λ

a − 1

ln(a)
= 0

as well as

lim
a→1

Φ(λ, a) = lim
a→1

2λ
a − 1 − ln(a)

ln(a)2
= lim

a→1
2λ

a − 1

2 ln(a)
= lim

a→1
λ

1

1/a
= λ.

A.3 Proof of Proposition 2

Taking into account equation (2), we calculate

E
P
[

P
G (ηi(G) = k | P ) | Pi = pi

]

= E
P




∑

K⊆N\{i}:|K|=k




∏

j∈K

(q(Pi, Pj)) ·
∏

l∈N\K\{i}

(1 − q(Pi, Pl))



 | Pi = pi





=
∑

K⊆N\{i}:|K|=k



E
P




∏

j∈K

(q(Pi, Pj)) ·
∏

l∈N\K\{i}

(1 − q(Pi, Pl)) | Pi = pi









=
∑

K⊆N\{i}:|K|=k






∫

[0,1]n−1

(

fP−i
(p−i)

︸ ︷︷ ︸

=1

·
∏

j∈K

(q(pi, pj)) ·
∏

l∈N\K\{i}

(1 − q(pi, pl))

)

dp−i






=
∑

K⊆N\{i}:|K|=k




∏

j∈K

(∫ 1

0
(q(pi, pj)) dpj

)

·
∏

l∈N\K\{i}

(∫ 1

0
(1 − q(pi, pl)) dpl

)



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(2)
=

∑

K⊆N\{i}:|K|=k





(

λ

ln(a)

(

api + a1−pi − 2
)
)k

·
(

1 − λ

ln(a)

(

api + a1−pi − 2
)
)n−k−1





(2)
=

(

n − 1

k

)

· (ϕ(λ, a, pi))
k · (1 − ϕ(λ, a, pi))

n−k−1 .

A.4 Proof of Proposition 3

The probability that an agent i with given characteristic pi is isolated is

E
P
[

P
G (ηi(G) = 0 | P ) | Pi = pi

] (9)
= (1 − ϕ(λ(n), a(n), pi))

n−1.

If we assume that there is at least some homophily as the size of the network becomes

large, that is formally

∃ ǫ̃ > 0, n̄ ∈ N : a(n) ≤ 1 − ǫ̃ ∀ n ≥ n̄,

then we have that

∃ ǫ > 0 : 2 − a(n)p̂ − a(n)1−p̂ ∈ [ǫ, 2] ∀ n ≥ n̄.

Now it holds that if limn→∞[−λ(n)/(ln(a(n))t(n))] = ∞, then we have

lim
n→∞

(1 − ϕ(λ(n), a(n), pi))
n−1

= lim
n→∞

(

1 − ϕ(λ(n), a(n), pi)/t(n)

n − 1

)n−1

(2)
= lim

n→∞



1 −
λ(n)(n−1)

ln(a(n))
(a(n)pi + a(n)1−pi − 2)

n − 1





n−1

= lim
n→∞

exp

(

−λ(n)(n − 1)

ln(a(n))
︸ ︷︷ ︸

→∞

(a(n)pi + a(n)1−pi − 2)
︸ ︷︷ ︸

∈[−2,−ǫ]

)

= 0.
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On the contrary, if limn→∞[−λ(n)/(ln(a(n))t(n))] = 0, then we get

lim
n→∞

(1 − ϕ(λ(n), a(n), pi))
n−1

= lim
n→∞

exp

(

−λ(n)(n − 1)

ln(a(n))
︸ ︷︷ ︸

→0

(a(n)pi + a(n)1−pi − 2)
︸ ︷︷ ︸

∈[−2,−ǫ]

)

= 1.

A.5 Proof of Theorem 1

We calculate the clustering coefficient

C(λ, a)

= E
P
[

λa|Pj−Pk|
∣
∣
∣ G ∈ Gij ∩ Gik

]

= λ
∫

[0,1]n
a|pj−pk|fP (p | G ∈ Gij ∩ Gik)dp

= λ
∫

[0,1]n
a|pj−pk| fP,G(p,Gij ∩ Gik)

fG(Gij ∩ Gik)
dp

=
λ

fG(Gij ∩ Gik)

∫

[0,1]n
a|pj−pk|fP,G(p,Gij ∩ Gik)dp

=
λ

fG(Gij ∩ Gik)

∫

[0,1]n
a|pj−pk|fG(Gij ∩ Gik | P = p)

=1
︷ ︸︸ ︷

fP (p) dp

=
λ

∫

[0,1]n fP (x)
︸ ︷︷ ︸

=1

fG(Gij ∩ Gik | P = x)dx

∫

[0,1]n
a|pj−pk|fG(Gij ∩ Gik | P = p)dp

=
λ

∫

[0,1]n P
G(G ∈ Gij ∩ Gik | P = x)dx

∫

[0,1]n
a|pj−pk|

P
G(G ∈ Gij ∩ Gik | P = p)dp

=
λ

∫

[0,1]n λa|xi−xj |λa|xi−xk|dx

∫

[0,1]n
a|pj−pk|λa|pi−pj |λa|pi−pk|dp

= λ

∫

[0,1]n a|pj−pk|+|pi−pj |+|pi−pk|dp
∫

[0,1]n a|xi−xj |+|xi−xk|dx
= λ

∫

[0,1]3 a|pj−pk|+|pi−pj |+|pi−pk|d(pi, pj, pk)
∫

[0,1]3 a|xi−xj |+|xi−xk|d(xi, xj, xk)
. (12)
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Let us solve the integral in the denominator first. For the sake of readability denote

x = (xi, xj, xk). We have

∫

[0,1]3
a|xi−xj |+|xi−xk|dx =

∫

x∈[0,1]3:
xj ,xk≤xi

a2xi−xj−xkdx +
∫

x∈[0,1]3:
xi≤xj ,xk

axj+xk−2xidx

+
∫

x∈[0,1]3:
xj≤xi≤xk

axk−xj dx +
∫

x∈[0,1]3:
xk≤xi≤xj

axj−xkdx

=
2 ln(a) − 4a + a2 + 3

2(ln(a))3
+

2 ln(a) − 4a + a2 + 3

2(ln(a))3

+
2 ln(a) − 4a + 2a ln(a) + 4

2(ln(a))3
+

2 ln(a) − 4a + 2a ln(a) + 4

2(ln(a))3

=
1

2(ln(a))3

[

8 ln(a) − 16a + 2a2 + 4 ln(a)a + 14
]

.

Next, we solve the integral in the numerator of (12), substituting x for p in order to

use the same notation as above. This yields

∫

[0,1]3
a|xj−xk|+|xi−xj |+|xi−xk|dx

=
∫

x∈[0,1]3:
xi≤xj≤xk

a2xk−2xidx +
∫

x∈[0,1]3:
xi≤xk≤xj

a2xj−2xidx +
∫

x∈[0,1]3:
xj≤xi≤xk

a2xk−2xj dx

+
∫

x∈[0,1]3:
xj≤xk≤xi

a2xi−2xj dx +
∫

x∈[0,1]3:
xk≤xi≤xj

a2xj−2xkdx +
∫

x∈[0,1]3:
xk≤xj≤xi

a2xi−2xkdx

= 6
ln(a) − a2 + a2 ln(a) + 1

4(ln(a))3
=

1

2(ln(a))3

[

3 ln(a) − 3a2 + 3a2 ln(a) + 3
]

.

Taken together, this gives

C(λ, a) = λ
3 ln(a) − 3a2 + 3a2 ln(a) + 3

8 ln(a) − 16a + 2a2 + 4 ln(a)a + 14
.

By using this, we can now start with the actual proof. We have

C(λ, a) − Φ(λ, a)

= λ




3
(

ln(a)a2 + ln(a) − a2 + 1
)

2
(

2 ln(a)a + 4 ln(a) + a2 − 8a + 7
) +

2
(

ln(a) − a + 1
)

ln(a)2





= λ3 ln(a)3(a2+1)+ln(a)2(−3a2+8a+19)+ln(a)(−4a2−40a+44)+(−4a3+36a2−60a+28)
2 ln(a)2(2 ln(a)a+4 ln(a)+a2−8a+7)

. (13)
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In what follows, we use that for a ∈ (0, 1) we have

ln(a) = −
∞∑

m=0

(1 − a)m+1

m + 1

which implies that ln(a) < −∑M
m=0

(1−a)m+1

m+1
< 0 for all M ∈ N. The first and easier

part is to show that the denominator of the term on the right-hand side of equation

(13) is negative for all a ∈ (0, 1). We calculate

2 ln(a)a + 4 ln(a) + a2 − 8a + 7

= 2(a + 2) ln(a) + a2 − 8a + 7

< − 2(a + 2)
(

1 − a +
1

2
(1 − a)2 +

1

3
(1 − a)3

)

+ a2 − 8a + 7

=
1

3
(a + 2)

(

2a3 − 9a2 + 18a − 11
)

+ a2 − 8a + 7

=
1

3

(

2a4 − 5a3 + 3a2 + a − 1
)

= −1

3
(1 − a)3(2a + 1) < 0.

Further, we define

g(a) := 3 ln(a)3(a2 + 1) + ln(a)2(−3a2 + 8a + 19) + ln(a)(−4a2 − 40a + 44)

+ (−4a3 + 36a2 − 60a + 28).

Then λg(a) is the numerator of the term on the right-hand side of equation (13). We

calculate the derivatives

dg
da(a) = 1

a

[
6 ln(a)3a2 + ln(a)2(3a2 + 8a + 9) + 2 ln(a)(−7a2 − 12a + 19)

+4(−3a3 + 17a2 − 25a + 11)
]
,

d2g
da2 (a)= 1

a2

[
6 ln(a)3a2 + 3 ln(a)2(7a2 − 3) + 4 ln(a)(−2a2 + 4a − 5)

+6(−4a3 + 9a2 − 4a − 1)
]
,

d3g
da3 (a)= 1

a3

[
18 ln(a)2(a2 + 1) + 2 ln(a)(21a2 − 8a + 11) + 8(−3a3 − a2 + 5a − 1)

]
,

d4g
da4 (a)= 1

a4

[
18 ln(a)2(−a2 − 3) + 2 ln(a)(−3a2 + 16a − 15) + 2(25a2 − 48a + 23)

]
,

d5g
da5 (a)= 1

a5

[
36 ln(a)2(a2 + 6) + 12 ln(a)(−2a2 − 8a + 1) + 2(−53a2 + 160a − 107)

]
,

d6g
da6 (a)= 1

a6

[
108 ln(a)2(−a2 − 10) + 12 ln(a)(12a2 + 32a + 31) + 2(147a2 − 688a + 541)

]
.

Notice here that

g(1) =
dg

da
(1) =

d2g

da2
(1) =

d3g

da3
(1) =

d4g

da4
(1) =

d5g

da5
(1) = 0.
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Moreover, we have

d6g

da6
(a) =

1

a6

[

108 ln(a)2 (−a2 − 10)
︸ ︷︷ ︸

<0

+12 ln(a) (12a2 + 32a + 31)
︸ ︷︷ ︸

>0

+ 2(147a2 − 688a + 541)
]

<
1

a6

[

108(1 − a)2(−a2 − 10) − 12(1 − a)(12a2 + 32a + 31)

+ 2(147a2 − 688a + 541)
]

=
2

a6

[

− 54a4 + 180a3 − 327a2 + 386a − 185
]

=
2

a6
(1 − a)

[

54(a − 7
9
)3 + 103(a − 7

9
) − 2146

27

]

<
2

a6
(1 − a)

[

54 · (2
9
)3 + 103 · 2

9
− 2146

27

]

= −112

a6
(1 − a) < 0.

Combining this, it follows for all a ∈ (0, 1) that

d5g

da5
(a) > 0 ⇒ d4g

da4
(a) < 0 ⇒ d3g

da3
(a) > 0 ⇒ d2g

da2
(a) < 0 ⇒ dg

da
(a) > 0

⇒ g(a) < 0.

Taken together, we have indeed that

C(λ, a) − Φ(λ, a) = λ
g(a)

2 ln(a)2
(

2 ln(a)a + 4 ln(a) + a2 − 8a + 7
) > 0

which concludes the proof of the theorem.
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A.6 Proof of Corollary 4

By applying l’Hôpital’s rule three times, we calculate

lim
a→0

C(λ, a) = λ lim
a→0

3 ln(a) − 3a2 + 3a2 ln(a) + 3

8 ln(a) − 16a + 2a2 + 4 ln(a)a + 14

= λ lim
a→0

3/a − 6a + 6a ln(a) + 3a

8/a − 16 + 4a + 4 ln(a) + 4

=
3λ

4
lim
a→0

1 − a2 + 2a2 ln(a)

2 − 3a + a2 + a ln(a)

=
3λ

4

lima→0[1 − a2 + 2a2 ln(a)]

lima→0[2 − 3a + a2 + a ln(a)]

=
3λ

4

lima→0[1] − lima→0[a
2] + lima→0[2a2 ln(a)]

lima→0[2] − lima→0[3a] + lima→0[a2] + lima→0[a ln(a)]

=
3λ

4

1 − 0 + limx→∞[2 ln(1/x)/x2]

2 − 0 + 0 + limx→∞[ln(1/x)/x]

=
3λ

4

1 + limx→∞[−2x(1/x2)/2x]

2 + limx→∞[−x(1/x2)/1]
=

3λ

4

1 + limx→∞[−1/x2]

2 + limx→∞[−1/x]
=

3λ

8
.

The stated result follows immediately since we established in Corollary 1 that

lima→0 Φ(λ, a) = 0. On the contrary, by again using l’Hôpital’s rule three times,

we get

lim
a→1

C(λ, a) = λ lim
a→1

3 ln(a) − 3a2 + 3a2 ln(a) + 3

8 ln(a) − 16a + 2a2 + 4 ln(a)a + 14

= λ lim
a→1

3/a − 6a + 6a ln(a) + 3a

8/a − 16 + 4a + 4 ln(a) + 4

= λ lim
a→1

3 − 3a2 + 6a2 ln(a)

8 − 12a + 4a2 + 4a ln(a)

= λ lim
a→1

−6a + 12a ln(a) + 6a

−12 + 8a + 4 ln(a) + 4
= λ lim

a→1

12 ln(a) + 12

8 + 4/a
= λ.

According to Corollary 1, we have lima→1 Φ(λ, a) = λ which concludes the proof.
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A.7 Proof of Proposition 4

We calculate

E
P [Pj | G ∈ G1j] =

∫ 1

0
pjfPj |G(pj,G1j)dpj =

∫ 1

0
pjfPj

(pj | G ∈ G1j)dpj

=
∫ 1

0
pj

fPj ,G(pj,G1j)

fG(G1j)
dpj

=
∫ 1

0
pj

fG(G1j | Pj = pj)

1
︷ ︸︸ ︷

fPj
(pj)

fG(G1j)
dpj

=
∫ 1

0
pj

fG(G1j | Pj = pj)
∫ 1

0 fPj
(x)

︸ ︷︷ ︸

1

fG(G1j | Pj = x)
︸ ︷︷ ︸

P(G∈G1j | Pj=x)

dx
dpj

=
∫ 1

0
pj

λa|p1−pj |

︷ ︸︸ ︷

fG(G1j | Pj = pj)
1

∫
0

λa|p1−x|dx
︸ ︷︷ ︸

λ
ln(a)

(ap1 +a1−p1 −2)

dpj

=
ln(a)

ap1 + a1−p1 − 2

∫ 1

0
pja

|p1−pj |dpj.

Focusing on the integral first gives

∫ 1

0
pja

|p1−pj |dpj =
∫ p1

0
pja

(p1−pj)dpj +
∫ 1

p1

pja
(pj−p1)dpj

=
ap1 − p1 ln(a) − 1

ln(a)2
+

a1−p1(ln(a) − 1) − p1 ln(a) + 1

ln(a)2
.

It follows that

E
P (Pj | G ∈ G1j) =

ap1 + a1−p1(ln(a) − 1) − 2p1 ln(a)

ln(a)(ap1 + a1−p1 − 2)
(14a)

=
1

2
+

(ap1 − a1−p1)(1
2

− 1
ln(a)

) + 2p1 − 1

2 − ap1 − a1−p1
. (14b)

A.8 Proof of Corollary 5

Considering the functional form (10), we prove the properties in question one after

the other. Regarding Part (i), by using equation (14b) we calculate for a ∈ (0, 1)
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that

E
P [Pj | G ∈ G1j]

∣
∣
∣
p1= 1

2

=
1

2
+

(
√

a − √
a)(1

2
− 1

ln(a)
) + 1 − 1

2 − √
a − √

a
=

1

2
.

Next, we consider Part (ii). Again applying equation (14b), we get

lim
a→0

E
P [Pj | G ∈ G1j] =

1

2
+

(0 − 0)(1
2

+ 0) + 2p1 − 1

2 − 0 − 0
= p1

for p1 ∈ (0, 1) and for the marginals we have

lim
a→0

E
P [Pj | G ∈ G1j]

∣
∣
∣
p1=0

=
1

2
+

(1 − 0)(1
2

+ 0) + 0 − 1

2 − 1 − 0
= 0,

lim
a→0

E
P [Pj | G ∈ G1j]

∣
∣
∣
p1=1

=
1

2
+

(0 − 1)(1
2

+ 0) + 2 − 1

2 − 0 − 1
= 1.

To establish Part (iii), we have to apply l’Hôpital’s rule. For p1 ∈ [0, 1] we get

lim
a→1

E
P [Pj | G ∈ G1j]

(14a)
= lim

a→1

ap1 + a1−p1(ln(a) − 1) − 2p1 ln(a)

ln(a)(ap1 + a1−p1 − 2)

= lim
a→1

p1a
p1−1 + (1 − p1)a

−p1(ln(a) − 1) + a−p1 − 2p1

a
1
a
(ap1 + a1−p1 − 2) + ln(a)(p1ap1−1 + (1 − p1)a−p1)

(15)

while using l’Hôpital’s rule once. However, we obviously need to apply it a second

time. For this purpose, we calculate the derivatives of the numerator and denominator

of the term on the right-hand side in equation (15). We get

∂

∂a

[

p1a
p1−1 + (1 − p1)a

−p1(ln(a) − 1) + a−p1 − 2p1

a

]

=p1(p1 − 1)ap1−2 + p1(p1 − 1)a−p1−1(ln(a) − 1) + (1 − p1)a
−p1−1 − p1a

−p1−1 +
2p1

a2

and

∂

∂a

[
1

a
(ap1 + a1−p1 − 2) + ln(a)(p1a

p1−1 + (1 − p1)a
−p1)

]

= − 1

a2
(ap1 + a1−p1 − 2) +

2

a
(p1a

p1−1 + (1 − p1)a
−p1)

+ ln(a)(p1(p1 − 1)ap1−2 + p1(p1 − 1)a−p1−1).
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By recalling equation (15) and using l’Hôpital’s rule the second time, this gives

lim
a→1

E
P [Pj | G ∈ G1j] =

p1(p1 − 1) + p1(p1 − 1)(0 − 1) + (1 − p1) − p1 + 2p1

−(1 + 1 − 2) + 2(p1 + (1 − p1)) + 0
=

1

2

which concludes the proof.
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