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Abstract

We analyze a model of strategic network formation prior to a Manea (2011)

bargaining game: ex-ante homogeneous players form costly undirected links, an-

ticipating expected equilibrium payoffs from the subsequent network bargaining.

Assuming patient players, we provide a complete characterization of generically

pairwise stable networks: specific unions of separated pairs, odd circles, and

isolated players constitute this class. We also show that many other structures,

such as larger trees or unbalanced bipartite networks, cannot be pairwise stable

at all. As an important implication, this reveals that the diversity of possible

bargaining outcomes is substantially narrowed down, provided that the under-

lying network is (generically) pairwise stable.
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1 Introduction

People often engage in bi- and multilateral bargaining: firms bargain with workers’

unions over contracts, firms with other firms over prices or collaborations, politicians

over environmental or trade agreements, or even friends and family members over

household duties or other arrangements. However, in most of the situations that come

to mind, not everyone will be able or willing to bargain with anyone else. This idea

can be expressed by means of a network. One’s bargaining power in negotiations then

commonly depends on the number and types of alternative partners since they present

outside options. Rational strategic agents typically intend to maximize their expected

profit from bargaining, which suggests that they might want to influence and optimize

their network of potential bargaining partners. In such situations, the underlying

network should not be regarded as being exogenously given but as the outcome of

strategic interaction among agents. However, forming a link to someone else usually

costs some time and effort, which should be taken into account as well. This gives

rise to a nontrivial trade-off between the costs of forming links and potential benefits

from it. This consideration is the topic of this paper. Which networks can one expect

to form at which level of linking costs? And which bargaining outcomes do these

networks induce? These are the main research questions we address.

We set up and analyze a sequential model of strategic network formation prior to a

Manea (2011) infinite-horizon network bargaining game. We consider ex ante homoge-

neous players who in the first stage strategically form undirected, costly links. In this

context, one might think of one-time initiation or communication costs that players

have to bear. In the second stage, we take the resulting network as given and play-

ers sequentially bargain with a neighbor for the division of a mutually generated unit

surplus. According to Manea (2011), all subgame perfect equilibria of the bargaining

game are payoff equivalent. Players are supposed to anticipate these outcomes during

the preceding network formation game and to choose their actions accordingly. For

the case in which players are infinitely patient, we examine their strategic behavior re-

garding network formation, characterize the stable network structures, and determine

the induced bargaining outcomes.

After giving a description of the model, including a summary of the underlying

Manea (2011) bargaining game and his decisive results, we consider the seminal concept

of pairwise stability established by Jackson and Wolinsky (1996). As the first of two

main results, we establish a complete characterization of generically pairwise stable

networks. To this end, we first state and prove sufficient conditions for the structure of

a network to be pairwise stable (Theorem 1). When costs are relatively high, these are
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specific unions of separated pairs and isolated players. When costs decrease, odd circles

of increasing size can additionally emerge. This result also establishes the existence

of pairwise stable networks at each level of linking costs. For each combination of the

above subnetworks, we specify for which cost range it is pairwise stable and for which

it is not (Corollary 1). In considering the necessary conditions for pairwise stability,

we differentiate between “equitable” networks and those in which at least two players

in one component receive different payoffs. We provide a complete characterization of

equitable pairwise stable networks by demonstrating that, in any such network, any

nonisolated player has to be contained in a separated pair or in an odd circle (Theo-

rem 2). Complementary to this, we show that any network that induces heterogeneous

payoffs within a component can at be pairwise stable at no more than a single cost

level (Theorem 3). This concludes the complete characterization of generically pairwise

stable networks (Corollary 3).

As our second main result, we conclude that pairwise stability substantially narrows

down the diversity of induced bargaining outcomes among players. However, though

players are ex ante homogeneous, they do not have to be completely equal in this

respect (Corollary 4). Finally, we reveal that networks containing a tree (with more

than three players), a certain kind of “cut-player”, or a certain class of bipartite

subnetworks cannot even be nongenerically pairwise stable (Proposition 2).

For a concrete economic application captured by our model which might contribute

to a better understanding of the framework, consider a number of similar firms that

begin operation at the same time. This might be, for instance, in a new industry which

just got established, thanks to a recent innovation. These firms can jointly generate an

(additional) surplus within bilateral projects by exploiting synergy potentials. This

possibility could arise from capacity constraints or cost-saving opportunities. How-

ever, since no prior cooperation network exists at this early stage, it will have to be

created through a strategic interaction between the firms. Those taking charge of that

interaction will be project managers who receive bonus payments proportional to their

employer’s profit from the project. Here, one-time initiation costs might arise to pre-

pare each two firms for mutual projects (for instance, it might be necessary to adjust

the IT or to organize joint trainings for workers, etc.). We assume that each project

manager keeps her position only until she reaches an agreement with a counterpart.

Such two project managers will then leave their positions (to carry out the project, for

instance) or get promoted and, in either case, are each replaced by a successor. This

means that the network remains unchanged after it has initially been established by

the first project managers.

In such a context, it makes good sense to take as a starting point the suitable
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framework and convenient results established in Manea (2011). To my best knowl-

edge, that is the only work which focuses purely on the impact of explicit network

structures on players’ bargaining power and outcomes in a setting of decentralized

bilateral bargaining without imposing any restrictions ex ante to the class of networks

considered. Thus, none of the distorting effects are present that might otherwise arise

from additional incentives to add or delete links, from ex-ante heterogeneity among

players, or in buyer-seller scenarios (which impose bipartite network structures). Also,

stochastic effects do not play a role. Moreover, Manea’s network bargaining game is an-

alytically tractable and has some important properties. For any level of time discount,

all subgame perfect equilibria are payoff equivalent. Beyond that, Manea develops an

equally convenient and sophisticated algorithm which determines the limit equilibrium

payoffs for a given network of infinitely patient players. We make extensive use of this

algorithm and contribute to a deeper understanding of its features throughout this

paper.

1.1 Additional Related Literature

The analysis of bargaining problems has a long tradition in the economic literature

and dates back to the work of Nash (1950, 1953). A Nash bargaining solution is based

on factors like players’ bargaining power and outside options, whereas their origin is

not part of the theory. This also applies to Rubinstein (1982), who analyzes perfect

equilibrium partitions in a two-player framework of sequential bargaining in discrete

time with an infinite horizon; and Rubinstein and Wolinsky (1985), who set up a

model of bargaining in stationary markets with two populations. The work of Manea

(2011), to which we add a preceding stage of strategic interaction, can be regarded as

an extension of or microfoundation for these four seminal papers. Here, bargaining

power is endogenized in a natural and well-defined manner as an outcome of the

given network structure and the respective player’s position in it. Other important

contributions to the literature on decentralized bilateral bargaining in exogenously

given networks have been made by Abreu and Manea (2012) and Corominas-Bosch

(2004); the latter considers the special case of buyer-seller networks.

In addition, this paper contributes to the more recently emerging literature on

strategic network formation which has been inspired mainly by the seminal paper of

Jackson and Wolinsky (1996). Other prominent works which have been carried out

since then (although not in a bargaining framework) are those by Bala and Goyal

(2000), Calvó-Armengol (2004), Galeotti et al. (2006), Goyal and Joshi (2003, 2006),

and Watts (2001), to name a few. Some effort has also been dedicated to gaining

rather general insights regarding the existence, uniqueness, and structure of stable
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networks; see, for example, Hellmann (2013) and Hellmann and Landwehr (2014).1

Thus far, only a few papers have combined these two fields of research. Calvó-

Armengol (2003) studies a bargaining framework like that in Rubinstein (1982), em-

bedded in a network context, and considers stability and efficiency issues. However,

the mechanism that determines bargaining partners is different from that in Manea

(2011) and the network bargaining game ends after the first agreement has been found.

As a consequence, in Calvó-Armengol’s (2003) model a player’s network position does

not affect her bargaining power as such, but only the probability that she is selected as

proposer or responder. This leads to a characterization of pairwise stable networks in

which the players’ neighborhood size is the only relevant feature of the network struc-

ture. It therefore differs substantially from our results though we both have in common

the assumption that links are costly. In contrast, Manea (2011, Online Appendix) ab-

stracts from explicit linking costs when approaching the issue of network formation as

an extension of his model. He shows that for zero linking costs, a network is pairwise

stable if and only if it is equitable. Though results differ and get more complex for

positive linking costs, we will see that the present work is in line with this finding in

such a way that both works complement one another.2 Most other papers studying

strategic network formation in a bargaining context focus on buyer-seller networks,

which is also complementary to our more general approach; examples of such papers

include Kranton and Minehart (2001) and Polanski and Vega-Redondo (2013). Again,

the latter does not involve explicit linking costs.

The rest of the paper is organized as follows. In Section 2 we introduce the model,

including the decisive results of Manea (2011). The main results on the structure of

stable networks and induced bargaining outcomes are developed in Section 3. Finally,

Section 4 concludes. The rather complex and lengthy proofs are presented in the

appendix.

2 The Model

Let time be discrete and denoted by t = 0, 1, 2, ... For the initial period t = 0 consider

a finite set of players N = {1, 2, ..., n}. A connection or (undirected) link between

two players i, j ∈ N , i 6= j, is denoted by {i, j} which we abbreviate for simplicity

1Note, however, that the results of Hellmann (2013) and Hellmann and Landwehr (2014) are in
general not applicable to our framework, because our model does not include certain crucial conditions
that would permit such an application. For details, see Gauer (2016, Appendix 3.B).

2In fact, we show that only “skeletons” of equitable networks (that is, certain unions of separated
pairs and odd circles) survive if costs are positive. However, nonequitable networks, such as unions
of odd circles and an isolated player, can also be pairwise stable in our setting.
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by ij = ji := {i, j}. A collection of such links is an undirected graph or network

g ⊆ gN := {ij | i, j ∈ N, i 6= j} where gN is called the complete network. Let Ni(g) :=

{j ∈ N | ij ∈ g} denote the set of player i’s neighbors in g and let ηi(g) := |Ni(g)| be

its cardinality which is also referred to as the degree of player i.

Furthermore, for a network g, a set C ⊆ N is said to be a component if there exists

a path between any two players in C and it is Nj(g)∩C = ∅ for all j /∈ C.3,4 The set of

all components of g then gives a partition of the player set N . Moreover, a subnetwork

g′ ⊆ g is said to be component-induced if there exists a component C of g such that

g′ = g|C . In general, for any set K ⊆ N , we denote g|K := {ij ∈ g | i, j ∈ K} and we

commonly consider such a subnetwork as being defined on the player set K instead of

N (thus, disregarding isolated players in K∁). In addition, for two networks g, g′ ⊆ gN

let g−g′ := g\g′ (g+g′ := g∪g′, respectively) denote the network obtained by deleting

the set of links g′ ∩ g from (adding the set of links g′\g to) the network g.

In our model, ex ante, i.e. apart from their potentially differing network positions,

players are assumed to be identical.5 These players are then assumed to strategically

form links in period t = 0. The outcome of this network formation game is a network

g. The interpretation of a link ij ∈ g is that players i, j ∈ N are able to mutually

generate a unit surplus. On the contrary, each link causes costs of link formation c > 0

for both players involved. Thus, player i has to bear total costs of ηi(g)c in t = 0.

We take this as a starting point for an infinite-horizon network bargaining game

à la Manea (2011). In each period t = 0, 1, 2, ... nature randomly chooses one link

ij ∈ g which means that i and j are matched to bargain for a mutually generated unit

surplus. One of the two players is randomly assigned the role of the proposer while the

other one is selected as responder. Then the proposer makes an offer how to distribute

the unit surplus and the responder has the choice: If she rejects, then both receive a

payoff of zero and stay in the game whereas both leave with the shares agreed on if

she accepts. In the latter case, both players get replaced one-to-one in the next period

such that the initially formed network remains unchanged.6,7 This implies that each

3We say that there exists a path between two players i′, i′′ ∈ N in g if there exist players
i1, i2, ..., im̄ ∈ N , m̄ ∈ N, such that i1 = i′, im̄ = i′′ and imim+1 ∈ g for m = 1, 2, ..., m̄ − 1.

4One can alternatively define the component Ci(g) ⊆ N of player i ∈ N in g as the minimal set
of players such that both i ∈ Ci(g) and Ni′(g) ⊆ Ci(g) for all i′ ∈ Ci(g).

5In the literature, this is sometimes referred to as a “homogeneous society” (see e.g. Hellmann and
Landwehr, 2014).

6This replacement is primarily due to technical reasons. The implication that the network structure
does not change over time makes the model analytically tractable. However, recalling the motivating
example on bilateral project cooperation from Section 1 gives a hint that there are real-world situations
for which this is a good approximation.

7This is why Manea carefully distinguishes between network positions and (potentially) different
players being in one and the same position in different periods. However, as we examine solely the
stage of network formation at time t = 0 here, we can neglect this distinction.
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of the (initial) players 1, 2, ..., n will bargain successfully one time at most. A player’s

strategy in this setting pins down the offer she makes as proposer and the answer she

gives as responder after each possible history of the game. Based on this, a player’s

payoff is then specified as her discounted expected agreement gains. A strategy profile

is said to be a “subgame perfect equilibrium” of the bargaining game if it induces Nash

equilibria in subgames following every history (see Manea, 2011). Players are assumed

to discount time by a uniform discount factor δ ∈ (0, 1).8

The key result from Manea is that all subgame perfect equilibria are payoff equiv-

alent and that each player’s equilibrium payoff exclusively depends on her network

position and the discount factor δ (see Manea, 2011, Theorem 1). Moreover, the equi-

librium payoff vector, which we denote as v∗δ(g) = (v∗δ
i (g))i∈N , is the unique solution

to the equation system

vi =



1 −
∑

j∈Ni(g)

1

2d#(g)



 δvi +
∑

j∈Ni(g)

1

2d#(g)
max{1 − δvj, δvi}, i ∈ N, (1)

where d#(g) denotes the total number of links in the network g. If we have δ
(

v∗δ
i (g) +

v∗δ
j (g)

)

< 1 for ij ∈ g, then this means that player i and j find an agreement when

their mutual link is selected whereas δ
(

v∗δ
i (g) + v∗δ

j (g)
)

> 1 means that each of them

prefers to wait for a potentially better deal with a weaker partner.9 This gives rise to

the definition of the so called equilibrium agreement network g∗δ :=
{

ij ∈ g | δ
(

v∗δ
i (g)+

v∗δ
j (g)

)

≤ 1
}

. For the bargaining game, we assume players to play a subgame perfect

equilibrium-strategy profile.

Throughout this paper, we focus on the limit case of δ → 1, meaning that players

are infinitely patient. For this case, Manea (2011, Theorem 2) finds that, for all δ

being greater than some bound, the corresponding equilibrium agreement networks

are equal. This network g∗ ⊆ g is then called the limit equilibrium agreement network.

Moreover, we again take from Manea (2011, Theorem 2) that the limit equilibrium

payoff vector v∗(g) := limδ→1 v∗δ(g) is well-defined, i.e. it always exists. For simplicity,

we also refer to this as player i’s payoff in this paper. It is important to precisely

distinguish it from a player’s profit which we define as her payoff net of linking costs.

Thus, in period t = 0, each player i ∈ N intends to maximize her profit

u∗
i (g) := v∗

i (g) − ηi(g)c.

8One might argue that players should be allowed to form (or delete) links in periods t = 1, 2, ... as
well. However, as the game has an infinite horizon, any player faces just the same situation in any
period as (the player who was in her network position) in the previous period. Therefore, there do
not arise additional or altered incentives regarding link formation over time.

9In the case δ
(
v∗δ

i (g) + v∗δ
j (g)

)
= 1 both players are indifferent.
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Here, we assume that players know the whole structure of the network g such that

they are able to anticipate their profits.

Manea develops a smart algorithm to determine the limit equilibrium payoff vec-

tor v∗(g) and we make heavily use of this computation method. To prepare for the

implementation of the algorithm we need to introduce some additional notation. For

any set of players M ⊆ N and any network g let Lg(M) := {j ∈ N | ij ∈ g, i ∈ M}

be the corresponding partner set in g, that is the set of players having a link in

g to a player in M .10 Further, a set M ⊆ N is called g-independent if we have

g|M := {ij ∈ g | i, j ∈ M} = ∅, i.e. if no two players contained in M are linked in g.

Moreover, let I(g) ⊆ P(N) denote the set of all nonempty g-independent subsets of

N . Then the algorithm determining the payoff vector v∗(g) is the following.

Definition 1 (Manea (2011)). For a given network g on the player set N , the algo-

rithm A(g) provides a sequence (rs, xs, Ms, Ls, Ns, gs)s=1,...,s̄ which is defined recursively

as follows. Let N1 := N and g1 := g. For s ≥ 1, if Ns = ∅ then stop and set s̄ = s.

Otherwise, let

rs = min
M⊆Ns,M∈I(g)

|Lgs(M)|

|M |
. (2)

If rs ≥ 1 then stop and set s̄ = s. Otherwise, set xs = rs

1+rs
. Let Ms be the union

of all minimizers M in (2). Denote Ls := Lgs(Ms). Let Ns+1 := Ns\(Ms ∪ Ls) and

gs+1 := g|Ns+1
.

Given such a sequence (rs, xs, Ms, Ls, Ns, gs)s=1,...,s̄ being the outcome of the de-

scribed algorithm A(g), the limit equilibrium payoff vector for this network can be

determined by applying a simple rule. Note that this rather sophisticated result of

Manea (2011, Theorem 4) is absolutely fundamental for our work.

Payoff Computation (Manea (2011)). Let (rs, xs, Ms, Ls, Ns, gs)s=1,...,s̄ be the out-

come of A(g) for a given network g. Then the limit equilibrium payoffs are given

by

v∗
i (g) = xs for all i ∈ Ms, s < s̄,

v∗
j (g) = 1 − xs for all j ∈ Ls, s < s̄,

v∗
k(g) = 1

2
for all k ∈ Ns̄.

(3)

Let us figure out what the algorithm A(g) in combination with the payoff calcula-

tion rule actually does. Starting with the network g and player set N , at each step s

10Although it does not make a big difference, do not confuse with the notation of Manea who refers
to Lg∗

(M) instead.

8



it identifies the so called minimal shortage ratio rs among the remaining players Ns in

the network gs = g|Ns
. There is a largest g-independent set Ms which minimizes this

shortage ratio such that

rs =
|Ls|

|Ms|
,

where Ls is the partner set of Ms. The limit equilibrium payoff of the players in

Ms is then given by xs = rs

1+rs
= |Ls|

|Ms|+|Ls|
< 1

2
while their partners in Ls receive

1 − xs = |Ms|
|Ms|+|Ls|

> 1
2
. These players are then deleted from the player set and their

links from the network and the algorithm moves forward to the next step. It stops as

soon as there are either no more players left or if the minimal shortage ratio is greater

than or equal to one. In the latter case, the limit equilibrium payoff of all remaining

players is 1
2
.

For the considered setting, the algorithm quantifies the general idea that, when it

comes to bilateral bargaining, players usually benefit from having multiple potential

partners they can choose from. This improves their bargaining position as they are not

too dependent on others in this case. Conversely, it is advantageous for players to have

others being dependent on them. Hence, they will themselves benefit the most from

partners with only few links. It becomes clear how these main forces affect players’

payoffs here if, as convenient examples, one applies the algorithm to the networks

sketched in Figure 1 (see Section 3) or in Manea (2011, Figure 2). Obviously, these

forces lead to conflicting interests among strategic players who are to form a network

of potential bargaining partners. This is particularly true if each player can only find

an agreement once. If, in addition, forming links is costly, then this results in an

interesting problem of network formation, the one we examine in this paper.

The described algorithm A(g) together with the previous considerations then also

pins down the profit u∗
i (g) of each player i ∈ N . It is important to note that the

profile of payoffs and therefore also the profile of profits u∗ = (u∗
i )i∈N is component-

decomposable, meaning that u∗
i (g) = u∗

i (g|Ci(g)) for all players i ∈ N and networks g.

Here, Ci(g) ⊆ N denotes the component of player i in g. Thus, a player’s profit is not

affected by other subnetworks which are induced by components she is not contained

in.

Beyond that, note that Manea develops the algorithm A(g) under the assumption

that there are no isolated players in the underlying network g. However, it is easy to

see that equations (3) are still fulfilled if one relaxes this restriction. It is clear that

isolated players have a limit equilibrium payoff of zero since they have no bargaining

partner they could generate a unit surplus with. At the same time, the algorithm A(g)

provides r1 = 0 such that x1 = 0. In this case, M1 is the set of all isolated players in
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the network and we have L1 = ∅. Then, according to (3) and as required, all players

in M1 are assigned a limit equilibrium payoff of x1 = 0.

In what follows, we assume that each player can influence the network structure by

altering own links in t = 0, i.e. before the bargaining game starts.11 This means that

the network is no longer exogenously given as in the work of Manea but the outcome

of strategic interaction between players. This gives rise to our analysis of stability

issues, which is based on the seminal concept of pairwise stability as it was introduced

by Jackson and Wolinsky (1996).

Definition 2 (Pairwise Stability, Jackson and Wolinsky (1996)). Consider the player

set N and a profile of network utility or profit functions (ui)i∈N . Then a network g is

said to be pairwise stable if both

(i) for all ij ∈ g: ui(g) ≥ ui(g − ij) and

(ii) for all ij /∈ g: if ui(g + ij) > ui(g), then uj(g + ij) < uj(g).

So, according to this definition, a network is pairwise stable if no player can improve

by deleting a single link and also no two players can both individually benefit from

adding a mutual link. The analysis of our model demands to distinguish between

pairwise stable networks for which the above conditions hold on a cost interval of

positive length and those for which this is not the case.

Definition 3 (Generic and Nongeneric Pairwise Stability). In the considered frame-

work with network profit function u = u∗ and linking costs c > 0, a network g is

called

• generically pairwise stable if g is pairwise stable for all c′ ∈ (c−ǫ, c+ǫ) for some

ǫ > 0,

• nongenerically pairwise stable if g is pairwise stable but not generically pairwise

stable.12

The results we deduce in Section 3 will even reveal that networks can be pairwise

stable at no more than a single cost level if they are not generically pairwise stable for

any cost level. Thus, the notion of nongeneric pairwise stability is not robust at all

with respect to changes of linking costs. One might say that it is even a singularity for

such a network to encounter precisely the parametrization where it is pairwise stable.

11See again Footnote 8.
12See e.g. Baetz (2015) who refers to a “generic equilibrium” in a different setting but considering

a similar definition.
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We are therefore predominantly interested in generically pairwise stable networks and,

in what follows, establish a complete characterization thereof.13

3 Characterization of Stable Networks

In addition to deriving a complete characterization of generically pairwise stable net-

works, we examine the implications for possible bargaining outcomes (see Subsec-

tion 3.1) as well as the possibility of networks to be nongenerically pairwise stable (see

Subsection 3.2).

We consider period t = 0 and suppose that players, who anticipate the infinite-

horizon network bargaining game, individually intend to maximize their expected prof-

its. To establish our characterization result, we identify pairwise stable structures for

all levels of linking costs c > 0 as a first step. Second, we gradually rule out the

possibility to be pairwise stable for a broad range of networks until we arrive at a

complete characterization of generically pairwise stable networks.14

To get a first impression of the problem, let us have a look at the situation for

three players, i.e. for N = {1, 2, 3}. It turns out that this case already covers many

important aspects of the network formation game. Figure 1 illustrates the four types

of networks which might appear including induced profits u∗
i for each player i ∈ N .15

To comprehend these profits, consider the algorithm introduced in Definition 1 and

the subsequent payoff computation rule.

0

0

00 1
2

− c

1
2

− c

1
2

− 2c 1
2

− 2c

1
2

− 2c

1
3

− c

1
3

− c

2
3

− 2c

gI gII gIII gIV

Figure 1: A sketch of the four network structures which can arise in the case n = 3
with induced profits

Let us consider these networks in detail. We see immediately that the network

gI is pairwise stable if and only if the linking costs c are greater than or equal to 1
2
.

13In fact, our results even reach beyond that and yield a complete characterization of networks
being pairwise stable for more than one level of linking costs.

14See again Footnote 13.
15Note that all other possible networks can be derived by permuting players. This would not

provide additional insights as players are assumed to be ex ante homogeneous.
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Otherwise any two players could increase their profit from zero to 1
2
−c > 0 by creating

a mutual link. However, for c = 1
2

also no player wants to delete this link and indeed,

the cost range c ∈ (1
6
, 1

2
] is the one for which gII is pairwise stable. Here, link deletion

is obviously not beneficial and if one of the two connected players creates a link to the

third player, then she would end up with a profit of 2
3

− 2c which is strictly smaller

than 1
2

− c for this cost range. These latter two terms are equal for c = 1
6

but the third

player would improve from zero to 1
6

in this case. Therefore, at this or an even smaller

cost level, gII cannot be pairwise stable. But so is gIII for c = 1
6
. This is because here

no player has incentives to delete a link and the two players who are not connected

are indifferent between creating a mutual link and not creating it as for this cost level

we have 1
3

− c = 1
6

= 1
2

− 2c. However, if linking costs are even smaller, then both

would profit from this link. Thus, gIII is pairwise stable if and only if c = 1
6
. Finally,

the network gIV is pairwise stable for c ∈ (0, 1
6
] but obviously not at higher cost levels.

It turns out that the observed mechanisms being crucial in the three-player case

hold similarly also in general. Our first theorem reveals sufficient conditions for net-

works to be pairwise stable. More precisely, it identifies, for all cost levels, concrete

network structures being pairwise stable.

Theorem 1 (Sufficient Conditions for Networks to Be Pairwise Stable). In our model,

the following holds:

(i) The empty network is pairwise stable if c ≥ 1
2
.

(ii) A network which is a union of separated pairs and at most one isolated player is

pairwise stable if c ∈ (1
6
, 1

2
].16 Additionally, if c = 1

2
, then several isolated players

can coexist in a pairwise stable network.

(iii) A network which is a union of odd circles with at most 1
2c

players and either

separated pairs or at most one isolated player is pairwise stable if c ∈ (0, 1
6
].17

Additionally, if c = 1
6

and given that there is no isolated player, then there can

also exist lines of length three in a pairwise stable network.18

The formal proof of this theorem is, like all other more complex or lengthy proofs,

provided in Appendix A. It is important to note that, when considering the above

mentioned unions of subnetworks, we do not mean that the respective network nec-

essarily has to be composed of all of the stated subnetworks to be pairwise stable.

16A separated pair denotes a subnetwork induced by a two-player component.
17A circle denotes a component-induced subnetwork which is regular of degree two. A circle with

m players or a m-player circle is induced by a component with cardinality m ≥ 3 and it is called odd
if this cardinality is an odd number.

18A line of length m ≥ 3 denotes a subnetwork induced by a m-player component which can be
transformed to a m-player circle by adding one link.
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For instance, if we consider costs c ∈ (0, 1
6
], then a network consisting only of sepa-

rated pairs or only of (some of the permissible) odd circles is pairwise stable as well.

Furthermore, note that all of these subnetworks are component-induced which implies

that unions are disjoint with respect to contained links and players.

A byproduct of Theorem 1 is that it guarantees existence of a pairwise stable

network at each level of linking costs. Furthermore, we have given a characterization

of at least some pairwise stable networks for each level of costs. However, it is not

clear at all that the types of networks mentioned in the theorem are in each case the

only pairwise stable ones. Anyway, we can already state some consequences from our

observations in the three-player case considered in Figure 1 and the proof of Theo-

rem 1. This is done in the following corollary.

Corollary 1. In our model, a network cannot be pairwise stable if it contains

(i) more than one isolated player while c < 1
2
,

(ii) a separated pair while c > 1
2
,

(iii) a line of length three while c 6= 1
6
,

(iv) an odd circle with more than 1
2c

members,19

(v) an isolated player combined with a separated pair or a line of length three while

c ≤ 1
6
.

Statements (i)–(iv) as well as the first part of Statement (v) of Corollary 1 follow

immediately from what we learned in the three-player case and the proof of Theo-

rem 1. To see that an isolated player and a line of length three cannot coexist in a

network being pairwise stable for some c ≤ 1
6

is quite obvious as well. An isolated

player’s profit is always zero while each of the two players in a line of length three

having one link receives 1
3

− c as we know from the three-player case. If one of these

players links to an isolated player, then the algorithm A(·) yields that all players in

the new component receive a payoff of 1
2
. Thus, it is beneficial for both players to build

this mutual link as for c ≤ 1
6

we have 1
2

−2c ≥ 1
3

−c and 1
2

−c > 0. One should perhaps

mention that according to (iii) it is clear anyway that we cannot have a line of length

three in a pairwise stable network if c < 1
6
. So the above additional consideration is

actually only relevant for c = 1
6
.

Together with this corollary, the results we establish in the further course of this

section reveal that, for generically pairwise stable networks, the corresponding condi-

tions stated in Theorem 1 are not only sufficient but also necessary. Note, however,

19In particular, this means that there can be no odd circles at all in pairwise stable networks as
long as c > 1

6 .
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that a network which is composed of several isolated players and at least one sepa-

rated pair is only nongenerically pairwise stable (only at c = 1
2
, see Theorem 1(ii)).

Similarly, networks containing a line of length three can at most be nongenerically

pairwise stable (only at c = 1
6
, see Theorem 1(iii)).

In general, it is clear that a network can only be pairwise stable if none of the

contained links harms any of the respective two players involved. Therefore, intuition

says that pairwise stable networks cannot have so called disagreement links, that is links

which are not contained in the corresponding limit equilibrium agreement network.

Such a link causes additional costs for both players connected through it whereas it

seems to be irrelevant regarding payoffs. Roughly, this is what we establish in the

following proposition.

Proposition 1. If a network g is pairwise stable for some cost level c > 0 in our

model, then the network itself and the corresponding limit equilibrium agreement net-

work coincide, that is g = g∗, meaning that g does not contain disagreement links. In

particular, this implies that we have v∗
i (g) + v∗

j (g) = 1 for all ij ∈ g.

Proof of Proposition 1. Assume that there exists a disagreement link in the pairwise

stable network, w.l.o.g. say between players 1 and 2, that is we have 12 ∈ g\g∗. Manea

(2011, Theorem 2) then yields that there exists some δ ∈ (0, 1) such that 12 /∈ g∗δ

for all δ ∈ (δ, 1). By definition of the equilibrium agreement network, this means

that we have δ(v∗δ
1 (g) + v∗δ

2 (g)) > 1, implying max{1 − δv∗δ
2 (g), δv∗δ

1 (g)} = δv∗δ
1 (g) and

max{1 − δv∗δ
1 (g), δv∗δ

2 (g)} = δv∗δ
2 (g) for all δ ∈ (δ, 1).

Thus, for the equilibrium payoff vector, which is the unique solution to the equation

system (1) (see Section 2), we have that for all ǫ > 0 there exists δ′ ∈ (δ, 1) such that

||v∗δ(g) − v∗δ(g − 12)||∞ < ǫ for all δ ∈ (δ′, 1).20 Again by Manea (2011, Theorem 2),

20The only reason why we do not have equality here is that d#(g − 12) 6= d#(g). However, the
effect of switching from d#(g) to d#(g − 12) on the corresponding equilibrium payoff vector v∗ gets
arbitrarily small as soon as δ is sufficiently close to one. To see this, note that the equation sys-
tem (1) is equivalent to

2(1 − δ)d#(g)vi = −
∑

j∈Ni(g∗)

δvi +
∑

j∈Ni(g∗)

(1 − δvj), i ∈ N.

for δ ∈ (δ, 1). If we replace d#(g) by d#(g − 12) here, then the altered equation system again has
a unique solution, say ṽδ(g − 12) ∈ [0, 1]n (cf. Manea, 2011, Proof of Proposition 1). Considering
Cramer’s rule, for instance, then reveals that for all ǫ > 0 there exists δ′ ∈ (δ, 1) such that ||v∗δ(g) −
ṽδ(g−12)||∞ < ǫ for all δ ∈ (δ′, 1). Thus, according to Manea (2011, Proposition 1), if δ′ is sufficiently
close to one, then for all δ ∈ (δ′, 1) and ij ∈ g it holds that δ(ṽδ

i (g − 12) + ṽδ
j (g − 12)) ≤ 1 if and only

if ij ∈ g∗. This implies that ṽδ(g − 12) also solves the equation system (1) for the network g − 12,
meaning that v∗δ(g − 12) = ṽδ(g − 12) for all δ ∈ (δ′, 1).
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this gives

u∗
i (g) − u∗

i (g − 12) = v∗
i (g) − v∗

i (g − 12) − c = lim
δ→1

(

v∗δ
i (g) − v∗δ

i (g − 12)
)

− c < 0

for both i ∈ {1, 2}. Hence, g cannot be pairwise stable in the framework with δ → 1

as for both players 1 and 2 it is beneficial to delete their mutual link. Arriving at a

contradiction, this proves that a pairwise stable network cannot contain a disagreement

link.

Finally, together with Manea (2011, Proposition 2), this implies that we have

v∗
i (g) + v∗

j (g) = 1 for all ij ∈ g if g is pairwise stable.

In achieving a complete characterization of generically pairwise stable networks,

this insight will prove to be of great importance. As the first of two major steps to-

wards establishing this complete characterization, we now consider networks inducing

a homogeneous payoff structure. Here, in line with Manea (2011), we call a network

equitable if every player receives a payoff of 1
2
. Moreover, for a given network g with

player set N , we define the subset Ñ(g) := {i ∈ N | v∗
i (g) = 1

2
}. We utilize this nota-

tion in the following theorem, which, in combination with Proposition 1, reveals that

a network can only be pairwise stable if any player receiving a payoff of 1
2

is contained

in a component which either induces a separated pair or an odd circle.

Theorem 2 (Necessary Conditions for Networks to Be Pairwise Stable – Part 1/2).

If a network g is pairwise stable for some cost level c > 0 in our model, then g|Ñ(g)

must be a union of separated pairs and odd circles.21

The proof, which is again given in Appendix A, is by contradiction. The idea is to

assume that g is pairwise stable but g|Ñ(g) is not a union of separated pairs and odd

circles. Note that by Proposition 1 a link from a player in Ñ(g) to a player outside

this set cannot exist which implies that we have v∗
i (g) = v∗

i (g|Ñ(g)) for all i ∈ Ñ(g)

as payoffs are component-decomposable. Further, we make use of both directions of

Manea (2011, Theorem 5) who establishes that a network is equitable if and only if it

has a so called “edge cover” g′ composed of separated pairs and odd circles. A network

g′ is said to be an edge cover of g|Ñ(g) if it fulfills g′ ⊆ g|Ñ(g) and no player in Ñ(g) is

isolated in g′. This implies that any player in Ñ(g) has an incentive to delete each of

her links not contained in g′.

Though statements differ, note that Theorem 2 is in line with Manea (2011, Theo-

rem 1(ii) of the Online Appendix). The latter establishes that for zero linking costs a

network is pairwise stable if and only if it is equitable. Of course, in this case no player

21As usual, g|Ñ(g) here is considered as being defined on the player set Ñ(g) instead of N .
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can gain anything from deleting redundant links from an equitable network. This then

gives rise to a larger class of pairwise stable (equitable) networks. For instance, any

even circle or line of even length is equitable and therefore pairwise stable as long as

there are no linking costs whereas Theorem 2 rules out this possibility for c > 0. On

the contrary, as we have seen in Figure 1 and Theorem 1, for positive linking costs there

additionally exist nonequitable structures, such as networks composed of an isolated

player combined with separated pairs or odd circles, which can be pairwise stable.

Another example for this is the line of length three. However, as we already know,

such a component-induced subnetwork can only occur in a nongenerically pairwise

stable network and, to be more precise, only at the single cost level c = 1
6
. In what

follows, this kind of singularity is central to our investigation.

Summing up our results so far, for all levels of positive linking costs, we achieved

a complete characterization of networks which are pairwise stable and induce homo-

geneous payoffs within each of its components. In these networks, all payoffs must be

equal to either zero (for isolated players) or 1
2

by Proposition 1. According to Theo-

rem 1, Corollary 1 and Theorem 2 certain unions of separated pairs, odd circles and

isolated players constitute this class of networks.

Thus, it remains to consider structures which induce heterogeneous payoffs within

a component. Most of the rest of the section is devoted to the examination of such

networks and the question whether and in which cases they can potentially be pairwise

stable. To begin with, let us make sure to be aware of the following property of pairwise

stable nonequitable networks. Taking into account the payoff computation rule, this

corollary is an immediate consequence of Proposition 1.

Corollary 2. In our model, let g 6= ∅ be a nonequitable network having only one

component and assume that it is pairwise stable for some cost level c > 0. Then there

exists a unique partition M ∪̇ L = N with |M | > |L| and g|M = g|L = ∅, meaning that

g is bipartite.22 Payoffs are then given by

v∗
i (g) = x for all i ∈ M and

v∗
j (g) = 1 − x for all j ∈ L,

where x = |L|
|M |+|L|

.

Note here that, according to Manea (2011, Proposition 3), the sequence of minimal

shortage ratios provided by the algorithm in Definition 1 is strictly increasing for any

network. Thus, Corollary 2 implies that, for any nonequitable pairwise stable network

22If we write M ∪̇ L, this simply denotes the union of two sets M and L being disjoint. We use
this notation whenever disjointness is of importance.
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g consisting of only one component, the algorithm A(g) has to stop after removing all

players during the first step. This then leads to the heterogeneous payoff distribution

with two different payoffs, one below and one above 1
2
.

Based on Corollary 2, the following theorem concludes the complete characteriza-

tion of generically pairwise stable networks. In fact, it establishes that any remaining

network, that is any network in which at least two players belonging to one component

receive different payoffs, can be pairwise stable at no more than a single cost level.

Thus, any network not mentioned in Theorem 1 cannot be generically pairwise stable.

Theorem 3 (Necessary Conditions for Networks to Be Pairwise Stable – Part 2/2).

If a network is pairwise stable for some cost level c > 0 in our model and there is a

component in which players receive heterogeneous payoffs, then in any such component

there must occur exactly two different payoffs x ∈ (0, 1
2
) and 1 − x ∈ (1

2
, 1) with

x + c =
1

2
. (4)

The proof rests on two lemmas which are of some independent interest. We shall

now state these lemmas, one after the other, and then show how they combine to

establish the theorem.

We first show that, if any two players whose payoffs in a pairwise stable network

are strictly smaller than 1
2
, link to each other, then both receive a payoff of 1

2
in the

resulting network.

Lemma 1. In our model, consider a pairwise stable network g for which the algorithm

A(g) provides (r1, x1, M1, L1, N1, g1), i.e. s̄ = 1, such that r1 ∈ (0, 1). Then for all

i, j ∈ M1 it is

v∗
i (g + ij) = v∗

j (g + ij) =
1

2
.

Further, if the player set N = {1, ..., n} is extended by a player n+1 while the network

g remains unchanged, it similarly is v∗
i (g + i(n + 1)) = v∗

n+1(g + i(n + 1)) = 1
2
.

The second lemma, in contrast, considers link deletion and players who receive a

payoff being strictly greater than 1
2

in a pairwise stable network. It establishes that

one link deletion cannot effect these players’ payoffs to fall below 1
2
.

Lemma 2. In our model, consider a pairwise stable network g for which the algorithm

A(g) provides (r1, x1, M1, L1, N1, g1), i.e. s̄ = 1, such that r1 ∈ (0, 1). Then for all

j ∈ L1, i ∈ M1 and kl ∈ g it is

v∗
j (g − kl) ≥

1

2
≥ v∗

i (g − kl).
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The proofs of these lemmas are somewhat lengthy and as usual provided in the

appendix. In both cases we show that, if the respective statement were not true, then

this would imply that the player set is infinite. To arrive at this contradiction, we make

use of an additional, rather technical lemma which we also provide in the appendix

(see Lemma 3). Based on these lemmas, the proof of the theorem is straightforward.

Proof of Theorem 3. Let g be a pairwise stable network inducing heterogeneous pay-

offs within a component C ⊆ N . Let g′ := g|C . According to Corollary 2, the

algorithm A(g′) (with N1 = C) has to stop after the first step, i.e. s̄′ = 1.23 Let

(r′
1, x, M ′

1, L′
1, N ′

1, g′
1) be the outcome of A(g′) and i ∈ M ′

1, j ∈ L′
1. Then any player

in C must either receive a payoff of x =
|L′

1
|

|M ′
1
|+|L′

1
|

∈ (0, 1
2
) or 1 − x =

|M ′
1
|

|M ′
1
|+|L′

1
|

∈ (1
2
, 1).

Then Lemma 1 provides the stability condition

x − ηi(g
′)c ≥

1

2
− (ηi(g

′) + 1)c ⇔ x + c ≥
1

2
.

Similarly, according to Lemma 2 we must have

(1 − x) − ηj(g
′)c ≥

1

2
− (ηj(g

′) − 1)c ⇔ x + c ≤
1

2
.

So payoffs must be x = 1
2

− c and 1 − x = 1
2

+ c. Obviously, this has to hold for all

components of g in which players receive heterogeneous payoffs.

Notice, by considering the limit case c → 0, that Theorem 3 is in line with Manea’s

(2011, Online Appendix) result that for zero linking costs any pairwise stable network

must be equitable. As an immediate consequence of Theorem 3 and the previous

findings, we arrive at the main result of this paper, which can now be stated as a

corollary.

Corollary 3 (Complete Characterization). In our model, the class of generically pair-

wise stable networks is completely characterized by Theorem 1 for each level of linking

costs c > 0.24 Thus, specific unions of isolated players, separated pairs and odd circles

constitute this class.

To see this, recall first that, according to Theorem 2, any network g not mentioned

in Theorem 1 can only be pairwise stable if it induces heterogeneous payoffs within at

least one component. Each player contained in such a component must either receive

a payoff of x = 1
2

− c or 1 − x = 1
2

+ c by Theorem 3.25 Be aware that these equations

23Disregarding isolated players here by considering the restricted player set is w.l.o.g. as the profile
of payoffs respectively profits is component-decomposable.

24Of course, nongenerically pairwise stable networks mentioned in Theorem 1 are to be ignored
here.

25Recalling Corollary 2, the induced subnetwork must be bipartite.

18



do not represent calculation rules determining payoffs in g but necessary conditions

for a network to (possibly) be pairwise stable. Recall that x is in fact determined by

the algorithm A(g), meaning that it solely depends on the structure of g and that

c > 0 is an independent parameter of the model. Therefore, such a network g can only

be pairwise stable at the single cost level c = 1
2

− x. Together with Corollary 1 this

establishes Corollary 3.

Beyond that, given this crucial cost level c = 1
2

− x, it is of course not at all

clear that a network in which each player receives a payoff of x ∈ (0, 1
2
) or 1 − x is

actually pairwise stable. Even if this is the case, then any two players with a payoff

of x must be indifferent between leaving the network unchanged and adding a mutual

link (see Lemma 1). Also, any player receiving a payoff of 1 − x must be indifferent

between keeping all of her links and deleting any one of them (see Lemma 2). In

this sense, it is a very special case that a network inducing heterogeneous payoffs

within a component is pairwise stable and does indeed form. This is why, so far, we

did not specifically examine possible structures of such networks. However, we are

able to specify one such network (and variations respectively generalizations of it as

a component-induced subnetwork), namely the line of length three. It induces payoffs

x = 1
3

and 1 − x = 2
3

and is pairwise stable if and only if c = 1
6
. As opposed to this,

we even rule out the possibility to be pairwise stable at a single cost level for a broad

range of network structures in the further course of this section (see Subsection 3.2).

3.1 Stability and Bargaining Outcomes

After characterizing (generically) pairwise stable networks, we turn first to see what our

findings imply for outcomes of the infinite-horizon network bargaining game. As our

second main result, we demonstrate that payoffs and profits induced by (generically)

pairwise stable networks are in general highly but not completely homogeneous. Given

the previous results of this section, this can be stated as a corollary.

Corollary 4 (Limited Outcome Diversity). In our model, consider a network g which

is pairwise stable at a given level of linking costs c > 0. Then players’ payoffs must

be such that either v∗
i (g) ∈ {1

2
− c, 1

2
, 1

2
+ c} with c ∈ (0, 1

4
] or v∗

i (g) ∈ {0, 1
2
} for all

i ∈ N . Moreover, if g is generically pairwise stable, then only the latter of these two

cases can occur and there exists a set P (g) ⊂ {0, 1
2

− 2c, 1
2

− c} with |P (g)| ≤ 2 such

that for players’ profits it holds that u∗
i (g) ∈ P (g) for all i ∈ N .

This result is basically a consequence of Theorems 2 and 3, Corollary 1, and

Lemma 1. To see this, recall that, in pairwise stable networks, there can only occur

four kinds of players in terms of payoffs. Namely, these are isolated players receiving
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zero, players belonging to a separated pair or an odd circle with a payoff of 1
2
, and

players contained in a component with heterogeneous payoffs who receive 1
2
+c or 1

2
−c.

Note, however, that the former and the latter player type cannot coexist in a pairwise

stable network by the second part of Lemma 1. Moreover, considering a component

with heterogeneous payoffs, linking costs cannot be greater than 1
4
. This is because

any player i ∈ N receiving a payoff of x = 1
2

− c can save costs of c when deleting a

link while falling back to a payoff of zero in the worst case. Provided pairwise stability,

this yields the stability condition

x − ηi(g)c ≥ 0 − (ηi(g) − 1)c ⇔ x ≥ c ⇔
1

2
− c ≥ c ⇔ c ≤

1

4
. (5)

Further, one will only observe profits of zero, 1
2

− 2c, and 1
2

− c in generically pairwise

stable networks as, by our characterization result consolidated in Corollary 3, any such

network must be a union of isolated players, odd circles, and separated pairs. For any

cost level c > 0, even only two of these three kinds of component-induced subnetworks

can coexist in a pairwise stable network according to Corollary 1(iv) and (v).

Taken together, we have that the diversity of possible bargaining outcomes gets

narrowed down substantially compared to the work of Manea (2011) if one considers a

preceding stage of strategic network formation. To this end, observe that in Manea’s

basic framework with δ → 1 one can obtain any rational number from the interval

[0, 1) as a payoff induced by an appropriate network on a sufficiently large player set.26

3.2 Nongeneric Pairwise Stability

As already announced, we now conclude this section by ruling out the possibility to be

pairwise stable at all for a broad range of network structures not considered yet. Up to

here, according to our previous results, any network not considered in Theorem 1 can

at most be nongenerically pairwise stable. In fact, we even have that any remaining

network can be pairwise stable at no more than a single cost level and, moreover, it

must have a component in which players receive heterogeneous payoffs (recall Theo-

rem 3).

In the following proposition, we consider specific classes of networks of that kind.

The main idea of most of the proofs is to identify generic network positions in which

the respective player receives a payoff strictly greater than 1
2

and still does so after

deleting a certain link. Applying the notation of Theorem 3, the resulting stability

26For the rational number n′

n′′
∈ [0, 1) with n′, n′′ ∈ N, consider the player set N with n = n′′ and

the complete bipartite network with n′ players on one side and n′′ − n′ players on the other side.
Then the algorithm A(·) yields payoffs n′′

−n′

n′′
and n′

n′′
.
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condition then yields x + c < 1
2
. Thus, arriving at a contradiction, such a network

cannot be pairwise stable. Also, we consider players who are in a weak bargaining

position but whose loss in payoff from dropping a certain own link is too small to be

compatible with the condition x + c = 1
2
.

To be more precise, we establish that networks containing a tree (apart from the

ones considered in Theorem 1), a certain kind of cut-player, or a certain class of

bipartite subnetworks cannot be pairwise stable at all.27 For a given network g, a

player k ∈ N is called cut-player if g|N\{k} has more components than g.28

Proposition 2. If a network g is pairwise stable in our model, then

(i) it cannot have a component of more than three players which induces a tree,

(ii) there cannot be a cut-player who is part of a cycle and receives a payoff strictly

greater than 1
2
,

(iii) it cannot have a component which induces a bipartite subnetwork with m ∈ N

players on one side and less than m
3

on the other.

Let us consider this proposition in detail. To start with, Part (i) further reduces

the class of potentially pairwise stable networks extensively. It implies that any com-

ponent of a pairwise stable network either contains at most three players or induces a

subnetwork which has a cycle.29 The former case has been analyzed exhaustively in

Theorem 1 and Corollary 1. Thus, the only structures which are not captured by our

analysis yet are networks which have a cycle and in which players receive heterogeneous

payoffs.

A significant subclass of such networks is captured by Part (ii). It rules out the

possibility to be pairwise stable for several generic kinds of networks. For instance,

many networks containing a component-induced subnetwork which has a cycle and

a loose-end player, i.e. there is a player who has one link, are excluded. See Fig-

ure 2 for an illustration of exemplary subnetworks which cannot even be contained in

a nongenerically pairwise stable network according to Proposition 2(ii).

Finally, Part (iii) further reduces the class of potentially pairwise stable networks

by establishing that too unbalanced bipartite structures cannot occur.

27A tree denotes a component-induced subnetwork which is minimally connected.
28This notation comes from graph theory where vertices of that kind are typically called “cut-

vertices” (see e.g. West, 2001). For instance, each player contained in a component which induces a
tree and having more than one link is a cut-player.

29A network g is said to have a cycle if there exist distinct players i1, i2, ..., im̄ ∈ N , m̄ ≥ 3, such
that i1im̄ ∈ g and imim+1 ∈ g for m = 1, 2, ..., m̄ − 1. For instance, this implies that any network
containing a circle has a cycle.
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gV gVI

Figure 2: A sketch of networks which cannot be pairwise stable according to Proposi-
tion 2(ii)

However, there exist other networks not captured by our (explicitly stated) results

which could potentially still be nongenerically pairwise stable. Two examples for this

are given in Figure 3. Though a further generalization is not reached here, it is easy to

check that the concrete networks illustrated in the figure cannot be pairwise stable.30

It remains as a conjecture that, in our model, the only nongenerically pairwise stable

networks inducing heterogeneous payoffs within a component are those containing a

line of length three at cost level c = 1
6
.

gVII gVIII

Figure 3: A sketch of networks which, based on our general results in Section 3, might
still be nongenerically pairwise stable

4 Discussion and Conclusion

In this paper, we develop an analytically tractable model of strategic network formation

in the context of decentralized bilateral bargaining, involving ex ante homogeneous

players and explicit linking costs. One reasonable application of our model can be

seen in the stylized example of project collaboration between firms provided in the

introduction.

Considering infinitely patient players, we derive a complete characterization of

generically pairwise stable networks. This class of networks is constituted by specific

unions of separated pairs, odd circles, and isolated players, where the concrete struc-

30In gVII , it is obvious that one can delete any link without changing payoffs. Also, for instance as
an immediate consequence of Manea (2011, Theorem 6), a network like gVIII is not pairwise stable at
any cost level either.
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ture depends on the level of linking costs. For a sufficiently high cost level (for c > 1
4

to

be more precise), our result even yields a complete characterization of pairwise stable

networks. The induced bargaining outcomes are mostly homogeneous but a certain

level of diversity regarding players’ payoffs and profits can still occur. In addition, we

study the remaining networks which could possibly be nongenerically pairwise stable

and succeed in ruling out this possibility for a broad range of structures. These results

are complementary to Manea (2011, Online Appendix).

Beyond these core results, Gauer (2016, Corollary 3.5) demonstrates, in regard to

alternative stability concepts, that all generically pairwise stable networks even prove

to be pairwise Nash stable. Moreover, Gauer (2016, Theorem 3.4) provides a complete

characterization of the networks which are efficient in terms of a utilitarian welfare

criterion. As pointed out in Gauer (2016, Corollary 3.7), the efficient networks coincide

with the pairwise stable ones as long as linking costs are sufficiently high. If costs are

low, however, then the former networks constitute a proper subset of the latter ones.

And there also exists an intermediate cost range which does not even yield such a

subset relation. Finally, the assumption that players are infinitely patient is relaxed

as a robustness check in Gauer (2016, Section 3.5).

Altogether, the present work contributes to a better understanding of the behav-

ior of players in a noncooperative setting of decentralized bilateral bargaining when

the underlying network is not exogenously given but is instead the outcome of prior

strategic interaction. We gain insights concerning the structure of resulting networks,

induced bargaining outcomes, and the effects that influence players when they are

aiming to optimize their bargaining position in the network.

In regard to future research, a reasonable next step would be to develop a complete

characterization of pairwise stable networks in general, that would go beyond the case

of generic pairwise stability and would cover all levels of linking costs. This would

call for a further discussion of networks which, according to our results, might be

nongenerically pairwise stable for low costs. For this purpose, a promising approach

might be to strive for a generalization of Manea (2011, Theorem 6) to the case where

the buyer-seller ratio is not (necessarily) an integer. Beyond that, it could be valuable

to fully examine the case of players who are less than infinitely patient. Further

important insights could be generated by considering alternative stability concepts,

such as pairwise stability with transfers, which seems quite natural in a bargaining

context. Finally, it would surely be interesting to set up an analytically tractable

model of network formation in a bargaining framework in which players do not get

replaced one-to-one after dropping out. The resulting stochastic change of the network

structure over time would certainly make this another challenging research topic.
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A Proofs

A.1 Proof of Theorem 1

Consider a component C ⊆ N of some network g which induces a circle or a separated

pair. Then in both cases it is impossible to find a g-independent subset M ⊆ C such

that for the corresponding partner set we have |Lg(M)| < |M |. Hence, the algorithm

A(g) yields a payoff of 1
2

for each player contained in C in both cases (recall Definition

1 and the subsequent payoff computation rule). Now consider two players i, j ∈ N

with ij /∈ g where

(a) both are contained in the same component inducing an odd circle,

(b) they are contained in different components each inducing an odd circle,

(c) they are contained in different components each inducing a separated pair,

(d) one is contained in a component inducing an odd circle and the other one is

contained in a component inducing a separated pair, or

(e) one is contained in a component inducing an odd circle and the other one is an

isolated player.

Then in each of these cases the algorithm A(g + ij) again yields a payoff of 1
2

for all

players contained in the new component Ci(g + ij) = Cj(g + ij). The best way to see

this is again to consider Definition 1 and the subsequent payoff computation rule.31

Therefore, at least one of the two players i and j (in Cases (a)–(d) even both) will

receive an unchanged payoff after having established this link. Regarding profits this

means, however, that this player is worse off as she has to bear additional linking costs

of c > 0. Thus, the respective link will never be formed.

Next, recall the three-player case. From this it is straightforward to see that Part

(i) of the theorem is indeed true. Also, we can deduce that a pairwise stable network

can contain both an isolated player and a separated pair if we have linking costs

c ∈ (1
6
, 1

2
]. Together with the above Case (c) this establishes Part (ii) of the theorem.

Consider again a network g and now two players i′, j′ ∈ N with i′j′ ∈ g. Moreover,

assume that these players are contained in a component C which induces an odd circle

with m ≥ 3 players. We already know that g induces a payoff of 1
2

for both players.

Now consider the network g′ := g − i′j′ which is obviously a line of length m. Let

31However, a shortcut would be to consider Manea (2011, Theorem 5) which we make use of when
proving our Theorem 2.
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(r′
s, x′

s, M ′
s, L′

s, N ′
s, g′

s)s=1,...,s̄′ be the outcome of A(g′) (with N1 = C).32 As m is an odd

number, we have that s̄′ = 1 and i′, j′ ∈ M ′
1. Further, it is |M ′

1| = m+1
2

and |L′
1| = m−1

2

which implies that v∗
i′(g′) = v∗

j′(g′) = x′
1 = m−1

2m
. As a stability condition this gives

u∗
i′(g) − u∗

i′(g′) =
1

2
− 2c −

(m − 1

2m
− c

)

≥ 0 ⇔
1

2m
≥ c ⇔ m ≤

1

2c
.

Of course, the same holds for player j′. Together with the above Cases (a) and (b)

this means that a network which is composed of odd circles is pairwise stable if and

only if each circle has at most 1
2c

members. Note that a pairwise stable network can

therefore contain odd circles only if we have c ≤ 1
6

since a circle must have at least

three members by definition.

Furthermore, observe that for the cost range c ∈ (0, 1
6
] we have 1

2
− c > 0 which

means that no player contained in a component inducing a separated pair has incentives

to delete her link. This together with the above Cases (c)–(e) gives that, potentially

besides one or several odd circles with a permissible number of players, a network

being pairwise stable at c ∈ (0, 1
6
] can contain separated pairs or one isolated player.

As we know from the three-player case, however, an isolated player and a separated

pair cannot coexist in a pairwise stable network at these levels of linking costs. This

proves the first statement in Part (iii).

Finally, consider the transition point c = 1
6
. In what follows, let the network g be

composed of two lines of length three, an odd circle, and a separated pair as sketched

in Figure 4.

1

2 3

4 5

6

Figure 4: A sketch of a network g containing lines of length three

W.l.o.g. we focus on the labeled players 1, 2, ..., 6. At c = 1
6

the algorithm A(g)

yields the following profits:

u∗
1(g) =

2

3
− 2c =

1

3
, u∗

2(g) = u∗
3(g) =

1

3
− c =

1

6
, u∗

6(g) =
1

2
− 2c =

1

6

Based on this, we are able to establish that link addition either leads to a worsening

for at least one of the two players or both are indifferent. Specifically, applying the

32Disregarding players in C∁ is w.l.o.g. as the profile of payoffs respectively profits is component-
decomposable.

25



respective algorithm gives

u∗
2(g + 23) = u∗

3(g + 23) =
1

2
− 2c =

1

6
= u∗

2(g) = u∗
3(g),

u∗
1(g + 13) = u∗

1(g + 14) = u∗
1(g + 15) = u∗

1(g + 16) =
2

3
− 3c =

1

6
<

1

3
= u∗

1(g),

u∗
2(g + 25) =

2

5
− 2c =

1

15
<

1

6
= u∗

2(g),

u∗
6(g + 26) =

1

2
− 3c = 0 <

1

6
= u∗

6(g).

Since we know from the three-player case that within the component of a line of length

three there are no incentives to add or delete a link at this cost level, this concludes

the proof of Part (iii) and of the whole theorem.

A.2 Proof of Theorem 2

Consider a pairwise stable network g and assume that g|Ñ(g) is not a union of separated

pairs and odd circles. Notice that due to Proposition 1 for any component C ⊆ N of g it

must either be C ⊆ Ñ(g) or C ⊆ Ñ(g)∁. Furthermore, recall that the profile of payoffs

is component-decomposable, meaning that v∗
i (g) = v∗

i (g|Ñ(g)) for all i ∈ Ñ(g). Thus,

the network g|Ñ(g) is equitable such that by Manea (2011, Theorem 5) respectively by

Berge (1981) it has a so called edge cover composed of separated pairs and odd circles.

This means that there exists a union of separated pairs and odd circles g′ ⊆ g|Ñ(g)

such that no player i ∈ Ñ(g) is isolated in g′. By assumption there must exist a link

ij ∈ g|Ñ(g)\g′. Obviously, the network g′ is also an edge cover of the network g|Ñ(g)−ij.

Again from Manea (2011, Theorem 5) respectively from Berge (1981) it then follows

that g|Ñ(g) − ij is still equitable. Hence, recalling the implication of Proposition 1

mentioned above, this gives

u∗
i (g) = v∗

i (g|Ñ(g)) − ηi(g|Ñ(g))c =
1

2
− ηi(g|Ñ(g))c <

1

2
−

(

ηi(g|Ñ(g)) − 1
)

c

= v∗
i

(

g|Ñ(g) − ij
)

− ηi

(

g|Ñ(g) − ij
)

c

= u∗
i (g − ij).

Thus, arriving at a contradiction, this concludes the proof.

A.3 Proof of Lemma 1 and Lemma 2

As announced in Section 3, the proofs of both lemmas rest on another rather technical

lemma which be provide and prove first.
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Lemma 3. Let g̃ be a network with A(g̃) providing (r̃s, x̃s, M̃s, L̃s, Ñs, g̃s)s. For any

step s < s̄ and any set I ⊆ N the following implications must apply:

(i) 1 ≤ |M̃s ∩ I| ≤ |L̃s ∩ I| ⇒ |Lg̃s(L̃s ∩ I) ∩ M̃s ∩ I∁| ≥ 1,

(ii) 1 ≤ |M̃s ∩ I| < |L̃s ∩ I| ⇒ |Lg̃s(L̃s ∩ I) ∩ M̃s ∩ I∁| ≥ 2.

Proof of Lemma 3. We prove the two parts of the lemma one after the other.

Part (i):

Assume that we have 1 ≤ |M̃s ∩ I| ≤ |L̃s ∩ I| and Lg̃s(L̃s ∩ I) ∩ M̃s ∩ I∁ = ∅ for some

step s < s̄ and some set I ⊆ N . Recalling Definition 1, this obviously implies

|L̃s|

|M̃s|
= r̃s < 1 ≤

|L̃s ∩ I|

|M̃s ∩ I|
.

Additionally, we have that M̃s = (M̃s ∩ I) ∪̇ (M̃s\I) and L̃s = (L̃s ∩ I) ∪̇ (L̃s\I). This

induces that M̃s\I 6= ∅ since it is |M̃s ∩ I| ≤ |L̃s ∩ I| ≤ |L̃s| but |M̃s| > |L̃s|. It follows

that
|L̃s\I|

|M̃s\I|
<

|L̃s|

|M̃s|
.

Moreover, it is Lg̃s(M̃s\I) ⊆ L̃s\I since by assumption Lg̃s(L̃s ∩ I) ∩ M̃s ⊆ I. Taken

together, this then gives

|Lg̃s(M̃s\I)|

|M̃s\I|
≤

|L̃s\I|

|M̃s\I|
<

|L̃s|

|M̃s|
= r̃s,

which contradicts the minimality of r̃s.

Part (ii):

It remains to show that having 1 ≤ |M̃s ∩ I| < |L̃s ∩ I| and |Lg̃s(L̃s ∩ I) ∩ M̃s ∩ I∁| = 1

in some step s < s̄ and for some set I ⊆ N leads to a contradiction as well. In such a

situation, slightly different from Part (i), we have

|L̃s|

|M̃s|
= r̃s < 1 ≤

|L̃s ∩ I|

|M̃s ∩ I| + 1
.

Again, it holds that M̃s = (M̃s ∩ I) ∪̇ (M̃s\I) and L̃s = (L̃s ∩ I) ∪̇ (L̃s\I), which in

this case even guarantees that |M̃s\I| ≥ 2 since it is |M̃s ∩ I| < |L̃s ∩ I| ≤ |L̃s|, but

|M̃s| > |L̃s|. This gives
|L̃s\I|

|M̃s\I| − 1
<

|L̃s|

|M̃s|
.
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Moreover, we have that there exists exactly one player ĩ ∈ Lg̃s(L̃s ∩ I) ∩ M̃s ∩ I∁.

Similarly to Part (i) this implies that it is Lg̃s(M̃s\(I ∪̇ {̃i})) ⊆ L̃s\I, which combined

with the above leads to

|Lg̃s(M̃s\(I ∪̇ {̃i}))|

|M̃s\(I ∪̇ {̃i})|
≤

|L̃s\I|

|M̃s\I| − 1
<

|L̃s|

|M̃s|
= r̃s,

which again contradicts the minimality of r̃s.

Now, we can turn to the proof of the first of the two lemmas which are stated in

Section 3.

Proof of Lemma 1. For i, j ∈ M1 consider the network g′ := g + ij. Let

(r′
s, x′

s, M ′
s, L′

s, N ′
s, g′

s)s=1,...,s̄′ be the outcome of A(g′). Assume for contradiction that

there exists a step ŝ ∈ {1, ..., s̄′ − 1} such that L1 ∩ M ′
s = M1 ∩ L′

s = ∅ for all

s ∈ {1, ..., ŝ−1} but M1∩L′
ŝ 6= ∅. Note that L1∩M ′

ŝ 6= ∅ would also entail M1∩L′
ŝ 6= ∅.

This is because any player contained in L1 ∩ M ′
ŝ must have a neighbor k ∈ M1 in g

due to the minimality of r1 < 1 and it can obviously neither be k ∈ L′
s nor k ∈ M ′

s for

any s ∈ {1, ..., ŝ − 1}. In what follows, we construct a sequence of players (i0, i1, i2, ...)

and show by induction that the underlying procedure which sequentially adds players

to it can never break up so that we get a contradiction to the finiteness of the player

set N . For m ∈ N let Im := {i0, i1, ..., im} ⊆ N denote the players of the sequence up

to the mth one. We need to distinguish two cases.

Case 1: i ∈ L′
ŝ

Set i0 = i. It then must be |Ni0
(g′

ŝ) ∩ M ′
ŝ| ≥ 2 since otherwise one could reduce r′

ŝ

by not including i0 and possibly her one contact belonging to M ′
ŝ. This guarantees

that there exists i1 ∈ Ni0
(g′

ŝ) ∩ M ′
ŝ\{j}. So it is i0 ∈ M1 ∩ L′

ŝ and i1 ∈ L1 ∩ M ′
ŝ. Let

I1 = {i0, i1}. Now consider some odd number m ∈ N. Assume that L1 ∩Im = M ′
ŝ ∩Im,

M1 ∩ Im = L′
ŝ ∩ Im and that the cardinalities of these two sets are equal. We then

have:

• It is 1 ≤ |M1 ∩ Im| = |L1 ∩ Im| and therefore by Lemma 3(i) there exists a player

im+1 ∈ Lg(L1∩Im)∩M1∩I∁
m. For this player it must hold that im+1 ∈ M1∩L′

ŝ\Im

since L1 ∩ Im ⊆ M ′
ŝ and M1 ∩ L′

s = ∅ for all s ∈ {1, ..., ŝ − 1}.

• It then is 1 ≤ |M ′
ŝ ∩ Im+1| < |L′

ŝ ∩ Im+1| and therefore by Lemma 3(ii) there

exists a player im+2 ∈ Lg′
ŝ(L′

ŝ ∩ Im+1) ∩ M ′
ŝ ∩ I∁

m+1\{j}. For this player it must

hold that im+2 ∈ L1 ∩ M ′
ŝ\Im+1 since L′

ŝ ∩ Im+1 ⊆ M1 and im+2 6= j.
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Thus, it is L1 ∩ Im+2 = M ′
ŝ ∩ Im+2, M1 ∩ Im+2 = L′

ŝ ∩ Im+2 and also the cardinalities

of these two sets are equal. Moreover, it is |Im+2| = |Im| + 2. By induction it follows

that the player set N must be infinitely large. Thus, we arrive at a contradiction.

Case 2: i /∈ L′
ŝ

In this case we must have j /∈ M ′
ŝ since by assumption M1 ∩ L′

s = ∅ for all s ∈

{1, ..., ŝ − 1}. For the same reason, i ∈ M ′
ŝ would imply j ∈ L′

ŝ which is equivalent to

Case 1. This is also true for i /∈ M ′
ŝ and j ∈ L′

ŝ. So it remains to consider the case that

i, j /∈ (M ′
ŝ ∪ L′

ŝ). However, by assumption there must be a player i0 ∈ M1 ∩ L′
ŝ. As

in the previous case, existence of another player i1 ∈ Ni0
(g′

ŝ) ∩ M ′
ŝ is then guaranteed

and it must be i1 /∈ {i, j} since i, j /∈ M ′
ŝ. Therefore it is i1 ∈ L1 ∩ M ′

ŝ. Let again

I1 = {i0, i1} and assume for some odd number m ∈ N that L1 ∩ Im = M ′
ŝ ∩ Im,

M1 ∩ Im = L′
ŝ ∩ Im and that the cardinalities of these two sets are equal. Furthermore,

assume that i, j /∈ Im. Similarly to the first case we have:

• There exists im+1 ∈ M1 ∩ L′
ŝ\Im for the stated reasons.

• By Lemma 3(ii) there then exists a player im+2 ∈ Lg′
ŝ(L′

ŝ ∩Im+1)∩M ′
ŝ ∩I∁

m+1. For

this player it must hold that im+2 ∈ L1 ∩ M ′
ŝ\Im+1 since L′

ŝ ∩ Im+1 ⊆ M1\{i, j}.

Thus, it is again L1∩Im+2 = M ′
ŝ∩Im+2, M1∩Im+2 = L′

ŝ∩Im+2 and also the cardinalities

of these two sets are equal. Beyond that, we have i, j /∈ Im+2. By induction this leads

again to a contradiction to the finiteness of the player set N .

Summing up, we have that L1 ∩ M ′
s = M1 ∩ L′

s = ∅ for all s < s̄′. Therefore, it

must be v∗
i (g′), v∗

j (g′) ≤ 1
2
. On the contrary, we know by Manea (2011, Proposition 2)

that v∗
i (g′) + v∗

j (g′) ≥ 1. Taken together, this implies v∗
i (g′) = v∗

j (g′) = 1
2
.

With regard to the second part of the lemma consider the network g′ := g+i(n+1)

and let (r′
s, x′

s, M ′
s, L′

s, N ′
s, g′

s)s=1,...,s̄′ be the outcome of A(g′). It is clear that n+1 /∈ L′
s

for all s < s̄′ since otherwise one could simply reduce r′
s by deleting n + 1 from L′

s and

possibly her one neighbor i from M ′
s. The possibility that i ∈ L′

s for some s < s̄′ can

be ruled out by a line of argumentation which is equivalent to the proof of the first

part if one substitutes n + 1 for j, M2 for M1 and L2 for L1 (while taking into account

that A(g) provides M1 = {n + 1} and L1 = ∅ in this case).

And finally we establish the second of the two lemmas.

Proof of Lemma 2. W.l.o.g. assume that g has only one component.33 Beside g con-

sider the network g′ := g − kl and let (r′
s, x′

s, M ′
s, L′

s, N ′
s, g′

s)s=1,...,s̄′ be the outcome of

A(g′). Similarly to the proof of Lemma 1 assume for contradiction that there exists

33Again, this is w.l.o.g. as the profile of payoffs respectively profits is component-decomposable.
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a step ŝ ∈ {1, ..., s̄′ − 1} such that L1 ∩ M ′
s = M1 ∩ L′

s = ∅ for all s ∈ {1, ..., ŝ − 1}

but L1 ∩ M ′
ŝ 6= ∅. Observe that M1 ∩ L′

ŝ 6= ∅ would also entail L1 ∩ M ′
ŝ 6= ∅ since due

to the minimality of r′
ŝ any player in M1 ∩ L′

ŝ needs to have a g′-neighbor in M ′
ˆ̂s

who

then must have been a neighbor in g as well. We again construct a sequence of players

(i0, i1, i2, ...) and show by induction that the underlying procedure which sequentially

adds players to it can never break up, meaning that we get a contradiction to the

finiteness of the player set N . For m ∈ N let Im := {i0, i1, ..., im} ⊆ N denote the

players of the sequence up to the mth one.

Initially, select some player i0 ∈ L1 ∩ M ′
ŝ. i0 cannot be isolated or a loose-end

player, i.e. she must have more than one link in g, since otherwise one could reduce

r1 by not including i0 in L1 and possibly her one contact in M1. This guarantees that

there exists i1 ∈ Ni0
(g′). It must be i1 ∈ M1 ∩ L′

ŝ since by assumption M1 ∩ L′
s = ∅

for all s ∈ {1, ..., ŝ − 1}. Let I1 = {i0, i1}. Now consider some odd number m ∈ N.

Assume that L1 ∩ Im = M ′
ŝ ∩ Im, M1 ∩ Im = L′

ŝ ∩ Im and that the cardinalities of these

two sets are equal. We then have:

• It is 1 ≤ |M ′
ŝ ∩ Im| = |L′

ŝ ∩ Im| and therefore by Lemma 3(i) there exists a player

im+1 ∈ Lg′
ŝ(L′

ŝ∩Im)∩M ′
ŝ∩I∁

m. For this player it must hold that im+1 ∈ L1∩M ′
ŝ\Im

since it is L′
ŝ ∩ Im ⊆ M1.

• Then it is 1 ≤ |M1∩Im+1| < |L1∩Im+1| and therefore by Lemma 3(ii) there exists

a player im+2 ∈ Lg(L1 ∩ Im+1) ∩ M1 ∩ I∁
m+1 ∩ Lg′

ŝ(L1 ∩ Im+1) since g′ arose from g

by a single link deletion and, additionally, M1 ∩ L′
s = ∅ for all s ∈ {1, ..., ŝ − 1}

and L1 ∩Im+1 ⊆ M ′
ŝ. This reasoning then also implies that im+2 ∈ M1 ∩L′

ŝ\Im+1.

Thus it is L1 ∩ Im+2 = M ′
ŝ ∩ Im+2, M1 ∩ Im+2 = L′

ŝ ∩ Im+2 and also the cardinalities

of these two sets are equal. Moreover, it is |Im+2| = |Im| + 2. Again, by induction this

leads to a contradiction to the finiteness of the player set N . Consequently, it must

be L1 ∩ M ′
s = M1 ∩ L′

s = ∅ for all s < s̄′.

A.4 Proof of Proposition 2

In what follows, we consider the proposition’s three parts separately.

Proof of Proposition 2(i). Consider a network g which is a tree with n > 3 players

and assume that it is pairwise stable.34 By Theorem 2 it cannot be the case that

all players receive a payoff of 1
2

in g. According to Proposition 1 and Corollary 2,

the algorithm A(g) therefore has to stop after the first step providing an outcome

34Again, it is w.l.o.g. to assume that g consists of only one component as the profile of payoffs
respectively profits is component-decomposable.
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(r1, x1, M1, L1, N1, g1) with M1 ∪̇ L1 = N , |M1| > |L1| and g|M1
= g|L1

= ∅. So we

have r1 ∈ (0, 1) and v∗
i (g) = 1 − v∗

j (g) = x1 ∈ (0, 1
2
) for all i ∈ M1, j ∈ L1. Theorem

3 then implies that

x1 + c =
1

2
. (6)

The class of tree networks we consider here can be divided into the following

subclasses:

(a) No player has more than two links in g, meaning that g is a line network.

(b) There is a player who has more than two links in g such that at least two of her

neighbors are loose-end players.35

(c) There is a player who has more than two links in g but no player has more than

one loose-end contact.

In the following, we distinguish between these three subclasses and show separately

that there arises a contradiction to pairwise stability.

Subclass (a):

W.l.o.g. let g := {12, 23, ..., (n − 1)n}. Here n must be odd since otherwise it would

obviously be |Lg(M)|
|M |

≥ 1 for all g-independent sets M ⊆ N inducing a payoff of 1
2

for

every player. So by assumption it must be n ≥ 5. Considering the algorithm A(g), we

find that the shortage ratio is minimized by the g-independent set which contains the

players 1, 3, ..., n − 2, n. Therefore, it is r1 = n−1
n+1

and x = n−1
2n

. Hence, here equation

(6) is equivalent to

c =
1

2n
. (7)

Now, if player 3 deletes her link to player 2, then she becomes a loose-end player.

Moreover, in the network g − 23 she is contained in a component with an odd number

of players which induces a line of length n−2. Hence, it is v∗
3(g −23) = n−3

2(n−2)
. Taking

into account equation (7), the corresponding stability condition yields

u∗
3(g) − u∗

3(g − 23) ≥ 0 ⇔ v∗
3(g) − v∗

3(g − 23) − c ≥ 0

⇔
n − 1

2n
−

n − 3

2(n − 2)
−

1

2n
≥ 0

35Recall that some i ∈ N is said to be a loose-end player if it is ηi(g) = 1, that is if she has exactly
one link in g.
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⇔
4 − n

2n(n − 2)
≥ 0.

Obviously, this is never fulfilled for n ≥ 5, meaning that a line network cannot be

pairwise stable.

Subclass (b):

Let k ∈ N be a player with at least three neighbors including two or more loose-end

players. Then Manea (2011, Theorem 3) implies that it is v∗
k(g) ≥ 2

3
. So it must be

k ∈ L1. Select a player i ∈ Nk(g) such that ηi(g) ≥ ηi′(g) for all i′ ∈ Nk(g). Note that

in the network g − ki, player k still has at least two loose-end contacts such that again

according to Manea (2011, Theorem 3) we have v∗
k(g − ki) ≥ 2

3
. The corresponding

stability condition then gives

u∗
k(g) ≥ u∗

k(g − ki) ⇔ v∗
k(g) − c ≥ v∗

k(g − ki) ⇒ 1 − x1 − c ≥
2

3
⇔ x1 + c ≤

1

3
.

This obviously contradicts equation (6). Thus, a network g belonging to Subclass (b)

cannot be pairwise stable.

Subclass (c):

First deliberate the following: For any tree network g̃ and any player k ∈ N there exists

a unique partition
(

Brk
ν

)

ν∈Nk(g̃)
of N\{k} such that for all ν ∈ Nk(g̃) it is ν ∈ Brk

ν

and g̃|Brk
ν

is connected, i.e. g̃|Brk
ν

has only one component (if one restricts the player

set to Brk
ν). Based on this observation, we define the subnetworks

(

g̃|Brk
ν

)

ν∈Nk(g)
to

be the branches of player k in g̃ and ν ∈ Nk(g̃) is said to be the fork player of g̃|Brk
ν
.

Note that if g belongs to Subclass (c), then there exists a player k ∈ N who has

more than two links such that for at least all but one of her branches, all players

contained in these have at most two links in g. If this would not be the case, the

following procedure would never stop, meaning that there would have to be infinitely

many players in N : Initially, select a player k0 having more than two links and one

of her branches containing another player k1 with more than two links. Then by

assumption player k1 must have a branch in g which does not contain player k0 but

a player k2 who also has more than two links. For this player k2 there must again be

a branch in g not containing k0 and k1 but a player k3 having more than two links.

Continuing this way, for any m ∈ N there is a player km+1 ∈ N\{k0, ..., km}, which

then gives a contradiction by induction. Thus, a player k as mentioned above must

indeed exist.

In the following we distinguish two cases.
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Case (c).1: k ∈ L1

If there are other players having more than two links, then let i ∈ N be the fork

player of player k’s branch which contains all of them. Otherwise, arbitrarily pick

some i ∈ Nk(g). In both cases consider the network g − ki and the component C ⊂ N

which player k is contained in. In the network g|C , there is only player k who might

have more than two links. Furthermore, every branch of player k in g|C must be a

line of odd length as Manea (2011, Theorem 3) implies that any loose-end player in

g is contained in M1. In turn, this implies that for any g|C-independent set M with
|Lg|C (M)|

|M |
< 1 it is k ∈ Lg|C (M). One example for such a set is M1 ∩ C with partner set

L1 ∩ C. Hence, it must be v∗
k(g − ki) > 1

2
. The corresponding stability condition then

gives

u∗
k(g) ≥ u∗

k(g − ki) ⇔ v∗
k(g) − c ≥ v∗

k(g − ki) ⇒ 1 − x1 − c >
1

2
⇔ x1 + c <

1

2
.

This obviously again contradicts equation (6). Consequently, a network g belonging

to Subclass (c) with k ∈ L1 cannot be pairwise stable.

Case (c).2:

We need to introduce some additional notation here. Identify a branch of player k

which is a line network with minimal length among all of these line branches. We

denote the set of players in this branch by B1 ⊂ N . Note that any branch of player

k which is a line must be of even length. Let M̂1 := M1 ∩ B1 and L̂1 := L1 ∩ B1.

Then it is |M̂1| = |L̂1|. Let j denote the fork player of this branch. In addition, let

B2 ⊂ N denote the set of all players contained in the other line branch(es) of player k.

Let similarly M̂2 := M1 ∩ B2 and L̂2 := L1 ∩ B2. Then we have |M̂2| = |L̂2| ≥ |M̂1|.

Finally, let B3 := N\(B1 ∪̇ B2 ∪̇ {k}) and M̂3 := M1 ∩ B3, L̂3 := L1 ∩ B3. Then it

must be |M̂3| ≥ |L̂3| as we have |M1| > |L1|.

Note that we must have r1 = |L1|
|M1|

≤ |L̂3|

|M̂3|
since r1 is the minimal shortage ratio for

g and obviously Lg(M̂3) = L̂3. Thus, applying the above notation gives

x1 =
|L1|

|M1| + |L1|
=

|M̂1| + |M̂2| + |L̂3|

2|M̂1| + 2|M̂2| + |M̂3| + |L̂3| + 1
. (8)

Now consider the network g′ := g − kj and let (r′
s, x′

s, M ′
s, L′

s, N ′
s, g′

s)s=1,...,s̄′ be the

outcome of the algorithm A(g′). Notice first that the set M̂2 ∪̇ M̂3 ∪̇ {k} ⊂ M1 is

g′-independent and L̂2 ∪̇ L̂3 is the corresponding partner set in g′. Furthermore, we

have
|L̂2| + |L̂3|

|M̂2| + |M̂3| + 1
=

|M̂2| + |L̂3|

|M̂2| + |M̂3| + 1
< 1.
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Assume for contradiction that there is another g′-independent set M ′ ⊆ N with

partner set L′ = Lg′
(M ′) ⊆ N which is shortage ratio minimizing in step s = 1 of

A(g′). Since the set B1 is a component of g′ and it induces a line network of even

length where every player receives a payoff of 1
2
, we must have (M ′ ∪ L′) ∩ B1 = ∅ and

s̄′ ≥ 2. Moreover, Lemma 2 yields that M1 ∩ L′
s = L1 ∩ M ′

s = ∅ for all s < s̄′. Hence,

we must have M ′ ⊂ M̂2 ∪̇ M̂3 ∪̇ {k} and L′ ⊂ L̂2 ∪̇ L̂3 such that

|L′|

|M ′|
<

|M̂2| + |L̂3|

|M̂2| + |M̂3| + 1
< 1.

On the contrary, M ′ ∪̇M̂1 ⊂ M1 is g-independent and we have Lg(M ′ ∪̇M̂1) = L′ ∪̇ L̂1.

The minimality of r1 = |L1|
|M1|

in A(g) then implies

r1 =
|M̂2| + |L̂3| + |M̂1|

|M̂2| + |M̂3| + 1 + |M̂1|
≤

|L′| + |M̂1|

|M ′| + |M̂1|
< 1 ⇒

|M̂2| + |L̂3|

|M̂2| + |M̂3| + 1
≤

|L′|

|M ′|
.

Thus, arriving at a contradiction, this implies that

v∗
k(g′) =

|M̂2| + |L̂3|

2|M̂2| + |M̂3| + |L̂3| + 1
. (9)

Taking into account equation (7), the corresponding stability condition demands

u∗
k(g) ≥ u∗

k(g − kj) ⇔ v∗
k(g) − ηk(g)c ≥ v∗

k(g′) − ηk(g′)c

⇔ x1 ≥ v∗
k(g′) +

1

2
− x1

⇔ 2x1 − v∗
k(g′) ≥

1

2
(10)

However, we now establish that it must be 2x1 − v∗
k(g′) < 1

2
. Recalling equations (8)

and (9), some calculation yields

2x1 − v∗
k(g′) =

2|M̂1| + 2(|M̂2| + |L̂3|)

2|M̂1| + (2|M̂2| + |M̂3| + |L̂3| + 1)
−

(|M̂2| + |L̂3|)

(2|M̂2| + |M̂3| + |L̂3| + 1)

=
2|M̂1|(|M̂2| + |M̂3| + 1) + (|M̂2| + |L̂3|)(2|M̂2| + |M̂3| + |L̂3| + 1)

2|M̂1|(2|M̂2| + |M̂3| + |L̂3| + 1) + (2|M̂2| + |M̂3| + |L̂3| + 1)2

=
D − R

2D
,

where

D = 2|M̂1|(2|M̂2| + |M̂3| + |L̂3| + 1) + (2|M̂2| + |M̂3| + |L̂3| + 1)2 > 0
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and

R = − 2|M̂1||M̂3| + 2|M̂1||L̂3| − 2|M̂1| + 2|M̂2||M̂3| − 2|M̂2||L̂3| + 2|M̂2| + |M̂3|2

+ 2|M̂3| − |L̂3|2 + 1

= 2(|M̂2| − |M̂1|
︸ ︷︷ ︸

≥0

) + 2(|M̂3| − |L̂3|
︸ ︷︷ ︸

≥0

)(|M̂2| − |M̂1|
︸ ︷︷ ︸

≥0

) + (|M̂3|2 − |L̂3|2
︸ ︷︷ ︸

≥0

) + 2|M̂3| + 1

≥ 2|M̂3| + 1

> 0.

Hence, we indeed have

2x1 − v∗
k(g − kj) =

D − R

2D
<

1

2
.

This concludes the proof for Subclass (c) and of the whole proposition.

Proof of Proposition 2(ii). Consider a pairwise stable network g and assume that there

is a cut-player k ∈ N who is part of a cycle and receives a payoff v∗
k(g) > 1

2
.

Assume w.l.o.g. that g has only one component. According to Proposition 1 and

Corollary 2, the algorithm A(g) must stop after the first step providing an outcome

(r1, x1, M1, L1, N1, g1) with M1 ∪̇L1 = N , |M1| > |L1| and g|M1
= g|L1

= ∅. So we have

r1 = |L1|
|M1|

∈ (0, 1), k ∈ L1 and v∗
k(g) = 1 − x1. Further, by Theorem 3 it is x1 + c = 1

2
.

In what follows, we prove that player k can delete a certain link such that in the

resulting network she still receives a payoff greater than 1
2
. To start with, note that

by assumption there must be a set K ⊂ N with k ∈ K such that

• Lg(K\{k}) ⊆ K,

• k is contained in a cycle in g|K∁∪{k} and

• g|K∁ has only one component (as usual, considering K∁ as player set).

As g has only one component, it must be k ∈ Lg(K\{k}), meaning that Nk(g)∩K 6= ∅.

Moreover, there exists i′ ∈ Nk(g)\K such that k and i′ belong to the same cycle in

g. Now consider the network g′ := g − ki′ and let (r′
s, x′

s, M ′
s, L′

s, N ′
s, g′

s)s=1,...,s̄′ be the

outcome of A(g′). Lemma 2 yields that v∗
k(g′) ≥ 1

2
. Assume for contradiction that we

have v∗
k(g′) = 1

2
, meaning that k ∈ N ′

s̄′ .

Consider the set C ′
k := Ck(g′

s̄′ |K) = Ck(g|N ′
s̄′ ∩K), that is the component of player k

in the network g restricted to the set N ′
s̄′ ∩ K. As a first step, we establish that it is

|L1 ∩ C ′
k|

|M1 ∩ C ′
k|

= 1. (11)
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Note first that we have Nk(g′|K) 6= ∅. Furthermore, it must be Nk(g′) ⊆ M1 ∩ N ′
s̄′ as

Lemma 2 yields M1 ∩ L′
s = ∅ for all s < s̄′. This guarantees that M1 ∩ C ′

k 6= ∅. Based

on this, we can immediately rule out the possibility that the left-hand side of (11) is

strictly smaller than one since M1 ∩ C ′
k is g′-independent and clearly Lg′

s̄′ (M1 ∩ C ′
k) ⊆

L1 ∩ C ′
k. So assume that the left-hand side of (11) is strictly greater than one. We

make use of the following implication which we verify at the end of the proof:

|L̂| = |M̂ | ≥ 1 for L̂ ⊆ L1 ∩ C ′
k\{k}, Nk(g) ∩ K ⊆ M̂ ⊆ M1 ∩ C ′

k

⇒ Lg′
s̄′ (L̂)\M̂ 6= ∅ (12)

We know that it is ∅ 6= Nk(g) ∩ K ⊆ Nk(g′) ⊆ N ′
s̄′ . Let M̂0 := Nk(g) ∩ K such that

M̂0 ⊆ M1 ∩ C ′
k. Hence, it must be |L1 ∩ C ′

k\{k}| ≥ |M̂0| since otherwise we would get

|L1 ∩ C ′
k|

|M1 ∩ C ′
k|

≤
|L1 ∩ C ′

k|

|M̂0|
≤ 1,

that is a contradiction to our assumption. So select a set of players L̂0 ⊆ L1 ∩ C ′
k\{k}

with |L̂0| = |M̂0|. Note that M̂0 and L̂0 satisfy the conditions of implication (12).

Based on this, we can construct a sequence of players (j1, j2, j3, ...) in a certain way

such that according to the previous considerations, the underlying procedure which

sequentially adds players to the sequence can never break up. As in the proofs of

Lemma 1 and 2, this leads to a contradiction to the finiteness of the player set N .

Given such a sequence, let M̂m := {jl | 1 ≤ l ≤ m, l odd} ∪ M̂0 and L̂m := {jl | 1 ≤

l ≤ m, l even}∪ L̂0 for m ∈ N. Now consider some even number m ∈ N∪{0}. Assume

that L̂m ⊆ L1 ∩ C ′
k\{k}, Nk(g) ∩ K ⊆ M̂m ⊆ M1 ∩ C ′

k and |L̂m| = |M̂m| ≥ 1. We then

have:

• By implication (12) there exists jm+1 ∈ Lg′
s̄′ (L̂m)\M̂m. For this player it must

hold that jm+1 ∈ M1 ∩ C ′
k\M̂m since L̂m ⊆ L1 ∩ C ′

k\{k}.

• Then there must exist jm+2 ∈ L1 ∩ C ′
k\(L̂m+1 ∪̇ {k}) since otherwise we would

have

1 <
|L1 ∩ C ′

k|

|M1 ∩ C ′
k|

≤
|L̂m+1 ∪̇ {k}|

|M̂m+1|
= 1.

Thus it is L̂m+2 ⊆ L1 ∩ C ′
k\{k}, Nk(g) ∩ K ⊆ M̂m+2 ⊆ M1 ∩ C ′

k and |L̂m+2| =

|M̂m+2| = |L̂m| + 1 ≥ 1. By induction this leads to a contradiction to the finiteness

of the player set N . This establishes equation (11), however, under the assumption of

having v∗
k(g′) = 1

2
.

During the second step we now use this to construct a concluding contradiction of
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similar kind arising from the assumption that v∗
k(g′) = 1

2
. Here, we make use of the

following implication:

|L̃| = |M̃ | ≥ 1 for L̃ ⊆ L1 ∩ N ′
s̄′\K, M̃ ⊆ M1 ∩ N ′

s̄′\K ⇒ Lg′
s̄′ (L̃)\(M̃ ∪̇ K) 6= ∅

(13)

Its verification is postponed to the end of this proof as well. Note that by definition

it is |Lg
s̄′ (M̄)|

|M̄ |
≥ 1 for all g′-independent sets M̄ ⊆ N ′

s̄′ . Based on this, we can again

construct a sequence of players (i1, i2, i3, ...) such that, according to the previous con-

siderations, the sequential adding of new players can never break up. Thus, we again

get a contradiction to the finiteness of the player set N . For this purpose, we define

the sets M̃m := {il | 1 ≤ l ≤ m, l odd} and L̃m := {il | 1 ≤ l ≤ m, l even} for m ∈ N.

Initially, select a player i1 ∈ M1 ∩ N ′
s̄′\K. Such a player must exist as k ∈ L1 ∩ N ′

s̄′

is part of a cycle in g|N\K∪{k} and, according to Lemma 2, we have M1 ∩ L′
s = ∅ for

all s < s̄′. Now consider some odd number m ∈ N. Assume that M̃m ⊆ M1 ∩ N ′
s̄′\K,

L̃m ⊆ L1 ∩ N ′
s̄′\K and that |M̃m| = m+1

2
> m−1

2
= |L̃m|. We then have:

• M̃m ∪̇ (M1 ∩ C ′
k) ⊆ N ′

s̄′ is g′-independent and

|L̃m ∪̇ (L1 ∩ C ′
k)|

|M̃m ∪̇ (M1 ∩ C ′
k)|

< 1

since it is |L1 ∩ C ′
k| = |M1 ∩ C ′

k| as we know from equation (11). As we have

k ∈ Lg′
s̄′ (M1 ∩ C ′

k) ⊆ L1 ∩ C ′
k, this implies that there must exist a player im+1 ∈

Lg′
s̄′ (M̃m)\(L̃m ∪̇ K). It is im+1 ∈ L1 ∩ N ′

s̄′\(L̃m ∪̇ K) since M̃m ⊆ M1.

• We then have |L̃m+1| = |M̃m+1| = m+1
2

≥ 1 and L̃m+1 ⊆ L1 ∩ N ′
s̄′\K, M̃m+1 ⊆

M1∩N ′
s̄′\K. Hence, by implication (13) there exists im+2 ∈ Lg′

s̄′ (L̃m+1)\(M̃m+1 ∪̇

K). It is im+2 ∈ M1 ∩ N ′
s̄′\(M̃m+1 ∪̇ K) since L̃m+1 ⊆ L1.

Thus, we have M̃m+2 ⊆ M1 ∩ N ′
s̄′\K, L̃m+2 ⊆ L1 ∩ N ′

s̄′\K and |M̃m+2| = (m+2)+1
2

>
(m+2)−1

2
= |L̃m+2|. Again, by induction this leads to a contradiction to the finiteness

of the player set N . This proves that player k’s payoff must indeed be strictly greater

than 1
2
. The corresponding stability condition then yields

u∗
k(g) ≥ u∗

k(g − ki′) ⇔ v∗
k(g) − c ≥ v∗

k(g′) ⇒ 1 − x1 − c >
1

2
⇔ x1 + c <

1

2
,

which is a contradiction to Theorem 3. Hence, such a network g cannot be pairwise

stable.

It remains to prove implications (12) and (13). We start with the first one. Given

the two sets L̂ ⊆ L1∩C ′
k\{k} and M̂ ⊆ M1∩C ′

k with Nk(g)∩K ⊆ M̂ and |L̂| = |M̂ | ≥ 1
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assume for contradiction that Lg′
s̄′ (L̂) ⊆ M̂ . Note that we have Nj(g

′
s̄′) = Nj(g) for all

j ∈ L̂ since it is L̂ ⊆ L1 ∩ N ′
s̄′\{k} and, according to Lemma 2, M1 ∩ L′

s = ∅ for all

s < s̄′. Together with the assumption this implies that Lg(M1 ∩ K\M̂) ⊆ L1 ∩ K\L̂.

Moreover, since Nk(g) ∩ K ⊆ M̂ , it even is Lg(M1 ∩ K\M̂) ⊆ L1 ∩ K\(L̂ ∪̇ {k}).

Additionally, we need the following inequalities:

|L1 ∩ K| − 1

|M1 ∩ K|
≤ r1 ≤

|L1 ∩ K|

|M1 ∩ K|
≤ 1 (14)

To see that these are correct, note first that it is Lg(M1 ∩ K) ⊆ L1 ∩ K and similarly

Lg(M1\K) ⊆ L1\K ∪̇ {k}. So we must have r1 ≤ |L1∩K|
|M1∩K|

and r1 ≤ |L1\K|+1
|M1\K|

as r1 is the

minimal shortage ratio. Moreover, it is r1 = |L1|
|M1|

< 1, M1 = (M1 ∩ K) ∪̇ (M1\K) and

L1 = (L1 ∩ K) ∪̇ (L1\K). Together this implies that |L1∩K|−1
|M1∩K|

= |L1|−(|L1\K|+1)
|M1|−|M1\K|

≤ r1. In

particular, this means that |L1 ∩ K| − 1 < |M1 ∩ K| which in turn implies |L1∩K|
|M1∩K|

≤ 1.

According to the third inequality in (14) we must have M1 ∩ K\M̂ 6= ∅ since

otherwise it would be |L1 ∩ K| ≤ |M1 ∩ K| = |M̂ | = |L̂| < |L̂ ∪̇ {k}| ≤ |L1 ∩ K|. Taken

together, this leads to the following contradiction:

r1 ≤
|Lg(M1 ∩ K\M̂)|

|M1 ∩ K\M̂ |
≤

|L1 ∩ K\(L̂ ∪̇ {k})|

|M1 ∩ K\M̂ |

=
|L1 ∩ K| − |L̂| − 1

|M1 ∩ K| − |M̂ |

=
|L1 ∩ K| − 1 − |L̂|

|M1 ∩ K| − |L̂|
<

|L1 ∩ K| − 1

|M1 ∩ K|
≤ r1,

where the last two inequalities are due to (14) and the fact that r1 < 1.

Similarly, to prove implication (13), we consider the two sets L̃ ⊆ L1 ∩ N ′
s̄′\K and

M̃ ⊆ M1 ∩ N ′
s̄′\K with |L̃| = |M̃ | ≥ 1 and assume for contradiction that we have

Lg′
s̄′ (L̃) ⊆ M̃ . Again according to Lemma 2, it must be Nj(g

′
s̄′) = Nj(g) for all j ∈ L̃.

Hence, we have that Lg(M1\M̃) ⊆ L1\L̃. Also, it is clear that M1\M̃ 6= ∅ since

otherwise we would have |L1| < |M1| = |M̃ | = |L̃| ≤ |L1|. Summing up, this implies

r1 ≤
|Lg(M1\M̃)|

|M1\M̃ |
≤

|L1\L̃|

|M1\M̃ |
=

|L1| − |L̃|

|M1| − |M̃ |
=

|L1| − |L̃|

|M1| − |L̃|
<

|L1|

|M1|
= r1,

which is obviously again a contradiction. So we have that Lg′
s̄′ (L̃)\(M̃ ∪̇ K) 6= ∅ since

it is Lg′
s̄′ (L̃) ⊆ K∁. This concludes the proof.

Proof of Proposition 2(iii). Note first that, according to our characterization result, a

component-induced subnetwork g′ as mentioned in part (iii) could only be contained
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in a pairwise stable network if the algorithm A(g′) stops after the first step.36 Let

(r1, x, M1, L1, N1, g1) denote its outcome. By assumption, we obviously have |M1| = m

and |L1| < m
3

. On the contrary, recalling stability condition (5), we get

1

4
≥ c =

1

2
− x =

1

2
−

|L1|

|M1| + |L1|
=

1

2

|M1| − |L1|

|M1| + |L1|
⇔ 3|L1| ≥ |M1|.

Arriving at a contradiction, this proves the proposition’s part (iii).
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