RUHR-UNIVERSITAT BOCHUM
Horst Gortz Institute for IT Security

Technical Report TR-HGI-2016-004

DETILE: Fine-Grained Information Leak Detection
in Script Engines

Robert Gawlik, Philipp Koppe, Benjamin Kollenda, Andre
Pawlowsk:i, Behrad Garmany, Thorsten Holz

Chair for Systems Security

Ruhr-Universitdt Bochum TR-HGI-2016-004
Horst Gortz Institute for I'T Security July 29, 2016
D-44780 Bochum, Germany

|
hg

RUHR g
UNIVERSITAT Horst Gortz Institut B
BOCHUM fur IT-Sicherheit B

1

Over the last years, many different techniques were developed to prevent attacks that exploit
spatial and temporal memory corruption vulnerabilities (see for example the survey by Szekeres
et al. [78]). As a result, modern operating systems deploy a wide range of defense methods to

DETILE: Fine-Grained Information Leak Detection
in Script Engines

Robert Gawlik, Philipp Koppe, Benjamin Kollenda,
Andre Pawlowski, Behrad Garmany Thorsten Holz

Abstract

Memory disclosure attacks play an important role in the exploitation of memory corruption
vulnerabilities. By analyzing recent research, we observe that bypasses of defensive solutions
that enforce control-flow integrity or attempt to detect return-oriented programming require
memory disclosure attacks as a fundamental first step. However, research lags behind when
it comes to detecting such information leaks.

In this paper, we tackle this problem and present a system for fine-grained, automated de-
tection of memory disclosure attacks against scripting engines. The basic insight is as follows:
scripting languages, such as JavaScript in web browsers, are strictly sandboxed. They must
not provide any insights about the memory layout in their contexts. In fact, any such informa-
tion potentially represents an ongoing memory disclosure attack. Hence, to detect information
leaks, our system creates a clone of the scripting engine process with a re-randomized mem-
ory layout. The clone is instrumented to be synchronized with the original process. Any
inconsistency in the script contexts of both processes appears when a memory disclosure was
conducted to leak information about the memory layout. Based on this detection approach,
we have designed and implemented DETILE (detection of information leaks), a prototype for
the JavaScript engine in Microsoft’s Internet Explorer 10/11 on Windows 8.0/8.1. An em-
pirical evaluation shows that our tool can successfully detect memory disclosure attacks even
against this proprietary software. This impedes Just-In-Time Code Reuse and Counterfeit
Object-oriented Programming attacks.

Introduction

impede a successful attack. Examples of these defenses include:

e Data Ezecution Prevention (DEP) [56] is a technique that marks the stack as non-executable
and thus an attacker is prohibited from injecting data into a vulnerable application that is

later on interpreted as code.

Address Space Layout Randomization (ASLR) [65] means that the memory layout of an
application or the kernel is randomized either once during the boot process or every time a
process is started. Since the attacker lacks information about the exact memory layout, it

is harder for her to predict where her shellcode or reusable code are located.

Stack canaries [22] are random values located on the stack that serve as some kind of guard

to hamper memory corruption vulnerabilities.

Integrity checks of important control structures (e.g., SAFESEH and SEHOP on Windows)
protect these control structure from corruptions or enable the detection of ongoing attacks.

Besides these widely deployed techniques, many other defenses were proposed in the literature
in the last years [78]. Most notably, the enforcement of control flow integrity (CFI) is a promising
technique to prevent a whole class of memory corruption vulnerabilities [1]. The basic idea behind
CF1I is to verify that each control flow transfer leads to a valid target based on a control flow
graph that is either statically pre-computed or dynamically generated. Several implementations
of CFI with different design constraints, security goals, and performance overheads were published
(e.g., [33,93,94]).

All these techniques have significantly raised the bar for potential attacks. However, in practice,
attackers manage to bypass the deployed defenses and the combination of ASLR and DEP seems
to be only a small hurdle [70,77]. Furthermore, techniques such as return-oriented programming
(ROP) [48] and its many variants [12, 19, 72] have demonstrated bypasses of many existing and
proposed defenses. Recently, several papers demonstrated bypasses of existing CFI solutions [29,
38]. As such, there is a mismatch between the (theoretical) security guarantees provided by a
given defense and its practical implementation: while the combination of ASLR and DEP implies
that an attacker has little knowledge about the memory layout, she can find ways to bypass the
deployed defenses with an iterative approach.

A general observation is that the first step in modern attacks is based on a memory disclosure
attack (also referred to as information leak): the adversary finds a way to read a (raw) memory
pointer to learn some information about the virtual address space of the vulnerable program.
Generally speaking, the attacker can then de-randomize the address space based on this leaked
pointer (thus bypassing ASLR), use ROP to bypass DEP, and finally execute shellcode of her
choice. Modern exploits leverage information leaks as a fundamental primitive. Furthermore,
recent CFI and ROP defense bypasses use memory disclosures as well. For example, Snow et
al. introduced Just-In-Time Code Reuse attacks (JIT-ROP [73]) to bypass fine-grained ASLR
implementations by repeatedly utilizing an information leak. Similarly, Snow et al. were able to
circumvent approaches which incorporate destructive code reads, a mechanism to prevent execution
of code after it has been read [74]. G-Free [59], a compiler-based approach against any ROP attack,
was recently circumvented by Athanasakis et al. [4]. Their technique requires successive informa-
tion leaks to disclose enough needed information. Goktas et al. demonstrated several bypasses of
proposed ROP defenses and their exploit needs an information leak as a first step [39]. An infor-
mation leak is also needed by Song et al., who showed that dynamic code generation is vulnerable
to code injection attacks [75]. Similarily, Counterfeit Object-oriented Programming (COOP [66])
needs to disclose the location of wvtables to mount a subsequent control-flow hijacking attack by
reusing them. Disclosures are also utilized by memory oracles to weaken various defenses [37]. All
of these offensive bypasses utilized an information leak as a first step and implemented the attack
against a web browser.

Another general observation is that script engines in web browsers are commonly utilized
by adversaries to abuse information leaks in practice. Web browsers have evolved into complex
systems that even build the base for a new era of operating systems, sitting on top of the kernel
(e.g., FirefoxOS or ChromeOS). This implies that browsers are an attractive target for attacks.
Browser vulnerabilities are prevalent and as the yearly pwn2own competition shows, researchers
successfully use them to take control of the machine. Notably, most of these attacks are based on
vulnerabilities that create an information leak utilizing the script engine. In summary, we see a
lot of achievements on the offensive side (especially targeting browsers) but research lags behind
when it comes to detecting such information leaks.

In this paper, we take these observations into account and propose a technique for fine-grained,
automated detection of memory disclosure attacks against script engines at runtime. OQur approach
is based on the insight that information leaks are leveraged by state-of-the-art exploits to learn the
placement of modules—and thereby code sections—in the virtual address space in order to bypass
ASLR. Any sandboxed script context is forbidden to contain memory information, i.e., no script
variable is allowed to provide a memory pointer. As such, a viable approach to detect information
leaks is to create a clone of the to be protected process with a re-randomized address space layout,
which is instrumented to be synchronized with the original process. An inconsistency in the script
contexts of both processes can only occur when a memory disclosure vulnerability was exploited

Protection flavor Defense Weakened /Bypassed by
Address randomization Fine-grained ASLR [43] Just-In-Time Code Reuse [73]

Code-reuse protection RopGuard [35] Size Does Matter [39],
KBouncer [62] Anti-ROP Evaluation [67],
ROPecker [20] COOP [66]
Code-reuse protection G-Free [59] Browser JIT Defense Bypass [4],
COOP [66]
Coarse-grained CFI CCFIR [93] Stitching the Gadgets [29],
BinCFI [94] Out of Control [38],
COOP [66]
Fine-grained CFI IFCC [80] Losing Control [21]
VTV [80]
Information hiding Oxymoron [5] Vtable Disclosure [30],
Crash Resistance [37],
COOP [66]
Information hiding CPI linear region [49] Crash Resistance [37]
Execution randomization Isomeron [30] Crash Resistance [37]
Randomization/ Readactor [24] Crash Resistance [37],
Information hiding COOP [66]
Randomization/ Heisenbyte [79] Code Inference Attacks [74]
Destructive code reads NEAR ([85]

Table 1: Proposed defenses and offensive approaches utilizing an information leak in browsers to weaken
or bypass the specific defense. All mentioned attacks are mitigated by DETILE.

to gain information about the memory layout. In such a case, the two processes can be halted
to prevent further execution of the malicious script. An overview of bypassed defenses by specific
attacks which are mitigated by our approach is shown in Table 1. In spirit, our approach is similar
to n-variant systems [14, 23] and similar multi-execution based approaches [16,26,31]. However,
we are able to observe the actual information leak since we instrument the scripting context, while
n-variant systems are only capable of observing when the control flow diverges in the different
replica. As such, we can detect modern code-reuse attacks such as JIT-ROP [73] or COOP [66].

We have implemented a prototype of our technique in a tool called DETILE (detection of
information leaks). We extended Internet Explorer 10/11 (IE) on Windows 8.0/8.1 to create a
synchronized clone of each tab and enforce the information leak checks. We chose this software
mainly due to two reasons. First, IE is an attractive target for attackers as the large number of
vulnerabilities indicates. Second, IE and Windows pose several interesting technical challenges
since it is a proprietary binary system that we need to instrument and it lacks fine-grained ASLR.
Evaluation results show that our prototype is able to re-randomize single processes without signif-
icant computational impact. Additionally, running IE with our re-randomization and information
leak detection engine imposes a performance hit of ~17% on average. Furthermore, empirical tests
with real-world exploits also indicate that our approach is usable to unravel modern and unknown
exploits which target browsers and utilize memory disclosures.

In summary, our main contributions in this paper are:

e We present a system to tackle the problem of information leaks, which are frequently used
in practice by attackers as an exploit primitive. More specifically, we propose a concept for
fine-grained, automated detection of information leaks with per process re-randomization,
dual process execution, and process synchronization.

e We show that dual execution of highly complex, binary-only software such as Microsoft’s
Internet Explorer is possible without access to the source code, whereby two executing

instances operate deterministic to each other.

e We implemented a prototype for IE 10/11 on Windows 8.0/8.1. We show that our tool can
successfully detect several real-world exploits, while producing no alerts on highly complex,
real-world websites.

2 Technical Background

Before diving into the details of our defense, we first review several technical details of Windows
related to the implementation of ASLR, the interplay between 64- and 32-bit processes, and
the architecture of IE. This information is based on empirical tests we performed and reverse
engineering of certain parts of Windows and IE. We briefly introduce important scripting engines
and also explain the attacker model used throughout the rest of this paper.

2.1 Enhancing Security with N-Variant Systems

N-Variant or Multi-Execution systems evolved from fault-tolerant environments to mitigation
systems against security critical vulnerabilities [14,23,44,81]. Our concept of DETILE incorporates
similar ideas like dual process execution and dual process synchronization. However, our approach
is constructed specifically for scripting engines, and thus, is more fine-grained: While DETILE
operates and synchronizes processes on the scripting interpreter’s bytecode level, n-variant systems
intercept only at the system call level. One drawback for these conventional systems is that they are
prone to Just-In-Time Code-Reuse (JIT-ROP [73]) and Counterfeit Object-oriented Programming
(COOP [66]) attacks, while DETILE is able to detect these (see Sections 3.1 and 6.5 and for details).

2.2 Windows ASLR Internals

Address Space Layout Randomization (ASLR) is a well-known security mechanism that involves
the randomization of stacks, heaps, and loaded images in the virtual address space. Its purpose is
to leave an attacker with no knowledge about the virtual memory space in which code and data
lives. Combined with DEP, ASLR makes remote system exploitation through memory corruption
techniques a much harder task. While brute-force attacks against services that automatically
restart are possible [9], such attacks are typically not viable in practice against web browsers.

In Windows, whenever an image is loaded into the virtual address space, a section object is
created, which represents a section of memory. These objects are managed system-wide and can
be shared among all processes. Once a DLL is loaded, its section object remains permanent as long
as processes are referencing it. This concept has the benefit that relocation takes place once and
whenever a process needs to load a DLL, its section object is reused and the view of the section
is mapped into the virtual address space of the process, making the memory section visible. This
way, physical memory is shared among all processes that load a specific DLL whose section object
is already present. In particular, as long as the virtual address is not occupied, each image is
loaded at the same virtual address among all running usermode processes. Figure 1 illustrates this
concept. The randomization of a DLL is influenced by a random value (the so called image bias)
that is generated at boot time. This value is used as an index in an image bitmap, which represents
specific address ranges. For 32-bit images, the top address of the range starts at 0x78000000. For
64-bit images that are based above the 4GB boundary, the top address of the range starts at
0x7FFFFFE0000. Each bit in the bitmap stands for a 64KB unit of allocation starting from the
top address to lower addresses. When an image is being loaded, the bitmap is scanned from top
to bottom starting at the random image bias until enough free bits are found to map the image.
In Windows 8, there are three image bitmaps. One is for 64-bit images above the 4GB address
range, one for 64-bit images below 4GB, and the third bitmap is used for 32-bit images.

64-bit DLL images that are based above the 4GB address boundary receive 19 bits of entropy.
It is worth mentioning that prior to Windows 8, the ASLR entropy amounted to 8-bit and was the

Regular Mapping

Physical Memory

Mapped Views

Virtual Memory
Process A

Virtual Memory
Process B

Figure 1: Shared physical memory: shaded regions are sections of memory occupied for images. Their
views are mapped into the virtual address space of the processes that load the images.

same for both 32-bit and 64-bit images. Executable images other than DLLs receive an entropy
of 17 bits when they are based above 4GB, otherwise they receive 8 bits.

Whenever an executable image is loaded, a random load offset is calculated which corresponds
to the entropy the image receives. Thus, an executable image might get relocated to another base
once the last reference to its image section is gone. However, Windows does not discard the image
section object immediately, but rather keeps it in case the image is loaded soon after. This leads
to the empirical fact that executable images are loaded at the same base as before.

While all these features make sense from a performance point of view, they create an incon-
venient state for our implementation and detection metric. As we discuss in Section 4, we rebase
each DLL and the main executable for each run.

2.3 WOW64 Subsystem Overview

64-bit operating systems are the systems of choice for today’s users: 64-bit processors are widely
used in practice, and hence Microsoft Windows 7 and later versions are usually running in the 64-
bit version on typical desktop systems. However, most third-party applications are distributed in
their 32-bit form. This is for example the case for Mozilla Firefox, and also for parts of Microsoft’s
Internet Explorer. As our framework should protect against widely attacked targets, it needs
to support 32-bit and 64-bit processes. Therefore, the Windows On Windows 64 (shortened as
WOWG64) emulation layer plays an important role, as it allows legacy 32-bit applications to run
on modern 64-bit Windows systems.

Executing a user-mode 32-bit application instructs the kernel to create a WOWG64 process.
According to our observations, it creates the program’s address space and maps the 64-bit and 32-
bit NT Layer DLL (ntd11.d11) into the virtual memory of the program. The 64-bit ntd11.d11 is
mapped to an address greater than 4GB, and the 32-bit ntd11.d11 to an address smaller than 4GB.
Then, the application’s 32-bit main executable is mapped into memory. These three images are the
modules, which are available in a user-mode address space, even when starting a 32-bit application
in suspended mode. Resuming the application leads to the mapping of the emulation layer dynamic
link libraries wow64.d11l, wow64cpu.dll and wow64win.d1ll. They manage the creation of 32-bit
processes and threads, enable CPU mode switches between 32-bit and 64-bit during system calls,
and intercept and redirect 32-bit system calls to their 64-bit equivalents. For more details about
the WOW®64 layer, the reader is referred to literature on Windows Internals [65]. Subsequent
32-bit DLLs are mapped into the address space via LdrLoadD1l of the 32-bit ntd11.d11. The
first of them is kernel32.d11. The loader assures that it is mapped to the same address in each

WOWG64 process system wide, using a unique address per reboot. It therefore compares its name
to the hardcoded “KERNEL32.DLL” string in ntd11.d11 upon loading. If the loader is not able
to map it to its preferred base address, process initialization fails with a conflicting address error.
As process based re-randomization plays a crucial role in our framework, this issue is handled
such that each process contains its kernel32.d11 at a different base address (see Section 4.1).
After mapping kernel32.d11, all other needed 32-bit DLLs are mapped into the address space
by the loader via the library loading API. System libraries are thereby normally taken from the
C:\Windows\SysWOW64 folder that comprises the counterpart of C:\Windows\System32 for 32-bit
applications.

2.4 Internet Explorer Architecture

While our approach is in general applicable to other software, we focus on protecting the scripting
engines of a recent version of Microsoft Internet Explorer since browsers are one of the most
common targets. Additionally, IE is a high value target as demonstrated by the number of code
execution vulnerabilities compared to other browsers [27,28]. As we will frequently refer to browser
internals, a basic understanding of its architecture is needed.

Since version 8, IE is developed as multi-process application [92]. That means, a 64-bit main
frame process governs several 32-bit WOWG64 tab processes, which are isolated from each other.
The frame process runs with a medium integrity level and isolated tab processes run with low
integrity levels. Hence, tab processes are restricted and forbidden to access all resources of pro-
cesses with higher integrity levels [55]. This architecture implies that websites opened in new tabs
can lead to the start of new tab processes. These have to incorporate our protection in order to
protect IE as complete application against information leaks (see Section 4).

2.5 Scripting Engines

In the context of IE, mainly two scripting engines are relevant and we briefly introduce both.

2.5.1 Internet Explorer Chakra

With the release of Internet Explorer 9, a new JavaScript engine called Chakra was introduced.
Since Internet Explorer 11, Chakra exports a documented API which enables developers to embed
the engine into their own applications. However, IE still uses the undocumented internal COM
interface. Nevertheless, some Chakra internals were learned from the official API. The engine
supports just-in-time (JIT) compiling of JavaScript bytecode to speed up execution. Typed arrays
like integer arrays are stored as native arrays in heap memory along with metadata to accelerate
element access. Script code is translated to JS bytecode on demand in a function-wise manner to
minimize memory footprint and avoid generating unused bytecode. The bytecode is interpreted
within a loop, whereby undocumented opcodes govern the execution of native functions within a
switch statement. Dependent on the opcode, the desired JavaScript functionality is achieved with
native code.

2.5.2 ActionScript Virtual Machine (AVM)

The Adobe Flash plugin for browsers and especially for IE is a widely attacked target. Scripts
written in ActionScript are interpreted or JIT-compiled to native code by the AVM. There is
much unofficial documentation about its internals [10,52]. Most importantly, it is possible to
intercept each ActionScript method with available tools [42]. Thus, no matter whether bytecode
is interpreted by the opcode handlers or JIT code is executed, we are able to instrument the AVM.

2.6 Adversarial Capabilities

Memory disclosure attacks are an increasingly used technique for the exploitation of software
vulnerabilities [71,73,77]. In the presence of full ASLR, DEP, CFI, or ROP defenses, the attacker

has no anchor to a memory address to jump to, even if in control of the instruction pointer. This
is the moment where information leaks come into play: an attacker needs to read—in any way
possible—a raw memory pointer in order to gain a foothold into the native virtual address space
of the vulnerable program.

high addresses (===~ "7"7 @ """""""""" @ """""
: | cverrielengnied | (w vt] ovenertecataporter [i
i
1
| 0x1000 [SC::data SC::data SC::data SC:.data
: d
| | | |
1
E &5C::data &5C::data &SCi:data 0x100800|
: 0x1000 0x1004 0x1000 0x1000
1

low addresses ‘-0 N b 0 N

Figure 2: Two sketched methods to achieve information leaks: 1.) Overwriting a length field (0x1000)
of a script context data structure gives the adversary the possibility to read beyond legitimate data
(SC::data) and leak the address of a vtable (vfptr). 2.) When the pointer (&SC::data) to the data
structure is modified directly, it can point into the data structure and can disclose memory beyond the
legitimate data.

One common way to achieve an information disclosure of native memory is to use a vulnerability
to eventually overwrite a data length field, without crashing the program. The next step is an
out-of-bounds read on the underlying data, to subsequently read memory information. The field
and information may have been provoked to reside in predictable locations by heap massaging in
the script context, performed by the attacker. Another possibility to disclose memory is to use
a program’s vulnerability to write a memory pointer into data that must not provide memory
information, such as a string in the script context. Similarly, overwriting a terminating character
of a script context data structure (e.g., a wide char null of a JavaScript string) leads to a memory
disclosure, as subsequent memory content (i.e., after the string data) is presented to the attacker
when reading this data structure.

New powerful scripting features also found their way into the development arsenal of attack-
ers [87,88]: typed arrays [40] make it possible to read and write data very fine-grained within a
legitimate scripting context. Manipulating either a length field or a pointer to an array buffer
directly inside the metadata can lead to full read and write access of the process’ memory. Fig-
ure 2 sketches only two general schemes of many possibilities to create information leaks. Note
that leaks can also occur due to uninitialized variables or other errors and do not have to be
created like shown in Figure 2. As soon as the attacker can read process memory, she can learn
the base addresses of loaded modules in the address space of the program. Then, any code-reuse
primitives can be conducted to exploit a vulnerability in order to bypass DEP, ASLR, CFI [29]
and ROP defenses [17,39]. Another possibility is to leak code directly to initiate an attack and
bypass ASLR [73]. Other mitigations like Microsoft’s Enhanced Mitigation Experience Toolkit
(EMET) [54] cannot withstand capabilities of sophisticated attackers.

For applications with scripting capabilities, untrusted contexts are sandboxed (e.g., JavaScript
in web browsers) and must not provide memory information. Thus, attackers use different vulner-
abilities to leak memory information into that context [38,71,86]. We assume that the program
we want to protect suffers from such a memory corruption vulnerability that allows the adversary
to corrupt memory objects. In fact, a study shows that any type of memory error can be trans-
formed into an information leak [78]. Furthermore, we assume that the attacker uses a scripting
environment to leverage the obtained memory disclosure information at runtime for her malicious
computations. This is consistent with modern exploits in academic research [17,29,38,39,67] as
well as in-the-wild [68,82,86-88]. Our goal is to protect script engines against such powerful, yet
realistic adversaries.

Thus, information leaks are an inevitable threat even in the presence of state-of-the-art secu-

rity features. Note that many use-after-free vulnerabilities can be transformed into information
leaks [87]. Thus, especially web browser are in high danger as these errors are prevalent in such
complex software systems.

3 System Overview

In the following, we explain our approach to tackle the challenge of detecting information leaks in
script engines. Hence, we introduce the needed building blocks, namely per process re-randomization
and dual process execution.

3.1 Main Concept

As described above, information leaks manifest themselves in the form of memory information
inside a context which must not reveal such insights. In our case, this is any script context inside
an application: high-level variables and content in a script must not contain memory pointers,
which attackers could use to deduce image base addresses of loaded modules.

‘| Bytecode
('| Switch

Bytecode Bytecode Bytecode

Handler 1 Handler 2 Handler n

Interpreter Loop Tail

Figure 3: The basic concept of a script engine’s interpreter loop. The interpreter fetches the bytecode
of the script and switches to the corresponding bytecode handler. When the operation of the bytecode
handler is finished, the interpreter loop jumps back to the switch and processes the next bytecode.

Unfortunately, a legitimate number and a memory pointer in data bytes received via a scripting
function are indistinguishable. This leads us to the following assumption: a memory disclosure
attack yields a memory pointer, which may be surrounded by legitimate data. The same targeted
memory disclosure, when applied to a differently randomized, but otherwise identical process, will
yield the same legitimate data, but a different memory pointer. Due to the varying base addresses
of modules, different heap and stack addresses, a memory pointer will have a different address in
the second process than in the first process. Thus, a master process and a cloned twin process—
with different address space layout randomization—can be executed synchronized side-by-side and
perform identical operations, e.g., execute a specific JavaScript function. In benign cases, the same
data getting into the script context is equal for both processes. When comparing the received data
of one process to the same data received in the second process, the only difference can arise because
of a leaked memory pointer pointing to equal memory, but having a different address. In order to
compare the data of the master and twin process, we have to instrument the interpreter loop of
the script engine. Figure 3 shows the basic concept of a script engine’s interpreter loop. We can

Master Process Twin Process

]

I I
! : ! =
| I | !
| (| ! | 0x84F0000 |
! ! ! ! ! DLL1 |
I
: lllegal Read : : lllegal Read :

| 1 |
: Script Context : :Script Context :
SV) ("7 N Hea !
: Heap : : - N : : p :
! | (0x727841F0 : ! IPC ! | (0x86941F0 : !
1 . 1 Pl | 1 ' @ |
! 0x726D0000 Dl ! | E{— —|: ! i > DLL 2 0x8690000 |
| DLL 1 i P | i ! !
i [i [1 !
1 0x72780000 | 1 1 1 1
! DLL 2 ! ! ! i
| 1 | I !
! DLL. ! ! ! I
1 1 1 DLL . :
1 ! ! 1
I I I 1 I I
1 N 7 I 1 N J |
1 1 1 |
L) N e -

Figure 4: Overview of our main information leak detection concept: The master process is synchronized
with a re-randomized, but otherwise identical twin process. If a memory disclosure attack is conducted
in the master, it appears as well in the twin. Due to the different randomization, the disclosure attack
manifests itself in different data flowing into the script context and can be detected (0x727841F0 vs.
0x86941F0)

instrument the call and return bytecodes to precisely check all outgoing data and therefore to
detect an information leak.

Based on this principle, our prototype system launches the same script engine process twice
with diverse memory layouts (see also Figure 4). The script engines are coupled to run in sync
which enables checking for information leaks. In spirit, this is similar to n-variant systems [14,23|
and multi-execution based approaches [16,26,31]. However, our approach is more fine-grained
since it checks and synchronizes the processed data on the bytecode level of the script context
and is capable of detecting the actual information leak, instead of merely detecting an artifact of
a successful compromise (i.e., divergence in the control flow). A more detailed discussion about
the granularity of our approach in comparison to other n-variant and multi-execution systems is
given in Section 6.5. The involved technical challenges to precisely detect information leaks are
explained throughout the rest of this paper.

Rerandomized Mapping

Virtual Memory DLL A DLL B DLLC
Twin Copy Copy Copy

Mapped Views

Physical Memory %IBIBC DLL B ?:I;I;)S’ %I(‘JI;’? DLL A DLL C
Mapped Views
Virtual Memory DLL B DLL A DLLC
Master

Figure 5: Master and twin process with a different randomization: as the loader has to fix up address
references for each twin process, sharable code turns into private data. As a consequence, each twin
process has its own private copy of the DLL.

10

3.2 Per Process Re-randomization

As sketched in Section 2.2, all executable images loaded among simultaneously running processes
have the same base address in these processes. While it is convenient from a memory sharing point
of view, an attacker can abuse a memory disclosure for coordinated attacks between them [51].
Applying a different randomization for processes of choice has the nice side effect of excluding
these from such attacks, but our per process re-randomization has the main goal to randomize two
running instances of the same program (see Figure 5). Therefore, a program of interest is started
and we collect the base addresses of all images it loads and will load during its runtime period. We
refer to this first process as master process. A second process instance of the application known
as the twin process is spawned. Upon its initialization, the base addresses gained from the master
are occupied in the virtual address space of the twin. This forces the image loader to map the
images to other addresses than in the master process, as they are already allocated. We can save
us time and trouble to re-randomize the stack and heap process-wise, as modern operating systems
(e.g., Windows 8 on 64-bit) support it natively. Though, the steps described to re-randomize all
loaded images in the twin process are specific to Windows, the general concept of our proposed
information leak detection approach is operating system independent. As long as master and twin
process have different memory layouts, our approach can be applied. Finally, we can establish
an inter-process commaunication (IPC) bridge between the master and twin process. This enables
synchronized execution between them and comparison of data flows into their contexts that are
forbidden to contain memory information.

3.3 Dual Process Execution and Synchronization

After the re-randomization phase, both processes are ready to start execution at their identical
entrypoints. After exchanging a handshake, both resume execution. In order to achieve compa-
rable data for information leak checking, the executions of script interpreters in both processes
have to be synchronized precisely. This is accomplished by intercepting an interpreter’s native
methods. Additionally, we install hooks inside the bytecode interpreter loop at positions where
opcodes are interpreted and corresponding native functions are called. Thus, we perceive any
high-level script method call at its binary level. The master drives execution and these hooks are
the points where the master and twin process are synchronized via IPC. We check for information
leaks by comparing binary data which returns as high-level data into the script context. All input
data the master loads are stored in a cache and replayed to the twin process to ensure they operate
on the same source (e.g., web pages a browser loads). Built-in script functions that potentially
introduce entropy (e.g., Math.random, Date.now, and window.screenX in JavaScript) interfere
with our deployed detection mechanism, since they generate values inside the script context that
are different from each other in the master and twin processes, respectively. Additionally, they
may induce a divergent script control flow. Both occurrences would be falsely detected as memory
disclosure. Thus we also synchronize the entropy of both processes by copying the generated value
from the master to the twin process. This way the twin process continues working on the same
data as the master process and we are creating a co-deterministic script execution.

4 Implementation Details

Based on the concepts of per process re-randomization and dual process execution, we implemented
a tool called DETILE for Windows 8.0 and 8.1 64-bit. The current prototype is able to re-randomize
on a per process basis and instrument Internet Explorer 10 and 11 to run in dual process execution
mode. In the following, we describe in detail the steps taken during the development of our
framework to detect information leaks and also discuss arosen and solved challenges.

11

Tab master
IPC
Tab twin
\zZ€
start IE Main %
Wra . “er "o
e [iject | (64-bit) \
Tab master
/'e,_
"’70%, IPC
/ge
Tab twin

Figure 6: DETILE running with Internet Explorer. A 64-bit duplicator library is injected into the main
IE frame process to enable it creating and rerandomizing twin tab processes for each master tab process,
by itself. The main IE frame also injects a 32-bit DLL into each tab process to allow synchronization,
communication between master and twin, and information leak detection.

4.1 Duplication and Re-randomization

In order to re-randomize processes and load images at different base addresses, we developed a
duplicator which creates a program’s master process. It enumerates the master’s initial loaded
images with the help of the Windows API (CreateToolHelp32Snapshot) before the master starts
execution. Then, the twin process is created in suspended mode, and a page is allocated in the
twin at all addresses of previously gathered image bases. We then need to trick the Windows
loader into mapping kernel32.d11 at a different base in the twin. Therefore, the twin is attached
to the DebugAPI and a breakpoint is set automatically to the function Rt1EqualUnicodeString
in the 32-bit loader in the NT Layer DLL. The twin is then resumed and the WOW64 subsystem
DLLs are initialized successfully to different base addresses, at first. As soon as the breakpoint
triggers, and the function tries to compare the unicode name “KERNEL32.DLL” to the hardcoded
“KERNEL32.DLL” string in NT Layer DLL, the arguments to Rt1EqualUnicodeString are mod-
ified: the first unicode name is changed to lowercase and the third parameter is set to perfom a
case sensitive comparison. This way, the loader believes that a different DLL than kernel32.d11
is going to be initialized and allows the mapping to a different base. The loading of the 32-bit
kernel32.d11 is performed immediately after the WOWG64 subsystem is initialized and it is also
the first 32-bit DLL being mapped after the 32-bit NT Layer DLL. Thus, all subsequent libraries
that are loaded and import functions from kernel32.d11 have no problems to resolve their de-
pendencies using the remapped kernel32.d11l. The loader maps them to different addresses, as
their prefered base addresses are reserved. Although the DebugAPI is used, all steps run in a
fully automated way. As a next step, the DebugAPI is detached and the main image is remapped
to a different address. As it is already mapped even in suspended processes, this has to be done
specifically. Additionally, LdrLoadD11 in the twin process is detoured to intercept new library
loads and map incoming images to different addresses than in the master.

We were not able to re-randomize ntdl1l.d11 because it is mapped into the virtual address
space very early in the process creation procedure. Attempts to remap ntdll.d11l later on did
not succeed due to callbacks invoked by the kernel. The implications of a non re-randomized
ntdll.d1l are discussed in Section 7.2.

Note that this design works also with pure 64-bit processes. However, frequently attacked
applications like tab processes of Internet Explorer are 32-bit and are running in the WOW64
subsystem. Hence, our framework has to protect them as well. The following explains how
DETILE achieves this support.

While the above explained logic is sufficient to duplicate and re-randomize a single-process

12

program, additional measures have to be taken in the case of multi-process architecture appli-
cations like Internet Explorer. Therefore, we developed a wrapper which starts the 64-bit main
IE frame process and injects a 64-bit library, which we named duplicator library (see Figure 6).
This way, we modify the frame process, such that each time a tab process is started by the frame
process, a second tab process is spawned. The first becomes the master, the second the twin.
This is achieved via detouring and modifying the process creation of the IE frame. Additionally,
our above explained re-randomization logic is incorporated into the duplicator library to allow
the main IE frame process itself to re-randomize its spawned twins at creation time. To protect
each new tab which is run by the IE frame, we ensure that each tab is run in a new process and
gets a twin. To enable communication, synchronization, and detection of information leaks, the
duplicator injects also a 32-bit library into the master and the twin upon their creation by the
main IE frame process.

4.1.1 Kernel Mode Approach

In addition to our user-mode approach, we also developed a kernel driver that follows the same
logic. The driver rebases all DLLs and the main image, except for ntd11.d11. The main benefit of
approaching the problem from kernel mode is flexibility. It enables us to intercept and filter each
process and image load and grants us access to internal data structures that are linked to each
image. The driver also handles images that are dynamically loaded, no matter through which
API call the request is triggered. This is important as we noticed that not all DLL mappings
go through the native LdrLoadD11 call. Another motivation for a kernel approach is its generic
functionality, in that we are not bound to apply a logic tailored to a specific process, but to apply
one logic for each process. However, we left the generic functionality as a future work.

4.2 Synchronization

We designed our prototype to be contained in a DLL which is loaded into both target instances.
To reliably intercept all script execution, we hook LdrLoadD11 to initialize our synchronization as
early as possible once the engine has been loaded. After determining the role (master or twin), the
processes exchange a short handshake and wait for events from the interpreter instrumentation.
While most of our work is focused on the scripting engine, we also instrument parts of wininet.d11
to provide basic proxy functionality. The twin receives an exact copy of the web data sent to the
master to ensure the same code is executed.

4.2.1 Entropy Normalization

The synchronization of script execution relies heavily on the identification of functions and objects
introducing entropy into the script context. Values classified as entropy are overwritten in the
twin with the value received from the master. This ensures that functions such as Math.random
and Date.now return the exact same value, which is crucial for synchronous execution. While it is
obvious for Date.now, it is not immediately clear for other methods. Therefore, entropy inducing
methods are detected and filtered incremetally during runtime. Hence, if a detection has triggered
but the cause was not an information leak, it is included into the list of entropy methods.

4.2.2 Rendezvous and Checking Points

Vital program points where master and twin are synchronized are bytecode handler functions.
If a handler function returns data into the script context, it is first determined if the handler
function is an entropy inducing function. However, the vast majority of function invocations and
object accesses do not introduce entropy and are checked for equality between master and twin
on the fly. If a difference is encountered that is not classified as entropy, we assume that an
information leak occurred and take actions, namely logging the incident and terminating both
processes. Our empirical evaluation demonstrates that the synchronization is precise and even for
complex websites, we can synchronize the master and twin process (see Section 5.2 for details).

13

4.3 Chakra Instrumentation

The Chakra JavaScript Engine contains a JIT compiler. It runs in a dedicated thread, identifies
frequently executed (so called hot) functions and compiles them to native code. Our current
implementation works on script interpreters, hence we disabled the JIT compiler. This is currently
a prototype limitation whose solution we discuss in Section 7.2.

In order to synchronize execution and check for information leaks, we instrumented the main
loop of the Chakra interpreter, which is located in the Js::InterpreterStackFrame: :Process
function. It is invoked recursively for each JavaScript call and iterates over the variable length
bytecodes of the JavaScript function. The main loop contains a switch statement, which selects
the corresponding handler for the currently interpreted bytecode. The handler then operates on
the JavaScript context dependent on the operands and the current state. In the examined Chakra
versions, we observed up to 648 unique bytecodes. Prior to the invocation of a bytecode handler,
our instrumentation transfers the control flow to a small, highly optimized assembly stub, which
decides whether the current bytecode is vital for our framework to handle.

We intercept all call and return as well as necessary conversion bytecodes in order to
extract metadata such as JavaScript function arguments, return values, and conversion values.
Conversion bytecodes handle dynamic type casting, native value to JavaScript object and Java-
Script object to native value conversions. Additionally, we intercept engine functions that handle
implicit type casts at native level, because they are invoked by other bytecode handlers as required
and have no bytecode equivalents themselves. Furthermore, all interception sites support the ma-
nipulation of the outgoing native value or JavaScript object for the purpose of entropy elimination
in the JavaScript context of the twin process.

4.4 AVM Instrumentation

Instrumentation of the AVM is based on prior work of F-Secure [42] and Microsoft [52]. We hook
at the end of the native method verifyOnCall inside verifyEnterGPR to intercept ActionScript
method calls and retrieve ActionScript method names. At these points, master and twin can
be synchronized. Parameters flowing into an ActionScript method and return data flowing back
into the ActionScript context can be dissected, too. They are also processed inside the method
verifyEnterGPR. Based on their high level ActionScript types, the parameters and return data
can be compared in the master and twin. This way, we can keep the master and twin in sync at
method calls, check for information leaks and mediate entropy data from the master to the twin.

5 Evaluation

In the following, we present evaluation results for our prototype implementation of DETILE in
the form of performance and memory usage benchmarks. The benchmarks were conducted on a
system running Windows 8.0/8.1 that was equipped with a 4th generation Intel i7-4710MQ quad-
core CPU and 8GB DDR3 RAM. Furthermore, we demonstrate how our prototype can successfully
detect several kinds of real-world information leaks.

5.1 Re-randomization of Process Modules

We evaluated our re-randomization engine according to its effectiveness, memory usage, and per-
formance.

5.1.1 Effectiveness

We applied re-randomization to internal Windows applications and third-party applications, to
verify that modules in the twin are based at different addresses than in the master. We therefore
compared base addresses of all loaded images between the two processes and confirmed that all
images in the twin process had a different base address than in the master, except ntd11.d11. See

14

Process Mode:
W Native ReASLR: 0.19x ReASLR: 0.09x
- Master ReASLR + DE: 1.21x ReASLR + DE: 1.1x
100} Twin 99.7 95.5
84.0 86.0 87.9 88.9
= + .
¥ ReASLR: 0.75x ReASLR: 0.63x
« ReASLR + DE: 1.74x ReASLR + DE: 1.45x
= 60 55.1 51.8
40l ReASLR: 0.81x
31.4 30.9 ReASLR: 0.31x 31.8 ReASLR + DE: 1.85x
ReASLR + DE: 1.35x 26.2 20.7
20 113 11.8,148 114 118
oL
Internet Explorer 10 (8.0) Firefox 33 (8.0) Calculator (8.0) Internet Explorer 11 (8.1) Firefox 33 (8.1) Calculator (8.1)

Figure 7: Memory overhead of re-randomization and dual execution measured via working set (WS) con-
sumption in megabytes (M): Native processes on Windows 8.0 and 8.1 are contrasted to their counterparts
running in re-randomized dual execution mode (master and twin).

the discussion in Section 7.2 for details on the difficulties of remapping the 64-bit and 32-bit NT
Layer DLLs. Table 4 in Appendix 9.1 lists important Windows DLLs, re-randomized in different
processes running simultaneously on a single user session.

5.1.2 Physical Memory Usage

To inspect the memory overhead of our re-randomization scheme, we measured the working set
characteristics for different master and re-randomized twin processes compared to native processes.
Figure 7 shows the memory working sets of three applications. ReASLR denotes thereby the re-
randomization within a single process. DF means that two processes are running, whereby the
master’s randomization is kept native while the twin is re-randomized. The applications besides
IE are only included to measure the memory overhead and are not synchronized. We calculate
the memory overhead of per process re-randomization (ReASLR) of a single process as follows:
WS (Twin)
Overhead(ReASLR) = WS(Native) 1

Thus, the overall memory overhead based on working sets is 0.46 times. When running a
program or process in per process re-randomization and dual process execution (DE), we have to
include both master and twin into the memory overhead calculation. Therefore, the overhead is
calculated by

WS(Twin) + WS(Master)
Overhead(ReASLR + DE) = WS(Native) 1

Its overall value is 1.45 times. Note that memory working sets can highly vary during an
application’s runtime, and thus, are difficult to quantify. The measurements shown in Figure 7
(and in the Tables 5, 6, 7, 8 in Appendix 9.2) were performed after the application has finished
startup, and was waiting for user input (i.e., it was idle and all modules were loaded and initialized).
Due to additional twins for master processes, the overall additional memory is about one to two
times per protected process. The reader is refered to the Appendix 9.2 for more details on data
of working set characteristics.

5.1.3 Re-randomization and Startup Time Performance

When a program is started the first time after a reboot, the kernel needs to create section objects
for image modules. Hence, the first start of a program always takes longer than subsequent starts
of the same program. To measure the additional startup and module load times our protection
introduces, we first run each program natively once to allow the kernel to create section objects
of most natively used DLLs, and close it afterwards. We then start the program natively without
protection and measure the time until it is idle and all of its initial modules are loaded. In the

15

| Native (8.0) ReASLR+DE (8.0) Slowdown |Native (8.1) ReASLR+DE (8.1) Slowdown
IE tab spawn| 0.9163 s 2.0710 s 1.3x 0.5194 s 1.3082 s 1.5x
Firefox 0.9624 s 1.8064 s 0.9x 1.3823 s 1.5441 s 0.1x
Calculator 0.3484 s 0.3610 s 0.0x 0.4391 s 0.6599 s 0.5x

Table 2: Startup times in seconds and startup slowdowns of native 32-bit applications compared to their
counterparts running with per process re-randomization and dual process execution on Windows 8.0 and

Windows 8.1 (both 64-bit).

S 5 g
) 3 5§ g F
s 5§ 5 5 2 § 5 ¢ 3 -
Q o g S S h<i ; 2 g = I<i o g 2
< o g o ; g & £ S 5 S 3 o o &
» ¢ £ S £ £ £8 £ £ F § ¥ i 3
§ 5 = IS) S
Web page | & & £ g 3 & £ &g 8 5 § 5 s 7 £
Native 425 774 1196 3674 1108 472 599 2405 645 439 958 254 483 3360 373
DETILE 482 961 1519 4722 1339 513 623 2724 824 517 1210 275 517 4269 379
Overhead |13.4% 24.1% 27% 28.5% 20.8% 8.6% 4% 13.2% 27.7% 17.7% 26.3% 82% 7% 27% 1.6%

Table 3: Native script execution of IE 11 on Windows 8.1 64-bit compared to the script execution of IE 11
instrumented with DETILE. Execution time is measured in milliseconds using the internal F12 developer

tools provided by IE.

same way, we measure the time from process creation until both the master and twin process
have their inital modules loaded. The startup comparison can be seen in Table 2. As expected,
the startup times of applications protected with our approach are approximately doubled. This
is caused by the fact that a twin process needs to be spawned for each master that should be

protected.

5.2 Detection Engine

Next, we evaluate the impact of DETILE on the user experience and its effectiveness in detecting
information leaks. We performed tests on the script execution time for popular websites and used
the prototype to detect four real-world vulnerabilities and a toy example to evaluate our detection

capabilities.

5.2.1 Script Execution Time and Responsiveness
We used the 15 most visited websites worldwide [3] to test how the current prototype interferes
with the normal usage of these pages. Besides the subjective impression while using the page,
we utilized the F12 developer tools of Internet Explorer 11 to measure scripting execution time
provided by the Ul Responsiveness profiler tab. These tests were performed using Windows 8.1 64-
bit and Internet Explorer 11. While we introduce a performance hit of around 17.0% on average,
the subjective user experience was not noticeably affected. This is due to IE’s deferred parsing,
which results in displaying content to the user before all computations have finished.

5.2.2 Information Leak Detection

We tested our approach on a pure memory disclosure vulnerability (CVE-2014-6355) which allows
illegitimately reading data due to a JPEG parsing flaw in Microsoft’s Windows graphics compo-
nent [89]. It can be used to defeat ASLR by reading leaked stack information back to the attacker
via the toDataURL method of a canvas object. We successfully detected this leak at the point of
the call to toDataURL in the master and twin process. In the same way, detection was successful

for an exploit for a similar bug (CVE-2015-0061 [90]).
To further verify our prototype, we evaluated it against an exploit for CVE-2011-1346, a

vulnerability that was used in the pwn2own contest 2011 to bypass ASLR [91]. As this memory

16

disclosure bug is specific for IE 8, we ported the vulnerability into IE 11. An uninitialized index
attribute of a new HTML option element is used to leak information. Similarly, we successfully
detected this exploitation attempt when the index attribute was accessed.

Additionally, we tested our prototype on another real-world vulnerability (CVE-2014-0322)
that was used in targeted attacks [34] and works for Internet Explorer 10 on Windows 8 64-bit.
It is a use-after-free error that can be utilized to increase an arbitrary bit, which is enough to
allow read and write access to the complete process memory and create information leaks [50].
Ultimately, exercising the vulnerability allows to read a Typed Array vtable. Thus, it can be
accessed and the illegal transition from native memory to the untrusted JavaScript context is
performed. Put differently, an information leak is created, which now can be used to reconstruct
the complete memory layout. DETILE triggered as the third byte of the Vtable was accessed
(i.e., the third least significant byte is the first differing byte in both contexts). Therefore, the
information leak was detected successfully without problems.

To further test our implementation, we also constructed a toy example. Thereby, our native
code creates an information leak by overwriting the length field of an array. Then, the image base
of jscript9.dll is written to memory after the array buffer. This ensures that an out of bounds
read will result in both, an information leak and a difference in the twin.

We designed the example to be triggered by calling a specifically named JavaScript function
and performing array accesses in it. The length field of any arrays accessed in this function will
be overwritten with the value 0x400, allowing memory reads beyond the real array data. This
example can be triggered in all versions for which we ported DETILE and only depends on the
structure of the internal metadata, which needs to be adjusted between versions of the scripting
engine. In our tests, we reliably detected the out of bounds read of the image base and can stop
the execution of the process.

5.2.3 False Positive Analysis

We analyzed the 100 top websites worldwide [3] to evaluate if our prototype can precisely handle
real-world, complex websites and their JavaScript contexts without triggering false alarms. None of
the tested websites did generate an alert, indicating that the prototype can accurately synchronize
the master and twin process.

6 Related Work

Software vulnerabilities have received much attention in the last years, mainly due to their high
presence in applications and huge impact in practice. Hence, several research results were presented
to either offensively abuse vulnerabilities or to develop different defense techniques to mitigate
them. In the following, we briefly examine recent work and discuss differences to our approach
presented in this paper.

6.1 Security Features Against Memory Corruption Attacks

Modern operation systems apply many methods to harden and protect applications against soft-
ware vulnerabilities. Amongst others, Data Ezecution Prevention (DEP) [56] forbids executable
data, Address Space Layout Randomization (ASLR) [65] randomizes the address space of a given
program, and SAFESEH/SEHOP provides protection against exception handler manipulation.
While DEP and SAFESEH/SEHOP are orthogonal to our system, we improve ASLR on Windows
such that each process has its modules rebased to different addresses, turning remote coordinated
attacks [51] impractical.

Related to our process-wise re-randomization is Microsoft’s Enhanced Mitigation Experience
Toolkit (EMET) [54]. While it enforces ASLR for non-ASLR modules, module base addresses
are identical in all processes running on a system and change only after a reboot. This still
allows coordinated attacks, which EMET cannot protect against. Thus, our re-randomization is

17

superior as each process has a different module randomization including kernel32.d11 and the
main executable.

6.2 Randomization Techniques

Several approaches have been proposed to either improve address space layout randomization, ran-
domize the data space, or randomize on single instruction level. For example, binary stirring [83]
re-randomizes code pages at a high rate for a high performance cost. While it hinders attackers
to use information leaks in code-reuse attacks, it does not impede their creation by itself. In
contrast, our re-randomization scheme reuses the native operating system loader and is the base
to allow information leak detection with dual process execution. Oxymoron [5] allows fine-grained
address space layout randomization in combination with code sharing and thereby imposing a low
overhead. While it protects against code-reuse attacks, it does not detect information leaks. A
sophisticated attacker is still able to read a complete memory page with sensitive information or
manipulate important tokens to escalate privileges. Thus, it does not protect against data-only
attacks in combination with information leaks. Our framework differs in that it does not need to
rewrite a given binary, and is specialized in determining if memory information is illegally flowing
into an untrusted context. Furthermore, we support the 64-bit Windows operating system that
is the platform of choice of adversaries to attack applications. Other solutions [47,61,61] are
prone to JIT-ROP code-reuse attacks [73], which are based on information leaks. Address space
layout permutation is an approach to scramble all data and functions of a binary [47]. There-
fore, a given ELF binary has to be rewritten and randomization can be applied on each run.
ORP [61] rewrites instructions of a given binary and reorders basic blocks. As discussed above,
it is prone to information leak attacks, which we detect. Instruction set randomization [6,46]
complicates code-reuse attacks as it encrypts code pages and decrypts it on the fly. However, in
the presence of information leaks combined with key guessing [73,76,84] it can be circumvented.
Instruction layout randomization (ILR) [43] randomizes the location of each instruction on each
run, but no re-randomization occurs. Thus, the layout can be reconstructed with the help of an
information leak. Readactor is a defensive system that aims to be resilient against just-in-time
code-reuse attacks [24]. Tt hides code pointers behind execute-only trampolines and code itself is
made execute-only, to prevent an attacker building a code-reuse payload just-in-time. However,
it has been shown that it is vulnerable against an attack named COOP, which reuses virtual
functions [66]. Unlike Readactor, DETILE prevents COOP, as this attack needs an information
leak as first step. Crane et al. recently presented an enhanced version of Readactor, dubbed
Readactor++ [25], that also protects against whole function reuse attacks such as COOP. This
is achieved through function pointer table randomization and insertion of booby traps. Conse-
quently, an adversary can no longer obtain meaningful code locations that can be leveraged for
code-reuse attacks. Readactor++ also does not detect or prevent the exploitation of memory
disclosures, which poses a potential attack vector.

6.3 Control-Flow Protections

Web browser have a long history of software vulnerabilities. The most prevalent bugs are use-after-
free errors [15], which adversaries are able turn into arbitrary writes nowadays [87,88]. Hence,
protections are arising which specifically target so called vtable-hijacking [18,36,63], an exploita-
tion technique used against C++ compiled applications, especially web browsers. The proposed
approaches detect and mitigate the usage of fake vtables at virtual function call sites, but cannot
protect against the step of creating information leaks, which the adversary needs. Only after
bypassing ASLR with an information leak, she is able to gain control over the program at virtual
function call sites.

A different approach to mitigate vulnerabilities is to hinder a specific technique of code-reuse
attacks, namely Return-Oriented Programming (ROP) [20,35,62]. Using processor features and
heuristics, these works aim to detect so called “gadgets” that attackers utilize in an exploitation
attempt during runtime of a program. Overcoming these protections was the focus of recent

18

research [17,39,67], whereby all proposed attacks used information leaks as a first step towards
exploitation.

A more general protection against control-flow hijacking attacks is Control-Flow Integrity
(CFI) [1]. The idea is to instrument a program and verify that each control transfer is jumping to
a legitimate control target. Imposing a high performance impact has prevented wide adoption yet.
However, coarse-grained CFI protections [93,94] have a low performance overhead at the expense
of security guarantees proposed in the original protection [1]. It has been shown by recent works,
that these coarse-grained CFI protections can be circumvented [29,38]. It is important to notice
that these works needed information leaks in the first place to be able to bypass CFI. As the goal
of our work is to detect exploits utilizing information leaks, it is orthogonal to CFI and serves as
an additional boundary to impede successful exploitation.

6.4 Memory Safety

In a broader sense, monitoring or modifying memory is an approach to mitigate software vulner-
abilities. CLING [2] is a memory allocator that only allows memory reuse among objects of the
same type, thus, effectively mitigating use-after-free vulnerabilities. It imposes a low performance
overhead of 2%. SOFTBOUND [57] guarantees complete memory safety at the cost of a one
to two times slowdown and needs access to the source code. As any type of vulnerability can be
transformed into an information leak [78], protecting against a specific type of error such as use-
after-free is not enough. Also, most applications targeted by sophisticated attackers are available
only in binary form, where the source code is not available. Therefore, there is a need of methods,
which can handle binary code.

6.5 Multi-Execution Approaches

Most closely related to our research are n-variant systems, which run variants of the same program
with diverse memory layout and instructions [23]. Bruschi et al. presented a similar work that
runs program replice synchronized at system calls to detect attacks [14,44]. They demonstrate
the detection of memory exploits against the lightweight server thttpd on the Linux platform.

Our concept for the detection of information leaks incorporates ideas like dual process exe-
cution, per process re-randomization and synchronization. Hence, our work is closely related to
n-variant systems [14,23]. However, our approach is adapted specifically for script engines, making
it more fine-grained. More specifically, it operates and synchronizes on the bytecode level, whereas
n-variant systems intercept system calls.

Furthermore, n-variant systems aim to detect the exploitation of different classes of memory
corruption vulnerabilities depending on the utilized diversification method. In contrast, we focus
on the detection of information leaks, which represent the first step in modern attacks. As such,
our approach is capable of identifying the early phase of an attack instead of merely determining
that the control flow has diverged.

The major drawback of theses systems is the detection approach: if a memory error is abused,
one of the variants eventually crashes, which indicates an attack. As information leaks do not
constitute a memory error, they do not raise any exception-based signal. Thus, they remain
undetected in these systems. One significant implication is that unlike DETILE, n-variant systems
do not protect against just-in-time code-reuse attacks such as JIT-ROP [73]. Similarily, this
is the case with COOP attacks in browsers [66]. N-variant systems prevent conventional ROP
attacks [64,81] with multi process execution and disjunct virtual address spaces: An attacker
supplied absolute address (e.g., obtained through a remote memory disclosure vulnerability) is
guaranteed to be invalid in n — 1 replicas. Hence, any system call utilizing this address will trigger
a detection. However, JIT-ROP attacks may performs several memory disclosures and malicious
computations without executing a system call inbetween, and thus, can evade traditional n-variant
systems. COOP attacks may as well perform touring-complete computations on disclosed memory
without executing a system call and evade these systems.

19

Additionally, we show that synchronized interpreter execution can be achieved in much more
complex software systems with much higher synchronization granularity, even without having
access to the source code.

Private information leaks can be prevented with shadow ezecutions [16]. In contrast, our
prototype does not require a virtual machine per program to perform multi execution as our
prototype achieves synchronization on the binary level. Additionally, we aim to detect general
and fine-grained raw memory information leaks usable to bypass security features. Other research
showed that private information leak in networks can be prevented via comparing outbound traffic
of original and shadow processes for divergence [26]. Our work strongly varies, as we focus on
inherent binary flows and show that even in highly complex software, subtle differences can be
used to detect illegal program behavior.

Our dual execution approach differs to other multi-execution approaches in that both programs
do not need to receive input tagged at a security level. This is due to the fact that raw memory
leaks show themselves as different contents inside low privileged contexts.

DIEHARD [8] and DIEHARDER [58] are memory allocators that mitigate heap vulnerabilities.
Furthermore, DIEHARD is able to operate in a so called replicated mode to run a program several
times in parallel to compare the output. In spirit, this is similar to our approach. However, the
design of DIEHARD does not allow to run programs which perform network operations or access
the filesystem. In our work, we show that multi-execution is possible beyond programs in the scope
of DIEHARD, e.g., in sophisticated and complex software like web browsers without having access
to their source code. Additionally, in single execution mode, memory disclosures like uninitialized
reads fly under the radar of DIEHARD and DIEHARDER as they do not constitute necessarily a
Memory error.

Devriese and Piessens showed that noninterference can be achieved via secure multi-ezecution [31].
It targets a different context than our work and is implemented against source code to compare
only JavaScript I/O. Similarly, it is possible to leverage static transformation of JavaScript and
Python code of interest to obtain secure multi-execution [7]. Our work can serve as a starting
point to achieve non-interference in binary programs which encompass security levels spread over
difficult to connect boundaries (i.e., native memory and the JavaScript layer).

7 Discussion

In the following, we discuss potential shortcomings of our approach and the prototype, and also
sketch how these shortcomings can be addressed in the future.

7.1 Further Information Leaks

Serna provided an in-depth overview of techniques that utilize information leaks for exploit de-
velopment [71]. The techniques he discussed during the presentation utilize JavaScript code. As
our prototype leverages the JavaScript engine of the browser itself, each information leak that is
based on these techniques is detected. This implies that memory disclosure attacks that leverage
other (scripting) contexts (e.g., VBScript) can potentially bypass our implementation. However,
in practice exploits are typically triggered via JavaScript and thus our prototype can detect such
attacks. Furthermore, due to the generic nature of our approach, our current prototype can be
extended by instrumenting other scripting engines as well. Another flavor of information leak is
based on timing attacks. In 2012, it has been shown that timing attacks on the hash table imple-
mentation in Firefox can be utilized to obtain addresses of string objects [60]. In 2013, another
timing attack was presented that uses the garbage collector to leak addresses of internal data [11].
Hund et al. demonstrate that kernel-space ASLR can be defeated by timing attacks targeted
at the cache and TLB [45]. Seibert et al. demonstrate how memory corruption vulnerabilities
can aid in utilizing timing side channel techniques to gain knowledge about the executed code,
even if the code is diversified [69]. Timing based information leaks are difficult to detect, as it is
hard to verify if a computational operation serves the purpose of a timing side channel or if it is

20

legitimate. Hence, the reliable detection of information leaks based on timing side channels has
yet to be shown, but recent results are promising [32,41]. While our detection does not trigger on
timing-based information leaks, it triggers on the usage of them, because we monitor the transition
into native memory from JavaScript. As such, we cannot directly observe the information leak,
but can directly detect its results once it enters the scripting context or flows from the scripting
context to native memory.

7.2 Limitations of Prototype Implementation

In the unlikely event one of the functions we classified as entropy source, such as Math.random or
Date.now, contain a memory disclosure bug, our approach can lead to an under-approximation of
detected information leaks. In this specific case, the master confuses the leaked pointer with data
from the entropy source and transfers it to the twin process. This is an undesirable state, because
DETILE does not prevent the memory layout information to leak into the script context. However,
the obtained pointer is only valid in the master process. An attempt to leverage the pointer to
mount a code-reuse attack crashes the twin. As a consequence, DETILE halts the master process
and prevents further damage.

The current prototype disables the JIT Engine as we protect the interpreter only. However,
dynamic binary instrumentation (DBI [13,53]) frameworks allow to synchronize processes on the
intruction or basic block level, and hence, make it possible to hook emitted JIT code to dispatch
our assembly stub in order to synchronize and check within the JIT code.

Asynchronious JavaScript events are currently not synchronized. This is solvable with DBI
frameworks as well: If an event triggers in the master process, we let the twin execute to the same
point. Then DETILE sets up and triggers the same event in the twin process.

One additional shortcoming of our prototype implementation is the identical mapping of
ntdl1.d11 in all processes. As this DLL is initialized already at startup, remapping it is a
cumbersome operation. JavaScript, HTML, and other contexts in browsers normally do not in-
teract directly with native ntd11.d11 Windows structures, and thus internal JavaScript objects,
do not contain direct memory references to it. Hence, attackers resort to disclose addresses from
libraries other than ntdl1.d11 at first. On the contrary, there might be script engines which
directly interact with ntd11.d11. Still, the issue is probably solvable with a driver loaded during
boot time.

Another technical drawback is the application of re-randomization on every process on the
0OS, as DLL modules of each process would turn into non-shareable memory and increase physical
memory consumption. This can be avoided by protecting only critical processes that represent a
valid target for attacks.

7.3 Deployment

The current prototype is not meant to be a protection framework for end users of web browsers.
It is intended to be deployed as a system for scanning web pages to discover unknown exploits
which utilize information leaks. As ASLR needs to be circumvented as a first step of each modern
exploit against web browsers, DETILE has the advantage to provide an early detection of the
exploit process.

8 Conclusion

Over the last years, script engines were used to exploit vulnerable applications. Especially web
browsers became an attractive target for a plethora of attacks. State-of-the-art vulnerability
exploits, both in academic research [17,29,38,39,67] and in-the-wild [68,82,86-88], rely on memory
disclosure attacks.

In this work, we proposed a fine-grained, automated scheme to reliably detect such informa-
tion leaks in script engines. It is based on the insight that information leaks result in a noticable

21

difference in the script context of two synchronized processes with different randomization. We
implemented a prototype of this idea for the proprietary browser IE to demonstrate that our ap-
proach is viable even on closed-source systems. An empirical evaluation demonstrates that we can
reliably detect real-world attack vectors and that the approach induces a moderate performance
overhead only (around 17% overhead on average). While most research focused on mitigating
specific types of vulnerabilities, we address the root cause behind modern attacks since most of
them rely on information leaks as a first step. Our approach thus serves as another defense layer
to complement defenses such as DEP and ASLR.

Acknowledgements

We would like to thank the anonymous reviewers for their valuable comments. This work was sup-
ported by the European Commission through the ERC Starting Grant No. 640110 (BASTION).

References

[1] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. Control-Flow Integrity. In ACM Confer-
ence on Computer and Communications Security (CCS), 2005.

[2] P. Akritidis. Cling: A memory allocator to mitigate dangling pointers. In USENIX Security
Symposium, 2010.

[3] Alexa. The top 500 sites on the web. http://www.alexa.com/topsites, 2014.

[4] M. Athanasakis, E. Athanasopoulos, M. Polychronakis, G. Portokalidis, and S. Ioannidis.
The devil is in the constants: Bypassing defenses in browser JIT engines. In Symposium on
Network and Distributed System Security (NDSS), 2015.

[6] M. Backes and S. Niirnberger. Oxymoron: making fine-grained memory randomization prac-
tical by allowing code sharing. In USENIX Security Symposium, 2014.

[6] E. G. Barrantes, D. H. Ackley, T. S. Palmer, D. Stefanovic, and D. D. Zovi. Randomized
instruction set emulation to disrupt binary code injection attacks. In ACM Conference on
Computer and Communications Security (CCS), 2003.

[7] G. Barthe, J. M. Crespo, D. Devriese, F. Piessens, and E. Rivas. Secure multi-execution
through static program transformation. pages 186202, 2012.

[8] E.D. Berger and B. G. Zorn. DieHard: Probabilistic Memory Safety for Unsafe Languages. In
ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI),
2006.

[9] A. Bittau, A. Belay, A. Mashtizadeh, D. Mazieres, and D. Boneh. Hacking blind. In IEEE
Symposium on Security and Privacy, 2014.

[10] D. Blazakis. Interpreter exploitation: Pointer inference and jit spraying. BlackHat DC, 2010.

[11] D. Blazakis. GC woah. http://www.trapbit.com/talks/SummercOn2013-GCWoah.pdf,
2013.

[12] T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang. Jump-oriented programming: a new class
of code-reuse attack. In ACM Symposium on Information, Computer and Communications
Security (ASIACCS), 2011.

[13] D. Bruening, E. Duesterwald, and S. Amarasinghe. Design and implementation of a dy-
namic optimization framework for windows. In 4th ACM Workshop on Feedback-Directed and
Dynamic Optimization (FDDO-4), 2001.

[14] D. Bruschi, L. Cavallaro, and A. Lanzi. Diversified process replicee for defeating memory

error exploits. In Performance, Computing, and Communications Conference, 2007. IPCCC
2007. IEEFE Internationa, 2007.

22

http://www.alexa.com/topsites
http://www.trapbit.com/talks/Summerc0n2013-GCWoah.pdf

[15]

[16]

[17]

18]

[19]

[21]

[22]

[23]

[30]

[31]
32]

[33]

J. Caballero, G. Grieco, M. Marron, and A. Nappa. Undangle: Early Detection of Dangling
Pointers in Use-after-free and Double-free Vulnerabilities. In International Symposium on
Software Testing and Analysis (ISSTA), 2012.

R. Capizzi, A. Longo, V. Venkatakrishnan, and A. P. Sistla. Preventing information leaks
through shadow executions. In Annual Computer Security Applications Conference (ACSAC),
2008.

N. Carlini and D. Wagner. ROP is still dangerous: Breaking modern defenses. In USENIX
Security Symposium, 2014.

Z. C. Chao Zhang Chengyu Song, Kevin Zhijie Chen and D. Song. VTint: Defending Vir-
tual Function Tables Integrity. In Symposium on Network and Distributed System Security
(NDSS), 2015.

S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi, H. Shacham, and M. Winandy. Return-
oriented programming without returns. In ACM Conference on Computer and Communica-
tions Security (CCS), 2010.

Y. Cheng, Z. Zhou, M. Yu, X. Ding, and R. H. Deng. ROPecker: A Generic and Practical
Approach for Defending Against ROP Attacks. In Symposium on Network and Distributed
System Security (NDSS), 2014.

M. Conti, S. Crane, L. Davi, M. Franz, P. Larsen, M. Negro, C. Liebchen, M. Qunaibit,
and A.-R. Sadeghi. Losing control: On the effectiveness of control-flow integrity under stack
attacks. In ACM Conference on Computer and Communications Security (CCS), 2015.

C. Cowan, C. Pu, D. Maier, H. Hintony, J. Walpole, P. Bakke, S. Beattie, A. Grier, P. Wagle,
and Q. Zhang. Stackguard: Automatic adaptive detection and prevention of buffer-overflow
attacks. In USENIX Security Symposium, 1998.

B. Cox, D. Evans, A. Filipi, J. Rowanhill, W. Hu, J. Davidson, J. Knight, A. Nguyen-Tuong,
and J. Hiser. N-variant Systems: A Secretless Framework for Security Through Diversity. In
USENIX Security Symposium, 2006.

S. Crane, C. Liebchen, A. Homescu, L. Davi, P. Larsen, A.-R. Sadeghi, S. Brunthaler, and
M. Franz. Readactor: Practical code randomization resilient to memory disclosure. In IEEFE
Symposium on Security and Privacy, 2015.

S. Crane, S. Volckaert, F. Schuster, C. Liebchen, P. Larsen, L. Davi, A.-R. Sadeghi, T. Holz,
B. D. Sutter, and M. Franz. It’s a TRAP: Table randomization and protection against function
reuse attacks. In ACM Conference on Computer and Communications Security (CCS), 2015.
J. Croft and M. Caesar. Towards practical avoidance of information leakage in enterprise
networks. In HotSec, 2011.

CVE. Google Chrome Vulnerability Statistics. http://www.cvedetails.com/product/
15031/Google-Chrome.html?vendor_id=1224, 2014.

CVE. Microsoft Internet Explorer Vulnerability Statistics. http://www.cvedetails.com/
product/9900/Microsoft-Internet-Explorer.html?vendor_id=26, 2014.

L. Davi, D. Lehmann, A.-R. Sadeghi, and F. Monrose. Stitching the gadgets: On the ineffec-
tiveness of coarse-grained control-flow integrity protection. In USENIX Security Symposium,
2014.

L. Davi, C. Liebchen, A.-R. Sadeghi, K. Z. Snow, and F. Monrose. Isomeron: Code random-
ization resilient to (just-in-time) return-oriented programming. In Symposium on Network
and Distributed System Security (NDSS), 2015.

D. Devriese and F. Piessens. Noninterference through secure multi-execution. In IFEFE
Symposium on Security and Privacy, 2010.

G. Doychev, D. Feld, B. Kopf, L. Mauborgne, and J. Reineke. CacheAudit: A Tool for the
Static Analysis of Cache Side Channels. In USENIX Security Symposium, 2013.

U. Erlingsson, M. Abadi, M. Vrable, M. Budiu, and G. C. Necula. XFI: Software Guards
for System Address Spaces. In Symposium on Operating Systems Design and Implementation

23

http://www.cvedetails.com/product/15031/Google-Chrome.html?vendor_id=1224
http://www.cvedetails.com/product/15031/Google-Chrome.html?vendor_id=1224
http://www.cvedetails.com/product/9900/Microsoft-Internet-Explorer.html?vendor_id=26
http://www.cvedetails.com/product/9900/Microsoft-Internet-Explorer.html?vendor_id=26

[45]

[46]

[47]

(OSDI), 2006.

FireEye. Operation SnowMan. http://www.fireeye.com/blog/technical /cyber-
exploits/2014/02/operation-snowman-deputydog-actor-compromises-us-veterans-of-foreign-
wars-website.html, 2014.

I. Fratric. Runtime Prevention of Return-Oriented Programming Attacks.
http://ropguard.googlecode.com/svn-history/r2/trunk/doc/ropguard.pdf.

R. Gawlik and T. Holz. Towards Automated Integrity Protection of C++ Virtual Function
Tables in Binary Programs. In Annual Computer Security Applications Conference (ACSAC),
2014.

R. Gawlik, B. Kollenda, P. Koppe, B. Garmany, and T. Holz. Enabling client-side crash-
resistance to overcome diversification and information hiding. In Symposium on Network and
Distributed System Security (NDSS), 2016.

E. Goktag, E. Athanasopoulos, H. Bos, and G. Portokalidis. Out of control: Overcoming
control-flow integrity. In IEEE Symposium on Security and Privacy, 2014.

E. Goktag, E. Athanasopoulos, M. Polychronakis, H. Bos, and G. Portokalidis. Size does
matter: Why using gadget-chain length to prevent code-reuse attacks is hard. In USENIX
Security Symposium, 2014.

D. Herman and K. Russell. Typed array specification. Khronos. org, 2011.

J. Heusser and P. Malacaria. Quantifying Information Leaks in Software. In Annual Computer
Security Applications Conference (ACSAC), 2010.

T. Hirvonen. Dynamic flash instrumentation for fun and profit. Black Hat USA, 2014.

J. Hiser, A. Nguyen-Tuong, M. Co, M. Hall, and J. W. Davidson. ILR: Where’'d my gadgets
go? In IEEE Symposium on Security and Privacy, 2012.

P. Hosek and C. Cadar. Varan the unbelievable: An efficient n-version execution framework. In
International Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 2015.

R. Hund, C. Willems, and T. Holz. Practical Timing Side Channel Attacks against Kernel
Space ASLR. In IEEE Symposium on Security and Privacy, 2013.

G. S. Kc¢, A. D. Keromytis, and V. Prevelakis. Countering code-injection attacks with
instruction-set randomization. In ACM Conference on Computer and Communications Se-
curity (CCS), 2003.

C. Kil, J. Jim, C. Bookholt, J. Xu, and P. Ning. Address space layout permutation (ASLP):
Towards fine-grained randomization of commodity software. In Annual Computer Security
Applications Conference (ACSAC), 2006.

S. Krahmer. x86-64 buffer overflow exploits and the borrowed code chunks exploitation
technique. http://users.suse.com/~krahmer/no-nx.pdf, 2005.

V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar, and D. Song. Code-pointer
integrity. In Symposium on Operating Systems Design and Implementation (OSDI), 2014.
B. Labs. Dissecting the newest IEI0 0-day exploit (CVE-2014-0322).
http://labs.bromium.com/2014/02/25/dissecting-the-newest-ie10-0-day-exploit-cve-2014-
0322/, 2014.

B. Lee, L. Lu, T. Wang, T. Kim, and W. Lee. From zygote to morula: Fortifying weakened
ASLR on Android. In IEEE Symposium on Security and Privacy, 2014.

H. Li. Inside AVM. In RFEcon, 2012.

C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J. Reddi, and
K. Hazelwood. Pin: building customized program analysis tools with dynamic instrumenta-
tion. Acm Sigplan Notices, 2005.

Microsoft. EMET 5.1 is available. http://blogs.technet.com/b/srd/archive/2014/11/
10/emet-5-1-is-available.asp, 2014.

24

http://users.suse.com/~krahmer/no-nx.pdf
http://blogs.technet.com/b/srd/archive/2014/11/10/emet-5-1-is-available.asp
http://blogs.technet.com/b/srd/archive/2014/11/10/emet-5-1-is-available.asp

[55]

[56]
[57]

[74]

[75]

[76]

Microsoft. What is the Windows Integrity Mechanism? http://msdn.microsoft.com/
en-us/library/bb625957 . aspx, 2014.

I. Molnar. Exec shield, new linux security feature. News-Forge, May, 2003.

S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic. SoftBound: highly compatible
and complete spatial memory safety for C. In ACM Sigplan Notices, 2009.

G. Novark and E. D. Berger. DieHarder: securing the heap. In ACM Conference on Computer
and Communications Security (CCS), 2010.

K. Onarlioglu, L. Bilge, A. Lanzi, D. Balzarotti, and E. Kirda. G-free: defeating return-
oriented programming through gadget-less binaries. In Annual Computer Security Applica-
tions Conference (ACSAC), 2010.

pakt. Leaking information with timing attacks on hashtables, 2012.

V. Pappas, M. Polychronakis, and A. D. Keromytis. Smashing the gadgets: Hindering return-
oriented programming using in-place code randomization. In IEEE Symposium on Security
and Privacy, 2012.

V. Pappas, M. Polychronakis, and A. D. Keromytis. Transparent ROP Exploit Mitigation
Using Indirect Branch Tracing. In USENIX Security Symposium, 2013.

A. Prakash, X. Hu, and H. Yin. vfGuard: Strict Protection for Virtual Function Calls in
COTS C++ Binaries. In Symposium on Network and Distributed System Security (NDSS),
2015.

M. Prandini and M. Ramilli. Return-Oriented Programming. In IEEE Symposium on Security
and Privacy, 2012.

M. Russinovich, D. Solomon, and A. Ionescu. Windows Internals, Part 2. Microsoft Press,
2012.

F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A.-R. Sadeghi, and T. Holz. Counterfeit
object-oriented programming. In IEEE Symposium on Security and Privacy, 2015.

F. Schuster, T. Tendyck, J. Pewny, A. Maaf}, M. Steegmanns, M. Contag, and T. Holz.
Evaluating the effectiveness of current anti-ROP defenses. In Symposium on Recent Advances
in Intrusion Detection (RAID), 2014.

V. Security. Advanced Exploitation of Mozilla Firefox Use-after-free (MFSA
2012-22). http://www.vupen.com/blog/20120625.Advanced_Exploitation_of_Mozilla_
Firefox_UaF_CVE-2012-0469.php, 2012.

J. Seibert, H. Okkhravi, and E. Séderstrém. Information Leaks Without Memory Disclosures:
Remote Side Channel Attacks on Diversified Code. In ACM Conference on Computer and
Communications Security (CCS), 2014.

F. J. Serna. CVE-2012-0769, the case of the perfect info leak. http://zhodiac.hispahack.
com/my-stuff/security/Flash_ASLR_bypass.pdf.

F. J. Serna. The info leak era on software exploitation. In Black Hat USA, 2012.
H. Shacham. The Geometry of Innocent Flesh on the Bone: Return-into-libc Without Func-

tion Calls (on the x86). In ACM Conference on Computer and Communications Security
(CCS), 2007.

K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen, and A.-R. Sadeghi. Just-in-
time code reuse: On the effectiveness of fine-grained address space layout randomization. In
IEEE Symposium on Security and Privacy, 2013.

K. Z. Snow, R. Rogowski, J. Werner, H. Koo, F. Monrose, and M. Polychronakis. Return to
the Zombie Gadgets: Undermining Destructive Code Reads via Code Inference Attacks. In
IEEE Symposium on Security and Privacy, 2016.

C. Song, C. Zhang, T. Wang, W. Lee, and D. Melski. Exploiting and protecting dynamic
code generation. In Symposium on Network and Distributed System Security (NDSS), 2015.

A. N. Sovarel, D. Evans, and N. Paul. Where’s the FEEB? the effectiveness of instruction set

25

http://msdn.microsoft.com/en-us/library/bb625957.aspx
http://msdn.microsoft.com/en-us/library/bb625957.aspx
http://www.vupen.com/blog/20120625.Advanced_Exploitation_of_Mozilla_Firefox_UaF_CVE-2012-0469.php
http://www.vupen.com/blog/20120625.Advanced_Exploitation_of_Mozilla_Firefox_UaF_CVE-2012-0469.php
http://zhodiac.hispahack.com/my-stuff/security/Flash_ASLR_bypass.pdf
http://zhodiac.hispahack.com/my-stuff/security/Flash_ASLR_bypass.pdf

[81]

[82]

randomization. In USENIX Security Symposium, 2005.

R. Strackx, Y. Younan, P. Philippaerts, F. Piessens, S. Lachmund, and T. Walter. Breaking
the memory secrecy assumption. In ACM European Workshop on System Security (EU-
ROSEC), 2009.

L. Szekeres, M. Payer, T. Wei, and D. Song. SoK: Eternal War in Memory. In IEEE
Symposium on Security and Privacy, 2013.

A. Tang, S. Sethumadhavan, and S. Stolfo. Heisenbyte: Thwarting Memory Disclosure At-
tacks Using Destructive Code Reads. In ACM Conference on Computer and Communications
Security (CCS), 2015.

C. Tice, T. Roeder, P. Collingbourne, S. Checkoway, U. Erlingsson, L. Lozano, and G. Pike.
Enforcing forward-edge control-flow integrity in gcc & llvm. In USENIX Security Symposium,
2014.

S. Volckaert, B. Coppens, and B. De Sutter. Cloning your gadgets: Complete rop attack
immunity with multi-variant execution. IEEE Transactions on Dependable and Secure Com-
puting, 2015.

P. Vreugdenhil. A Dbrowser is only as strong as its weakest byte - Part
2. http://blog.exodusintel.com/2013/12/09/a-browser-is-only-as-strong-as-its-weakest-byte-
part-2/, 2012.

R. Wartell, V. Mohan, K. W. Hamlen, and Z. Lin. Binary stirring: Self-randomizing instruc-
tion addresses of legacy x86 binary code. In ACM Conference on Computer and Communi-
cations Security (CCS), 2012.

Y. Weiss and E. G. Barrantes. Known/chosen key attacks against software instruction set
randomization. In ACM Conference on Computer and Communications Security (CCS), 2006.
J. Werner, G. Baltas, R. Dallara, N. Otternes, K. Snow, F. Monrose, and M. Polychronakis.
No-Execute-After-Read: Preventing Code Disclosure in Commodity Software. 2016.

T. Yan. The art of leaks: The return of heap feng shui. In CanSec West, 2014.

Y. Yu. ROPs are for the 99%. In CanSec West, 2014.

Y. Yu. Write Once, Pwn Anywhere. In Black Hat USA, 2014.

M. Zalewski. Two more browser memory disclosure bugs. http://lcamtuf.blogspot.de/
2014/10/two-more-browser-memory-disclosure-bugs.html, 2014.

M. Zalewski. Bi-level TIFFs and the tale of the unexpectedly early patch. http://lcamtuf.
blogspot.de/2015/02/bi-level-tiffs-and-tale-of-unexpectedly.html, 2015.

ZDI. CVE-2011-1346, (Pwn20wn) Microsoft Internet Explorer Uninitialized Vari-
able Information Leak Vulnerability. http://www.zerodayinitiative.com/advisories/
ZDI-11-198/.

A. Zeigler. TE8 and Loosely-Coupled IE (LCIE). http://blogs.msdn.com/b/ie/archive/
2008/03/11/ie8-and-loosely-coupled-ie-lcie.aspx, 2008.

C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres, S. McCamant, D. Song, and W. Zou. Prac-
tical Control Flow Integrity & Randomization for Binary Executables. In IEEE Symposium
on Security and Privacy, 2013.

M. Zhang and R. Sekar. BinCFI: Control Flow Integrity for COTS Binaries. In USENIX
Security Symposium, 2013.

26

http://lcamtuf.blogspot.de/2014/10/two-more-browser-memory-disclosure-bugs.html
http://lcamtuf.blogspot.de/2014/10/two-more-browser-memory-disclosure-bugs.html
http://lcamtuf.blogspot.de/2015/02/bi-level-tiffs-and-tale-of-unexpectedly.html
http://lcamtuf.blogspot.de/2015/02/bi-level-tiffs-and-tale-of-unexpectedly.html
http://www.zerodayinitiative.com/advisories/ZDI-11-198/
http://www.zerodayinitiative.com/advisories/ZDI-11-198/
http://blogs.msdn.com/b/ie/archive/2008/03/11/ie8-and-loosely-coupled-ie-lcie.aspx
http://blogs.msdn.com/b/ie/archive/2008/03/11/ie8-and-loosely-coupled-ie-lcie.aspx

9 Appendix

9.1 Re-randomized Process Modules

DLL Name Systemwide Re-Randomized Process 1 Re-Randomized Process 2
ntdll.dll (64-bit) 0x7FF9D5DD0000 0x7FF9OD5DD0000 0x7FF9OD5DD0000
ntdll.dll 0x77640000 0x77640000 0x77640000
wow64win.dll (64-bit) 0x775D0000 0x590000 0xCD0000
wow64.dll (64-bit) 0x77580000 0x290000 0xC80000
wow64cpu.dll (64—bit) 0x77570000 0xA0000 0x8C0000
oleaut32.dll 0x773A0000 0x2770000 0x2310000
advapi32.dll 0x77270000 0x2A40000 0x2620000
msvert.dll 0x76E80000 0xB80000 0x12E0000
kernel32.dll 0x76AA0000 0x750000 0xE10000
ws2_32.dll 0x76A50000 0x56D0000 0x5DD0000
KernelBase.dll 0x76840000 0x890000 0x1070000
gdi32.dll 0x76700000 0x1330000 0x1A50000
shlwapi.dll 0x76620000 0x2610000 0x21B0000
user32.dll 0x764D0000 0xE60000 0x15C0000
crypt32.dll 0x76350000 0x8520000 0x8BA0O00O
ole32.dll 0x76240000 0x2660000 0x2200000
shell32.dl1l 0x75080000 0x3EF0000 0x4A40000
cryptbase.dll 0x75050000 0x270000 0xC70000
apphelp.dll 0x74F50000 0xAE0000 0x1240000
ieframe.dll 0x74160000 0x1ACO000 0x3EF0000
TEShims.dll 0x73F20000 0x29F0000 0x25D0000
wininet.dll 0x73C60000 0x53D0000 0x5C00000
userenv.dll 0x73C40000 0x5330000 0x2930000
urlmon.dll 0x73AF0000 0x55A0000 0x2990000
winhttp.dll 0x73A40000 0x5720000 0x5E20000
mswsock.dll 0x739F0000 0x5B70000 0x6280000
rsaenh.dll 0x73970000 0x5C30000 0x6370000
ieproxy.dll 0x738E0000 0x5F90000 0x66D0000
dnsapi.dll 0x73820000 0x6380000 0x8080000
mshtml.dll 0x72340000 0x648000 0x6980000
d2d1.dll 0x71F70000 0x76A0000 0x7C40000
ieui.dll 0x71D10000 0x7F10000 0x8530000
jscript9.dll 0x718B0000 0x8110000 0x8770000
d3d11.dll 0x71630000 0x8FD0000 0x7990000
iexplore.exe 0x2F0000 0x3C0000 0xA70000

Table 4: Re-randomized processes in Internet Explorer 11: original processes have their modules mapped
systemwide at same base addresses, while our re-randomized processes map their modules to a different
base processwise. Bold entries represent the system’s and the browser’s most essential modules.

9.2 Working set characteristics of per process re-randomization and
dual process execution

Table 5 and Table 7 show the native memory consumption of three applications whose consump-
tions are shown in Table 6 and Table 8 when running in dual process execution mode. As Internet
Explorer is a multi-process software (see Section 2.4), tabs can run in separate processes. There-
fore, there exist one 64-bit main IE frame and one tab process in native mode, while one 64-bit IE
frame manages an additional twin process per master tab process when running in dual process
execution mode. The results show, what intuitively is clear: As a re-randomized process has its
modules loaded on different base addresses than other processes, corresponding memory is not

27

Process Working Set WS Private WS Shareable WS Shared

iexplore.exe (64-bit frame) 20,980 K 3,008 K 17,972 K 14,532 K
iexplore.exe 31,796 K 5,260 K 26,536 K 10,888 K
firefox.exe 87,856 K 47,988 K 39,868 K 16,320 K
calc.exe 11,440 K 1,332 K 10,108 K 8,968 K

Table 5: Memory working sets of 32-bit native processes running on Windows 8.1 64-Bit (Internet
Explorer 11 main frame with one tab, Mozilla Firefox 33.0 and the Windows Calculator)

Process Working Set WS Private WS Shareable WS Shared
iexplore.exe (64-bit frame) 30,516 K 7,480 K 23,036 K 17,980 K
iexplore.exe (master) 26,204 K 5,008 K 21,196 K 18,592 K
iexplore.exe (twin) 51,816 K 43,476 K 8,340 K 8,332 K
iexplore.exe (master) 21,556 K 3,928 K 17,628 K 17,536 K
iexplore.exe (twin) 52,004 K 43,596 K 8,408 K 8,368 K
firefox.exe (master) 88,936 K 53,388 K 35548 K 16,512 K
firefox.exe (twin) 95,516 K 80,316 K 15,200 K 14,208 K
calc.exe (master) 11,828 K 4,880 K 6,948 K 6,180 K
calc.exe (twin) 20,748 K 14,784 K 5,964 K 5912 K

Table 6: Memory Working Sets of 32-bit processes running in dual execution mode on Windows 8.1
64-bit. All twin processes are differently randomized (Internet Explorer 11 main frame with two tabs,
Mozilla Firefox 33.0 and the Windows Calculator)

Process Working Set WS Private WS Shareable WS Shared
iexplore.exe (64-bit frame) 19,996 K 4,264 K 15,732 K 13,456 K
iexplore.exe 31,432 K 7,580 K 23,852 K 9,840 K
firefox.exe 83,988 K 52,400 K 31,588 K 10,684 K
calc.exe 11,316 K 1,632 K 9,684 K 9,052 K

Table 7: Memory Working Sets of 32-bit native processes running on Windows 8.0 64-Bit (Internet
Explorer 10, Firefox, and the Calculator)

Process Working Set WS Private WS Shareable WS Shared
iexplore.exe (64-bit frame) 27,132 K 7,160 K 19,972 K 16,824 K
iexplore.exe (master) 30,860 K 7,736 K 23,124 K 19,184 K
iexplore.exe (twin) 55,112 K 39,196 K 15,916 K 14,783 K
iexplore.exe (master) 27,108 K 5,380 K 21,728 K 18220 K
iexplore.exe (twin) 55,368 K 39,464 K 15,904 K 14,780 K
firefox.exe (master) 85,968 K 51,240 K 34,728 K 18,120 K
firefox.exe (twin) 99,740 K 82,488 K 17,252 K 15,876 K
calc.exe (master) 11,808 K 5,020 K 6,788 K 6,376 K
calc.exe (twin) 14,840 K 9,052 K 5,788 K 5,724 K

Table 8: Memory Working Sets of 32-bit processes running in dual execution mode on Windows 8.0
64-bit with all twin processes differently randomized (Internet Explorer 10, Firefox, and the Calculator)

shared. The process needs private copies for its modules. This results in higher working sets,
lower shareable and lower shared memory in re-randomized processes (twins) compared to their
master processes.

28

9.3 Internals of information leak exploit for CVE-2014-0322

Recently, attackers began to use techniques [86,88] to gain access to the process’ virtual address
space from JavaScript by changing a single bit only. Thus, it is important to have a good un-
derstanding of them to reliably develop mitigations. The exploit works in the following way: the
heap is shaped in a specific layout with heap feng shui [86], such that general arrays are aligned to
0xXXXX0000 boundaries and headers of Typed Arrays follow aligned at 0xXXXX£000. The structure
after heap feng shui is performed is illustrated in Figure 8.

size of array memory block size of complete array

low addresses +0x8 /|/

0x....0000
N, [
+0x10 [< %1 array elements (memory block)

L —

Typed Array headers

/ length of Typed Array Buffer
0x....f000

'l oxs
0x...f030 = +0x

0x....f060 +0x10 -.ﬁ yVZ
pointer to Typed Array Buffer

0x....f090

Typed Array Vtable

v

high addresses

i
|
|
|
|

0x....0000 |
|
|
|
|
i

Figure 8: Generating an information leak with CVE-2014-0322: Modified fields are shaded gray. The
vulnerability allows a bit increase in the size of the array memory block. This is sufficient to subsequently
and illegitimately change the length of a Typed Array Buffer and the pointer to a Typed Array Buffer in
the contiguous Typed Array Header. This results in access to the complete process memory.

The vulnerability is used to increase the most significant byte of the size of the array memory
block. This is possible, as a function operates on the injected fake object data with the code
inc [eax + 0x10]. Then, we can perform out of bound writes with JavaScript methods of the
modified array. We first change the pointer to a Typed Array Buffer in the Typed Array header
following the general array data. We then, change also the length of the Typed Array Buffer to
Ox7fffffff in the header. Now we have access to the process’ virtual address space via JavaScript
methods of the changed Typed Array. This allows leaking any memory such as vtable pointers or
code.

29

	Introduction
	Technical Background
	Enhancing Security with N-Variant Systems
	Windows ASLR Internals
	WOW64 Subsystem Overview
	Internet Explorer Architecture
	Scripting Engines
	Internet Explorer Chakra
	ActionScript Virtual Machine (AVM)

	Adversarial Capabilities

	System Overview
	Main Concept
	Per Process Re-randomization
	Dual Process Execution and Synchronization

	Implementation Details
	Duplication and Re-randomization
	Kernel Mode Approach

	Synchronization
	Entropy Normalization
	Rendezvous and Checking Points

	Chakra Instrumentation
	AVM Instrumentation

	Evaluation
	Re-randomization of Process Modules
	Effectiveness
	Physical Memory Usage
	Re-randomization and Startup Time Performance

	Detection Engine
	Script Execution Time and Responsiveness
	Information Leak Detection
	False Positive Analysis

	Related Work
	Security Features Against Memory Corruption Attacks
	Randomization Techniques
	Control-Flow Protections
	Memory Safety
	Multi-Execution Approaches

	Discussion
	Further Information Leaks
	Limitations of Prototype Implementation
	Deployment

	Conclusion
	Appendix
	Re-randomized Process Modules
	Working set characteristics of per process re-randomization and dual process execution
	Internals of information leak exploit for CVE-2014-0322

