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Introduction and motivation

The goal of this work is to evaluate conceptual difficulties if differential equations based on the

Upper Convected derivative (UCD) are used for the description of rubber melts with high relax-

ation times. To achieve this, three commercial polymers were investigated which cover all kinds

of principle nonlinear dynamic behaviour: two polybutadien types (BR linear ARLANXEO BUNA

CB22, BR highly branched CB1220) and one hydrogenated nitrile type (HNBR) of lower viscos-

ity (ARLANXEO THERBAN 3404). All polymers provide nonlinear shear behaviour, i.e. shear

thinning, where TH3404 is introduced to include a lower Mooney polymer providing smaller and

thus more modelling friendly relaxation times. CB1220 and TH3404 show pronounced strain

hardening where CB22 remains linear under uniaxial load.

The differential model regarded is the Giesekus constitutive equation

∂Tp

∂t
+ (u · ∇)Tp −Tp · ∇u−∇u� ·Tp +

1

Λ
Tp +

α

ηp
Tp ·Tp = 2

ηp
Λ
D (1)

for the elastic stress tensor Tp (c.f. [5]), where Λ denotes the relaxation time of the fluid,

α ∈ [0, 1] the mobility factor and ηp the "polymer" viscosity. For the following evaluation, this

model is chosen because it is able to predict both, shear thinning as well as elongational hard-

ening. At the same time it is one of the most commonly used models to simulate the mate-

rial behaviour of polymer melts. Additionally, the so-called multi-mode approach is applied,

in which the extra stress tensor is regarded as a sum of K > 1 single stress tensors, i.e.

Tp =
∑K

k=1Tp,k, each satisfying a separate constitutive equation of the form (1) containing

independent parameters Λk and ηp,k. Hence, in principle the Giesekus model – as well as most

of the other differential models using UCD – is able to reproduce the nonlinear dynamic effects

mentioned above.

This in turn induces the central questions tackled in the following: Basically, the capability

of the differential constitutive equation (1) is evaluated with regard to the description of the ex-

perimentally determined linear and nonlinear behaviour of standard rheological flow quantities

like storage and loss modulus or shear and elongational viscosity. At the same time it is inves-

tigated, if consideration of K > 1 modes in the extra stress tensor leads to an improvement of

the previously achieved results. It turns out, that the modelling quality is very poor wherefore
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the reasons will be traced back to principle problems of the approach. On the other hand, the

considerations are extended to the comparison of experimental results (pressure drop in a slit

die) with the data of finite element (FE) simulations. The analysis shows that the high relaxation

times of rubber melts not only lead to a non-sufficient description of standard rheometry flows,

but also make a simulation of "real" elastic flows almost impossible.

Analysis of modelling behaviour

One essential step of the modelling procedure is the determination of the material parameters

provided by the models. Firstly this means to determine the linear viscoelastic dynamic be-

haviour, here in terms of Prony series parameters, by considering small oscillatory shear tests.

Furthermore, the model parameters governing the nonlinear material behaviour provided by

uniaxial and shear strain tests at higher deformation rates have to be fixed.
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(a) CB22, K = 1
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(b) CB22, K = 2
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(c) CB1220, K = 1
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(d) CB1220, K = 2
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(e) TH3404, K = 1
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(f) TH3404, K = 2

Figure 1: measured and calculated (Prony series with K ∈ {1, 2} elements) storage and loss

moduli

The parameter of the dynamic moduli identification is provided by minimizing the logarithmic

deviation with respect to logarithmic equidistant spread frequencies. In all cases the fit range
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was chosen to cover the processing relevant regions from the flow regime up to the rubber

plateau. The analysis shows, that the approximation quality is in the same range for all poly-

mers and obviously improving when the number of modes is increased. Nevertheless, due

to the wide range of relaxation times, even the use of two modes1 provides a non-sufficient

representation of the experimental data (c.f. table 1 and figure 1).

material K = 1 K = 2

CB22

CB1220

TH3404

overall G′ G′′

354.91 179.75 175.16

332.28 139.10 193.17

336.77 134.21 202.55

overall G′ G′′

112.11 48.27 63.84

112.15 42.88 69.27

137.13 60.49 76.65

Table 1: deviation of calculated and experimental data

On the basis of the determined parameters Λk and Gk for k ∈ {1, 2}, the viscosities are cal-

culated by ηp,k = ΛkGk. In the following, these parameters are used to determine the mobility

factors αk ∈ [0, 1] appearing in the Giesekus constitutive equation (1). Due to experimental

reasons, the asymptotic shear viscosity ηγ (γ̇) and the transient strain viscosity ηε (t, γ̇) were

used for the procedure of the Giesekus parameters αε and αγ . The latter saves an additional fit

step since the transient viscosity function is analytically given in the Giesekus model (c.f. [4]).

The individually determined mobility parameters are weighted equally to obtain the final value

for αk. In case of the linear polymer (i.e. no strain hardening), the transient strain viscosity is

completely determined by the master curve. Because Giesekus models strain hardening for

all α in the parameter range, the mobility parameters for this specific polymer were determined

from the shear data only.

To check the influence of the temperature, the considerations were done at room temper-

ature and at a typical processing temperature (T = 140°C).
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(a) CB1220
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(b) TH3404

Figure 2: shear viscosities at T = 140°C

Considering approximations of shear thinning data, as expected a more or less accurate repro-

duction is established by the Giesekus model for all materials which is no particular surprise
1An increase of the number of relaxation modes will evidently improve the approximation quality significantly. But

FE simulations using three or more modes currently require inacceptable simulation times and costs and is thus not
needed for this paricular investigation.
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from a general modelling perspective. CB1220 and TH3404 indicate the typical behaviour: in-

crease of the number of modes increases the approximation quality (c.f. figure 2(a) and table

2). But similar to the inadequate approximation of the linear modulus data due to the small

mode number of Prony series, the modeled behaviour deviates from the measured data in a

well-known oscillation-like way, the latter due to the singular (i.e. very small) Maxwell relaxation

processes used for the Prony series.

K CB22 CB1220 TH3404

ηε 1 - 27.86 27.29

2 - 11.75 28.61

ηγ 1 57.12 44.28 64.13

2 22.20 21.81 32.08

Table 2: deviation of experimental and calculated data at T = 140°C

Briefly speaking, modelling of shear thinning of polymers showing a broad transition into the

flow regime (e.g. rubber melts) by use of a few singular relaxation modes leads to an in prin-

ciple correct description with typical, spurious deviations. The approximation quality usually is

inferior to those of generalized Newtonian models where the latter – of course – are of phe-

nomenological nature and not part of a full modelling approach for nonlinear behaviour. The

latter is the case for Giesekus since it provides the potential for the description of strain hard-

ening. This will be briefly discussed in the following.
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(a) CB1220, T = 23°C
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(b) CB1220, T = 140°C, log (ε̇) = −2
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(c) TH3404, T = 23°C
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(d) TH3404, T = 140°C

Figure 3: elongational viscosities for Hencky strain rate ε̇ = 0.01

Figures 3 exemplarily show the transient viscosity of the strain hardening polymers (CB1220,

TH3404) for the strain rate ε̇ = 0.01 and two temperatures. The mobility factors αk were

4



determined by an averaging procedure over an optimized approximation of five different strain

rates (from 0.001 to 10 1/s). For α > 0 finite asymptotic strain viscosity is modeled (which is

obviously necessary from the physical point of view, but was never observed in a transient strain

experiment). The approximation quality is not only very poor (see table 2), but also principally

wrong especially regarding the onset of strain hardening.

This points at a principle shortcoming of the Giesekus approach: strain hardening is mod-

eled if the rate of deformation is greater than the reciprocal of the maximum relaxation time.

Furthermore, the onset of strain hardening is quasi fixed by the relaxation times determined by

linear viscoelasticity. Thus the deviations observed are of rather principle nature. This might be

underlined by the fact that the high relaxation time of CB22, showing completely linear strain

behaviour (at the rates considered), can not be described at all because the Giesekus model

predicts strain hardening in all cases. CB22 is thus not further analyzed regarding its strain

behaviour.

In the following section it will be discussed how the insufficient modelling of basic rheomet-

ric flows will influence the simulations of a step-slit die flow.

Simulation of a step-slit die flow

To simulate a polymer flow in a die the constitutive equation (1) is coupled with the well-known

Stokes equations. The considered step-slit die, which was inserted into a high pressure capil-

lary rheometer (Göttfert Rheotester 2000), is of length 100.2mm and possesses a contraction

from heigth 1mm to 0.25mm realized by two quadrants with radius 0.3mm. By assuming a die of

infinite width where transverse effects are neglected, two-dimensional simulations are applied

which will still provide a sufficient approximation quality of the actual slit geometry (1:10). The

resulting pressure drops are compared to the measured values (4 points, see figure 4).

The simulations use the parameters previously determined by the basic flow experiments.

Unfortunately, due to the "High Weissenberg Number Problem" (HWNP, c.f. [3]), not every set

(Λ, ηp, α) of determined parameters can be applied in simulations. This problem arises from

numerical reasons, because for high relaxation times Λ, being proportional to the so-called

"Weissenberg Number" We, large gradients occur in the flow variables and cause a breakdown

of the simulations. So it turns out that TH3404 with its relatively small relaxation times at

T = 140°C provides the only parameter set accessible for a numeric simulation. Thus, the

parameter set used was

Λsim = 0.0269, ηsim = 51.2861, α = 0.745

in case of K = 1 and

Λsim
1 = 1.0471, ηsim

1 = 199.5262, α1 = 0.745, Λsim
2 = 1.05e− 5, ηsim

2 = 0.0129, α2 = 0.485

for K = 2 (with units: [Λ] = 1s and [η] = [Λ][G] = 1 kg
mm·s ). Additionally, the density of the melt

takes the value ρ = 0.91 · 10−6 kg
mm3 .
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The numerical simulations – resulting in the pressure drops listed in table 3 – are realized

within the software package FEATFLOW using the corresponding numerical method presented

in [2]. Notice, that the calculated pressure drops are taken from steady-state simulations.

Figure 4: points of measurement in the die

data K Δp1 = p (x2)− p (x1) Δp2 = p (x3)− p (x2) Δp3 = p (x4)− p (x3)

sim 1 2.256 60.614 118.372

2 8.420 205.711 350.697

exp 111.847 260.853 397.747

Table 3: pressure drops in bar

If only one mode is used in the modelling approach, the simulated pressure drops do not match

the experimental data at all. The value with minimal deviation is obtained for Δp3, where the

pressure drops take roughly the same magnitude. But still, the approximation does not show

an acceptable quality. The experimental data is reproduced in a superior way if two modes are

considered. Beside the third pressure drop, in this case also the pressure drop between x2 and

x3 shows a good accordance. In either case, the results for Δp1 show a huge discrepancy to

the experimental data, probably due to inappropriate boundary conditions applied at the inflow.

On the basis of the pressure drops listed in table 3, the same observations can be made as

in the previous section. The quality of the approximations is improved if K = 2 is chosen instead

of K = 1, because in this case the pressure drops Δp2 and Δp3 show a higher accordance to

the experimental values. At a first glance, the simulation results seem to be acceptable but it

has to be emphasized, that the generation of those only worked for the low relaxation time case

at high temperatures. In all other cases the simulations broke down (it should be mentioned

that an experimental realization was possible at finite pressure drops)! And as in the case of

the rheometry flows, the simulation strategies stumble over the high relaxation times.

Conclusion

Approximations of nonlinear dynamic materials by differential models based on a multi-mode

approach in combination with an Upper Convected time derivative seem to be not adequate

for the description of rubber melt flows. This is mainly due to the fact that the (usually high)

relaxation times, determined by the linear visoelastic behaviour, fix even the nonlinear behavior

in terms of onsetting strain hardening and spurious shear oscillations. This is the case for the

Giesekus model considered, being the most popular approach for modelling rubber, but also

holds for other differential models using relaxation modes and UCD (like PTT or White-Metzner,

c.f. [6], [7]). It should be emphasized that the preceding statements hold for long chain polymer
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melts like rubber. In contrast, differential modelling approaches are very successfully applied

for the description of nonlinear thermoplastic flows. An alternative strategy may be provided by

constitutive equations of integral type as e.g. mentioned in [1]. The basic ideas will be shortly

outlined in the following.

The proposed so-called "Deformation fields method" (DFM) considers a system of equa-

tions of the form

ρ
∂u

∂t
+ ρ (u · ∇)u = −∇p+ ηsΔu+∇ · τ (2a)

∇ · u = 0 (2b)
∂B

∂t
+ (u · ∇)B−∇u ·B−B · ∇u� = 0 (2c)

τ =

∫ t

−∞
M

(
t− t′

)
f
(
B
(
t, t′

))
dt′, (2d)

in which the extra stress tensor τ is expressed by an integral formulation containing a memory

function M , which decays with time, and a function f of the Finger tensor B. A specification

of these functions leads to well-known models like Kaye-BKZ or DOI-Edwards. One princi-

pal advantage of these integral constitutive equations is the possibility to flexibly incorporate

a continuous relaxation spectrum. The preceding discussion suggests that this might provide

significant advantages over the restrictions of a differential approach. But at present integral

models have not been analyzed well-grounded from a numerical point of view. This is neces-

sary because the memory term in (2d) gives rise to difficulties, e.g. due to the infinite length of

the integration interval which would require huge storage capacities. Thus a detailed analysis of

such time-deformation factoring integral approaches containing non-singular memory functions

will be subject of further works.
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