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Maximilian Conze and Michael Kramm1

The Different Effect of Consumer Learning 
on Incentives to Differentiate in Cournot 
and Bertrand Competition

Abstract
We combine two extensions of the differentiated duopoly model of Dixit (1979), namely 
Caminal and Vives (1996) and Brander and Spencer (2015a,b), to analyze the effect 
of consumer learning on rms’ incentives to differentiate their products in models of 
Cournot and Bertrand competition. Products are of different quality, consumers buy 
sequentially and are imperfectly informed about the quality of the goods. Before 
simultaneously competing in quantities, firms simultaneously choose their investment 
into differentiation. Late consumers can observe earlier consumers’ decisions and 
extract information about the quality of the goods. This influences the firms’ incentives 
to differentiate. If firms compete in quantities, they are more likely to invest in 
differentiation with consumer learning than without. This is in line with implications of 
the recommendation effect introduced in Conze and Kramm (2016) in a model of spatial 
differentiation. We also examine the case in which firms compete in prices. Here, 
the effect of consumer learning is reversed, so that differentiation is less likely with 
consumer learning. Thus, we find an information-based difference between Cournot 
and Bertrand competition: in the Bertrand setting consumer learning increases the 
competition, i.e. products are more likely to be substitutes, and it weakens it in the 
Cournot model.
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1 Introduction

Most of the literature dealing with firms’ incentives to differentiate characterizes two

different and opposing effects. The competition effect induces firms to differentiate their

products from each other, since they then obtain local monopoly power and are able to

charge higher prices. On the other hand, differentiating decreases the market share and the

amount of goods that the firm in question is able to sell. This is the so-called market-size

effect (see e.g. Belleflamme and Peitz, 2010, Chapter 5.2).

In the related research project Conze and Kramm (2016) we use a spatial model of

product differentiation à la Hotelling (1929) to establish a new effect that may incentivize

firms to differentiate. The effect arises because of the possibility of consumer learning,

and is called the recommendation effect. Its intuition is as follows. In the model, two

firms A and B compete by choosing their locations on the unit interval, representing the

choice of the goods’ characteristics. Two consumers sequentially choose between the two

goods that are of different quality. Consumers are heterogeneous with respect to their

preference towards the goods and to their information about the quality differential. The

late consumer (laggard) observes the purchase decision of her predecessor (early adopter),

which may contain valuable information. Neither the information, nor the preference of

the early adopter is observed by the laggard. The laggard then uses Bayes’ Rule to update

her belief on the good’s qualities. In this setup, it is the case that a purchase of a niche (i.e.

a differentiated) product in the first period is more likely based on its high quality than

on a good match of consumer taste and product characteristic. A firm can influence and

exploit consumer learning using its location choice (mainstream vs. niche) which yields

incentives to offer a differentiated (niche) product.

In order to make the above mentioned model tractable, it abstracts from endogenous

prices by assuming that they are regulated to the same value for both firms. Additionally,

there are only two consumers and two states of the world, either good A’s quality exceeds

the one of good B by a fixed amount, or vice versa. Although there are situations plausibly

described with these assumptions, the goal of the research at hand is to show that similar

effects as described above also arise in a model where these assumptions are relaxed.1

1 More explicitly, the model at hand differs from Conze and Kramm (2016) in that it entails endogenous

prices, a simultaneous choice of product differentiation, a continuously distributed quality differential, a

continuous information structure and the fact that firms may reset one of their choice variables (quantities

in Cournot, prices in Bertrand competition), which would be equivalent to allowing firms to relocate in
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Underlying the model in the paper at hand is the standard model of differentiated

duopoly introduced by Dixit (1979). Dixit’s model was extended in various ways. In

particular, Caminal and Vives (1996) formulate a model of Bertrand competition with two

firms who compete for a continuum of consumers in each of two periods by setting prices.

The goods of the two firms are horizontally and vertically differentiated, but firms can not

control either dimension. Firms also do not know the quality of their good when setting

their prices. Consumers receive signals about the goods’ qualities, and the consumers in

the second period observe past market shares but not past prices. The authors show that

such a situation leads to lower prices in the first period - compared to a situation without

consumer learning - as each firm has an incentive to decrease its price in order to obtain

a higher market share. This is because a high market shares serves as a signal of high

quality to consumers in the second period. The authors state that “[...] an increase in the

degree of product substitutability [...] increases the effectiveness of the manipulation by

firms” (Caminal and Vives, 1996, p. 228). As the model does not allow for endogenous

levels of differentiation or substitutability, Caminal and Vives do not elaborate on this

insight any further.

This is where the model of Brander and Spencer (2015a,b), also based on Dixit’s

model, comes in. In their papers, the authors analyze the competition between two firms

in the common differentiated duopoly setup without vertical differentiation. The goal of

their article is to compare the firms’ incentives to differentiate in Cournot and Bertrand

competition setups. To endogenize the levels of differentiation, the authors assume that

firms can make costly investments in order to increase the differentiation between the

products. It is shown that differentiation is more likely to occur in Bertrand than in

Cournot setups.

We combine the approaches of Caminal and Vives (1996) and Brander and Spencer

(2015a) to explore how the possibility of consumer learnings influences firms incentives

to differentiate their products. Our model thus makes the following changes to the dif-

ferentiated duopoly setup of Dixit (1979): First, we allow the firms’ products to be of

different, random and a priori unknown quality, which introduces information asymme-

tries. The model consists of three stages. Before firms compete in quantities, they decide

on their investment into differentiation. This stage is followed by two stages in which firms

set quantities and consumers buy the goods, based on imperfect signals about the goods

Conze and Kramm (2016).
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qualities. In the last stage, consumers additionally observe past prices (but not market

shares).

Additionally, we analyze an analogous Bertrand model with consumer learning and

compare the implications of Bayesian updating among consumers between the two models

of price and quantity competition. We start with analyzing Cournot competition as in

this model the endogenous variable of interest, namely the product differentiation, appears

more intuitively in the utility function of the consumers.

2 Model Setup: Quantity Competition

In two periods, t = 1, 2, two firms, j = A,B, compete by producing quantities xjt . In

each period there is a continuum of consumers with mass one uniformly distributed on

[0, 1] and indexed by i. Consumers have access to distinct information. The utility of the

consumers when consuming any real-valued amount x = (xA, xB, x0) ∈ R
3 is given by

U(xA, xB, x0) = (α+ q)xA + (α− q)xB − 0.5
[
(xA)2 + 2γxAxB + (xB)2

]
+ x0

with α > 0. The idea is that all consumers agree on the utility of the goods and thus have

the same utility function, which can be derived from quasilinear preferences.2 Quantity x0

captures the consumption of a composite good containing all other goods different from

xA and xB, and its price is normalized to p0 = 1. The feasible range of the measure of

product differentiation or substitutability is γ ∈ (0, 1]. The higher γ, the higher is the

substitutability between the products. Goods are perfect substitutes if γ = 1 and they

would be independent if γ = 0.

The (relative) quality of the goods is measured by the random variable q, which is

normally distributed with mean zero and variance 1/τq.
3 Variable q is unknown to firms

and consumers, but each consumer receives a signal sit = q + εit about it, where ε again is

an independent and normally distributed random variable with zero mean and variance

1/τε.
4 Both variances, 1/τq and 1/τε, are known to the players in the model. We assume

2 In addition to heterogeneous information levels, we could introduce heterogeneity in the utility by

choosing an individual parameter αi with an appropriate distribution such that the results continue to

hold. One could interpret each representative agent with a certain information level as representing a

group of consumers with that same information level.
3As will become clear later on, when dealing with the rational updating of the consumers, it is easier

to work with precisions τ than with variances.
4A strand of recent literature deals with the implications of unknown quality to both buyers and sellers,
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∫ 1
0 sitdi

a.s.−−→ q, t ∈ {1, 2}, analogously to a version of the Strong Law of Large Numbers.5

The consumers in period two also observe past prices, but not sold quantities or previous

signals. This is the case for instance at online platforms on which consumers can observe

the history of past prices and current quantities, but not quantities sold in previous periods.

Let Iit denote all available information to consumer i in period t.

Rational consumers maximize their expected utility subject to the budget constraint

m = x0 + pA · xA + pB · xB, which yields the individual demand6

xA,i
t =

α

1 + γ
+

sit
1− γ

− pA

1− γ2
+

γpB

1− γ2
,

xB,i
t =

α

1 + γ
− sit

1− γ
− pB

1− γ2
+

γpA

1− γ2
,

x0,it = m− pA · xA,i − pA · xB,i.

Aggregating the rational consumers’ demands via xjt =
∫ 1
0 xj,it di and inverting yields

the total inverse demand for the product of firm j ∈ {A,B} generated by rational con-

sumers. In addition to the rational consumers, there are also consumers who ignore prices

and whose utility for both products is the same irrespectively of the realized quality, in

each period. Those consumers purchase from both firms randomly (see also Caminal and

Vives, 1996). Their impact on the inverse demand at firm j in period t is the given by the

random variable ujt . These random variables are i.i.d. draws from N (0, 1/τu).
7

see e.g. Szentes and Roesler (2016).
5 This assumption needs to be made due to a related issue pointed out by Judd (1985).
6 As in many economic models, the application of normally distributed random variables has eco-

nomically implausible consequences: depending on the received signal, individual demand might become

negative or tend to infinity for a fixed set of prices. Analogous consequences can be found for individual

inverse demand for a fixed set of quantities in Bertrand competition. To rule out such cases one could

alternatively assume that q is distributed according to a truncated normal distribution on an interval

[−Y, Y ] with 0 < Y < α/(1 − γ2). One would then only need to incorporate the changed variance of q,

the rest of the updating remains unchanged. Note, that a truncated prior implies that the posterior is

truncated at the same values independent of the distribution of the signal. Another possibility to decrease

the probability of such ‘unwanted’ events would be to increase the precision of the random variables. Our

results hold when we approach the model without asymmetric information and consumer learning, i.e.

when τε → ∞.

If γ = 1, the stated individual demands become infinitely large or small. Furthermore, in the analogous

model of Bertrand competition, the consumers’ first order conditions are not invertible, such that there are

problems with the microfoundation of the aggregate model described in Section 4. However, when starting

directly with the standard aggregated form of the oligopoly models as represented in equations (1) and

(7), such issues are avoided.
7The fact that irrational consumers may have a negative impact on (inverse) demand might be inter-
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Let ηt :=
∫ 1
0 E(q|I it)di denote the aggregate belief on quality of all rational consumers

in period t. Combining the demand of rational consumers and random shoppers leads to

the following aggregated inverse demand functions

pAt = α+ ηt − xAt − γxBt + uAt ,

pBt = α− ηt − xBt − γxAt + uBt .
(1)

The product substitutability γ is endogenous and chosen by the firms via their investment

decision. An example is the investment of Coca Cola and Pepsi into advertisement, in

order to emphasize the differences between the two products, although their taste is in-

distinguishable for consumers (see Brander and Spencer, 2015a,b). At the beginning of

the game, in period t = 0, firms can make monetary investments kA and kB in order to

increase the differentiation between their products, according to the following functional

form

γ = e−λ(kA+kB).

If both firms make zero investments, then γ = 1 and the goods become perfect substitutes.

Larger investments of any firm decrease γ, which approaches zero if the investments ap-

proach infinity. Of course there are cases in which firms invest into making their products

complementary to each other, which however is not modeled in our setup. As γ ∈ (0, 1],

the goods are between the extremes of independence or perfect substitutability.8 Cases

where the goods are or can become complements are left out here, as our focus is on

situations like the Coke-Vs-Pepsi story mentioned above. The parameter λ ∈ R+ mea-

sures the technology or effectiveness of how the firms’ investments translate into increased

differentiation. The higher λ, the smaller are the necessary investments to increase the

differentiation by a certain amount.

Firms maximize their expected total profits and second period profits are discounted

with the factor δ ∈ (0, 1). Note that firms do not know the quality (differential) when

making their differentiation investments and choosing their quantities, which is plausible

for instance in the case of experience goods. Thus, their information set in the first two

periods is given by I0 = I1 = {∅}, and by I2 = {x1, p1} in the last period.

preted as some part of the rational consumers refraining from a purchase of the good, although rational

utility optimization implied the opposite.
8 Our model is a special case of a specification using the utility function U(xA, xB , x0) = (α+ q)xA +

(α− q)xB − 0.5
[
β(xA)2 + 2γxAxB + β(xB)2

]
+ x0 with β = 1. In the more general model goods may also

be perfect complements, i.e. γ = −1.
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As it is common for Cournot models, the process of price formation can be modeled

via an auctioneer. She knows quality q, which allows her to calculate the consumers’

aggregate belief on quality ηt (see below), and she also knows the realization of uAt and uBt

for t = 1, 2. In each period, the firms inform the auctioneer about the quantity produced

and the auctioneer calculates pAt and pBt . These prices are announced to consumers and

each of them purchases his optimal quantity of each of the two goods. As announced prices

contain information on the quality, we assume that consumers’ beliefs are not affected by

announced prices. This assumption can be justified by the fact that consumers do not

understand the (informationally complex) process of price formation implemented by the

auctioneer.

The alternative justification of Cournot models pioneered by Kreps and Scheinkman

(1983), a model with a stage where both firms choose capacities before competing in prices,

and which under certain assumptions leads to ‘standard’ Cournot outcomes, can not be

applied here. This is the case as introducing demand uncertainty in a capacity-then-price-

competition model leads to non-existence of a pure strategy equilibrium, in particular also

to the absence of the equilibrium with Cournot quantities (see for example Hviid, 1991

and Behrens and Lijesen, 2012). As the case of homogeneous goods is nested in our model,

the same applies here.

For convenience we let firm specific variables without superscript denote the vector of

the two variables of both firms and by Δy we describe the difference of variable yA and

yB, so for example x1 = (xA1 , x
B
1 ) and Δu1 = uA1 − uB1 . The following graphic depicts the

timing of the game:

9



• Quality q realizes.

• Firms make their differentiation investments kA and kB simultaneously knowing I0 = ∅.t = 0

• Firms set quantities xA
1 , x

B
1 knowing I1 = ∅ .

• Consumer i receives signal si1

(• Auctioneer announces prices pA1 and pB1 knowing η1 and u1)

• Consumer i purchases optimal quantity of goods knowing Ii1 = {si1, x1}.

t = 1

• Firms set quantities xA
2 , x

B
2 knowing I2 = {p1, x1} .

• Consumer i receives signal si2

(• Auctioneer announces prices pA2 and pB2 knowing η2 and u2)

• Consumer i purchases optimal quantity of goods knowing Ii2 = {si2,Δp1, x2}.

t = 2

Figure 1: Timing of the Game

We employ the solution concept of Perfect Bayesian Equilibrium. To avoid compli-

cations off the equilibrium path, it is assumed that consumers’ beliefs are constant with

respect to observed current-period quantities, i.e. ∂ηit/∂xt = 0.

3 Solving the Model with Quantity Competition

We first replicate and adapt the results for Bertrand competition of Caminal and Vives

(1996) for our Cournot framework. Then we analyze the effect of consumer learning on

product differentiation in this framework.

3.1 Consumers

In order to characterize the optimal behavior of consumers, we only need to calculate how

they use the available information to update their beliefs about the goods’ qualities and

can then use the aggregated inverse demand calculated in equation (1). We exploit the

properties of the normal distribution, in particular the fact that the updating rules for

both, mean and variance, are linear (see e.g. Section 2.2.2 of Chamley, 2004). Details on

the calculations can be found in Appendix A.
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First Period Early adopter i’s belief on the quality is given by ηi1 := E[q|I i1] = m1s
i
1

where m1 :=
τε

τε+τq
weighs up the precisions of the distributions of the signal the consumers

receive against the precision of the quality. The aggregate expectation in the first period

can be calculated as

η1 =

∫ 1

0
ηi1di = m1q.

As Var(η1) < Var(q), some uncertainty is resolved in the aggregate and in aggregate the

consumers’ belief is closer to the true value of q than the unconditional expectation E[q].

In equilibrium beliefs are correct, such that the consumers’ first period equilibrium belief

is η∗1 = m1q.

The utility maximization of the rational consumers and the behavior of the random

shoppers results in the following inverse demand

pA1 = α+m1q − xA1 − γxB1 + uA1 ,

pB1 = α−m1q − xB1 − γxA1 + uB1 .

Second Period In addition to the signal and the quantities x2, the laggard i’s informa-

tion set now also contains the observed price difference in period 1, i.e. her information

set is I i2 = {si2,Δp1, x2}. The price differential Δp1 contains information about q:

Δp1 := pA1 − pB1 = 2m1q − (1− γ)Δx1 +Δu

⇔ q = [Δp1 + (1− γ)Δx1 −Δu1]/2m1.

As Δx1 is not observed by consumers in the second period and E[Δu1] = 0, a laggard’s

best estimate of the quality is qe = [Δp1+(1−γ)Δxe1]/2m1, where Δxe1 is the conjectured

difference in quantities. Because actual first period quantities are not observed by con-

sumers in the second period, they have to make conjectures about them, that is, they need

to interpret past prices as signals of the chosen quantities, which is formalized by Δxe1.

Thus, qe is obtained by solving the observed price difference Δp1 for q and replacing the

unknown variables from the perspective of the consumer by their expected value (Δu1)

and the conjecture about the played strategy (Δx1). Inserting the realized price difference

Δp1, it equals

qe = q + [Δu1 − (1− γ)(Δx1 −Δxe1)]/2m1. (2)

This expression contains the two random variables q and Δu1, and the second summand

captures the error the consumers make in conjecturing past market shares.

11



The laggard now combines his observation extracted from the price difference with his

signal using Bayesian updating, so that her belief is given by ηi2 := E[q|Ii2] = m2s
i
2+n2q

e,

with m2 = τε/τ
i
2, n2 = 2τum

2
1/τ

i
2 and τ i2 = τε + τq + 2τum

2
1. The aggregate belief then is

given by

η2 =

∫ 1

0
ηi2di = m2q + n2q

e.

As in equilibrium beliefs are correct we obtain the equilibrium belief η∗2 = m2q+n2q̃ with

q̃ = q+Δu1/2m1. Note that q̃ equals qe with correctly conjectured first period quantities,

i.e. with Δxe1 = Δx1.

Clearly,

∂η2

∂xA1
= − ∂η2

∂xB1
= n2 · ∂qe

∂xA1
= −(1− γ)n2

2m1
. (3)

The derivative shows that the effect of a change in the first period quantity on the consumer

belief in the second period is higher, the smaller the substitutability between products,

γ. Phrased differently, the more differentiated the goods are, the higher is the impact

of a firm’s change of its choice variable in the first period on the laggards’ belief. The

decreased price pA1 induced by a higher quantity xA1 decreases the belief that product A

is of superior quality because first period quantities are not observed by laggards, so that

consumers can not be certain whether the price decrease was due to a low quality product,

or due to a high volume of sales. This reasoning is analogous to the recommendation effect

as introduced in Conze and Kramm (2016).

Similarly as in period one, the utility maximization of the rational consumers and the

behavior of the random shoppers results in the following inverse demand in period two:

pA2 = α+m2q + n2q
e − xA2 − γxB2 + uA2 ,

pB2 = α−m2q + n2q
e − xB2 − γxA2 + uB2 .

3.2 Firms

Firm behavior is analyzed via backward induction, but we start with analyzing the firms’

information processing. Details on the calculations can be found in Appendix B.

3.2.1 Bayesian Updating

In order to optimally set quantities, firms need to forecast the consumers’ beliefs on quality,

so they form a belief about the consumers’ (aggregate) belief on quality denoted by θt :=

E[ηt|It]. Both firms have identical information and so cannot manipulate each other.

12



In period 1, the firms do not have any information about the consumers’ belief and

thus θ1 = E[m1q|I1] = 0.

In period 2, in contrast to the consumers, the firms can extract q̃ (the consumers’

second period estimate of the quality extracted from the price difference in the previous

period with correctly conjectured quantities) from past prices and quantities, so that

θ2 = E[m2q + n2q
e|I2] = m2E[q|q̃] + n2E[qe|q̃]. Equilibrium beliefs are defined to be

θ∗t = E[η∗t |It].

3.2.2 Optimal Quantities

Given the beliefs about consumers’ beliefs, firms choose optimal quantities. In the second

period, firms take the differentiation parameter and first period quantities and prices

as given so that their optimization problem boils down to maximizing the profit πj
2 =

xj2 · pj2(x2) by the choice of xj2. Best responses are given by xA2 (x
B
2 ) =

α+θ2−γxB
2

2 and

xB2 (x
A
2 ) =

α−θ2−γxA
2

2 . Equilibrium quantities are

xA∗
2 =

α

2 + γ
+

θ∗2
2− γ

,

xB∗
2 =

α

2 + γ
− θ∗2

2− γ
.

In the first period firms take into account the indirect effect their quantity choice has

on the profit in period 2 via Bayesian updating among the consumers. Thus, the objective

function of firm A is given by

πA
1 (x1) = xA1 (α+ θ1 − xA1 − γxB1 ) + δE[πA

2 |I1], (4)

where πA
2 is firm A’s second period profit and πA

1 is the total revenue of firm A, that

is the profit from periods one and two, ignoring potential investments in differentiation.

Remember that θ1 = 0. Furthermore, note that E[pA2 |I1] = α
2+γ + θ2

2−γ = xA∗
2 , which

implies that E[πA
2 |I1] = E[(xA∗

2 )2|I1]. Firm A’s best response is then xA1 (x
B
1 ) = α/2 −

xB1 γ/2 +
δxA∗

2
2−γ · ∂θ2

∂xA
1
. Firm B’s best response can be calculated analogously and, using

equation (3), equilibrium quantities are

xA∗
1 = xB∗

1 =
α

2 + γ
·
(
1 +

2δ

4− γ2
∂θ2

∂xA1

)
.

Overall, we obtain the following result, which is analogous to the proposition for Bertrand

competition in Caminal and Vives (1996).
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Lemma 1. In the equilibrium of our model, optimal quantities in period 2 are given by

xA∗
2 =

α

2 + γ
+

θ∗2
2− γ

and xB∗
2 =

α

2 + γ
− θ∗2

2− γ
. (5)

Optimal quantities in period 1 are given by

xA∗
1 = xB∗

1 =
α

2 + γ
·
(
1− δ(1− γ)

4− γ2
· n2

m1

)
. (6)

The optimal second-period quantity of firm j is higher (lower) than in a standard

differentiated Cournot model (α/(2 + γ)), if the expectation of the consumer belief is

(not) in favor of firm j.9 That is, the firm which is expected to be preferred by consumers

sells a higher quantity.

As γ ≤ 1, first period quantities are (weakly) lower than those without consumer

learning, meaning that first period prices exceed those of standard differentiated Cournot

model. This is due to consumers in period 2 only observing past prices but not quantities.

A higher price thus leads them to expect the good to be of higher quality.

3.2.3 Optimal Differentiation Investments

Forecasting the resulting optimal quantities, firms choose the investment into differentia-

tion in period zero. There exist no closed-form solutions to derive the optimal investment

in differentiation, kj∗, and furthermore, conventional comparative static tools such as the

implicit function theorem or approaches via lattice theory involve calculations, which are

too computationally complex. Thus, to compare the differentiation incentives without

relying on the full solution, we use the technique of Brander and Spencer (2015a), who

compare the minimal effectiveness of investments in differentiation needed to induce firms

to invest, that is, we derive and compare the thresholds λ so that firms investments become

positive.

Without Consumer Learning (Benchmark) If second period consumers were to

have a belief of η2 = 0, the model in the second period is the same as the standard model

of Dixit (1979), and the resulting optimal quantities would be xA∗
NL = xB∗

NL = α/(2 + γ).

The profit of a benchmark model with two periods without consumer learning is thus given

by

πj
NL = (1 + δ) · E[πj

2|I1]− kj = (1 + δ) · (xj∗NL)
2 − kj .

9 Equilibrium quantities are positive whenever n2/m1 < 4, which is always fulfilled.
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The derivative of the objective function is then

∂πj
NL/∂k

j = (1 + δ) · d(x
j∗
NL)

2

dγ
· ∂γ

∂kj
− 1 = (1 + δ) · −2α2

(2 + γ)3
· (−λγ)− 1

= (1 + δ) · 2λγα2

(2 + γ)3
− 1.

Firm j will invest in differentiation in equilibrium if

∂πj
NL/∂k

j
∣∣
γ=1

> 0 ⇔ λ >
27

2(1 + δ)α2
:= λ̄C

NL.

The threshold without learning can also be obtained as a corollary of Proposition 4 from

Brander and Spencer (2015a) by extending their model to two periods. The threshold

decreases in α, as the positive effect of increased differentiation on profit is higher the higher

α, so that the necessary technology (λ̄) is decreasing in α. Additionally, differentiation

incentives are stronger, as δ increases. This is because the gain from differentiation is

higher than the costs compared to a situation with a lower δ.

With Consumer Learning With πj
L(·) := πj

1(·) − kj , j ∈ {A,B}, and using equation

(4) and the results mentioned thereafter, the derivative of the objective function is given

by

∂πj
L(x

∗)/∂kj =
∂
[
xj∗1 {α− (1 + γ)xj∗1 }]

∂kj
+ δ · d(x

j∗
2 )2

dγ
· ∂γ

∂kj
− 1.

Firm j will invest in differentiation in equilibrium if

∂πj
L/∂k

j
∣∣
γ=1

=
α2(n2δ + 2m1(1 + δ))λ

27m1
− 1 > 0

⇔ λ >
27m1

α2(2m1 + 2δm1 + δn2)
:= λ̄C

L .

We can easily see that λ̄C
L < λ̄C

NL, as

λ̄C
L = λ̄C

NL

2α2(1 + δ)

2α2(1 + δ) + α2δn2/m1
< λ̄C

NL,

which leads to our first main result:

Proposition 1. In the Cournot model, in equilibrium firms offer perfect substitutes for a

smaller range of parameters λ with consumer learning than without. That is, the threshold

λ above which firms invest in differentiation is lower with consumer learning than without,

λ̄C
L < λ̄C

NL.
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The comparative statics of threshold λ̄L with respect to α and δ are the same as those

of threshold λ̄C
NL, but the extent of the changes on the threshold induced by changes in

α and δ now depends on the parameters introduced by consumer learning, m1 and n2.

Furthermore, as ∂n2
∂τu

> 0 and ∂λ̄L
∂n2

< 0, the critical value λ̄L decreases in τu,
∂λ̄L
∂τu

< 0.

Intuitively, the more noise caused by the random shoppers is contained in the observed

statistic about the quality, the smaller are the incentives to differentiate.

4 Solving the Model with Price Competition

As shown by Singh and Vives (1984), with a linear quadratic utility function, there is a

close relationship between Cournot and Bertrand competition. In their words:

Cournot (Bertrand) competition with substitutes is the dual of Bertrand (Cournot)

competition with complements. This means that they share similar strategic

properties. For example, with linear demand, reaction functions slope down-

wards (upwards) in both cases. It is a matter of interchanging prices and

quantities. (Singh and Vives, 1984, p. 547)

Indeed, using the following utility function from Caminal and Vives (1996) which slightly

differs from the one of the previous sections,

UB(xA, xB, x0) = (α+ (1− γ)q)xA + (α− (1− γ)q)xB − 0.5
[
(xA)2 + 2γxAxB + (xB)2

]
+ x0,

and including random shoppers, similar to the model before, we obtain the following set

of demand functions

xAt = a+ ηt − bpAt + cpBt + uAt ,

xBt = a− ηt − bpBt + cpAt + uBt ,
(7)

where a = α/(1+γ), b = 1/(1−γ2) and c = γ/(1−γ2). Variable ηt again is the aggregate

belief about the quality of consumers in period t. Besides the slightly different utility

function and induced demands, all variables remain as in the previous section.

Comparing the above system of direct demands in (7) to the inverse demand system

from equation (1), we can obtain one from the other by simply exchanging quantities and

prices and replacing a by α, b by β = 1 and c by −γ.

Using equation (3), this implies that the recommendation effect in the Bertrand model

is formalized by

∂η2

∂pA1
= − ∂η2

∂pB1
= n2 · ∂q

e

∂pA1
= − n2

2(1− γ)m1
. (8)
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This shows, that the parameter of substitution (γ), has the inverse impact on the magni-

tude of the recommendation effect in Bertrand competition than in Cournot competition.

Additionally, using the above shortcut, we know from Lemma 1 that the equilibrium

prices in this setting are given by:

Lemma 2 (Caminal and Vives, 1996). In the equilibrium of the model with price setting,

optimal prices in period 2 are given by

pA∗
2 =

a

2b− c
+

θ∗2
2b+ c

and pB∗
2 =

a

2b− c
− θ∗2

2b+ c
. (9)

Optimal prices in period 1 are given by

pA∗
1 = pB∗

1 =
a

2b− c
·
(
1− (b+ c)bδ

4b2 − c2
· n2

m1

)
. (10)

Without learning, optimal prices of both firms are calculated as pA∗
NL = pB∗

NL = a
2b−c .

We see that the firm with the higher perceived quality charges a higher price and in the

first period both firms charge a lower price than in a model without learning.

As in the previous section, we can use the equilibrium prices to calculate equilibrium

profits for a fixed γ and solve the derivative of the profit with respect to the investment kj

evaluated at γ = 1 for the λ above which firms make their investments in differentiation.

Details on the calculations can be found in Appendix C. We obtain the following result:

Proposition 2. In the Bertrand model, in equilibrium firms offer perfect substitutes for

a smaller range of parameters λ without consumer learning than with consumer learning.

That is, the threshold λ above which firms invest in differentiation with consumer learning

(λ̄B
L ) is higher than the threshold without learning (λ̄B

NL):

λ̄B
L =

2

α2
[
(1 + δ)− 2δn2/(3m1)

] >
2

α2(1 + δ)
= λ̄B

NL.

5 Informational Incentives to Differentiate:

Bertrand Vs. Cournot

While we should keep in mind, that the parameter of substitution (γ) is incorporated in

a different manner in the microfoundation of the Bertrand and the Cournot model,10 it is

nevertheless worthwhile to compare the influence of consumer learning on the incentives

10 The different utility functions in the two models are employed, as they allow to compare the impact

of γ on the aggregated (inverse) demand systems in equations (1) and (7) more easily.
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to differentiate of the two models. Comparing our findings in the different models yields

our final main result:

Proposition 3. The effect of consumer learning on the firms’ incentives to differentiate

their products is different in the Cournot model and in the Bertrand model. In contrast to

quantity competition, consumer learning in a model with price setting decreases the firms’

incentives to differentiate:

λ̄B
L − λ̄B

NL > 0 > λ̄C
L − λ̄C

NL.

Consumer learning thus tends to increase the competition in the Bertrand setting and it

weakens it in the Cournot model.

In order to understand this result in more detail, it is useful to compare the equilib-

rium choices from the models with learning to those without. From the perspective of

period zero, where firms choose their differentiation investments, and given the equilib-

rium strategies for periods one and two, the expected optimal quantities in period 2 are

the same in the models with and without learning as E(θ2) = 0. Thus, the second period

affects the differentiation incentives only through its influence on the optimal first period

choices of the firms. In the Cournot game, equilibrium quantities in the first period are

given by

xj∗1 = xj∗NL ·
(
1− δ(1− γ)

4− γ2
· n2

m1

)
=

α

2 + γ
·
(
1− δ(1− γ)

4− γ2
· n2

m1

)

and equilibrium prices in the Bertrand model are

pj∗1 = pj∗NL ·
(
1− (b+ c)bδ

4b2 − c2
· n2

m1

)
=

a

2b− c
·
(
1− (b+ c)bδ

4b2 − c2
· n2

m1

)
=

α(1− γ)

2− γ
·
(
1− (1 + γ)δ

4− γ2
· n2

m1

)

for j ∈ {A,B}. In both models, the first factor, gives the optimal choices in a model

without consumer learning. The second factor in both cases is (weakly) smaller than one,

so that quantities in a Cournot style competition and prices in the Bertrand variant of our

model are (weakly) decreased by the introduction of consumer learning. Only if γ = 1,

the optimal choices in the models with learning and those without coincide.

Starting with the Cournot model and comparing the marginal profit of investing in

differentiation (increasing kA or kB) at a situation where γ = 1 (kA = kB = 0), the

previous calculations showed that the marginal profit is higher with learning than without,

leading to the lower threshold value in the model with learning compared to the model

without.
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The mechanics behind this difference are the following: as in the Cournot model with-

out learning, and in any similar model, it is the case that the two firms could increase

their first period profit by reducing their quantities. In the model without learning, de-

creasing one’s quantity below xA∗
NL = xB∗

NL is not individually rational. If γ < 1, consumer

learning however introduces an incentive to decrease first period quantities below the level

of a model without learning due to the recommendation effect, meaning that at γ = 1,

consumer learning generates an additional incentive to invest in differentiation, as this

enhances the impact of the recommendation effect.

The situation in the Bertrand setup is different in that prices are already too low

in the model without learning if the goal is to maximize the joint first period profit of

the firms. Firms could therefore increase their profits if they were to jointly raise their

prices. With γ = 1 prices in the model with and without learning coincide and equal

zero. Decreasing γ, that is increasing the differentiation, increases the optimal first period

price, but the increase is smaller with consumer learning. The marginal profit of increasing

kA = kB = 0, is thus higher in the model without learning than it is in the model with

learning, explaining the ordering of the thresholds in this setup.

Finally, we can elaborate on the result of Brander and Spencer (2015a,b) who showed

that firms are more likely to invest in differentiation in Bertrand than in Cournot com-

petition. As our benchmark models without learning are two-period extensions of their

models, we obtain the same result if we compare the models without learning, that is

λ̄C
NL > λ̄B

NL. Consumer learning has been shown to decrease the threshold in the Cournot

model and increase it in the Bertrand setting, but even then, the ranking of the two models

is maintained, i.e. we also have λ̄C
L > λ̄B

L .

6 Conclusion

Differentiating one’s product from those of a competitor results in a weaker competition

and thus allows for higher prices and profits. By introducing consumer learning in a

duopoly model with vertically differentiated goods and by endogenizing the horizontal

differentiation between the products, we have shown that the incentives to differentiate

are changed when consumer learning about the strength of the vertical differentiation is

introduced. Furthermore, the effects created by consumer learning differ vastly between a

model of quantity and a model of price competition.
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In each of the two models, consumers learn from observed previous purchasing deci-

sions. As their observations are not fully revealing all information, firms can manipulate

the inference of late consumers by influencing the purchase decisions of early consumers.

When setting their prices or quantities in early periods, firms take this effect of their

choices on the inference of later consumers into account. Only when the two products are

perfect substitutes, the presence of consumer learning does not change the firms optimal

behavior compared to a model without consumer learning.

For quantity competition with differentiated products, firms optimally choose lower

quantities in a model with consumer learning than in a model without. Low quantities lead

to higher prices which tend to signal higher quality to later consumers. If firms compete in

prices, optimal first period prices are below those of a model without consumer learning,

as here higher sold quantities signal high quality to later consumers.

These ‘distortions’ of the optimal choices in early periods lead to different effects on

the differentiation incentives of the firms induced by consumer learning. Because profits

in a Cournot model can typically be increased by reducing the produced quantities, which

is precisely the effect consumer learning has in our model of quantity competition, con-

sumer learning increases the incentives to differentiate above the incentives generated by

the desire to relax competition. The reverse is true in a model of Bertrand style price

competition: here increasing prices would increase the profit of the firms, but consumer

learning reduces the prices even further than the already strong competition in a Bertrand

setup. The introduction of consumer learning thus decreases the incentives to invest in

differentiation if firms compete in prices.

The presented results seem to support the notion that price competition, i.e. a game

with strategic complements, leads to a stronger competition than quantity competition,

that is competition with strategic substitutes, as products are more likely to be substitutes

in the former oligopoly model.

Appendix A Bayesian Updating Among Consumers

Bayes’ rule in our context can be formulated as

f(q|o) = φ(o|q) · f(q)∫
φ(o|q) · f(q)dq ,

where f(·) is the density of q and φ(·) is the density of some observation o containing

information on quality q, i.e. in our case signal sti or the estimate of q extracted from the
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price difference in the first period, qe. Gaussian models as the one at hand, i.e. Bayesian

updating over normally distributed random variables and observations, are particularly

tractable, as the posterior distribution is also normal and the updating rules for mean and

variance are linear: the posterior mean is the weighted average of the prior mean and that

of the observation weighted with the respective precisions, while the posterior variance is

that of the prior increased by that of the observation.

In our model, consumers want to best estimate q from their observations. Consumers

have the prior knowledge that q ∼ N
(
μq,

1
τq

)
and they make one or two additional

observations or, r ∈ {1, 2}, with information about q. All consumers receive a signal about

q and consumers in period two observe past prices. Both, the signal and the information

extracted from past prices can be reformulated to observation oir,t of consumer i in period

t in the following form:

oir,t = q + vir,t where vir,t ∼ N

(
0,

1

τvir,t

)

Using Bayesian updating as described above, this leads to the following distribution of q

conditional on the available observations, for t ∈ {1, 2}

q|I it ∼
(
τqμq +

∑t
r=1 τvir,to

i
r,t

τq +
∑t

r=1 τvir,t

,
1

τq +
∑t

r=1 τvir,t

)

Let ηi1 := E[q|I i1] be the updated belief of consumer i about q in period 1 after receiving

signal si1, then

ηi1 ∼ N

(
(1−m1) · 0 +m1 · si1, 1

τq+τε

)
.

with m1 := τε
τq+τε

. Using the assumption on the average signal, the aggregate belief is

given by

η1 :=

∫ 1

0
ηi1di =

∫ 1

0
m1s

i
1di = m1

∫ 1

0
si1di → m1q.

The information a consumer i in period 2 can extract about q from the observed price

difference only is given by

qe = [Δp1 + (1− γ)Δxe1]/2m1

= q + [Δu1 − (1− γ)(Δx1 −Δxe1)]/2m1. (11)

This expression contains the two random variables q ∼ N(0, 1
τq
)
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and Δu1
2m1

∼ N(0, 2
4m2

1τu
).

When combining this with the signal, ηi2 := E[q|I i2], the updated belief of consumer i

about q in period 2, is normally distributed with

ηi2 ∼ N

(
(1−m2 − n2) · 0 +m2s

i
2 + n2q

e, 1
τ i2

)
,

with τ i2 = τε + τq + 2τum
2
1, m2 = τε/τ

i
2 and n2 = 2τum

2
1/τ

i
2 and thus the aggregate belief

is given by

η2 :=

∫ 1

0
ηi2di =

∫ 1

0
(m2s

i
2 + n2q

e)di = m2

∫ 1

0
si2di+ n2q

e → m2q + n2q
e,

again making use of the assumption on the average signal.

Appendix B Firm Behavior in the Cournot Model

Firm behavior is analyzed via backward induction.

Quantity Setting in Stage t = 2

Firm A’s profit in stage t = 2 is given by

πA
2 = xA2 · pA2 = xA2 · (α+ θ2 − xA2 − γxB2 ).

Best responses are obtained by the FOCs ∂πj
2/∂x

j
2 = 0 with j ∈ {A,B}, which gives

xA2 (x
B
2 ) =

α+ θ2 − γxB2
2

, and similarly xB2 (x
A
2 ) =

α− θ2 − γxB2
2

.

In equilibrium best responses intersect, so we obtain the equilibrium quantities

xA∗
2 =

α

2 + γ
+

θ2
2− γ

and xB∗
2 =

α

2 + γ
− θ2

2− γ
.

Quantity Setting in Stage t = 1

Firm A’s expected profit considered in stage t = 1 is given by

πA
1 = xA1 p

A
1 + δE[πA

2 |I1] = xA1 · (α+ θ1 − xA1 − γxB1 ) + δE[pA2 x
A
2 |I1].

In period 1, firms anticipate the equilibrium quantities from period 2, so that E[pA2 (x
∗
2)|I1] =

α
2+γ + θ2

2−γ = xA∗
2 , and thus E[πA

2 |I1] = (xA∗
2 )2. We can additionally use the observations

that θ1 = E[θ∗1|I1] = 0 and

∂θ2/∂x
A
1 = −∂θ2/∂x

B
1 = ∂η2/∂x

A
1 = (γ − 1) n2

2m1
.
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Using ∂E[πA
2 |I1]/∂xA1 = 2xA2 · 1

2−γ · ∂θ2
∂xA

1
, we obtain the FOC of firm A, given by

∂πA
1

∂xA1
= α− 2xA1 − γxB1 + δ

(
2xA2
2− γ

· ∂θ2

∂xA1

)
= 0.

This yields the best responses

xA1 (x
B
1 ) =

α

2
− γxB1

2
+ δ

(
2xA2
2− γ

· ∂θ2

∂xA1

)
, and similarly xB1 (x

A
1 ) =

α

2
− γxA1

2
+ δ

(
2xB2
2− γ

· ∂θ2

∂xA1

)
.

In equilibrium best responses intersect, and, using E[θ∗2|I1] = m1E[q] + n2E[q̃] = 0, the

equilibrium quantities are then given by

xA∗
1 = xB∗

1 =
α

2 + γ

(
1 +

δ(γ − 1)

4− γ2
· n2

m1

)
.

Differentiation Investment in Stage t = 0

It holds that for j ∈ {A,B}

d(xj∗NL)
2

dγ
· ∂γ

∂kj
=

d(xj∗2 )2

dγ
· ∂γ

∂kj
=

2δλα2

27
.

Further helpful results for the calculation of the model with consumer learning are

dxj∗1
dγ

· ∂γ

∂kj
=

[ −α

(2 + γ)2
+

αδn2

m1

{
(2 + γ)2(2− γ)− (γ − 1)[2(2 + γ)(2− γ)− (2 + γ)2]

(2 + γ)4(2− γ)2

}]
· (−λγ)

and

∂[α− (1 + γ)xj∗1 ]

∂kj
= λγxj∗1 − (1 + γ)

[
dxj∗1
dγ

· ∂γ

∂kj

]
.

Evaluating at γ = 1, using the sum rule in differentiation and the above results, we obtain

∂{xj∗1 · [α− (1 + γ)xj∗1 ]}
∂kj

∣∣∣∣
γ=1

=
λα2

27

(
1− δn2

m1

)
+

λα2

9
·
(
1− 2

3

{
1− δn2

m1

})

=
λα2

9
·
(
2

3
+

δn2

3m1

)
.

Overall, the derivative of profit w.r.t. investment in differentiation, evaluated at γ = 1, is

∂πj
L/∂k

j
∣∣
γ=1

=

(
∂
[
xj∗1 {α− (1 + γ)xj∗1 }]

∂kj
+ δ · d(x

j∗
2 )2

dγ
· ∂γ

∂kj
− 1

)∣∣∣∣
γ=1

=
λα2

9
·
(
2

3
+

δn2

3m1
+

2δ

3

)
− 1.
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Appendix C Firm Behavior in the Bertrand Model

The calculations on the price setting in stages one and two of the Bertrand model can

be done analogously to the quantity setting in the Cournot model (see Appendix B), and

thus we will only calculate the optimizing behavior for differentiation investment in stage

t = 0. In the following, the profit functions Πj
k represent the same profits as in the Cournot

model, only adapted to the Bertrand setting.

Differentiation Investment Without Consumer Learning (Benchmark)

No consumer learning implies θ2 = 0, such that the resulting optimal quantities and prices

for firm A are

E[xA2 (p
A∗
2 )|I1] = α

(2− γ)(1 + γ)

E[pA∗
2 |I1] = α(1− γ)

(2− γ)
.

The profit of firm A in a benchmark model with two periods without consumer learning

is thus given by

Πj
NL = (1 + δ) · E[ΠA

2 |I1]− kA = (1 + δ)E[xA2 (p
A∗
2 )|I1] · E[pA∗

2 |I1]− kA.

The derivative of the objective function is then

∂Πj
NL/∂k

j = (1 + δ) · d(E[xA2 (p
A∗
2 )|I1] · E[pA∗

2 |I1])
dγ

· ∂γ

∂kj
− 1

= (1 + δ) · −α2(γ3 − 3γ2 + 4) + (3γ2 − 6γ)(α2(1− γ))

(γ3 − 3γ2 + 4)2
· (−λγ)− 1

Firm A will invest in differentiation in equilibrium if

∂Πj
NL/∂k

j
∣∣
γ=1

> 0 ⇔ λ >
2

α2(1 + δ)
= λ̄B

NL.

Differentiation Investment With Consumer Learning

We can write

pA∗
1 =

a

2b− c
·
(
1− (b+ c)bδ

4b2 − c2
· n2

m1

)

=
α(1− γ)

2− γ
·
(
1− (1 + γ)δ

4− γ2
· n2

m1

)

=
α(1− γ)

2− γ
− (1− γ2)δα

(4− γ2)(2− γ)
· n2

m1
.
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The profit of firm A in the model with consumer learning is given by

Πj
L = pA∗

1 · [a+ (c− b)pA∗
1

]
+ δ · E[xA2 (p

A∗
2 )|I1] · E[pA∗

2 |I1]− kA

= pA∗
1 ·

[
α

1 + γ
+

γ − 1

1− γ2
· pA∗

1

]
+ δ · E[xA2 (p

A∗
2 )|I1] · E[pA∗

2 |I1]− kA.

Further helpful results are

∂pA∗
1

∂γ
=

−α(2− γ) + α(1− γ)

(2− γ)2
− (−2γδα)(2− γ)(4− γ2)− (3γ2 − 4γ − 4)αδ(1− γ2)

(2− γ)2(4− γ2)2

∂

[
α

1+γ + γ−1
1−γ2 · pA∗

1

]
∂kA

= −α+
(1− γ2) + 2γ(γ − 1)

(1− γ2)2
· pA∗

1 +
γ − 1

1− γ2
· ∂p

A∗
1

∂γ[
α

1 + γ
+

γ − 1

1− γ2
· pA∗

1

]∣∣∣∣
γ=1

= α/2

pA∗
1

∣∣∣∣
γ=1

= 0

∂pA∗
1

∂γ

∣∣∣∣
γ=1

= −α+
2αδn2

3m1

Overall, the derivative of profit w.r.t. investment in differentiation, evaluated at γ = 1, is

∂Πj
L/∂k

j
∣∣
γ=1

= αλ

(
1− 2δn2

3m1

)
· α
2
+ 0 ·

∂

[
α

1+γ + γ−1
1−γ2 · pA∗

1

]
∂kA

(−λ) + δλ
α2

2
− 1

=

[
α2

2
(1 + δ)− α2δn2

3m1

]
λ− 1.

Firm j will invest in differentiation in equilibrium if

∂Πj
L/∂k

j
∣∣
γ=1

> 0

⇔ λ >
2

α2
[
(1 + δ)− 2δn2/(3m1)

] := λ̄B
L .
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