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Abstract

This work extends the flux-corrected transport (FCT) methodology to arbitrary-order continuous finite element dis-
cretizations of scalar conservation laws on simplex meshes. Using Bernstein polynomials as local basis functions, we
constrain the total variation of the numerical solution by imposing local discrete maximum principles on the Bézier
net. The design of accuracy-preserving FCT schemes for high order Bernstein-Bézier finite elements requires the de-
velopment of new algorithms and/or generalization of limiting techniques tailored for linear and multilinear Lagrange
elements. In this paper, we propose (i) a new discrete upwinding strategy leading to local extremum bounded low
order approximations with compact stencils, (ii) a high order stabilization operator based on gradient recovery, and
(iii) new localized limiting techniques for antidiffusive element contributions. The optional use of a smoothness indi-
cator, based on a second derivative test, makes it possible to potentially avoid unnecessary limiting at smooth extrema
and achieve optimal convergence rates for problems with smooth solutions. The accuracy of the proposed schemes is
assessed in numerical studies for the linear transport equation in 1D and 2D.

Keywords: Bernstein-Bézier finite elements, continuous Galerkin method, flux-corrected transport, artificial
diffusion, local discrete maximum principles, total variation diminishing property

1. Introduction

The traditional approach to stabilization of finite element methods for convection-dominated transport problems
is based on the use of modified test functions or additional terms in the variational form of the governing equations.
For decades, the analysis and design of stabilized finite element schemes for flow problems was focused on various
extensions of the streamline upwind Petrov-Galerkin (SUPG) method [11, 31]. More recent successful approaches
include continuous interior penalty (CIP) methods [13], local projection stabilization (LPS) schemes [10], and varia-
tional multiscale (VMS) methods [33] to name just a few. In general, variational stabilization techniques are effective
in localizing and dampening non-physical oscillations. However, small undershoots and overshoots may survive in
the neighborhood of steep fronts even if nonlinear discontinuity-capturing terms [15, 18, 31, 33] are employed. The
lack of strong nonlinear stability in these methods can therefore lead to positivity and maximum principle violations.
Additionally, the robustness and accuracy of some methods are strongly influenced by the choice of free parameters.

Recent years have witnessed an increased interest of the finite element community in nonlinear high-resolution
schemes satisfying local discrete maximum principles [3–5, 12, 30]. The oldest representative of such schemes is
the flux-corrected transport (FCT) algorithm introduced by Boris and Book [9] and generalized by Zalesak [49] in
the 1970s. Modern FCT-like schemes constrain the troublesome antidiffusive part of a linearly stable high order
approximation using a conservative decomposition into total mass conserving components (fluxes or element con-
tributions). In FCT algorithms of predictor-corrector type, the local bounds and raw antidiffusive components are
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defined in terms of a low order solution which is guaranteed to satisfy the relevant inequality constraints. High-
resolution finite element schemes based on generalizations of the FCT methodology to unstructured grids can be
found in [17, 30, 35, 36, 40, 45, 46]. Some algorithms are designed to manipulate the global finite element matrix
and limit antidiffusive fluxes associated with the edges of its sparsity graph, whereas others construct artificial diffu-
sion operators on the element matrix level and constrain antidiffusive element contributions. In the present paper, we
follow the latter approach.

So far, the use of FCT in the context of continuous Galerkin methods has been restricted to low order (linear
or multilinear) finite elements. The stronger coupling between the local degrees of freedom in high order FEM
produces larger computational stencils. Furthermore, numerical solutions are no longer bounded by their nodal values
if standard Lagrange finite elements are employed. Thus, imposing local bounds on pointwise solution values at the
nodes is generally insufficient to guarantee that no undershoots or overshoots will emerge elsewhere.

In this work, we consider high order finite element approximations based on the Bernstein-Bézier representation
[1, 34] of polynomial shape functions on simplices. The Bernstein polynomials are all non-negative and form a
partition of unity. Moreover, they possess variation diminishing and monotonicity preserving properties [7, 23, 24,
26, 27] which make them a perfect tool for the design of constrained high-resolution schemes. In contrast to Lagrange
finite elements, only vertex-based degrees of freedom coincide with the pointwise solution values. However, the
restriction of the numerical solution to each cell is uniformly bounded by the largest and smallest coefficient of the
Bernstein basis functions. The piecewise-linear interpolant of the Bernstein coefficients is known as the Bézier net and
its variation represents an upper bound for the variation of the high order polynomial shape function [26, 27]. Hence,
the total variation may be constrained by imposing local discrete maximum principles on the Bernstein coefficients.
The FCT approach has already been used for this purpose in the framework of explicit discontinuous Galerkin (DG)
methods [2]. Promising numerical results were obtained for Bernstein polynomials of degree as high as p = 23 in
1D and p = 5 in 2D using localized bounds and localized limiting techniques for antidiffusive element contributions.
This work was focused on explicit Eulerian advection and remap algorithms in which exact local bounds are provided
by the solution at the beginning of the time step or at the end of a Lagrangian advection phase, respectively.

The present paper introduces some new tools for the design of full accuracy-preserving FCT algorithms for high
order Bernstein finite element discretizations. In contrast to [2], the new features are introduced in the context of
continuous Galerkin schemes but most of them are readily applicable in the DG setting as well. The first highlight
is a new generalization of the discrete upwinding technique that we use to construct the artificial diffusion operator
for the low order scheme. Using a local mass lumping operator, we obtain element matrices which have the same
sparsity pattern as the piecewise-linear approximation on a submesh corresponding to the Bézier net, at least in the
case of a constant velocity field. This approach prevents the low order scheme from becoming more diffusive as we
increase the order of the Bernstein polynomials while keeping the total number of degrees of freedom fixed. The
second highlight of the proposed methodology is the use of antidiffusive element contributions incorporating high
order background dissipation. The dissipative component represents a weak form of the Laplacian operator acting on
the difference between two gradient approximations. The stabilized high order scheme belongs to the family of VMS
and LPS methods [10, 32]. Interestingly enough, the 1D version of this scheme turns out to be a natural extension
of SUPG to unsteady transport problems. Further improvements to be discussed in the context of high order FCT
schemes include new localized limiters based on a decomposition of element vectors into subcell contributions and
smoothness indicators inspired by the non-clipping PPM limiter of Colella and Sekora [16]. The positive effect of the
proposed upgrades is illustrated by numerical studies for linear convection of smooth and discontinuous data.

2. Bernstein basis functions

In this section, we introduce the Bernstein basis functions in the one- and two-dimensional space. An extension to
the three-dimensional case follows directly. Furthermore, we summarize several important properties which are used
in the following sections to prove some analytical results for the proposed FCT algorithms.

Bernstein polynomials are a special set of real-valued polynomials with integer coefficients and build a basis of
the underlying polynomial vector space. In the one-dimensional space, the Bernstein basis functions are defined on the
unit interval x ∈ [0, 1] by

Bp
k (x) =

(
p
k

)
xk(1 − x)p−k, 0 ≤ k ≤ p. (1)
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An extension to two dimensions is given by the tensor product ansatz

Bp
i, j(x, y) = Bp

i (x)Bp
j (y) 0 ≤ i, j ≤ p (2)

for quadrilaterals (unit square: x, y ∈ [0, 1]) and

Bp
i, j,k(u, v,w) =

p!
i! j!k!

uiv jwk, 0 ≤ i, j, k, i + j + k = p (3)

for triangles using barycentric coordinates u, v,w such that [22]

(u, v,w) ∈ Λ B {(λ1, λ2, λ3) ∈ R3 | 0 ≤ λ1, λ2, λ3 ≤ 1, λ1 + λ2 + λ3 = 1}.

The Bernstein basis functions of an arbitrary order p form a partition of unity

p∑
k=0

Bp
k (x) =

p∑
k=0

(
n
k

)
xk(1 − x)p−k = (x + (1 − x))p = 1 for all x,

p∑
i=0

p−i∑
j=0

Bp
i, j,p−i− j(u, v,w) =

p∑
i=0

(
p
i

)
ui

p−i∑
j=0

(
p − i

j

)
v jwp−i− j

=

p∑
i=0

(
p
i

)
ui(v + w)p−i = (u + v + w)p = 1 for all (u, v,w) ∈ Λ,

(4a)

(4b)

where we have used the binomial theorem

(x + y)l =

l∑
i=0

(
l
i

)
xiyl−i for all x, y ∈ R and l ∈ N.

Furthermore, the basis functions are non-negative since Bp
k ≥ 0 and Bp

i, j,k ≥ 0 by definition of the Bernstein polynomi-
als. By virtue of (4), it follows that

0 ≤ Bp
k (x) ≤ 1 for all 0 ≤ k ≤ p and x ∈ [0, 1],

0 ≤ Bp
i, j,k(u, v,w) ≤ 1 for all 0 ≤ i, j, k,≤ p, i + j + k = p and (u, v,w) ∈ Λ.

Using the partition-of-unity property (4), we can also prove that a function defined as an arbitrary linear combination
of Bp

k is uniformly bounded by the minimal and maximal coefficients

min
0≤k≤p

ck =
(

min
0≤k≤p

ck
) p∑

k=0

Bp
k (x)︸     ︷︷     ︸
=1

≤ uh(x) =
p∑

k=0

ckBp
k (x) ≤

(
max
0≤k≤p

ck
) p∑

k=0

Bp
k (x)︸     ︷︷     ︸
=1

= max
0≤k≤p

ck for all x ∈ [0, 1], (5)

where ck ∈ R are the Bernstein coefficients. Obviously, the same relationship is valid in the two-dimensional case.
When it comes to the design of FCT algorithms in the next sections, this will guarantee the local boundedness of
function values and also a total variation boundedness (TVB) property implied by the local extremum diminishing
(LED) property of the antidiffusive correction for the Bernstein coefficients / Bézier nets.

In contrast to Lagrange basis polynomials, the values of the coefficients in the representation of a function as a
linear combination of Bernstein basis functions do not necessarily coincide with the actual function values at some
points. In other words, a potential disadvantage of Bernstein polynomials compared to Lagrange polynomials is the
lack of an interpolation property. However, it is possible to assign the Bernstein coefficients to certain points by
examining corresponding local extrema: Each Bernstein polynomial has exactly one local extremum, which is given
by x = k

p in the case of one-dimensional basis functions Bp
k and (u, v,w) = ( i

p ,
j
p ,

k
p ) for Bernstein functions Bp

i, j,k

defined on a triangle. Therefore, the degree of freedom cp
k corresponding to the basis function Bp

k can be associated
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with x = k
p (see, e.g., [26] for relationships in the context of Bernstein approximations of continuous functions and

[42] for estimates of the difference between the Bernstein coefficients and function values at nodal points). Only in
the cases k = 0 and k = p (i = p, j = p or k = p for triangles) the interpolation property is valid, i.e., function values
and coefficients match. In the context of finite element approximations, these degrees of freedom will correspond to
nodes of the mesh. Furthermore, in two dimensions Bp

i, j,k vanishes on the boundary of the triangle if 0 < i, j, k < p.
In the next sections, we will not distinguish between the one- and two-dimensional space and corresponding

Bernstein polynomials Bp
k and Bp

i, j,k, respectively, any more. Henceforth, the global basis functions of the continuous
finite element space of an arbitrary order p are denoted by B j, while the corresponding coefficients/degrees of freedom
are given by c j. Furthermore, the total numbers of degrees of freedom and elements are denoted by Ndof and Nelem,
respectively.

The integer set containing the global numbers of nodes belonging to an element Ke of the triangulation will be
referred to as Ne and called the element stencil. The notation N j is reserved for nodal stencils, i.e., integer sets
containing the global numbers of a node and its neighbors. The above definitions imply that i ∈ Ne if and only if the
corresponding node is in Ke, while j ∈ Ni if and only if there exists an index e such that i, j ∈ Ne.

3. Finite element approximations

In this paper, we use Bernstein finite elements in continuous Galerkin approximations to the scalar transport
equation in the one- and two-dimensional space. The initial-boundary value problem is given by


∂tu + div(vu) = 0 in Ω,

u(·, t) = uin on Γin = {x ∈ ∂Ω : n(x) · v < 0},
u(·, 0) = u0 in Ω,

(6a)
(6b)
(6c)

where Ω ⊂ Rd, d = 1, 2 is a bounded domain, Γin is the inflow part of the boundary ∂Ω, n : ∂Ω → Rd is the unit
outward normal vector, v : Rd ×R

+

0
→ Rd is the velocity field, and u : Rd ×R

+

0
→ R is the unknown solution. The

initial and boundary conditions are given by the functions u0 : Ω→ R and uin : Γin ×R
+

0
.

3.1. Galerkin space discretization

To discretize the above problem using finite elements, we introduce the variational formulation∫
Ω

w
(∂u
∂t
+ div(vu)

)
dx = 0 for all w ∈ V , (7)

where V is the space of admissible test functions. Integration by parts yields∫
Ω

w
∂u
∂t

dx −
∫
Ω

grad(w) · (vu) dx +
∫
Γout

wuv · n ds +
∫
Γin

wuinv · n ds = 0. (8)

The above splitting of the boundary integral into two parts corresponding to the inlet Γin and outlet Γout ⊆ ∂Ω\Γin
makes it possible to implement the Dirichlet boundary condition (6b) in a weak sense by substituting uin into the
integral over Γin instead of imposing the usual restrictions on the functional spaces for u and w.

Introducing the finite-dimensional space Vh B span{B1, . . . , BNdof }, approximating u by uh =
∑Ndof

j=1 c jB j ∈ Vh, and
testing with the Bernstein basis functions Bi, we obtain the (high order) semi-discrete Galerkin scheme

Ndof∑
j=1

Nelem∑
e=1

me
i j︸  ︷︷  ︸

Cmi j

dc j

dt
=

Ndof∑
j=1

Nelem∑
e=1

ke
i j︸ ︷︷ ︸

Cki j

c j +

Nelem∑
e=1

be
i︸︷︷︸

Cbi

for all 1 ≤ i ≤ Ndof ,

me
i j =

∫
Ke

BiB j dx, ke
i j =

∫
Ke

grad(Bi) · vB j dx −
∫
Γout∩∂Ke

BiB jv · n ds, be
i = −

∫
Γin∩∂Ke

Biuinv · n ds,

(9a)

(9b)
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where me
i j, ke

i j, and be
i are element contributions to the mass matrix, convection matrix and load vector of the weakly

imposed Dirichlet boundary condition, respectively.
The Galerkin approximation defined by (9) may produce disappointing results, especially if p is large. The re-

sulting numerical solutions are frequently corrupted by spurious oscillations causing violations of local maximum
principles that may apply to the exact solution of the continuous initial-boundary value problem (6) for the transport
equation.

3.2. Low order upwind methods
To obtain a local extremum diminishing (LED) reference solution that provides local bounds for undershoot/over-

shoot detection, FCT algorithms add artificial diffusion to a high order target scheme. The resulting low order solution
is used to define inequality constraints for a subsequent antidiffusive correction step. In the context of linear finite
elements, a low order method with provable LED properties can be constructed as in [40] by using mass lumping on
the left-hand side and adding an artificial diffusion operator on the right-hand side of (9a). If the diagonal entries of
the modified mass matrix are positive and the off-diagonal entries of the resulting low order convection operator are
non-negative, i.e., if each semi-discrete equation can be written as

mi
dci

dt
=

Ndof∑
j=1

li jc j + bi with mi > 0, li j ≥ 0 for all 1 ≤ i, j ≤ Ndof , j , i, (10)

then the low order approximation satisfies a semi-discrete local maximum principle and proves total variation dimin-
ishing (TVD) in 1D [36].

In the case of high order Bernstein finite elements, such modifications of the semi-discrete problem (9a) do not
rule out formation and/or growth of local extrema due to missing interpolation properties of Bernstein basis functions.
Nevertheless, a low order method satisfying (10) guarantees that a maximum principle holds for the coefficients. It
follows that pointwise values must satisfy a weak LED condition: If the degree of freedom ci does not correspond to a
node on the boundary of the domain Ω and its current value is greater/smaller than or equal to each common-element
degree of freedom, then ci cannot increase/decrease in time. In our stencil notation, a common-element neighbor is a
node j , i such that j ∈ Ni. Expressed in formulas, the so-defined weak LED property means that

dci

dt
≤ 0 if ci ≥ max

j,i, j∈Ni

c j,
dci

dt
≥ 0 if ci ≤ min

j,i, j∈Ni

c j. (11)

Under certain additional assumptions regarding the time integrator, the semi-discrete property (11) carries over to the
fully discrete method. Therefore, the Bernstein coefficients of the numerical solution are bounded by the coefficients
of the initial and (inflow) boundary condition. In addition to (5), the low order function values satisfy local constraints
which prevent arbitrary growth of extrema. Furthermore, the total variation boundedness (TVB) property of 1D
approximations can be shown using the following estimate in terms of bounded Bernstein coefficients:

TV
(
uh(·, t)

)
=

∫ ∞

−∞

∣∣∣grad(uh)
∣∣∣ dx =

∫ ∞

−∞

∣∣∣∣ Ndof∑
j=1

c jgrad(B j)
∣∣∣∣ dx ≤

Ndof∑
j=1

|c j|

∫ ∞

−∞

∣∣∣grad(B j)
∣∣∣ dx︸                ︷︷                ︸

≤C

≤ C
Ndof∑
j=1

|c j| ≤ C · Ndof ·max
{
|cmax|, |cmin|

}
≤ . . . ≤ C̃(u0, uin).

(12)

Further estimates can presumably be derived using the variation diminishing [7, 26, 27] and monotonicity-preserving
[23, 24] properties of Bernstein polynomials. We remark that the use of weakened LED constraints is essential for
maintaining optimal accuracy in FCT algorithms based on high order Bernstein finite element approximations.

3.2.1. Element-stencil upwinding
The easiest way to derive a low order method of the form (10) is by using discrete upwinding approaches. The

classical one, as described in detail in [36] for linear finite elements, can be summarized as follows: The mass matrix is
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element upwinding subcell upwinding subcell Rusanov

p Ndof L1 L∞ L1 L∞ L1 L∞

1 (128 + 1)2 = 16 641 1.019e−1 7.642e−1 1.019e−1 7.642e−1 1.097e−1 8.116e−1
2 (128 + 1)2 = 16 641 1.081e−1 7.915e−1 1.044e−1 7.742e−1 1.105e−1 8.185e−1
3 (129 + 1)2 = 16 900 1.109e−1 8.137e−1 1.048e−1 7.756e−1 1.111e−1 8.218e−1
4 (128 + 1)2 = 16 641 1.127e−1 8.302e−1 1.048e−1 7.765e−1 1.113e−1 8.243e−1
5 (130 + 1)2 = 17 161 1.139e−1 8.405e−1 1.044e−1 7.769e−1 1.113e−1 8.226e−1
6 (126 + 1)2 = 16 129 1.154e−1 8.449e−1 1.050e−1 7.731e−1 1.120e−1 8.191e−1
7 (126 + 1)2 = 16 129 1.162e−1 8.618e−1 1.049e−1 7.769e−1 1.121e−1 8.275e−1
8 (128 + 1)2 = 16 641 1.166e−1 8.664e−1 1.042e−1 7.780e−1 1.118e−1 8.260e−1
9 (126 + 1)2 = 16 129 1.171e−1 8.744e−1 1.045e−1 7.750e−1 1.121e−1 8.280e−1

10 (130 + 1)2 = 17 161 1.173e−1 8.655e−1 1.041e−1 7.672e−1 1.118e−1 8.137e−1

Table 1: Comparison of various low order methods in the context of the solid body rotation test, the discussion of which can be found in Section
6.2. The method corresponding to element upwinding is defined by (13). Both subcell upwinding techniques are defined in Section 3.2.2. The
mesh size is adjusted to keep the number of global degrees of freedom approximately the same for all orders p of Bernstein finite elements.

replaced by its lumped counterpart and negative off-diagonal entries of the convection matrix are eliminated by adding
a symmetric diffusion matrix with vanishing row and column sums. In an element-based version, the application of
this procedure to the element matrices of the Galerkin scheme results in the following low order method:

Nelem∑
e=1

me
i︸ ︷︷ ︸

Cmi

dci

dt
=

Ndof∑
j=1

Nelem∑
e=1

lei j︸︷︷︸
Cli j

c j +

Nelem∑
e=1

be
i for all 1 ≤ i ≤ Ndof ,

me
i =

Ndof∑
j=1

me
i j, lei j = ke

i j + de
i j, de

i j =

max{−ke
i j, 0,−ke

ji} : j , i,
−

∑
k,i de

ik : j = i.

(13a)

(13b)

Anderson et al. [2] used this element-stencil upwinding approach also in the context of FCT based on high order
discontinuous Galerkin methods. However, this kind of algebraic upwinding produces increasingly diffusive solutions
as the order p of the Bernstein finite element approximation is increased while keeping the total number of degrees
of freedom fixed (see Table 1). The reason for this behavior lies in the fact that the underlying element matrices are
dense and more negative off-diagonal entries need to be eliminated to satisfy the inequality constraints imposed in
(10) as p increases. Additional nonzero entries of the artificial diffusion operator give rise to additional numerical
dissipation, the amount of which depends on the discrete upwinding strategy. In contrast to the case p = 1, the one
based on (13b) does not generally produce the least diffusive approximation of the form (10) in the case p > 1.

3.2.2. Subcell-stencil upwinding
A high order Bernstein element has the same nodal points and, therefore, produces matrices of the same size as

the Bézier net defined as the piecewise-linear interpolant of its Bernstein coefficients [26]. Since the high order basis
functions are non-vanishing on the whole element, the resulting element matrices are full and some non-zero entries
are associated with pairs of nodes i and j that do not belong to the same subcell of the triangulation associated with
the Bézier net. Since the distance between such nodes is larger than that between nodes of the same subcell, the
differences between the values of ci and c j are also likely to be more significant. Therefore, additional diffusive fluxes
associated with such pairs of nodes tend to be large even if the corresponding coefficients de

i j are small.
To avoid this drawback, we introduce a less diffusive discrete upwinding strategy which modifies the convection

element matrix in a manner consistent with (element-based) mass lumping before calculating the artificial diffusion
coefficients. This preprocessing step reduces the magnitude of off-diagonal entries associated with pairs of nodes
belonging to different subcells or even eliminates these entries completely (compare matrices shown in Fig. 1). In the
special case of a constant velocity field, the modified convection matrix has the same sparsity pattern as the matrix
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of the piecewise-linear subcell approximation. The remaining negative off-diagonal entries are eliminated as in (13b)
producing smaller artificial diffusion coefficients de

i j for pairs of nodes i and j that do not belong to the same subcell.
This approach to construction of the low order scheme will be called subcell-stencil upwinding.

To justify the proposed modification of the convection matrix, let us consider the local semi-discrete problem

0 =
Ndof∑
j=1

( ∫
Ke

BiB j dx
)dc j

dt
+

Ndof∑
j=1

( ∫
Ke

Bidiv(vB j) dx
)
c j

=

Ndof∑
j=1

( ∫
Ke

BiB j dx
)dc j

dt
+

Ndof∑
j=1

(
−

∫
Ke

grad(Bi) · vB j dx +
∫
∂Ke

BiB jv · n ds
)
c j

=

Ndof∑
j=1

me
i j

dc j

dt
−

Ndof∑
j=1

(ke
i j + he

i j)c j =

Ndof∑
j=1

me
i j

dc j

dt
−

Ndof∑
j=1

κe
i jc j for all 1 ≤ i ≤ Ndof

(14)

associated with a single element Ke. In the last line of (14), we define κe
i j = ke

i j+he
i j as entries of the convection matrix

corresponding to the local variational formulation without integration by parts. We have

he
i j = −

∫
∂Ke\Γout

BiB jv · n ds ⇒ κe
i j =

∫
Ke

Bidiv(vB j) ds. (15)

The representation in terms of κe
i j will be used to derive the local artificial diffusion operator for subcell-stencil

upwinding in this section. However, the antidiffusive element contributions for FCT will be defined using the repre-
sentation in terms of ke

i j to guarantee local mass conservation properties when it comes to limiting.
In the context of preconditioning, multiplication of a linear system by a non-singular matrix is often used to obtain

an equivalent system with improved properties. In the context of subcell-stencil upwinding, we opt to modify the
element matrices with entries me

i j and κe
i j in a consistent manner. To that end, we multiply both element matrices by

the same local ‘preconditioner’ with entries me
i m−e

i j , where m−e
i j are the coefficients of the inverse element mass matrix.

The application of the so-defined local mass lumping operator transforms (14) into the equivalent system

0 = me
i
dci

dt
−

Ndof∑
j=1

Ndof∑
r=1

me
i m−e

ir κ
e
r j︸          ︷︷          ︸

Cκ̃e
i j

c j = me
i
dci

dt
−

Ndof∑
j=1

κ̃e
i jc j for all 1 ≤ i ≤ Ndof . (16)

In a similar vein, element contributions to equations (9a) of the global semi-discrete problem can be modified using
the above local preconditioning to perform consistent element-based mass lumping in the process of global matrix
assembly. For this purpose, we rewrite (9a) in terms of κe

i j as follows:

Ndof∑
j=1

Nelem∑
e=1

me
i j

dc j

dt
=

Ndof∑
j=1

Nelem∑
e=1

ke
i jc j +

Nelem∑
e=1

be
i =

Ndof∑
j=1

Nelem∑
e=1

(ke
i j + he

i j)c j −

Ndof∑
j=1

Nelem∑
e=1

he
i jc j +

Nelem∑
e=1

be
i

=

Ndof∑
j=1

Nelem∑
e=1

κe
i jc j +

Ndof∑
j=1

( ∫
Γin

BiB jv · n ds
)
c j +

Nelem∑
e=1

be
i for all 1 ≤ i ≤ Ndof .

(17)

The contribution of element Ke to the residual of this system is given by the right-hand side of (14). Replacing it by
the right-hand side of the preconditioned local problem (16), we obtain the lumped-mass counterpart of (9a)

mi
dci

dt
=

Nelem∑
e=1

me
i
dci

dt
=

Ndof∑
j=1

Nelem∑
e=1

κ̃e
i jc j +

Ndof∑
j=1

( ∫
Γin

BiB jv · n ds
)
c j +

Nelem∑
e=1

be
i . (18)

Due to the property that derivatives of Bernstein polynomials can be written as linear combinations of a few Bernstein
polynomials of the same degree (see (B.3)), this lumping procedure results in a sparser convection matrix for constant

7



κe
i j = 10−3 ·



1.63 −2.63 −1.16 −0.33 2.31 −0.50 −0.17 0.84 −0.17 0.17
0.98 −1.00 −1.51 −1.00 1.50 0.34 −0.16 0.68 0.00 0.17
0.49 −0.02 −1.03 −2.02 0.84 0.85 0.03 0.51 0.18 0.17
0.16 0.32 0.28 −3.39 0.34 1.02 0.40 0.34 0.36 0.18
0.99 −1.50 −0.84 −0.34 2.01 −1.18 −0.51 1.53 −0.68 0.52
0.50 −0.34 −0.85 −1.02 1.18 0.00 −0.84 1.20 −0.33 0.52
0.17 0.16 −0.03 −2.05 0.51 0.84 −1.00 0.86 0.02 0.53
0.50 −0.68 −0.51 −0.34 1.53 −1.20 −0.86 2.06 −1.55 1.04
0.17 −0.00 −0.18 −1.03 0.68 0.33 −1.55 1.55 −1.03 1.06
0.17 −0.17 −0.17 −0.35 0.86 −0.52 −1.22 2.44 −2.80 1.76



,

κ̃e
i j = 10−3 ·



3.38 −6.75 −0.00 −0.00 3.38 0.00 −0.00 −0.00 0.00 0.00
1.13 −0.13 −4.50 −0.00 1.25 2.25 0.00 −0.00 −0.00 0.00
0.00 2.25 −3.63 −2.25 0.00 2.50 1.13 −0.00 −0.00 0.00
−0.00 0.00 3.38 −7.13 −0.00 0.00 3.75 −0.00 −0.00 0.00

1.25 −2.50 0.00 0.00 3.50 −4.50 −0.00 2.25 0.00 −0.00
0.00 1.25 −2.50 −0.00 1.13 0.00 −2.25 1.25 1.13 −0.00
0.00 0.00 1.25 −2.50 0.00 2.25 −3.50 0.00 2.50 −0.00
0.00 −0.00 −0.00 −0.00 2.50 −5.00 0.00 3.63 −2.25 1.13
0.00 0.00 −0.00 −0.00 0.00 2.50 −5.00 1.13 0.13 1.25
−0.00 0.00 0.00 0.00 0.00 −0.00 0.00 3.75 −7.50 3.75



.

Figure 1: Example of element-based convection matrices for p = 3 in the context of the solid body rotation test, the discussion of which can be
found in Section 6.2.

velocity fields. Even in the case of space-dependent velocity fields, the magnitude of off-diagonal entries that do not
match the Bézier net sparsity pattern can be drastically reduced (see Fig. 1).

To construct an improved low order method satisfying conditions (10), we add the artificial diffusion coefficients

d̃e
i j =

max{−κ̃e
i j, 0,−κ̃

e
ji} : j , i,

−
∑

k,i d̃e
ik : j = i

(19)

to the entries κ̃e
i j of the modified convection matrix and end up with the semi-discrete scheme

mi
dci

dt
=

Ndof∑
j=1

li jc j + bi for all 1 ≤ i ≤ Ndof , li j =

Nelem∑
e=1

κ̃e
i j + d̃e

i j +
( ∫
Γin

BiB jv · n ds
)
. (20)

To perform subcell-stencil upwinding for a convection matrix defined in terms of ke
i j rather than κe

i j, we use the
following representation of the element contribution lei j to the entry li j of the global matrix:

lei j = ke
i j + de

i j, where de
i j = d̃e

i j − κ
e
i j + κ̃

e
i j = d̃e

i j +

Ndof∑
r=1

(me
i m−e

ir − δir)κ
e
r j (21)

because

Nelem∑
e=1

lei j =

Nelem∑
e=1

κ̃e
i j + d̃e

i j + ke
i j − (ke

i j + he
i j) =

Nelem∑
e=1

κ̃e
i j + d̃e

i j −

Nelem∑
e=1

he
i j =

Nelem∑
e=1

κ̃e
i j + d̃e

i j +

∫
Γin

BiB jv · n ds.

Hence, the coefficients lei j of the low order convection matrix can be calculated directly by adding de
i j to ke

i j.
Note that in contrast to the matrix of coefficients d̃e

i j, the element-based artificial diffusion operator defined in

8



terms of de
i j does not need to be symmetric. However, it does possess the zero column sum property

Ndof∑
i=1

de
i j =

Ndof∑
i=1

d̃e
i j︸︷︷︸

=0

+

Ndof∑
i,r=1

(me
i m−e

ir − δir)κ
e
r j =

Ndof∑
r,s=1

Ndof∑
i=1

(me
i δis − me

is)︸              ︷︷              ︸
=0

m−e
sr κe

r j = 0, (22)

which proves that the low order scheme inherits the mass conservation properties of the underlying Galerkin dis-
cretization. Additionally, the row sums of the element-based artificial diffusion operator satisfy

Ndof∑
j=1

de
i j =

Ndof∑
j=1

d̃e
i j︸︷︷︸

=0

+

Ndof∑
r=1

(me
i m−e

ir − δir)
Ndof∑
j=1

κe
r j = −

Ndof∑
r=1

(me
i m−e

ir − δir)
∫

Ke

Br div
(
v

=1︷︸︸︷
Ndof∑
j=1

B j

)
︸          ︷︷          ︸
=0 if div(v)=0

dx (23)

and vanish in the case of a divergence-free velocity field, as required for preservation of consistency. Since the
convective derivative of a constant is zero, the corresponding discrete operator must be a matrix with zero row sums
for each internal node and any manipulations that may destroy this property are unacceptable.

An alternative interpretation of subcell-stencil upwinding as a modified projection scheme for the time derivatives
of local degrees of freedom is given in AppendixA. The compact stencil property of the low order convection matrix
is shown in AppendixB for the special case of a one-dimensional constant velocity field. Additionally, a remarkable
relationship to discrete upwinding for linear Lagrange finite element approximations is discovered.

Numerical studies have shown that the low order method based on the revised upwinding strategy is less diffusive
than the one based on (19), especially for high order Bernstein elements. In fact, the accuracy of low order solutions
seems to be largely independent of the order p as it is varied while holding the number of degrees of freedom constant
(see Table 1). On the negative side, the numerical examples to be presented in section 6 show that low order solutions
produced by the subcell-stencil version of discrete upwinding are less smooth than those produced by the element-
stencil version. This minor drawback can be remedied by using a Rusanov-type diffusion operator defined by

d̃e
i j =

max{|κ̃e
i j|, |κ̃

e
ji|} : j , i,

−
∑

k,i d̃e
ik : j = i

(24)

instead of definition (19). The resulting low order method produces smoother solutions than subcell-stencil upwinding
based on (19) and its convergence behavior is also invariant to changes in p (see Table 1).

Detailed studies and a further discussion of different low order methods will be presented in section 6.

3.3. Time integration

To preserve the order of accuracy after the discretization in time and make it possible to capture rapid evolution of
local features using high order time integrators, the finite element solution corresponding to the high order Galerkin
space discretization (9) is advanced in time using an S -stage Runge-Kutta scheme

cH = cn + ∆t
S∑

s=1

bsċn,s,

Ndof∑
j=1

mi jċ
n,s
j =

Ndof∑
j=1

ki j

(
cn

j + ∆t
S∑

t=1

astċ
n,t
j

)
+ bn+cs

j for all 1 ≤ i ≤ Ndof ,

(25a)

(25b)

where cn and cH are the Bernstein coefficients of uh at tn and of the high order solution at tn+1 = tn + ∆t, respectively.
The time increments ċn,s are calculated by solving system (25b) and can be interpreted as the Bernstein coefficients
of ∂tuh at tn+s = tn + ∆tcs. The vector of inflow boundary conditions evaluated at tn+s is denoted by bn+cs . The
Runge-Kutta scheme is defined by the coefficients ast, bs, cs and is at most S th order accurate for S stages.

9



For the low order method (13), a strong stability preserving (SSP) time discretization [28, 29] should be used to
ensure the LED property of the Bernstein coefficients at the fully discrete level. We use the backward Euler scheme
because it is very cheap and provides the SSP property without imposing any restrictions on the time step ∆t (in
contrast to any other time integrator). The first order accuracy of the backward Euler scheme is not an issue as long
as it is used as a time stepping method for the low order predictor in the context of FCT. However, it is worthwhile to
integrate the vector of inflow boundary conditions b in time using the Runge-Kutta scheme of the high order method.
Later on, the small additional effort invested in accurate time integration of the convective fluxes across the inflow
boundary will be compensated by a simpler formula for the antidiffusive element contributions of the FCT algorithm.
Therefore, the Bernstein coefficients cL of the low order solution at tn+1 are calculated as follows:

micL
i − ∆t

Ndof∑
j=1

li jcL
j = micn

i + ∆t
S∑

s=1

bsb
n+cs
i for all 1 ≤ i ≤ Ndof . (26)

Note that the high order Runge-Kutta approximation of b is positivity-preserving only in the case of bs ≥ 0 for all
1 ≤ s ≤ S . Otherwise, a negative coefficient bs can result in

∑S
s=1 bsb

n+cs
i < 0 even if bi ≥ 0 for all tn ≤ t ≤ tn+1.

4. Phoenical element-based FCT algorithms

A well-designed flux-corrected transport (FCT) algorithm is supposed to preserve the high order of convergence
(in space and time) in regions where the solution is sufficiently smooth, guarantee certain nonlinear stability properties,
and be capable of resolving discontinuities in a crisp and non-oscillatory manner. The finite element discretizations
presented so far do not satisfy (some of) these design criteria. On the one hand, the low order method produces
non-oscillatory solutions which possess a weak LED property. However, the accuracy of this approximation is first
order at best by the Godunov theorem [25]. On the other hand, the high order method produces spurious oscillations
at discontinuities, which may result in violations of discrete maximum principles. To rectify these deficiencies, FCT
blends a given high order scheme and its low order LED counterpart by adjusting the difference between the two
approximations in a continuous and conservative manner while taking the local solution behavior into account.

Starting with cL, the Bernstein coefficients of the high order approximation cH can be recovered exactly thus:

micH
i = micL

i + mi(cH
i − cL

i ). (27)

This relationship can be transformed using (26) and (25) as follows:

micH
i = micL

i + micH
i − micL

i +micL
i − ∆t

Ndof∑
j=1

li jcL
j − ∆t

S∑
s=1

bsb
n+cs
i − micn

i︸                                                   ︷︷                                                   ︸
=0

= micL
i − ∆t

Ndof∑
j=1

li jcL
j − ∆t

S∑
s=1

bsb
n+cs
i + mi(cH

i − cn
i )−

Ndof∑
j=1

mi j(cH
j − cn

j ) + ∆t
S∑

s=1

bs

Ndof∑
j=1

mi jċ
n,s
j︸                                               ︷︷                                               ︸

=0

= micL
i +

Ndof∑
j=1

(miδi j − mi j)(cH
j − cn

j ) − ∆t
Ndof∑
j=1

li jcL
j + ∆t

S∑
s=1

bs

Ndof∑
j=1

ki j

(
cn

j + ∆t
S∑

t=1

astċ
n,t
j

)
= micL

i +

Ndof∑
j=1

(miδi j − mi j)(cH
j − cn

j ) − ∆t
Ndof∑
j=1

li jcL
j + ∆t

Ndof∑
j=1

ki jcn
j + (∆t)2

Ndof∑
j=1

ki j

S∑
s,t=1

bsastċ
n,t
j

= micL
i +

Ndof∑
j=1

(
(miδi j − mi j)(cH

j − cn
j ) − ∆tli jcL

j + ∆tki jcn
j + (∆t)2ki j

S∑
s,t=1

bsastċ
n,t
j

)
C micL

i +

Ndof∑
j=1

fi j C micL
i + fi (28)
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because
∑S

s=1 bs = 1 by definition. In the derivation of (28), we assumed the high order approximation of the boundary
condition in (26) to remove the dependency of the antidiffusive fluxes fi j on b. If a low order boundary approximation
is employed in (26), dependencies on b should be included in the definition of fi j to recover cH

i .
In edge-based algebraic flux correction schemes of FCT type [35, 36, 44], the antidiffusive correction of the pro-

visional low order solution is rendered local extremum diminishing by limiting the fluxes fi j which describe bilateral
mass exchange between pairs of nodes. In the present work, we go back to the roots of FEM-FCT [40, 45, 46] and
adopt an element-based limiting strategy taking advantage of the fact that the antidiffusive term

fi =
Nelem∑
j=1

f e
i for all 1 ≤ i ≤ Ndof (29)

admits a natural decomposition into element contributions f e
i . By (28), we have

fi j =

Nelem∑
e=1

f e
i j for all 1 ≤ i, j ≤ Ndof , j , i, (30)

where

f e
i j B (me

i δi j − me
i j)(c

H
j − cn

j ) − ∆tlei jc
L
j + ∆tke

i jc
n
j + (∆t)2ke

i j

( S∑
s,t=1

bsastċ
n,t
j

)
. (31)

The corresponding antidiffusive element contributions are given by

f e
i B

Ndof∑
j=1

f e
i j for all 1 ≤ i ≤ Ndof . (32)

It is easy to verify that
Ndof∑
i=1

f e
i = 0 if ∂Ke ∩ Γout = ∅ (33)

using the definition of me
i and the fact that

∑
i ke

i j = 0 by the partition of unity property of the Bernstein basis functions.
FCT algorithms based on such decompositions of cH −cL are called phoenical [8] because cH can be restored “like

a phoenix” using unconstrained antidiffusive fluxes fi j or element contributions f e
i in (28) to correct cL.

In the process of limiting, we will adjust the components of the antidiffusive element vectors f e = { f e
i }

Ndof
i=1 in a way

which preserves the zero sum property (33). The element-based version of FEM-FCT offers better locality properties
in the context of high order finite element approximations and enables us to use different time discretizations for the
underlying high- and low order schemes without losing the mass conservation property (cf. [38], p. 256). Interestingly
enough, it can be interpreted as element-by-element derivative correction for polynomial shape functions followed by
a local maximum-preserving projection into the continuous finite element space (see AppendixC).

4.1. Local bounds and maximum principles
In classical element-based FEM-FCT algorithms [45, 46], all components of the element vector f e, 1 ≤ e ≤ Nelem

are multiplied by the same solution-dependent correction factor αe ∈ [0, 1]. This adjustment does not violate the
discrete conservation property. In the case ∂Ke ∩ Γout = ∅, the components of the corrected element vector f̄ e B αe f e

sum to zero regardless of αe. However, the value of αe may influence the redistribution of mass on a local patch of
elements consisting of Ke and its neighbors. As shown in [2], using the same correction factor αe for all components of
f e may not be the best approach to enforcing local bounds in applications of FCT to high order Bernstein polynomials.
Higher accuracy can often be attained by limiting the components of f e or the corresponding subcell contributions in
a segregated manner, while making sure that the corrected element vector f̄ e inherits the zero sum property

Ndof∑
i=1

f̄ e
i = 0 if ∂Ke ∩ Γout = ∅. (34)

11



Examples of localized element-based FCT limiters based on such generalizations will be presented below.
In addition to the discrete conservation property (34), the FCT algorithm for calculating the limited antidiffusive

element contributions f̄ e
i should guarantee that the final values of the Bernstein coefficients

cn+1
i = cL

i +
1
mi

Nelem∑
e=1

f̄ e
i , 1 ≤ i ≤ Ndof (35)

satisfy local discrete maximum principles of the form

cmin,n+1
i ≤ cn+1

i ≤ cmax,n+1
i for all 1 ≤ i ≤ Ndof . (36)

To ensure that these inequality constraints hold at least for f̄ e
i = 0, the low order solution cL

i must lie in the range of
admissible values [cmin,n+1

i , cmax,n+1
i ]. The local bounds cmin,n+1

i and cmax,n+1
i may also depend on the values of cL

j at
other nodes of elements containing node i and/or on the coefficients of the old solution cn which are supposed to be
physically admissible [2, 45, 49]. Whereas the use of cn in the definition of cmin,n+1

i and cmax,n+1
i may alleviate the peak

clipping effect [8] by making the bounds less restrictive, it may be inappropriate, e.g., in applications to conservation
laws with source or sink terms. For this reason, we abstain from using cn in constraints for cn+1.

In the context of FCT for high order Bernstein finite elements, we consider local bounds of the form

cmin,n+1
i B min

j∈N∗i
cL

j , cmax,n+1
i B max

j∈N∗i
cL

j

and call them element-stencil bounds if N∗i B Ni is the full nodal stencil of the pth order Bernstein approximation,
i.e., the search for local maxima and minima of cL involves all of the nodes belonging to the same element(s) as
node i. Following Anderson et al. [2], we also explore the possibility of using just the low order values at node i and
its nearest neighbors, i.e, nodes belonging to the same subcells of the Bézier net. As shown in [2], element-based FCT
algorithms designed to enforce such subcell-stencil bounds do a better job in detecting spurious local extrema that do
not violate the inequality constraints (36) formulated in terms of element-stencil bounds.

In the case of linear finite elements, the element-stencil and subcell-stencil bounds coincide and the local maximum
principle (36) for the nodal values cn+1

i = un+1
i implies that no local extrema may arise or grow as a result of the

antidiffusive correction. For a Bernstein finite element approximation of arbitrary order and N∗i ⊆ Ni, we have

cmin,n+1
i ≥ min

j∈Ni

cL
j , cmax,n+1

i ≤ max
j∈Ni

cL
j .

Hence, using (5), we can show that the finite element shape functions will stay bounded in terms of the Bernstein
coefficients as follows:

min
1≤ j≤Ndof

cL
j ≤ min

j∈Ne
cmin,n+1

j ≤ min
j∈Ne

cn+1
j ≤ min

ξ∈Ke
un+1

h (ξ)

≤ un+1
h (x) ≤ max

ξ∈Ke

un+1
h (ξ) ≤ max

j∈Ne
cn+1

j ≤ max
j∈Ne

cmax,n+1
j ≤ max

1≤ j≤Ndof
cL

j for all x ∈ Ω.

Additionally, the total variation of un+1
h will be bounded by the constrained variation of the piecewise-linear Bézier

interpolant of cn+1 due to the variation diminishing property of Bernstein polynomials [7, 26, 27].

4.2. Global element-stencil limiter

Once the local bounds are defined, a way to compute the antidiffusive element contributions f̄ e
i satisfying the

inequality constraints (36) for all nodes of Ke subject to the additional equality constraint (34) must be found. The
trivial choice f̄ e

i = 0 is clearly not the best option. To benefit from the use of high order finite elements, we must have
f̄ e
i → f e

i in smooth regions. In particular, an optimal limiter for element contributions of the form

f̄ e
i B α

e f e
i (37)
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would choose the element-based correction factors αe ∈ [0, 1] to be as close to 1 as possible without violating

mi(cmin,n+1
i − cL

i ) ≤
Nelem∑
e=1

αe f e
i ≤ mi(cmax,n+1

i − cL
i ) for all 1 ≤ i ≤ Ndof . (38)

To avoid solving constrained optimization problems, some worst-case assumptions are commonly made in prac-
tical algorithms for calculating αe. For example, the following implementation of Zalesak’s multidimensional FCT
limiter [49] can be used to constrain the sums of positive and negative element contributions as in [38, 40, 45, 46]

P+i =
Nelem∑
e=1

max{0, f e
i }, P−i =

Nelem∑
e=1

min{0, f e
i },

Q+i = mi(cmax,n+1
i − cL

i ), Q−i = mi(cmin,n+1
i − cL

i ),

R+i = min
{
1,

Q+i
P+i

}
, R−i = min

{
1,

Q−i
P−i

}
,

αe = min
1≤i≤Ndof

Re
i , Re

i =


R+i : f e

i > 0,
1 : f e

i = 0,
R−i : f e

i < 0.

(39)

Assuming that positive and negative contributions of different elements to node i do not cancel out, this FCT limiter
imposes an upper bound Q+i on the sum R+i P+i and a lower bound Q−i on the sum R−i P−i . To enforce these bounds for
all nodes of Ke, the element-based correction factor αe is defined as the minimum of the nodal correction factors Re

i .
Due to the fact that the bounds are imposed on the sums of element contributions and a synchronization of correction
factors is performed for all nodes of element Ke, algorithm (39) represents a global element-stencil limiter.

4.3. Local element-stencil limiter
In applications of Zalesak’s limiter to high order Bernstein finite elements, the number Nelem of element contribu-

tions to the sums P±i can be as small as one if the Bernstein basis function Bi attains its maximum at an internal point
of Ke and vanishes on the boundary ∂Ke. In this case, the value of the nodal correction factor Re

i can be calculated
without taking the contributions of other elements into account. However, the correction factors for some other nodes
still depend on the data in other elements. To perform all computations in a single loop over elements, the FCT limiter
may be localized by decomposing the bounds Q±i into element contributions and constraining Re

i f e
i to satisfy

me
i (cmin,n+1

i − cL
i ) ≤ Re

i f e
i ≤ me

i (cmax,n+1
i − cL

i ) for all 1 ≤ i ≤ Ndof , (40)

where me
i denotes the contribution of element Ke to the diagonal entry mi of the global lumped mass matrix. This

decomposition leads to the following simple formula which was originally proposed in [17]:

αe = min
1≤i≤Ndof

Re
i , Re

i =


min

{
1, me

i (cmax,n+1
i −cL

i )
f e
i

}
: f e

i > 0,

1 : f e
i = 0,

min
{
1, me

i (cmin,n+1
i −cL

i )
f e
i

}
: f e

i < 0.

(41)

Remarkably, the so-defined local element-stencil limiter has the same structure as the vertex-based version [35]
of the Barth-Jespersen slope limiter [6] for finite volume and discontinuous Galerkin (DG) methods.

4.4. Nodal-point limiter
The element-based FCT algorithms presented so far apply the same correction factor αe to all components f e

i of
the antidiffusive element vector f e to obtain f̄ e defined by (37). This limiting strategy corresponds to simple scaling
and automatically provides the (local) mass conservation property (34). However, the straightforward definition of αe

as the minimum of Re
i may produce very diffusive solutions and/or spurious distortions, especially in applications to
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high order finite elements. The reason for this lies in the large number of local degrees of freedom and, hence, many
inequality constraints per element. Note that element-stencil limiters must set αe to zero if a local maximum/minimum
is attained at any node where f e

i is positive/negative. Therefore, it is worthwhile to use different correction factors
αe

i ≤ Re
i for different components of f e but it is essential to guarantee that f̄ e

i B α
e
i f e

i will satisfy (34).
The choice αe

i = Re
i is generally non-conservative. However, the zero-sum property can be easily restored using

additional limiting of positive or negative components. The simplest mass correction technique is based on uniform
scaling, as proposed by Anderson et al. [2]. This approach leads to the following nodal-point limiter

αe
i =


−

∑Ndof
j=1 Re

j min{0, f e
j }∑Ndof

j=1 Re
j max{0, f e

j }
Re

i : f e
i > 0 and

∑Ndof
j=1 Re

j f e
j > 0,

−

∑Ndof
j=1 Re

j max{0, f e
j }∑Ndof

j=1 Re
j min{0, f e

j }
Re

i : f e
i < 0 and

∑Ndof
j=1 Re

j f e
j < 0,

Re
i : otherwise,

(42)

where the nodal correction factors Re
i may be defined as in (39) and (41) to enforce the inequality constraints (36) in

the framework of global and local element-based FCT algorithms, respectively.
Formula (42) is designed to produce an element vector f̄ e satisfying the zero sum condition

∑Ndof
j=1 f̄ e

i = 0. Accord-
ing to (33), the components of the original element vector f e do not necessarily sum to zero if ∂Ke ∩ Γout , ∅. In
this case, non-vanishing sums represent antidiffusive corrections of numerical fluxes across Γout. Even if the solution
is smooth and Re

i = 1 for all i, the nodal-point limiter based on (42) would produce αe
i < 1 and correct the fluxes to

enforce the zero sum property instead of reproducing the high order solution. This drawback can be avoided using a
generalized mass correction procedure which constrains the antidiffusive element contributions to satisfy

min
{
0,

Ndof∑
i=1

f e
i

}
≤

Ndof∑
i=1

f̄ e
i ≤ max

{
0,

Ndof∑
i=1

f e
i

}
. (43)

The corresponding generalization of the nodal-point limiter (42) is given by

αe
i =


q+−

∑Ndof
j=1 Re

j min{0, f e
j }∑Ndof

j=1 Re
j max{0, f e

j }
Re

i : f e
i > 0 and

∑Ndof
j=1 Re

j f e
j > q+,

q−−
∑Ndof

j=1 Re
j max{0, f e

j }∑Ndof
j=1 Re

j min{0, f e
j }

Re
i : f e

i < 0 and
∑Ndof

j=1 Re
j f e

j < q−,

Re
i : otherwise,

q± = max
min

{
0,

Ndof∑
j=1

Re
j f e

j

}
. (44)

For any element Ke, 1 ≤ e ≤ Nelem, this limiting strategy has the property that

Re
i = 1 for all 1 ≤ i ≤ Ndof ⇒ αe

i = 1 for all 1 ≤ i ≤ Ndof . (45)

Hence, the high order solution is recovered if the local maximum principles are satisfied at all nodes of Ke. For all
interior elements, the nodal-point limiters based on (42) and (44) are equivalent.

More sophisticated mass correction procedures were developed in [2] using nonlinear penalization depending on
|uL

j +Re
j f e

j −uH
j | to localize subsequent corrections of the prelimited element contributions Re

j f e
j . Since these nonlinear

corrections are also designed to enforce a single equality constraint for the sum of limited antidiffusive components
αe

j f e
j , they do not guarantee local mass conservation for subcell contributions in the case p > 1. Hence, non-local mass

transfer effects cannot be ruled out, which makes it difficult to justify the high complexity and considerable overhead
cost of nonlinear element-stencil mass correction procedures for nodal-point limiters.

4.5. Subcell-stencil limiter
As an alternative to pointwise limiting followed by (non-local) mass corrections, the locality of the limiting pro-

cedure can be improved using a decomposition of f e into Nsub subcell contributions f e,m such that

Nsub∑
m=1

f e,m
i = f e

i for all 1 ≤ i ≤ Ndof (46)
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and
Ndof∑
i=1

f e,m
i = 0 if ∂Ke,m ∩ Γout = ∅. (47)

In the context of Bernstein finite elements, the decomposition of Ke into subcells Ke,m is defined by the Bézier net
triangulation [26]. LetNe,m denote the set of node numbers associated with the d + 1 vertices of the simplex Ke,m. To
make sure that f e,m cannot create an undershoot or overshoot at any other node of Ke, we require that

f e,m
i = 0 for all 1 ≤ i ≤ Ndof , i < Ne,m. (48)

Given a subcell decomposition satisfying (46)–(48), we multiply each subcell contribution f e,m
i by

αe,m = min
j∈Ne,m

Re
j, (49)

where the nodal correction factors Re
j are calculated using a subcell-stencil version of Zalesak’s limiter (39) to enforce

global or local bounds for the sums of positive and negative subcell contributions. This limiting strategy yields

f̄ e
i =

Nsub∑
m=1

αe,m f e,m
i for all 1 ≤ i ≤ Ndof . (50)

In one space dimension, each subcell contribution vector f e,m has at most two non-zero components of equal
magnitude and opposite sign. Hence, the total number of subcell degrees of freedom equals Nsub. By the zero sum
property (33), the original vector f e has just Nsub independent components. Invoking condition (46), we obtain a
system of Nsub equations for Nsub unknown parameters. The unique 1D subcell decomposition is given by

f e,m
i =



m∑
j=1

f e
j : i = m,

−
m∑

j=1
f e

j : i = m + 1,

0 : otherwise.

(51)

In multidimensions, optimal subcell contributions can be determined by minimizing an objective function like

J( f e,m) =
Ndof∑
i=1

Nsub∑
m=1

( f e,m
i )2

subject to the equality constraints (46)–(48). The effort invested in the computation of f e,m
i can be justified by the fact

that the above definition is intended to minimize the magnitude of the antidiffusive terms to be limited.
The 1D example in Fig. 2 demonstrates that the use of localized (nodal-point or subcell-stencil) limiters may sig-

nificantly improve the resolving power of FCT algorithms for high order Bernstein finite elements. The nomenclature
for the interpretation of different versions denoted by FCT(·,·,·;·), as well as additional numerical examples illustrating
the benefits of localized limiting techniques will be presented in Section 6.

4.6. Extremum-preserving limiting
Even localized FCT limiters cannot prevent a loss of accuracy at smooth peaks. As shown in the recent survey by

Zhang and Shu [51], methods designed to satisfy local maximum principles are doomed to be at most second-order
accurate at local extrema. In the context of DG-FCT algorithms based on high order Bernstein finite elements, the
second-order barrier for L1 errors was confirmed numerically in [2]. Higher accuracy can still be achieved outside of
numerical layers even in the presence of discontinuities [14] but it is commonly believed that deactivation of limiters
in ‘smooth’ cells is the only way to achieve optimal convergence for problems with peaks.

Many troubled cell detectors [47, 48] and derivative-based smoothness criteria [19–21, 39] for estimation of local
regularity have been proposed in the literature to circumvent order barriers in high order discontinuous Galerkin and
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Figure 2: Linear convection in 1D: Ω = (0, 1), uniform mesh, 20 Bernstein elements of order p = 8, continuous Galerkin scheme stabilized by high
order background dissipation (ω = 0.1, see Section 5), subcell-stencil upwinding, local element-based FCT using element-stencil (FCT(s, ·, e; 8)),
nodal-point (FCT(s, ·, n; 8)), and subcell-stencil (FCT(s, ·, s; 8)) limiters to enforce subcell-stencil (solid) and element-stencil (dashed) bounds.

finite volume methods. The simplest way to distinguish between harmless smooth extrema and dangerous sharp peaks
is to look at the second derivatives which provide valuable information about the total variation [26] and nodal error
[42] of Bernstein polynomial approximations. As an illustration of the potential benefit of applying these types of
methods, we present below a numerical study for 1D linear convection problems, in which we use a second derivative
test based on the same criterion as the PPM limiter of Colella and Sekora [16].

To introduce the basic idea in a simple setting, we consider a uniform 1D mesh of quadratic Bernstein finite
elements (p = 2). To prevent peak clipping while preserving continuous dependence of constrained solutions on the
data, the correction factors for the element-stencil and localized FCT limiters are modified as follows:

Re
i = max{Re

i , γ
e}, (52)

where γe is a smoothness indicator to be defined in terms of the piecewise-constant second derivatives ηe B u′′e .
Following the work of Colella and Sekora [16], we treat an element Ke as smooth if the second derivatives have the

same signs and their magnitudes are comparable on the patch Te B
⋃

e′∈Ee
Ke′ , where the set Ee contains the numbers

of elements that share a node with Ke. Our smoothness indicator is defined by

γe =
min{η2

e ,C max
{
0,mine′∈Ee ηeηe′ }

}
η2

e + ε
, (53)

where C ≥ 1 is a bound for the jumps in the magnitudes of the second derivatives and ε is a small positive constant
that we add to prevent division by zero. If any pair of second derivatives ηe and ηe′ have opposite signs, we obtain
γe = 0. If all signs are the same and |ηe| ≤ C|ηe′ | for all e′ ∈ Ee, we obtain γe = 1. In all other cases, γe is the
largest non-negative number satisfying γe|ηe| ≤ C|ηe′ | for all e′ ∈ Ee. The so-defined smoothness indicator has a lot in
common with the one proposed in [39] and can also be interpreted as a limiter for the slopes of u′.

In the limit ηe → 0, definition (53) yields γe = 0. If all second derivatives have the same sign and their magnitudes
are comparable to the parameter ε, the value of γe may exhibit high sensitivity to small fluctuations in η and to round-
off errors. However, small magnitudes of the second derivatives imply that the solution is almost linear or almost
constant. In the former case, definition (52) yields αe = 1 for any value of γe. In the latter case, the magnitude of the
antidiffusive components is very small and the value of γe hardly makes any difference. Hence, the proposed limiting
strategy does preserve the continuous dependence of FCT-constrained solutions on the data.

We remark that Colella and Sekora [16] perform additional checks and use their second-derivative sensor only at
extrema. Away from extrema, they use a standard monotonicity-preserving limiter. This approach makes the limiting
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process more efficient but lacks continuous dependence on the data, and the underlying criteria may require careful
revisions in the context of FCT schemes based on high order Bernstein finite elements.

The u2 detection criteria developed by Diot et al. [19, 20] for smoothness estimation in MOOD finite volume
schemes are based on similar approaches to checking the signs and magnitudes of the (directional) second derivatives.
In particular, the final simplified formula proposed in [20] identifies an element as smooth if all signs are the same
and the ratio of the largest and smallest second derivative is bounded by 2. This corresponds to (53) with C = 2 and
ηe replaced by the greatest-in-magnitude second derivative. Detailed numerical studies were performed in [19, 20] to
demonstrate the usefulness of this second derivative test in the context of high order finite volume methods.

In the case of a higher-order (p > 2) finite element approximation, the second derivatives are generally not constant
inside each element. Moreover, the shape function corresponding to a high order Bernstein element may have multiple
internal peaks. Some of them may be smooth, whereas others may represent spurious local extrema. Hence, a local
second derivative test may be devised for each node of the Bézier net to determine the optimal values of the nodal
correction factors for smooth and sharp peaks. In the current implementation of our extrema-preserving FCT limiter,
we use a straightforward generalization of formula (53). If the shape function is a polynomial of degree p > 2, we
perform a local L2-projection into the space of quadratic polynomials defined on Ke. The projection corresponds to
‘inverting’ the element mass matrix of the local P2 approximation and yields the best least squares fit ũe

h ∈ P2(Ke).
The constant second derivatives of ũe

h are used in the smoothness indicator γe defined by (53).
In multidimensions, the second derivative test based on formula (53) may be performed for each coordinate direc-

tion, as in the work of Diot et al. [19, 20]. Alternatively, the local smoothness indicator γe may be defined in terms of
the scalar quantity ηe = det He, where He stands for the element Hessian matrix. This generalization is motivated by
the fact that sufficient conditions for local extrema depend on the sign of the Hessian determinant. In our 2D numerical
study, we use (53) with ηe = det He and choose Ee to be the set of all common-node neighbors for safety reasons.

5. High order dissipation

The element-based FCT algorithms presented so far use the high order Galerkin discretization of the transport
equation as a target scheme and constrain its antidiffusive part so as to enforce local maximum principles formulated
in terms of the non-oscillatory low order solution. The use of tight bounds makes it more difficult to avoid the peak
clipping effect. On the other hand, if the range of admissible values is too wide, constrained solutions may exhibit
another kind of spurious behavior which is called terracing in the FCT literature. The main reason for this side effect,
which has plagued FCT since its inception [8], is poor phase accuracy of the high order scheme.

Terraces are spurious distortions that represent ‘an integrated, nonlinear effect of residual phase errors’ [50] and
can be interpreted as ‘ghosts of departed ripples’ [8]. In FCT algorithms based on linear finite elements, terracing can
be avoided by prelimiting the antidiffusive fluxes or element contributions [36, 37]. However, the only real cure is to
use a high order scheme with better phase properties [50] and, hence, lower levels of numerical dispersion.

The standard Galerkin method is highly dispersive and tends to produce ripples even in smooth regions of the
exact solution [37]. Ripples that do not violate local bounds may survive the limiting step and become terraces. In
our experience, this is less likely to happen if high order Bernstein elements are employed. In contrast to linear finite
elements, distortions caused by terracing are typically rather small and may look harmless. However, the lack of
inherent numerical dissipation can give rise to non-local pollution errors and degrades the rates of convergence.

To achieve optimal convergence rates for problems with smooth solutions and reduce phase errors, a high order
dissipative component must be included in the antidiffusive fluxes or element contributions [37, 44, 50]. In particular,
the accuracy and convergence behavior of an FCT algorithm based on a Bernstein finite element approximation can
be improved by adding high order background dissipation to the variational form of the Galerkin scheme or directly
to the antidiffusive components to be limited. Then the deactivation of limiters will produce a high order solution
corresponding to a stabilized finite element scheme with good phase properties.

For example, the streamline upwind Petrov-Galerkin (SUPG) method [11] is a better target scheme for FCT than
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the standard Galerkin discretization. Adding the SUPG stabilization term to (8), we obtain∫
Ω

wh
∂uh

∂t
dx −

∫
Ω

grad(wh) · (vuh) dx +
∫
Γout

whuhv · n ds +
∫
Γin

whuinv · n ds

+

∫
Ω

τ
(
v · grad(wh)

) (∂uh

∂t
+ div(vuh)

)
dx = 0.

(54)

The value of the stabilization parameter τ > 0 can be taken as a constant in each element and must be chosen
carefully to generate the right amount of high order background dissipation. The residual-based SUPG approach
introduces streamline diffusion in a manner which preserves the consistency of the variational formulation. In contrast
to the standard Galerkin method, the resulting system matrix is non-symmetric even in the case of an explicit time
discretization. Hence, the corresponding linear system is much more expensive to solve. Moreover, the modified mass
matrix depends on the velocity v and must be updated after each iteration/time step if v is time-dependent.

The use of modified mass matrices can be avoided by using another consistent approximation of the time deriva-
tive ∂tuh in the SUPG stabilization term. Following the approach proposed in [37] for handling time derivatives in
antidiffusive element contributions, we approximate ∂tuh by gh ≈ −div(vuh) using the fact that ∂tu = −div(vu) for the
exact solution u of the transport equation. This approximation leads to∫

Ω

wh
∂uh

∂t
dx −

∫
Ω

grad(wh) · (vuh) dx +
∫
Γout

whuhv · n ds +
∫
Γin

whuinv · n ds

+

∫
Ω

τ
(
v · grad(wh)

) (
gh + div(vuh)

)
dx = 0,∫

Ω

wh (gh + div(vuh)) dx = 0,

(55)

where we have defined the approximate time derivative gh as the L2 projection of −div(vuh).
Even though discretizations (54) and (55) are based on the same continuous variational formulation, they are not

equivalent due to different treatments of the time derivative in the stabilization term. The use of gh in lieu of ∂tuh

preserves the symmetry of the mass matrix and facilitates the use of explicit time integrators. At each step of the
forward Euler scheme or stage of an explicit SSP Runge-Kutta scheme [29], we have to solve two systems with the
standard Galerkin mass matrix instead of one system with the non-symmetric SUPG mass matrix.

A closely related approach to high order stabilization follows the design philosophy of two-level variational mul-
tiscale (VMS) methods [32, 41]. Using a Laplacian-type stabilization term defined in terms of the consistent gradient
grad(uh) and a continuous L2 projection gH of −grad(uh), we obtain the high order scheme∫

Ω

wh
∂uh

∂t
dx −

∫
Ω

grad(wh) · (vuh) dx +
∫
Γout

whuhv · n ds +
∫
Γin

whuinv · n ds

+

∫
Ω

εaddgrad(wh) · grad(uh) dx +
∫
Ω

εaddgrad(wh) · gH dx = 0,∫
Ω

wH
(
gH + grad(uh)

)
dx = 0,

(56)

where the amount of added dissipation depends on the residual gH+grad(uh) and on the value of the parameter εadd ≥ 0
which is again constant in each element. In the context of two-level VMS methods [32, 41], the test function wH and
the L2 projection gH are finite element functions defined on a coarser mesh or using a reduced order approximation.
In this paper, we use the same finite element space for functions with subscripts h and H.

Compared to (55), we have to solve one additional system in the two-dimensional space. Note that (55) and
(56) have the same structure but the former method is stabilized using gh ≈ −div(vuh), whereas the latter uses
gH ≈ −grad(uh). In contrast to SUPG, the stabilization term of the high order scheme (56) adds diffusion not only
along the streamlines but also in all crosswind directions. Then the coarse scale diffusivity is removed using the an-
tidiffusive term depending on gH . Similar two-scale decompositions are used to design variationally consistent high
order artificial diffusion operators in local projection stabilization (LPS) schemes [10, 37].
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It is worth mentioning that gh = v · gh in the case of a constant velocity field v. In the one-dimensional space, the
stabilization terms of the two methods are related by∫

Ω

τ
(
v · grad(wh)

) (
gh + div(vuh)

)
dx 1D
=

∫
Ω

τ
(
v · w′h

)(
v · gh + v · u′h

)
dx =

∫
Ω

(
τ‖v‖2

)
w′h

(
gh + u′h

)
dx. (57)

Hence, the one-dimensional versions of (55) and (56) are equivalent for εadd = τ‖v‖2.
In the following, we focus on the gradient-based high order dissipation defined in (56). Nevertheless, the rela-

tionship to SUPG methods may be exploited to define the parameter εadd = τ‖v‖2 depending on τ. For example, the
following formula based on the work of John and Schmeyer [33] seems to be a good choice for our purposes:

εadd = ω‖v‖2L∞(Ke)τ = ω‖v‖
2
L∞(Ke)

he

2p‖v‖L∞(Ke)
= ω
‖v‖L∞(Ke)he

2p
, (58)

where he is an appropriate measure of the size of element Ke and ω ∈ [0, 1] is a constant scaling parameter. The choice
ω = 0 corresponds to the unstabilized high order Galerkin discretization.

For linear finite elements in the one-dimensional space, the numerical diffusion coefficient of the first order discrete
upwinding scheme is d = |v|he

2 [36, 40]. This value corresponds to the above choice of εadd with p = 1 and ω = 1.
Discretizing the stabilized Galerkin method (56) in time using a Runge-Kutta scheme, we obtain

cH = cn + ∆t
S∑

s=1

bsċn,s,

Ndof∑
j=1

mi jċ
n,s
j =

Ndof∑
j=1

(ki j − si j)
(
cn

j + ∆t
S∑

t=1

astċ
n,t
j

)
− ki j ·

(
gn

j + ∆t
S∑

t=1

astġn,t
j

)
+ bn+cs

j for all 1 ≤ i ≤ Ndof ,

(59a)

(59b)

where gn
j and ġn,t

j are the coefficients of the involved L2 projections. The coefficients si j and ki j are defined by

si j =

Nelem∑
e=1

se
i j, se

i j = ε
e
add

∫
Ke

grad(Bi) · grad(B j) dx,

ki j =

Nelem∑
e=1

ke
i j, ke

i j = ε
e
add

∫
Ke

grad(Bi)B j dx.

(60a)

(60b)

A straightforward calculation shows that the difference between the stabilized high order solution cH and the low
order predictor cL defined as before can be decomposed into the element-based antidiffusive fluxes

f e
i j = (me

i δi j − me
i j)(c

H
j − cn

j ) − ∆tlei jc
L
j + ∆tke

i jc
n
j + (∆t)2ke

i j

( S∑
s,t=1

bsastċ
n,t
j

)
− (∆t)2se

i jc
n
j − (∆t)2se

i j

( S∑
s,t=1

bsastċ
n,t
j

)
− (∆t)2ke

i j · g
n
j − (∆t)2ke

i j ·
( S∑

s,t=1

bsastġn,t
j

) (61)

and the corresponding antidiffusive element contributions f e
i =

∑Ndof
j=1 f e

i j have zero net mass, i.e.,
∑Ndof

i=1 f e
i = 0.

6. Numerical experiments

FCT algorithms distinguish themselves from conventional stabilization techniques for finite elements in that op-
timal accuracy and order of convergence can potentially be achieved in a manner which rules out formation of un-
dershoots and/or overshoots. To assess the ability of the presented algorithms to achieve this goal, we apply them to
several one- and two-dimensional problems, which represent a rich variety of interesting applications and are com-
monly used for testing purposes. In the one-dimensional case, the below numerical results confirm that high order
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of convergence can be preserved for linear advection of smooth initial data. Snapshots of numerical solutions are
included to illustrate the reduction of terracing due to the use of high order dissipation, as well as the preservation of
smooth extrema by FCT schemes equipped with smoothness indicators. In the two-dimensional case, the focus is on
comparing different components of the algorithm in the context of the solid body rotation benchmark [43, 49]. The
pros and cons of each approach are discussed and suggestions regarding the choice of FCT ingredients are made.

To shorten and unify the description of the methods under investigation, the FCT schemes to be considered in this
numerical study will be referred to using abbreviations of the form

FCT(up, bo, li; p), where



up ∈


e : Element-stencil upwinding,
s : Subcell-stencil upwinding,
sr : Subcell-stencil Rusanov upwinding,

bo ∈

s : Subcell-stencil bounds,
e : Element-stencil bounds,

li ∈

n : Nodal limiting & mass correction,
e : Local element-stencil limiting,

p : order of Bernstein finite elements.

(62)

In numerical studies of FCT components, the underlying low and high order methods are abbreviated by

LO(up; p) and HI(p), (63)

respectively. All FCT solutions are obtained using limiters that constrain antidiffusive contributions of different el-
ements to the same node independently using bounds proportional to diagonal entries of the corresponding lumped
element mass matrices instead of constraining the sums of positive and negative contributions using bounds propor-
tional to diagonal entries of the global lumped mass matrix as in the classical version (39) of Zalesak’s limiter.

6.1. One-dimensional case

The below one-dimensional studies are mainly presented to verify the expected order of convergence in the case
of smooth solutions. To avoid disturbing influences of the time discretization, the time integrator of the high order
method is given by a six-stage diagonally implicit SSP Runge-Kutta scheme, which is of sixth order in time. The
coefficients of this scheme are listed in the following Butcher tableau:

0
0.61341879 0.30670939 0.30670939
0.20080549 0.10040277 0.00000001 0.10040270
0.42625809 0.00707081 0.00074821 0.39021074 0.02822831
0.70805109 0.10486545 0.00007338 0.16278800 0.33300199 0.10732225
0.95080507 0.01535263 0.00000764 0.41584884 0.04023172 0.43016927 0.04919492

0.06494390 0.00222959 0.27072380 0.20524931 0.31965775 0.13719562

(64)

The experimental order of convergence (EOC) is determined using the formula [43]

p = log
(E1(h2)

E1(h1)

)
log

(h2

h1

)−1
, (65)

where h1, h2 and E1(h1), E1(h2) are the mesh sizes and L1-errors on two different meshes, respectively. Here, the
L1-error is based on the difference of the numerical solution and the exact solution. In the two-dimensional space, the
L∞-error is abbreviated by E∞.

In the first test case, the function ut(x, t) = tanh
(
10(x − vt − 1

4 )
)

is convected on the interval Ω = (0, 1) with the
constant velocity v = 1. This benchmark is characterized by the absence of local extrema and, hence, the bounds
should not constrain the choice of the correction factors and no peak clipping effects should occur. The L1-errors at
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Nelem
p = 1 p = 2 p = 3 p = 4 p = 5

L1 EOC L1 EOC L1 EOC L1 EOC L1 EOC

19 1.41e−1 9.50e−2 7.10e−2 5.65e−2 4.68e−2
27 1.12e−1 0.66 7.32e−2 0.74 5.37e−2 0.79 4.22e−2 0.83 3.47e−2 0.85
38 8.77e−2 0.70 5.59e−2 0.79 4.04e−2 0.84 3.14e−2 0.87 2.56e−2 0.89
53 6.83e−2 0.75 4.24e−2 0.83 3.02e−2 0.87 2.33e−2 0.90 1.89e−2 0.91
74 5.24e−2 0.80 3.19e−2 0.86 2.25e−2 0.89 1.72e−2 0.91 1.39e−2 0.92

(a) LO(s; ·).

Nelem
p = 1 p = 2 p = 3 p = 4 p = 5

L1 EOC L1 EOC L1 EOC L1 EOC L1 EOC

19 5.13e−3 4.23e−4 9.14e−5 1.54e−6 1.27e−6
27 1.60e−3 3.32 1.80e−4 2.44 6.26e−6 7.63 3.49e−7 4.23 6.59e−8 8.42
38 5.53e−4 3.10 8.66e−5 2.13 8.54e−7 5.83 8.73e−8 4.05 1.85e−9 10.45
53 2.51e−4 2.38 4.20e−5 2.18 1.93e−7 4.47 2.25e−8 4.08 2.00e−10 6.69
74 1.22e−4 2.16 1.98e−5 2.25 4.56e−8 4.32 5.24e−9 4.36 2.47e−11 6.26

(b) FCT(s, s, n; ·), ω = 0.0.

Nelem
p = 1 p = 2 p = 3 p = 4 p = 5

L1 EOC L1 EOC L1 EOC L1 EOC L1 EOC

19 4.92e−3 5.03e−4 2.64e−5 1.26e−6 1.86e−7
27 1.59e−3 3.20 1.93e−4 2.73 3.05e−6 6.14 2.70e−7 4.38 1.12e−8 7.99
38 6.01e−4 2.86 7.35e−5 2.82 7.00e−7 4.31 5.95e−8 4.42 1.23e−9 6.49
53 2.68e−4 2.42 3.00e−5 2.69 1.75e−7 4.16 1.36e−8 4.45 1.57e−10 6.18
74 1.28e−4 2.21 1.27e−5 2.58 4.49e−8 4.08 2.91e−9 4.61 2.00e−11 6.17

(c) FCT(s, s, n; ·), ω = 0.1.

Nelem
p = 1 p = 2 p = 3 p = 4 p = 5

L1 EOC L1 EOC L1 EOC L1 EOC L1 EOC

19 1.48e−2 4.58e−4 2.71e−5 1.60e−6 1.04e−7
27 6.27e−3 2.45 1.11e−4 4.04 6.39e−6 4.11 2.22e−7 5.61 1.52e−8 5.48
38 2.45e−3 2.75 3.54e−5 3.35 1.55e−6 4.16 3.74e−8 5.22 2.19e−9 5.66
53 9.39e−4 2.88 1.24e−5 3.15 3.91e−7 4.13 6.61e−9 5.21 3.27e−10 5.72
74 3.53e−4 2.93 4.45e−6 3.07 9.97e−8 4.09 1.19e−9 5.13 4.58e−11 5.89

(d) FCT(s, s, n; ·), ω = 1.0.

Table 2: Linear convection in 1D: ut(x, t) = tanh
(
10(x − vt − 1

4 )
)
, v = 1, T = 1

2 , ∆t = 10−2(2p + 1)−1h, convergence behavior of LO(s; ·) and of
FCT(s, s, n; ·) with different amounts of high order dissipation.
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Nelem
p = 2 p = 3 p = 4 p = 5 p = 6

L1 EOC L1 EOC L1 EOC L1 EOC L1 EOC

10 6.07e−2 4.69e−2 4.48e−2 3.19e−2 2.70e−2
14 3.29e−2 1.83 2.73e−2 1.61 2.35e−2 1.92 1.83e−2 1.66 1.51e−2 1.73
19 2.03e−2 1.57 1.81e−2 1.34 1.44e−2 1.60 1.03e−2 1.86 8.43e−3 1.91
27 1.09e−2 1.78 9.38e−3 1.87 6.87e−3 2.11 5.35e−3 1.87 3.98e−3 2.14
38 5.30e−3 2.10 4.84e−3 1.94 3.29e−3 2.15 2.65e−3 2.06 1.84e−3 2.25
53 2.60e−3 2.15 2.51e−3 1.98 1.66e−3 2.05 1.26e−3 2.22 8.65e−4 2.27
74 1.28e−3 2.13 1.26e−3 2.05 8.48e−4 2.01 6.03e−4 2.22 4.01e−4 2.30

(a) FCT(s, s, n; ·), ω = 0.1 without SI.

Nelem
p = 2 p = 3 p = 4 p = 5 p = 6

L1 EOC L1 EOC L1 EOC L1 EOC L1 EOC

10 5.71e−2 4.54e−2 4.28e−2 3.19e−2 2.70e−2
14 2.33e−2 2.67 1.76e−2 2.81 1.62e−2 2.89 1.42e−2 2.40 1.11e−2 2.64
19 8.93e−3 3.13 6.24e−3 3.40 6.23e−3 3.13 5.58e−3 3.05 3.96e−3 3.38
27 8.17e−4 6.81 9.57e−4 5.34 5.96e−4 6.68 5.37e−4 6.66 4.16e−4 6.42
38 1.38e−4 5.21 2.12e−6 17.89 1.90e−7 23.55 3.50e−9 34.94 2.16e−10 42.34
53 6.29e−5 2.36 5.25e−7 4.19 4.26e−8 4.49 4.56e−10 6.12 2.45e−11 6.54
74 2.79e−5 2.44 1.35e−7 4.07 9.14e−9 4.61 5.91e−11 6.12 2.65e−12 6.66

(b) FCT(s, s, n; ·), ω = 0.1 with SI.

Table 3: Linear convection in 1D: ug(x, t) = exp
(
− 100 · (x− vt− 1

4 )2), v = 1, T = 1
2 , ∆t = 10−2(2p+ 1)−1h, convergence behavior of FCT(s, s, n; ·)

with and without the optional use of the extremum-preserving smoothness indicator (SI) based on the second derivative test (53) with C = 2.

the final time T = 1
2 and the experimental orders of convergence of different numerical approaches are presented in

Table 2. While the low order method using subcell-stencil upwinding converges with an order of approximately 0.9
(see Table 2a), the FCT methods are able to reproduce the high experimental order of convergence (see Tables 2b, 2c,
and 2d). If no background dissipation is added to stabilize the high order scheme, the EOC is approximately p if p is
even and p + 1 otherwise (see Table 2b). This convergence behavior is consistent with the EOC of the unconstrained
Galerkin method in the case of pure convection equations. Hence, the FCT algorithm is able to reproduce the expected
order of convergence of the high order Galerkin discretization. By applying stabilization terms (see Tables 2c and 2d),
the order can be increased to p + 1 even in the case of an even Bernstein order p.

If ut is replaced by a Gaussian function ug(x, t) = exp
(
− 100 · (x − vt − 1

4 )2), then a smooth local extremum
occurs inside the domain Ω = (0, 1) and the nodal correction factor for the degree of freedom corresponding to the
local extremum is set to zero. Therefore, the FCT algorithm fails to reproduce the smooth high order solution and the
experimental order of convergence reduces to 2 (see Table 3a). Furthermore, peak clipping effects can be observed
in the numerical solution. Zhang and Shu [51] have shown that this reduction of the order of convergence cannot be
avoided while preserving the LED property. The use of the smoothness indicator introduced in Section 4.6 makes
it possible to disable the FCT limiter in smooth regions, where unnecessary limiting of the antidiffusive element
contributions would occur otherwise. Table 3b presents the corresponding L1-errors depending on the mesh size h
and the Bernstein order p. As expected, the EOC increases as soon as the smoothness indicator identifies the local
extremum as a smooth maximum (h ≤ 0.037). Therefore, in the case of the Gaussian function the smoothness indicator
performs quite well and detects the smooth extremum if the mesh size is small enough. Although an FCT algorithm
equipped with such a smoothness indicator does not guarantee that the antidiffusive correction is LED and/or variation
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Figure 3: Linear convection in 1D: Ω = (0, 1), uniform mesh, 38 Bernstein elements, comparison of the FCT(s, s, n; 4) results for (a) smooth
and (b) discontinuous data obtained without and with the optional use of the extremum-preserving smoothness indicator (SI) based on the second
derivative test (53) with C = 2.

diminishing, the proposed second derivative test activates the limiter in regions where oscillations are detected. The
numerical solutions displayed in Fig. 3 indicate that selective limiting based on (52) and (53) with C = 2 does an
excellent job in preserving smooth peaks while enforcing local maximum principles at discontinuities.

The snapshots presented in Fig. 4 indicate that not only a good limiting strategy but also the use of high order
dissipation may reduce numerical errors caused by the combined effect of clipping and terracing which is particularly
strong if the element-stencil limiting strategy is adopted. The nodal-point version produces just a moderate amount
of terracing, and the amount of peak clipping can be significantly reduced by adding high order stabilization. In this
one-dimensional example, the best results are obtained using ω = 1.0 (see the right diagram in Fig. 4).

6.2. Two-dimensional case

The above numerical study of FCT algorithms in 1D was focused on investigations of the experimental order of
convergence for different schemes. Additionally, the influence of high order dissipation and the use of smoothness
indicators were illustrated by numerical examples. In two dimensions, no grid convergence studies are performed and
the implications of using high order background dissipation are discussed just briefly. The main focus of this section
is on a comparison of different components of the proposed FCT schemes in 2D. In the two-dimensional case, the
differences between the performance of different upwinding and limiting techniques become more remarkable due to
the increasing number of degrees of freedom and their arrangement on a high order Bernstein finite element.

Since no grid convergence studies are performed in this section, the cost of calculating the high order solution is
reduced by using the classical four-stage explicit Runge-Kutta scheme to discretize in time. The Butcher tableau of
this fourth order accurate time stepping method is as follows:

0
1
2

1
2

1
2 0 1

2
1 0 0 1

1
6

1
3

1
3

1
6

(66)

Computations are performed on uniform triangular meshes using approximately the same number of degrees of free-
dom (16129 ≤ Ndof ≤ 17161) for all Bernstein orders p and the time step 10−3 which is sufficiently small to keep
temporal errors negligible compared to space discretization errors in numerical solutions for the above range of Ndof .
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Figure 4: Linear convection in 1D: Ω = (0, 1), uniform mesh, 60 Bernstein elements, comparison of the FCT(e, s, ·; 4) results obtained using the
local (a) element-stencil and (b) nodal-point limiters to constrain antidiffusive element contributions with and without high order stabilization.

To discuss the influence of different components on the overall accuracy of FCT algorithms, we consider the solid
body rotation benchmark [43, 49]. In this two-dimensional test, a smooth hump, a sharp cone, and a slotted cylinder
are rotated around the center of the domain Ω = (0, 1)2 counterclockwise with the velocity v = ( 1

2 − y, x − 1
2 )>. The

initial condition is given by

u0(x, y) =



1
4 +

1
4 cos

(
π
√

(x−0.25)2+(y−0.5)2

0.15

)
if

√
(x − 0.25)2 + (y − 0.5)2 ≤ 0.15,

1 −
√

(x−0.5)2+(y−0.25)2

0.15 if
√

(x − 0.5)2 + (y − 0.25)2 ≤ 0.15,

1 if


√

(x − 0.5)2 + (y − 0.75)2 ≤ 0.15,
0.55 < x < 0.45, y > 0.85,

0 otherwise.

The errors listed in the tables and snapshots shown in the figures correspond to the results after one full rotation.
The exact solution at the final time T = 2π coincides with the initial condition (see Fig. 5a). The high order Galerkin
method without stabilization (see Fig. 5b) produces large overshoots/undershoots in the neighborhood of the slotted
cylinder and smaller high-frequency oscillations in the rest of the domain. After adding a moderate amount of high
order dissipation (ω = 0.1) to the standard Galerkin scheme, these spurious oscillations decrease in magnitude and
frequency. Furthermore, undershoots and overshoots are localized to small layers around discontinuities, which has a
positive effect on the smoothness and accuracy of numerical solutions (see Fig. 5c and 5d). Adding more high order
dissipation than necessary to eliminate spurious oscillations (ω = 1.0) results in stronger erosion at the top of the
cone. Later on, this solution behavior can also be observed in the case of FCT approximations.

Figure 6 compares the results produced by different low order methods for Bernstein orders p = 2, 4. All of the
low order methods under investigation add so much artificial diffusion that the slot of the cylinder disappears and
the smooth hump is almost leveled to the ground. However, subcell-stencil upwinding is less diffusive than element-
stencil upwinding and preserves the maxima of the cylinder and cone much better, especially in the case p = 4.
Unfortunately, the subcell-stencil approximation is less smooth and exhibits some kinks on the boundaries of mesh
cells. The lack of smoothness can be cured using the Rusanov-type subcell-stencil upwinding which smoothes the
ripples away by introducing additional artificial diffusion. The resulting low order solution looks even smoother than
the one obtained using element-stencil upwinding. Furthermore, the errors listed in Table 1 show that the accuracy
of subcell-stencil algorithms is independent of the Bernstein order p, whereas the use of element-stencil upwinding
results in stronger smearing of the solution profiles as p is increased while keeping Ndof (almost) fixed.
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(a) Exact solution. (b) HI(2), ω = 0.0: E1 = 2.31e−2, E∞ = 8.54e−1.

(c) HI(2), ω = 0.1: E1 = 1.25e−2, E∞ = 7.89e−1. (d) HI(2), ω = 1.0: E1 = 1.63e−2, E∞ = 7.73e−1.

Figure 5: Solid body rotation: T = 2π, ∆t ≈ 10−3, Ndof = (128 + 1)2, initial data / exact solution vs. unconstrained high order solutions obtained
using different values of the stabilization parameter ω.
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(a) LO(e; 2): E1 = 1.08e−1, E∞ = 7.92e−1. (b) LO(s; 2): E1 = 1.04e−1, E∞ = 7.74e−1.

(c) LO(sr; 2): E1 = 1.10e−1, E∞ = 8.18e−1. (d) LO(e; 4): E1 = 1.13e−1, E∞ = 8.30e−1.

(e) LO(s; 4): E1 = 1.05e−1, E∞ = 7.77e−1. (f) LO(sr; 4): E1 = 1.11e−1, E∞ = 8.24e−1.

Figure 6: Solid body rotation problem: T = 2π, ∆t ≈ 10−3, Ndof = (128+1)2, comparison of low order solutions obtained using different upwinding
techniques.

26



Different amounts of artificial diffusion in the three versions of the low order method are reflected in the accuracy
of the corresponding FCT algorithms. Since element-stencil upwinding produces the most restrictive bounds, their
use in inequality constraints for FCT gives rise to particularly strong peak clipping (see Fig. 7a, 7b, and 7c). As
expected, the most accurate solution is produced by FCT based on subcell-stencil upwinding. Remarkably, the small
ripples of the low order solution vanish after the antidiffusive correction. Therefore, the use of subcell-stencil Rusanov
upwinding does not seem to offer any benefit in the context of FCT algorithms and subcell-stencil upwinding based
on the minimal diffusion formula seems to be the best choice for the low order method. This observation is supported
by numerical studies for increasing Bernstein orders (see Tables 4, 5, and 6): Subcell-stencil upwinding produces
the most accurate results even in the case p = 1 in which subcell-stencil Rusanov upwinding is inferior to element-
stencil upwinding. Due to the dependence of the subcell-stencil Rusanov method on the order p, the differences in the
accuracy of FCT solutions based on these low order approximations diminish as p is increased.

Figures 7d, 7e, and 7f show the FCT results for varying amounts of high order dissipation. So far, the impact of ω
was discussed in the case of the unconstrained high order method. While the high order solution without stabilization
may exhibit large oscillations in the whole domain, the FCT algorithm eliminates these oscillations. Nevertheless, the
constrained solution has small ripples next to jumps, e.g. at the top of the cylinder. If high order dissipation is added,
these artifacts disappear. On top of that, a stable high order approximation produces smaller antidiffusive fluxes which
may be constrained using larger correction factors. The reduction in clipping and terracing due to the use of high
order dissipation depends on the value of the stabilization parameter ω. In the case of the solid body rotation, ω = 0.1
is a reasonable choice. If the amount of stabilization is increased by using ω = 1.0, stronger peak clipping is observed
and the L1-error increases. Therefore, the parameter value ω = 0.1 is used in our numerical examples.

The choice of the limiting strategy (element-based or nodal) and the definition of the bounds (element-stencil
or subcell-stencil) for the underlying local maximum principles also have a strong influence on the quality of an
FCT approximation (see Fig. 8). Regardless of the employed limiter, element-stencil bounds are less restrictive,
allow larger correction factors and, hence, lead to approximations which are closer to the high order solution. As
p increases while Ndof is held constant, element-stencil bounds become even less restrictive. This results in better
preservation of peaks but may lead to formation of spurious ripples. To detect and remove these ripples, localized
stencils should be used to sample low order values when it comes to calculating the bounds for FCT [2]. The smallest
local stencil consists of a given node and its nearest neighbors, i.e. nodes belonging to the same subcells of the Bézier
net. However, the use of element-stencil limiters to enforce tight subcell-stencil bounds may result in solutions with
extremely strong clipping and terracing effects (see Fig. 8a and 8b). The multiplication of all components of the
antidiffusive element contribution f e by the same correction factor αe penalizes all components even if inequality
constraints (36) are violated at just one node. As the number of nodes (and constraints) per element increases, the
synchronous limiting strategy tends to perform very poorly, especially in elements containing local extrema. For this
reason, localized bounds should be used in conjunction with adaptive stencils and/or localized limiters. In particular,
the FCT algorithm based on componentwise limiting with subsequent mass correction produces more accurate results
and does a better job in preserving peaks than the element-stencil version (see Fig. 8c-8f).

In the case of subcell-stencil upwinding and nodal limiting, the impact of the bounds is less crucial (see Fig. 8e
and 8f) because the use of a less diffusive low order scheme results in smaller antidiffusive fluxes and, hence, less
restrictive constraints.

For a better visual comparison, the best and the least accurate FCT approximations of order p = 2, 3, 4 are
presented side by side in Fig. 9. While the difference is marginal in the case p = 2, it becomes more pronounced with
increasing Bernstein order. In the case p = 4, the slot of the cylinder disappears completely and the height of the two
peaks is drastically reduced. Note that the amount of peak clipping increases even in the case of the most accurate
FCT algorithm. At the final time T = 2π, the cone and hump are ‘depressed’ and a plateau can be observed at the
top. For that reason, the deactivation of limiters in elements identified as smooth by a robust and reliable smoothness
indicator seems to be essential for preservation of accuracy in high order FCT algorithms.

Figure 10 presents a comparison of FCT solutions obtained with and without the optional use of the smoothness
indicator based on the two-dimensional Hessian determinant test proposed at the end of Section 4.6. The deactivation
of limiting in smooth cells eliminates the peak clipping effect at the top of the smooth hump. Peak clipping at the top
of the cone continues until the sharp peak becomes sufficiently rounded to be identified as a smooth maximum. The
stronger smearing of this peak in the examples for p = 3, 4 is due to the fact that all numerical solutions correspond
to (almost) the same number Ndof of global degrees of freedom. Since the current implementation of the Hessian
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(a) FCT(e, s, n; 4), ω = 0.1: E1 = 3.77e−2, E∞ = 8.39e−1. (b) FCT(s, s, n; 4), ω = 0.1: E1 = 3.28e−2, E∞ = 8.36e−1.

(c) FCT(sr , s, n; 4), ω = 0.1: E1 = 3.60e−2, E∞ = 8.38e−1. (d) FCT(s, e, n; 4), ω = 0.0: E1 = 3.61e−2, E∞ = 8.20e−1.

(e) FCT(s, e, n; 4), ω = 0.1: E1 = 2.89e−2, E∞ = 8.28e−1. (f) FCT(s, e, n; 4), ω = 1.0: E1 = 3.00e−2, E∞ = 8.34e−1.

Figure 7: Solid body rotation problem: T = 2π, ∆t ≈ 10−3, Ndof = (128 + 1)2, comparison of FCT solutions obtained using different upwinding
techniques and different amounts of high order dissipation.
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(a) FCT(e, e, e; 3), ω = 0.1: E1 = 3.30e−2, E∞ = 8.36e−1. (b) FCT(e, s, e; 3), ω = 0.1: E1 = 4.71e−2, E∞ = 8.47e−1.

(c) FCT(s, e, e; 3), ω = 0.1: E1 = 2.85e−2, E∞ = 8.47e−1. (d) FCT(s, s, e; 3), ω = 0.1: E1 = 3.83e−2, E∞ = 8.52e−1.

(e) FCT(s, e, n; 3), ω = 0.1: E1 = 2.52e−2, E∞ = 8.43e−1. (f) FCT(s, s, n; 3), ω = 0.1: E1 = 2.77e−2, E∞ = 8.47e−1.

Figure 8: Solid body rotation: T = 2π, ∆t ≈ 10−3, Ndof = (129 + 1)2, comparison of FCT solutions obtained using different versions of the
element-stencil and nodal-point limiters.
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(a) FCT(s, e, n; 2), ω = 0.1: E1 = 2.02e−2, E∞ = 8.45e−1. (b) FCT(e, s, e; 2), ω = 0.1: E1 = 2.45e−2, E∞ = 8.44e−1.

(c) FCT(s, e, n; 3), ω = 0.1: E1 = 2.52e−2, E∞ = 8.43e−1. (d) FCT(e, s, e; 3), ω = 0.1: E1 = 4.71e−2, E∞ = 8.47e−1.

(e) FCT(s, e, n; 4), ω = 0.1: E1 = 2.89e−2, E∞ = 8.28e−1. (f) FCT(e, s, e; 4), ω = 0.1: E1 = 5.60e−2, E∞ = 8.27e−1.

Figure 9: Solid body rotation: T = 2π, ∆t ≈ 10−3, Ndof = (128 + 1)2 for p = 2, 4, Ndof = (129 + 1)2 for p = 3, comparison of the most accurate
and least accurate FCT solutions.
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determinant test for p > 2 is based on elementwise L2 projections (see Section 4.6), Bernstein approximations of
higher order correspond to smoothness estimation for larger elements using just cell-averaged values of the second
derivatives. To use more information about the solution behavior inside these elements, the Hessian test can be
applied to subcell-averaged second derivatives in the case p > 2. The further development and evaluation of localized
smoothness criteria for local limiters is beyond the scope of this work and requires further research. However, based
on this initial illustration of the benefit of the methods, we believe these approaches have promise and should be
considered further in the context of the high order Bernstein finite elements we have developed here. Even though
virtually no undershoots or overshoots are observed in numerical solutions to the solid body rotation problem, the
ability of FCT algorithms equipped with smoothness indicators to identify troubled cells must be verified in more
detailed numerical studies. Since the use of correction factors depending on the value of a smoothness indicator
rules out the possibility of proving local extremum diminishing properties, a postprocessing procedure [21, 50] may
be added to enforce extremum-preserving ‘safeguard’ bounds based on the data from the previous time steps and/or
physical constraints like positivity preservation.

The norms of errors for several combinations of the FCT components are summarized in Tables 4, 5, and 6. To
quantify the damage caused by clipping and terracing, the L1- and L∞-errors in numerical solutions for solid body
rotation of the cone and hump are measured separately. The isolation of the two peaks in this numerical study is
dictated by the fact that the total error of FCT solutions for the three-body benchmark configuration is dominated by
numerical diffusion generated at the discontinuous slopes of the slotted cylinder. The errors in the resolution of the
cone and hump are much smaller, which makes it impossible to quantify them without excluding the other bodies
when it comes to calculation and comparison of errors. The errors of different FCT schemes behave similarly for the
two peaks. The algorithm based on subcell-stencil upwinding with element-stencil bounds and nodal limiting seems
to produce the most accurate solutions. The optional use of the smoothness indicator is seen to have the expected
positive effect on the accuracy of the FCT results for the smooth hump.

7. Conclusions

The findings presented in this paper pave the way for designing FCT-like algorithms on the basis of high order
Bernstein-Bézier finite elements. The non-negativity of local basis functions, the fact that the shape functions are
bounded by their Bernstein coefficients, and the variation diminishing properties make them a very attractive alter-
native to standard Lagrange elements. The proposed approach to constraining the antidiffusive part of the discrete
transport is readily applicable to Bernstein bases of arbitrary order. The new discrete upwinding strategy produces
low order schemes with compact stencils. The accuracy of the resulting low order solutions depends just on the
number of global degrees of freedom but not on the order of the underlying finite element approximation. The new
approaches to localization of FCT limiters make it possible to perform all computations in a single loop over elements
and constrain the vectors of antidiffusive element contributions using different correction factors for different compo-
nents. Order barriers caused by the peak clipping effect can be circumvented using smoothness indicators based on
the proposed second derivative test. The optional use of high order background dissipation offers better convergence
rates for smooth solutions and eliminates the need for ad hoc prelimiting which is frequently used to reduce numerical
dispersion in FCT algorithms. The numerical results confirm that the above revisions lead to significant improvements
but further efforts are required to achieve optimal convergence behavior in a cost-effective manner.
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(a) FCT(s, e, n; 2) without SI, ω = 0.1: E1 = 2.02e−2, E∞ = 8.45e−1,
umin = −1.10e−15, umax = 9.63e−1.

(b) FCT(s, e, n; 2) with SI, ω = 0.1: E1 = 1.96e−2, E∞ = 8.45e−1,
umin = −1.59e−7, umax = 9.71e−1.

(c) FCT(s, e, n; 3) without SI, ω = 0.1: E1 = 2.52e−2, E∞ = 8.43e−1,
umin = −4.57e−14, umax = 9.08e−1.

(d) FCT(s, e, n; 3) with SI, ω = 0.1: E1 = 2.43e−2, E∞ = 8.43e−1,
umin = −4.83e−6, umax = 9.12e−1.

(e) FCT(s, e, n; 4) without SI, ω = 0.1: E1 = 2.89e−2, E∞ = 8.28e−1,
umin = −1.24e−8, umax = 8.75e−1.

(f) FCT(s, e, n; 4) with SI, ω = 0.1: E1 = 2.81e−2, E∞ = 8.28e−1,
umin = −7.41e−7, umax = 8.82e−1.

Figure 10: Solid body rotation: T = 2π, ∆t ≈ 10−3, Ndof = (128 + 1)2 for p = 2, 4, Ndof = (129 + 1)2 for p = 3, comparison of FCT solutions with
and without the optional use of the extremum-preserving smoothness indicator (SI) based on the second derivative test (53) with C = 2.
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element upwinding subcell upwinding subcell Rusanov

L1 L∞ L1 L∞ L1 L∞

LO(·; 1) 2.297e−2 7.402e−1 2.297e−2 7.403e−1 2.623e−2 8.135e−1
LO(·; 2) 2.566e−2 7.938e−1 2.404e−2 7.621e−1 2.665e−2 8.207e−1
LO(·; 3) 2.686e−2 8.168e−1 2.415e−2 7.650e−1 2.685e−2 8.243e−1
LO(·; 4) 2.777e−2 8.342e−1 2.420e−2 7.655e−1 2.704e−2 8.269e−1

FCT(·, s, e; 1) 6.654e−4 1.593e−1 6.480e−4 1.575e−1 7.011e−4 1.675e−1
FCT(·, s, e; 2) 1.310e−3 2.243e−1 1.165e−3 2.135e−1 1.131e−3 2.130e−1
FCT(·, s, e; 3) 4.522e−3 3.386e−1 3.472e−3 2.991e−1 2.848e−3 3.115e−1
FCT(·, s, e; 4) 5.743e−3 4.258e−1 4.007e−3 3.431e−1 3.925e−3 3.554e−1

FCT(·, e, e; 1) 6.654e−4 1.593e−1 6.480e−4 1.575e−1 7.011e−4 1.675e−1
FCT(·, e, e; 2) 1.244e−3 2.191e−1 1.150e−3 2.124e−1 1.124e−3 2.129e−1
FCT(·, e, e; 3) 2.036e−3 2.867e−1 1.716e−3 2.673e−1 1.958e−3 2.881e−1
FCT(·, e, e; 4) 3.030e−3 3.291e−1 2.355e−3 2.937e−1 2.846e−3 3.244e−1

FCT(·, s, n; 1) 6.792e−4 1.615e−1 6.614e−4 1.608e−1 7.292e−4 1.723e−1
FCT(·, s, n; 2) 9.974e−4 2.002e−1 9.987e−4 1.977e−1 1.077e−3 2.074e−1
FCT(·, s, n; 3) 2.014e−3 2.720e−1 1.688e−3 2.503e−1 2.048e−3 2.742e−1
FCT(·, s, n; 4) 2.639e−3 3.084e−1 2.088e−3 2.739e−1 2.481e−3 3.025e−1

FCT(·, e, n; 1) 6.792e−4 1.615e−1 6.614e−4 1.608e−1 7.292e−4 1.723e−1
FCT(·, e, n; 2) 9.918e−4 2.006e−1 9.955e−4 1.989e−1 1.069e−3 2.072e−1
FCT(·, e, n; 3) 1.599e−3 2.613e−1 1.410e−3 2.442e−1 1.682e−3 2.700e−1
FCT(·, e, n; 4) 2.084e−3 2.925e−1 1.826e−3 2.741e−1 2.143e−3 2.979e−1

FCT(·, e, n; 1) with SI 6.792e−4 1.615e−1 6.614e−4 1.608e−1 7.292e−4 1.723e−1
FCT(·, e, n; 2) with SI 7.040e−4 1.298e−1 7.102e−4 1.276e−1 7.556e−4 1.369e−1
FCT(·, e, n; 3) with SI 9.884e−4 1.680e−1 9.155e−4 1.581e−1 1.117e−3 2.008e−1
FCT(·, e, n; 4) with SI 1.833e−3 2.693e−1 1.711e−3 2.626e−1 2.026e−3 2.884e−1

Table 4: Rotation of cone: T = 2π, ∆t ≈ 10−3, Ndof = (128+ 1)2 for p = 1, 2, 4, Ndof = (129+ 1)2 for p = 3, convergence behavior of LO and FCT.
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element upwinding subcell upwinding subcell Rusanov

L1 L∞ L1 L∞ L1 L∞

LO(·; 1) 1.135e−2 3.770e−1 1.135e−2 3.770e−1 1.267e−2 4.133e−1
LO(·; 2) 1.245e−2 4.036e−1 1.180e−2 3.881e−1 1.284e−2 4.168e−1
LO(·; 3) 1.293e−2 4.149e−1 1.184e−2 3.890e−1 1.292e−2 4.184e−1
LO(·; 4) 1.328e−2 4.233e−1 1.186e−2 3.900e−1 1.299e−2 4.198e−1

FCT(·, s, e; 1) 1.408e−4 3.535e−2 1.329e−4 3.455e−2 1.583e−4 3.886e−2
FCT(·, s, e; 2) 5.468e−4 7.074e−2 4.679e−4 6.424e−2 4.497e−4 6.335e−2
FCT(·, s, e; 3) 2.163e−3 1.498e−1 1.657e−3 1.151e−1 1.342e−3 1.203e−1
FCT(·, s, e; 4) 3.568e−3 2.128e−1 1.911e−3 1.495e−1 1.934e−3 1.575e−1

FCT(·, e, e; 1) 1.408e−4 3.535e−2 1.329e−4 3.455e−2 1.583e−4 3.886e−2
FCT(·, e, e; 2) 5.067e−4 6.753e−2 4.578e−4 6.358e−2 4.447e−4 6.318e−2
FCT(·, e, e; 3) 9.280e−4 1.048e−1 7.521e−4 9.367e−2 9.023e−4 1.054e−1
FCT(·, e, e; 4) 1.573e−3 1.359e−1 1.144e−3 1.095e−1 1.454e−3 1.298e−1

FCT(·, s, n; 1) 1.484e−4 3.655e−2 1.417e−4 3.634e−2 1.720e−4 4.111e−2
FCT(·, s, n; 2) 3.596e−4 5.584e−2 3.624e−4 5.537e−2 4.082e−4 6.013e−2
FCT(·, s, n; 3) 8.851e−4 9.687e−2 6.962e−4 8.368e−2 8.872e−4 9.722e−2
FCT(·, s, n; 4) 1.299e−3 1.200e−1 9.505e−4 9.889e−2 1.210e−3 1.158e−1

FCT(·, e, n; 1) 1.484e−4 3.655e−2 1.417e−4 3.634e−2 1.720e−4 4.111e−2
FCT(·, e, n; 2) 3.574e−4 5.626e−2 3.629e−4 5.625e−2 4.032e−4 6.011e−2
FCT(·, e, n; 3) 6.775e−4 8.918e−2 5.807e−4 8.089e−2 7.370e−4 9.468e−2
FCT(·, e, n; 4) 9.886e−4 1.087e−1 8.081e−4 9.641e−2 1.044e−3 1.127e−1

FCT(·, e, n; 1) with SI 1.484e−4 3.655e−2 1.417e−4 3.634e−2 1.720e−4 4.111e−2
FCT(·, e, n; 2) with SI 1.390e−4 6.222e−3 1.452e−4 6.431e−3 1.542e−4 6.815e−3
FCT(·, e, n; 3) with SI 1.754e−4 6.353e−3 1.651e−4 6.534e−3 1.749e−4 7.200e−3
FCT(·, e, n; 4) with SI 2.936e−4 2.826e−2 2.433e−4 1.613e−2 3.011e−4 3.037e−2

Table 5: Rotation of a hump: T = 2π, ∆t ≈ 10−3, Ndof = (128 + 1)2 for p = 1, 2, 4, Ndof = (129 + 1)2 if p = 3, convergence behavior of LO and
FCT.
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element upwinding subcell upwinding subcell Rusanov

L1 L∞ L1 L∞ L1 L∞

LO(·; 1) 6.972e−2 7.643e−1 6.972e−2 7.643e−1 7.391e−2 7.988e−1
LO(·; 2) 7.332e−2 7.914e−1 7.110e−2 7.743e−1 7.442e−2 8.042e−1
LO(·; 3) 7.511e−2 8.048e−1 7.136e−2 7.757e−1 7.488e−2 8.059e−1
LO(·; 4) 7.630e−2 8.160e−1 7.132e−2 7.767e−1 7.505e−2 8.085e−1

FCT(·, s, e; 1) 1.577e−2 8.309e−1 1.571e−2 8.253e−1 1.625e−2 8.267e−1
FCT(·, s, e; 2) 2.265e−2 8.440e−1 2.090e−2 8.472e−1 2.031e−2 8.467e−1
FCT(·, s, e; 3) 4.019e−2 8.518e−1 3.310e−2 8.434e−1 3.315e−2 8.493e−1
FCT(·, s, e; 4) 4.665e−2 8.301e−1 3.999e−2 8.143e−1 3.978e−2 8.235e−1

FCT(·, e, e; 1) 1.577e−2 8.309e−1 1.571e−2 8.253e−1 1.625e−2 8.267e−1
FCT(·, e, e; 2) 2.160e−2 8.431e−1 2.040e−2 8.462e−1 1.980e−2 8.447e−1
FCT(·, e, e; 3) 2.980e−2 8.367e−1 2.599e−2 8.472e−1 2.832e−2 8.462e−1
FCT(·, e, e; 4) 3.622e−2 8.323e−1 3.126e−2 8.348e−1 3.399e−2 8.332e−1

FCT(·, s, n; 1) 1.589e−2 8.313e−1 1.568e−2 8.201e−1 1.639e−2 8.286e−1
FCT(·, s, n; 2) 1.888e−2 8.384e−1 1.910e−2 8.477e−1 1.943e−2 8.460e−1
FCT(·, s, n; 3) 2.827e−2 8.445e−1 2.522e−2 8.476e−1 2.751e−2 8.479e−1
FCT(·, s, n; 4) 3.366e−2 8.373e−1 2.962e−2 8.353e−1 3.213e−2 8.367e−1

FCT(·, e, n; 1) 1.589e−2 8.313e−1 1.568e−2 8.201e−1 1.639e−2 8.286e−1
FCT(·, e, n; 2) 1.858e−2 8.362e−1 1.882e−2 8.452e−1 1.911e−2 8.440e−1
FCT(·, e, n; 3) 2.510e−2 8.360e−1 2.323e−2 8.431e−1 2.510e−2 8.390e−1
FCT(·, e, n; 4) 2.873e−2 8.296e−1 2.623e−2 8.283e−1 2.860e−2 8.306e−1

FCT(·, e, n; 1) with SI 1.589e−2 8.313e−1 1.568e−2 8.201e−1 1.639e−2 8.286e−1
FCT(·, e, n; 2) with SI 1.850e−2 8.362e−1 1.872e−2 8.452e−1 1.902e−2 8.440e−1
FCT(·, e, n; 3) with SI 2.493e−2 8.360e−1 2.316e−2 8.431e−1 2.507e−2 8.390e−1
FCT(·, e, n; 4) with SI 2.858e−2 8.298e−1 2.605e−2 8.284e−1 2.840e−2 8.308e−1

Table 6: Rotation of a cylinder: T = 2π, ∆t ≈ 10−3, Ndof = (128+ 1)2 for p = 1, 2, 4, Ndof = (129+ 1)2 for p = 3, convergence behavior of LO and
FCT.
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AppendixA. Properties of the mass lumping operator

In Section 3.2.2, we justified the approximation of (17) by (18) by considering preconditioned local problems of
the form (16) and using the corresponding element matrices in (18). This modification of the high order scheme can
also be interpreted as a modified projection of shape functions u̇e

h given in terms of their Bernstein coefficients ce
j into

the continuous finite element space Vh. Let the local time derivatives ċe
j be defined by

ċe
i =

Ndof∑
r,s=1

m−e
ir κ

e
rscs. (A.1)

The Bernstein coefficients of a continuous function ∂tuh ∈ Vh can be determined using a suitable averaging procedure
to piece together the non-matching solutions u̇e

h to Nelem local problems of the form (A.1).
Invoking (17), we find that the high order Galerkin scheme (9a) can be written in terms of ċe

j as follows:

Ndof∑
j=1

Nelem∑
e=1

me
i j

dc j

dt
=

Nelem∑
e=1

me
i jċ

e
j +

Ndof∑
j=1

( ∫
Γin

BiB jv · n ds
)
c j +

Nelem∑
e=1

be
i for all 1 ≤ i ≤ Ndof . (A.2)

This averaging procedure corresponds to the consistent L2-projection of u̇e
h into the finite element space Vh.

The representation of the lumped-mass preconditioned Galerkin scheme (18) in terms of ċe
j is given by

mi
dci

dt
=

Nelem∑
e=1

me
i
dci

dt
=

Nelem∑
e=1

me
i ċe

i +

Ndof∑
j=1

( ∫
Γin

BiB jv · n ds
)
c j +

Nelem∑
e=1

be
i for all 1 ≤ i ≤ Ndof (A.3)

and can be interpreted as a modified local-maximum-principle-satisfying projection scheme. For any node i such that
the global basis function Bi vanishes on the inflow boundary Γin, we have

dci

dt
=

Nelem∑
e=1

ωe
i ċe

i , where ωe
i =

me
i

mi
=

me
i∑Nelem

e=1 me
i

∈ [0, 1],
Nelem∑
i=1

ωe
i = 1. (A.4)

That is, the time derivative of ci is a convex average of the one-sided element-based approximations ċe
i .

We remark that it is also possible to incorporate boundary terms into the residuals of local problems (A.1) to
absorb them into the definition of ċe

i and obtain a more compact representation in terms of local time derivatives.
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AppendixB. Properties of subcell-stencil upwinding

The one-dimensional Bernstein polynomials satisfy the following relationships:

Bp−1
j (x) =

p − j
p

Bp
j (x) +

j + 1
p

Bp
j+1(x),

d
dx

Bp
j (x) = pBp−1

j−1 (x) − pBp−1
j (x).

(B.1)

(B.2)

After inserting (B.1) into (B.2), the derivative can be represented as follows:

d
dx

Bp
j (x) = (p − j + 1)Bp

j−1(x) + (2 j − p)Bp
j (x) − ( j + 1)Bp

j+1(x) (B.3)

and the matrix entries κ̃e
i j =

∑
r me

i m−e
ir κ

e
r j for a constant velocity field v are given by

κ̃e
i j =

v
p + 1


j − 1 − p : i = j − 1,
p − 2 j : i = j,
j + 1 : i = j + 1,
0 : otherwise.

(B.4)

For a positive constant velocity v ≥ 0, algebraic upwinding based on (19) yields

d̃e
i j = max{−κ̃e

i j, 0,−κ̃
e
ji} =


−κ̃e

j−1, j : i = j − 1,
−κ̃e

j, j+1 : i = j + 1,
0 : otherwise

=
v

p + 1


p − j + 1 : i = j − 1,
p − j : i = j + 1,
0 : otherwise

for all i , j. (B.5)

Therefore, the off-diagonal entries of the element-based low order convection matrix can be written as

l̃ei j = κ̃e
i j + d̃e

i j =
v

p + 1


j − 1 − p + p − j + 1 = 0 : i = j − 1,
j + 1 + p − j = p + 1 : i = j + 1,
0 : otherwise

=


0 : i = j − 1,
v : i = j + 1,
0 : otherwise

(B.6)

and, hence, the diagonal entries are

l̃eii = −v for all 1 ≤ i ≤ p (B.7)

due to the vanishing row sum property of the element-based convection and artificial diffusion matrices.
The element matrix L̃e of the 1D upwind-biased convection operator has the tridiagonal lower triangular form

L̃e =


0
v −v
. . .

. . .

v −v

 ∈ R(p+1)×(p+1). (B.8)

The same matrix is obtained if algebraic upwinding is applied to the discrete convection operator of the piecewise-
linear finite element approximation on a submesh defined by the same p + 1 nodal points. This striking result implies
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that the subcell-stencil approach to discrete upwinding produces the same global matrix L for Bernstein elements
of any order p as long as the same mesh of nodal points is employed. The uniqueness of the low order convection
operator L for 1D Bernstein elements can also be shown in the case of a negative constant velocity field v < 0. It is
worth mentioning that the diagonal entries mi of the global lumped mass do depend on p. That is why the low order
scheme defined by (20) does not produce the same solutions for Bernstein polynomials of different orders.

AppendixC. Properties of element-based FCT limiters

The antidiffusive correction step (35) of an element-based FCT algorithm can be written as

micn+1
i = micL

i +

Nelem∑
e=1

f̄ e
i =

Nelem∑
e=1

(me
i cL

i + f̄ e
i ) =

Nelem∑
e=1

me
i ce,n+1

i ,

me
i ce,n+1

i = me
i cL

i + f̄ e
i , me

i =
|Ke|

Ne
dof

for all i ∈ Ne,

(C.1)

(C.2)

where Ne
dof is the number of local degrees of freedom. By constraining f̄ e

i to satisfy

cmin,n+1
i ≤ ce,n+1

i = cL
i +

f̄ e
i

mi
≤ cmax,n+1

i (C.3)

for each element containing node i, a local FCT limiter like (41) guarantees that

cmin,n+1
i ≤ cn+1

i =

Nelem∑
e=1

(
me

i

mi

)
ce,n+1

i ≤ cmax,n+1
i . (C.4)

In other words, local maximum principles can be enforced by limiting the Bernstein coefficients element-by-element
and taking advantage of the fact that cn+1

i is a convex combination of ce,n+1
i .

The finite element shape functions defined in terms of the Bernstein coefficients ce,n+1
i are given by

ue,n+1
h (x) B ue,L

h (x) +
Ne

dof

|Ke|

Ndof∑
j=1

f̄ e
j B j(x). (C.5)

The equivalent Taylor basis representation [35] of the shape function ue,n+1
h in terms of the cell average ūe,n+1

h and
partial derivatives Dque,n+1

h (x̄e), q = (q1, . . . , qd) at the center of mass x̄e reads

ue,n+1
h (x) = ūe,n+1

h +
∑

1≤|q|≤p

Dque,n+1
h (x̄e)

(x − x̄e)q − (x − x̄e)q

q!
. (C.6)

In this formula, the overline denotes averaging over Ke and the multiindex notation is employed. We have

∫
Ke

B j(x)dx = me
j =
|Ke|

Ne
dof
,

∫
Ke

ue,n+1
h (x)dx =

∫
Ke

ue,L
h (x)dx +

Ndof∑
j=1

f̄ e
j . (C.7)

By the zero sum property of f̄ e, the cell averages of ue,n+1
h and ue,L

h are equal. It follows that element-based FCT
is equivalent to element-by-element correction of derivatives followed by a projection of the discontinuous solution
into the continuous finite element space Vh. This is not the way in which FCT algorithms should be implemented in
practice but the above interpretation reveals an interesting relationship to slope-limited DG methods [17, 35].
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