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Abstract 

The question of how to assess research outputs published in journals is now a global 

concern for academics. Numerous journal ratings and rankings exist, some featuring 

perceptual and peer-review-based journal ranks, some focusing on objective information 

related to citations, some using a combination of the two. This research consolidates existing 

journal rankings into an up-to-date and comprehensive list. Existing approaches to 

determining journal rankings are significantly advanced with the application of a new 

classification approach, ‘random forests’, and data envelopment analysis. As a result, a fresh 

look at a publication’s place in the global research community is offered. While our approach 

is applicable to all management and business journals, we specifically exemplify the relative 

position of ‘operations research, management science, production and operations 

management’ journals within the broader management field, as well as within their own 

subject domain. 
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1 Introduction and objectives 

The ranking of academic journals is a highly contentious element of research 

assessment, and thus a widely debated foundation stone for the ranking of individual research 

outputs and university rankings [1, 2]. As it affects people’s careers and aspirations, the issue 

is one of perennial topicality and debate. Findings are repeatedly challenged as lists arguably 

bear non-intended consequences, skew scholarship and foster academic monoculturalism [3], 

and the methodologies underpinning the various approaches are contested as they are open to 

non-intended use [4, 5]. Within business and management, in recent years we have witnessed 

an increasing proliferation of rankings, listings and productivity indicators, drawing the 

attention of a wide range of academic disciplines, including accounting, economics, finance, 

international business and marketing [6], of associations such as the Association of Business 

Schools (ABS and the Association to Advance Collegiate Schools of Business (AACSB), 

among others, but also that of dominant industry players such as Thomson Reuters’ Web of 

Science, Elsevier’s Scopus, and Google Scholar. These various parties are distinguished by 

unique interests. The commercial providers have started to monetize a rapidly expanding and 

lucrative global intelligence information business by building on the academic ‘gift economy’ 

[7] ― collecting institutional profile information and then selling it back to the institutions for 

strategic-planning purposes [8]. However, the aim of this paper is not to go into aspects of 

‘use and abuse’ or epistemological positions regarding journal rankings [2, 4]. Instead, given 

their broad adoption in today’s academic practice, we address some distinct methodological 

shortcomings of the previous attempts to rank journals and contribute to the development of a 

more suitable methodology, which in turn, can be used to gauge the relative standing of 

individual journals more realistically. 
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There are three conventional ways of assessing journal quality: (i) subjective 

(perceptual), (ii) objective (citation-based) and (iii) a combination thereof (hybrid). All three 

feature well-known methodological limitations [9-11]. Recently, a fourth approach has gained 

momentum ― the ‘meta’-ranking approach — which, like the hybrid approach, is intended to 

provide a balanced view by delivering a composite journal ranking [cf. 12, 13]. In contrast to 

the hybrid studies, which usually combine a few rankings or ratings and often involve the 

hand-collection of perceptual data, meta-analyses typically rely on a comprehensive selection 

of existing, in many cases reputable, rankings or ratings, and aim to deliver a reproducible 

outcome (cf. Table 1). As outlined, the existence of journal rankings is often — justifiably — 

contested on philosophical grounds, and there is the fundamental question whether possible 

distortions in terms of scholarship and unintended consequences of ranking exercises [see e.g. 

2] may offset the advantages of increased manageability of scholarly outputs. Indeed, the 

emergence of meta-rankings can be seen as a result of the sheer volume and range of diverse 

lists that are — counter to the original motivation for developing them, which was to improve 

academic resource ‘management’ — proving to be unmanageable outside their respective 

academic institutions and often include different selections of journals. Within the academic 

community there seems to be agreement that if rankings are being used, the agenda should be 

the pursuit of a rigorous and objective perspective, based on state-of-the-art methodologies, 

free of individual stakeholder interests in this contentious area. 

However, despite the advances made by meta-studies, a number of shortcomings 

remain. These include, (i) arbitrary inclusion or datedness of journal lists; (ii) over-reliance on 

citation data; (iii) limited coverage in terms of disciplinary focus, number of journals and 

number of lists included; (iv) inadequate treatment of missing data and unsophisticated 

imputation methods; (vi) treatment of ordinal rank data as metric; (vii) choice of ranking 

categories. 
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In the present study, we elaborate an approach that addresses these shortcomings 

while combining the strong features of existing studies, extending these and adding novel 

features. Therefore, we substantiate the methodological underpinnings to the current debate 

on journal rankings. We (i) extend recent work and offer an aggregate journal ranking based 

on a comprehensive number of journals, (ii) cover a significant number of disciplines within 

business and management, and (iii) deploy a unique methodological approach and integrate 

subjective and objective rankings with a focus on systematism and the production of 

comprehensive journal rankings. Specifically, this is the first meta-ranking to feature both the 

random forests framework (a non-parametric state-of-the-art predictive learning method) for 

missing data imputation and data envelopment analysis (DEA) (an established non-parametric 

approach to performance evaluation of peer entities) for the aggregation of rankings. This 

paper is decidedly focused on the methodological advancement of existing journal rankings. 

Thus, our final aggregate journal ranking outcomes (see and Table 5) can be seen as frame of 

reference for a substantive discussion and objectification of journal rankings, which is 

otherwise rather politicized. 

The paper is organized as follows. The next section provides a critical review of 

objective, subjective and hybrid approaches to journal ranking and rating. Following this, 

Section 3 provides an overview of the major meta-ranking studies. Subsequently, in Sections 

4 to 6, we present our novel meta-approach to journal ranking and rating, discuss its specific 

methodological advancements and apply it to our data set of journal rankings and ratings. 

This involves dealing with issues of database compilation, data missingness and imputation 

methods, classification trees, random forests and the subjection of the data to DEA. Section 7 

concludes with a discussion of main results of our study and their implications. Appendices 

provide full modeling and computational details. 
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With particular emphasis on operations research, management science, production and 

operations management (OR/MS/POM), we apply the method to ascertain the relative 

positions of journals within the broader business and management discipline, as well as the 

relative position within the OR/MS/POM field. 

2 Review of objective, subjective and hybrid approaches to journal 

ranking and rating 

With regard to objective ranking, issues arise around the analysis of citation data. The 

Impact Factor delivered by the Journal Citation Reports [14] — defined as the number of cites 

received in the given year by an average article published in the given journal within the 

preceding years — is the most widely accepted citation-based measure for “significance and 

performance of scientific journals”. It is widely acknowledged for its comprehensibility, 

robustness and availability [15]. Yet, it has received a considerable amount of criticism in the 

literature, connected to the accuracy problem in collecting citation data, undifferentiated 

treatment of citations, biases due to different maturing of published work across different 

journals, inaccurate definition of citable work and differing citation habits across different 

sub-disciplines. Further criticism includes biasedness towards journals with lengthy articles 

[15, see also 16]; and  a selective disciplinary and geographical coverage [17, 18]. Some of 

these deficits have recently been addressed by introducing a newer, prestige-oriented metric 

called Eigenfactor Score [19] which augments the Journal Citation Reports, and the 

emergence of Scopus — a citation database by Elsevier which offers a broader journal 

coverage together with new citation indices SNIP (Source-Normalized Impact per Paper) and 

SJR (SCImago Journal Rank). These aim to account for discipline-related citation habits and 

the prestige of the citing journals, respectively [20, 21]. Yet, and despite these advancements, 

extensive discussions of the underlying methodological issues raise concern of the sole 

reliance on citation-based analysis in journal ranking exercises. This is because important 
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work may be considered as “common knowledge” and is sometimes left uncited — with 

acknowledgement given to other work or citation counts frequently representing simply 

fashion and herding within the academic community which implicates that citing does not 

necessarily imply influence [9, 22, 23]. There are also problems of selective citations and the 

opportunity for self- and mutual citations, a poor association between the quality of a journal 

and that of individual articles in it, as well as possible subjectivity which can be pertinent to 

the analysis based on the objective citation data [5, 24, 25]. Regardless of these shortcomings, 

the citation impact factor remains an important indicator in the academic community to assess 

journal quality.  

Subjective, or perceptual, rankings are developed via opinion surveys among the 

experts within an institution, a society, or a research network and may be motivated by the 

needs to elaborate a basis for institutional decision making and evaluation purposes as well as 

to provide guidance within particular disciplines [1, 26, 27]. For these reasons, a variety of 

rankings exist which are tailored to the needs of a particular institution or a discipline [10, 26-

28]. Generally, perceptual rankings alleviate the problems pertinent to citation data, and 

explicitly capture the perceived quality of journals [5, 29]. On the other hand, they are prone 

to biasedness in the experts’ judgments — due to the institutional focus or self-identification 

with particular journals [11, 26]. Furthermore, the coverage of perceptual lists is often 

restricted to a particular discipline or by institutional preferences [26]. 

Due to the shortcomings of the above two approaches, the hybrid lists — which in 

some way combine subjective and/or objective data — have gained attention in the literature 

[e.g. 13, 29, 30]. Indeed, pooling data that originates from different sources helps to produce a 

more balanced view and is seen as a desired approach [13, 27, 31]. However, hybrid ranking 

lists typically have a particular disciplinary or geographical focus; they usually combine a few 
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rankings or ratings and involve hand-collection of perceptual data, and, with a few exceptions, 

use unsophisticated and less principled techniques for data aggregation [cf. 1]. 

Because objective, subjective and hybrid approaches have attracted the above 

criticisms, the meta-approach to journal ranking and rating has recently received a substantial 

development, being intended to overcome the drawbacks of the hybrid approaches by relying 

on a comprehensive selection of existing, in many cases reputable, rankings or ratings, and 

aiming to deliver a reproducible outcome.  

3 Overview of journal meta-rankings and ratings 

Table 1 offers a compilation of the main journal meta-ranking studies. As can be seen, 

most of these studies focus on particular sub-disciplines, with the exception of Mingers and 

Harzing [1] and Halkos and Tzeremes [22] who take a cross-disciplinary approach. The 

journal coverage ranges from 25 to 229, with the exception of Mingers and Harzing [1] who 

cover over 800 journals. In terms of rankings used, most of the studies draw on a combination 

of subjective and objective rankings. Two thirds of the meta-rankings are based on journal 

rankings contained in Harzing’s broadly accepted Journal Quality List (JQL) [32]. 

The number of underlying rankings is often 10 or less. There is quite a spread in terms 

of the recentness of the rankings, with only two studies covering recent years. As for data 

missingness, which arises because of selective coverage of journals, either this is not 

addressed, or it is not dealt with properly in these meta-rankings (see Section 5.1). For Theußl 

et al. [33] and Cook et al. [12], data missingness is not an issue. They effectively adopt the 

perspective that only the observed rank data can determine the ultimate ranking. There are a 

few, varied, attempts to impute missing data: for example, Bancroft et al. [34] employ a 

maximum likelihood approach, while Mingers and Harzing [1] implement a form of chained 

regression. 
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Insert Table 1 about here 

As for the aggregation method for rating/ranking journals, the main approaches used 

are scoring methods, cluster analysis and consensus ranking via integer programming, with 

only one study, that of Halkos and Tzeremes [22], featuring the state-of-the-art DEA. While 

scoring is attractive due to its simplicity, it is rather subjective in its application. Cluster 

analysis offers a more advanced approach, but usually only delivers a limited set of 

categories. DEA, in contrast, is a methodologically profound and objective approach that 

helps to reduce manipulation, over-interpretation and bias. The integer programming 

approach deployed by Theußl et al. [33] and Cook et al. [12] is very effective at producing a 

consensus ranking, yet it works within the confines of treating missing data as non-existent. 

Further, it cannot deliver an interval or ratio scale outcome.  

4 Compiling a database for journal meta-ranking 

In view of the limitations and shortcomings of meta-rankings described above, we 

proceed to develop a comprehensive journal database, which will subsequently be subjected 

to our rating and ranking exercise.  

The primary databases are the journal quality ranking lists contained in the 49th edition 

of Harzing’s Journal Quality List (JQL49) [32] and the Thomson Reuters Journal Citation 

Reports [14, various years]: 

• The ranking lists contained in JQL49 are dated in the range from 2001 to 2013.  

• To reflect an up-to-date, rather than historical, journal status, we select the 10 most recent 

ranking lists (out of the 22 contained in the JQL49 database), covering a 6-year time span 

(2008 to 2012).1  

                                                 
1 The Wirtschaftsuniversität Wien Journal Rating 2008 (WIE 2008) list was excluded because it now 

publishes only its A+ and A ratings and no longer its B, C and D ratings. If we had included WIE 2008, 
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• We update and correct a number of the journal lists in JQL49 based on information in the 

most recent publicly available editions of the respective ranking lists.2 

• In order to capture a comprehensive quantity of journals, all journals listed in JQL49, a 

total of 939 journals, are considered. This provides a broad and cross-disciplinary 

coverage. 

 
The 10 ranking lists selected for aggregation by means of DEA (Section 6) are labeled 

‘target lists’, as shown in Table 2. In an additional step, these rankings are further augmented 

by including 2011 Impact Factor data from the Journal Citation Reports [14]3. Thus, we use 

11 rankings in total. 

Insert Table 2 about here 

Most of the journal quality lists rank the journals on an ordinal scale, using differing 

numbers of scale gradations (ranks) and their designations. Thus, we relabeled the ranks in 

each of the lists as 1, 2, etc., from highest to lowest. The length of the original scale is 

maintained in all lists. This overcomes the problems related to adjusting original scale lengths 

to a common scale length, and the resulting subjectivity/arbitrariness [31]. 

In addition, all journals with an Impact Factor are ranked and divided into quintiles, 

with 1 denoting the top quintile, 5 the lowest quintile, and a value of 6 being assigned to 

journals that are not indexed in the 2011 Journal Citation Reports. This procedure helps to 

                                                                                                                                                         
journals that it ranked below an A would have been wrongly recorded as missing cases. We also excluded 
Den 2011 (Danish Ministry Journal List) because it has only two categories: top journal and others, it is 
thus lacks differentiation. We further excluded FNEGE (Foundation National pour l’Enseignement de la 
Gestion des Entreprises) 2011 because it merely replicates the CNRS (Centre National de la Recherche 
Scientifique) 2011 ratings for management and business journals. Finally, we excluded AERES (Agence 
d’évaluation de la recherche et de l’enseignement supérieur) 2012 because it mainly maps CNRS 2011 
ratings to a scale with fewer gradations and does not substantially add to the existing data. 

2 We have in particular made corrections in the ranking lists ABS 2010, CNRS 2011, UQ 2011 and HEC 
2011. These and other adjustments of the JQL can be obtained from the authors on request.  

3 We use the two-year average of the 2011 Impact Factor [14]. An alternative would have been to use the 
five-year average. However, for a number of journals, no five-year average data exists. If we had used a 
five-year average, these journals would have received a non-entry, despite being included in the citation 
list. The same rationale applies to the exclusion of alternative measures such as the article influence score. 
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alleviate several of the well-known shortcomings of using the Thomson Reuters metric score 

in analyses [cf. 18], as well as the problems with conventional normalization procedures [26]. 

5 Resolving the data missingness problem in journal rankings and ratings 

5.1 Data missingness and imputation approaches 

A significant problem pertinent to journal meta-ranking approaches is the considerable 

amount of missing data. In our database of 939 journals, target ranking lists from 1 to 10 (see 

Table 2) contain 4,770 entries out of the 9,390 possible. This corresponds to an overall 

missingness rate of nearly 50%. The pattern of missingness varies across journals, and 

coverage rates range from approximately 28% to 88% across lists. As can be seen from Figure 

1, three strategies for dealing with data missingness can be identified in the existing journal 

ranking studies: 

1) Completing the data set. This can be achieved either by the removal of records with 

missing data — which would however lead to an undesirable loss of information ― or by 

imputation. The latter involves replacing missing entries with artificially generated values 

(see below).  

2) Averaging. For example, Rainer and Miller [35] calculate the average score from 

the ranks that are available. However, this may lead to biased results [see 34]. The same 

criticism applies to the work of Franke and Schreier [31] and Steward and Lewis [27] who 

use a form of weighting to replace the missing data.  

3) Reliance on stated preferences. Cook et al. [12] and Theußl et al. [33] employ an 

integer programming method that seeks to find the consensus ranking that exhibits the least 

total deviation from the underlying rankings. They thus neither extrapolate nor disregard 

existing data. Instead, their approach relies purely on the pairwise preference relations 

between the journals, effectively stated by the underlying ranking lists. Despite its 
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advantages, we do not use the approach in this paper, instead favoring imputation for the 

following reasons: Firstly, as Mingers and Harzing [1] point out, lists can be biased in their 

selective coverage and imputation reduces this bias. Tse [36] supports this, referring to 

humans’ limited information-processing capability [cf. 12]. Secondly, imputation enables us 

to extend lists while retaining their original spirit [37]. Therefore, this paper considers 

imputation to be the most viable strategy for dealing with missingness in journal lists. 

Insert Figure 1 about here 

In line with Farhangfar et al. [38] and Gheyas and Smith [39], three approaches to 

missing data imputation can generally be identified (see Figure 1): 

1) Data-driven imputation methods [38]. Missing items are replaced with artificial 

values, for example the mean, median or mode of the respective variable, or with a random 

draw from the observed values [39, 40]. However, these methods distort the association 

between variables [40]. In the context of the journal ranking problem, the approach would 

lead to the distortion of the aggregate ranks of individual journals. While this is partly 

overcome by Benati and Stefani [10], who associate missing rank data with a separate 

category, their approach is not tailored to offer a rank ordering of journals. 

2) Parametric imputation methods. These methods assume an explicit data model, 

such as the regression imputation [40, 41] or the maximum likelihood approach featured by 

the expectation–maximization (EM) algorithm [42]. The multiple imputation methodology 

[see e.g. 40, 43] represents a further advancement but its reliance on the assumed data model 

can lead to incorrect inferences [e.g. 41, 44] and it should be used with caution [43, 45]. With 

regard to journal rankings, Bancroft et al. [34] use the maximum likelihood approach to arrive 

at rank estimates for 25 journals related to business policy/strategic management research, 

previously ranked in a longitudinal study with censoring. Mingers and Harzing [1] use a form 
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of chained regression imputation to estimate missing ranks for a restricted subset of journals 

drawn from seven ranking lists of the JQL (17th ed.). Similarly, Schulze et al. [37] carry out 

repeated imputation through a sequential univariate regression and a single imputation 

through a sequential multivariate regression, while utilizing a number of additional ranking 

lists as predictor variables (yet they deal only with imputation and do not attempt to derive an 

aggregate rating or ranking). However, parametric methods have received criticism regarding 

potential model misspecification and validity concerns [39, 41, 46]. 

3) For the purposes of our study, we pursue the branch of non- and semi-parametric 

imputation methods, as these do not (or do not fully) rely on a data model [39, 41]. A major 

advancement within this branch is the group of machine learning approaches [46], which we 

draw on for our study [see e.g. 39, 47]4. In particular, the work by Twala et al. [48] 

demonstrates the competitiveness of tree-based methods compared to parametric imputation 

methods in terms of predictive accuracy, see also Hapfelmeier et al. [49]. More specifically, 

we utilize the random forests method [50] which represents a recent and remarkable 

advancement in non-parametric classification and regression. This method employs an 

ensemble of classification or regression trees (see Section 5.2) for predicting the response 

variable as a committee, while the process of constructing the individual trees in the ensemble 

involves randomness. This approach results in a superior prediction accuracy that compares 

favorably or competitively ‘to the best statistical and machine learning methods’ [51-53]. At 

the same time, the random forests method is deemed more versatile than the conventional 

statistical methods and can flexibly accommodate a wide range of prediction problems — 

even those that are ‘nonlinear and involve complex interactions’ [53], while being 

                                                 
4 Gheyas and Smith [39] provide an overview of imputation approaches, and in particular those featuring 

neural networks. However, we do not consider this group of methods in our study, preferring instead a 
methodology which is more straightforward in its application. 
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acknowledged, among others, for robustness and ease of training as compared to other 

machine learning methods [52, 53]. 

5.2 Classification trees and random forests and their application 

Classification and regression trees (CART) represents a well-established and widely 

used non-parametric predictive learning method [46, 52], which has been developed with a 

strong emphasis on the possibility of missing data among the variables. It seeks to determine 

the association between the response and predictor variables via recursive, data-driven, 

partitioning of the predictor space and exhibits a degree of accuracy comparable to the best of 

the classical statistical methods [54], while producing highly interpretable models and 

exhibiting other strong advantages [52]. Breiman [50] has advanced CART to produce the 

random forests framework which effectively reduces variability of individual tree predictions 

by de-correlating and aggregating them across a tree ensemble, offering as a result a 

remarkably high prediction accuracy and a number of other advantages [52, 53]. Random 

forests are particularly easy to train, basically requiring to fine tune a few parameters only. 

Sections A.1.1 and A.2.1 in Appendix A give more detailed overviews of CART and random 

forests methodologies. 

Drawing on the random forest framework, we proceed towards imputing the missing 

data in each of the target journal-ranking lists5. Imputation in each individual list is based on 

predictor variables which are comprised of: (i) journals’ subject areas as per JQL49; (ii) the 

remaining target lists6, (iii) other journal ranking lists included in JQL49, and (iv) Citation 

Impact Factors from the Journal Citation Reports (see Table 2 and Table 3). Specifically, we 

utilize ranking lists from 2001 onwards (see Table 3). Although these are older than the cut-

                                                 
5 Table 2 exhibits 11 target lists. Imputation has to be carried out in 10 of these.  
6  As indicated in Section 4, target ranking list no. 11 is based on 2011 Impact Factor data [14] and features 

an ordinal rank scale with a few gradations for the purposes of aggregate ranking. When acting as a 
predictor variable for missing data imputation, this ranking list however maintains original ratio scale data 
of the 2011 Impact Factor if the latter is available, and indicates a missing value otherwise. 
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off date for the target lists, and are therefore based on more historical data, their inclusion is 

warranted to improve imputation accuracy.7 

Insert Table 3 about here 

The first step in the application of random forests is to (i) pre-impute missing entries 

in each single predictor.8 This task is necessary as the predictor variables themselves have 

missing values. While random forests have a built-in mechanism for this step, we use CART 

to accomplish this task.9 The second step involves (ii) checking the imputation accuracy in 

the target lists using cross-validation [see e.g. 52]. We find differences in the accuracy of the 

imputations for different ranking lists. For instance, missing values for Ast 2008 are found to 

be more difficult to predict than missing values in other lists. Additionally, we perform 

numeric experiments using different settings for CART and random forests to determine the 

optimal parameter settings for the imputation engine. The third step is (iii) the actual 

imputation of missing data in the target lists. Having regard for misprediction rates in all of 

the target lists in step ii , we find that it would be inappropriate to stick to the point estimates 

of missing rank data; instead, the uncertainty involved must be reflected in rank predictions. 

We therefore adopt, similarly to Zhou et al. [30], a fuzzy rank approach — by letting each 

journal belong to two or more different ranks within the same ranking list, while the 

respective degrees of rank membership are required to sum up to unity (e.g. in ABS 2010, 

journal X is 60% associated with rank ‘1’ and 40% with rank ‘2’). A particular advantage of 

                                                 
7 Although VHB 2011 and UQ 2011 are included in the primary list, VHB 2003 and UQ 2007 are also used 

for imputation purposes because they use different methodologies, scoring systems or ranking procedures 
from the newer versions of the lists [for details and a discussion of the VHB and UQ lists, see 32].  

8  All necessary computations have been conducted in R software environment (version 3.0.0). We have used 
CART implementation delivered by the R package rpart (version 4.1-1) and the implementation of the 
random forest method delivered by the R package randomForest (version 4.6-7). 

9  This approach had to be adopted because randomForest package (see footnote 8) does not allow for 
missing data when predicting an unknown response. Handling such situations is however an inherent 
feature of CART, thus the said approach has been adopted (see e.g. Hastie et al. [52, p. 333]). After pre-
imputing the missing values in the predictor variables, we add one dummy variable per each such predictor 
to indicate whether the respective predictor value is original or has been pre-imputed. 
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this approach is that our aggregate ranking method (see Section 6 below) accommodates 

fuzzy rank membership in a natural way. 

Notably, random forests have a built-in mechanism for estimating individual rank 

probabilities when making a prediction. We accordingly adopt these probabilities as the 

respective degrees of rank membership predicted for the given journal in the given ranking 

list. Random forests exhibited a superior performance in producing such estimates [55]; 

however, that performance can be further improved by means of calibration techniques. For 

this purpose we have employed the calibration method suggested by Boström [56] and 

similarly used the Brier score (mean squared deviation of the predicted rank probabilities 

from the true ones) as performance measure, while the calibration data set has been comprised 

of all test data samples which had been formed in the course of cross-validations conducted in 

step ii. In our experience, calibration has yielded only a marginal improvement of the Brier 

score, which is in line with Niculescu-Mizil and Caruana [55]. By completing this step we 

have produced a comprehensive and complete data set, which is then subjected to DEA. 

Appendix A provides details to the individual steps of the above imputation procedure. 

6 Rating and ranking journals by DEA 

DEA [57] represents an established management science approach to multi-attribute 

rating of peer entities [58-60], in our case journals. A typical DEA setup involves measuring 

the efficiency of a number of peer entities called decision-making units, or DMUs (e.g. 

universities) that have a number of common inputs (e.g. budgets, number of staff) and outputs 

(e.g. research outputs, teaching quality). These inputs and outputs constitute the basis for 

evaluating the efficiency of the DMUs. There are no a priori weights attached to the inputs 

and outputs. Instead, DEA offers each DMU an opportunity to cross-evaluate and apply input 

and output weights that most favorably express its own efficiency. Essentially, DEA 
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determines ‘frontiers rather than central tendencies’ in the data [58], [61]. As a non-

parametric method, it requires no a priori assumptions on the interaction between the 

variables in the data set [58]. 

Conventionally, the DEA methodology is applied to metric data, but it has been 

extended to cover a variety of settings with ordinal rank data [see 62 for a recent discussion]. 

Cook et al. [see e.g. 63] further addressed settings with a differentiated treatment of individual 

rankings — an approach that particularly suits the aggregate journal rating purposes. Against 

this background, DEA treats rank positions in individual ranking lists as outputs of the DMUs 

(i.e., journals) while assuming away any variable inputs. It then allows each journal to attach 

weights to the individual rank positions in each target ranking list. These rank weights should 

represent the respective journal in the best possible light or, more specifically, provide it with 

the maximum possible weighted average rank, representing the journal’s self-rating of its own 

performance. Furthermore, the weights chosen by the journal also determine performance 

ratings of all other journals from its perspective. Thus, by choosing its own rank weights, 

each journal explicitly evaluates itself vis-à-vis all other journals. In this way, a cross-

evaluation matrix is obtained, from which the ultimate ratings of the individual journals can 

be derived [64, 65]. 

Due to the DEA’s advantage of avoiding a priori assumptions and subjective bias, we 

adopt the above approach to derive an aggregate journal rating and ranking. To this end, we 

employ the DEA framework for aggregation of ordinal preferences by Green et al. [64]  while 

further extending it to include a rank discrimination threshold in line with Noguchi et al. [65] 

and a differentiated treatment of individual rankings as in Cook et al. [63]. In addition to that, 

we enforce convexity constraints on the rank weights in line with Hashimoto [66]. Further, 

we use the aggressive form of cross-evaluation [64] to give each journal the opportunity to 

appear most strongly against its peers, and derive the ultimate journal ratings from the cross-
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evaluation matrix using the arithmetic means so that all journals have an equal say in 

determining the final result. Section B.1 in Appendix B provides specific details to the DEA 

model adopted in our study and to the cross-evaluation method. 

As explained in Section 4, we subject 11 target ranking lists to the above aggregation 

procedure, while the missing rank data has to be imputed in these lists by means of the 

random forests method as per Section 5.2, and supplied to DEA in the form of fuzzy 

membership degrees to which the respective journal is associated with the individual ranks of 

the respective ranking list. This represents a distinctive feature of our model as compared to 

DEA approaches to ordinal rank data [62-66]. Random forests method can impute the fuzzy 

rank membership in a natural way and ordinal DEA can also accommodate fuzzy rank data. 

Thus, these two approaches are complementary to each other for the purposes of aggregate 

journal rating.  

Before proceeding with DEA, we exclude from the final list of journals used in this 

study those journals with ranks available for less than 25% of the 11 target lists (see Table 2). 

This reduces the list from 939 to 786 journals, representing around 84% of all journals in 

JQL49. This approach is taken because the ranks that are available for sparsely ranked 

journals may not be representative enough, and it also ensures that the imputations are 

‘pluralistic’ enough rather than being based on just one or two rankings. Our conservative 

choice of this lower limit of 25% for the number of original rankings per journal is in line 

with previous related studies, such as Cook et al. [12] and Theuβl et al. [33].10  

A particular problem in attaching weights to the individual journal ranks in our DEA 

exercise is the arbitrary choice of a rank discrimination threshold to separate the weights of 

any two consecutive ranks [see 62, 64, 65, 67]. If the threshold is virtually ‘0’, this leads to 

the undesirable suggestion that there may be no difference between any pair of journal ranks. 

                                                 
10 We found that the final results remain robust when this lower limit is set to a higher value, e.g. 35%. 
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If the threshold value is set to the maximum, this infringes on the spirit of DEA, since it 

largely restricts the freedom of choice in determining the rank weights [64]. We resolve this 

dilemma by setting up the process so that journals settle on an intermediate value of the 

threshold via Nash bargaining [68]11. Section B.2 in Appendix B provides specific details to 

the implementation of this procedure. Accordingly, we find the compromise value of the 

threshold to be 31.3% of the maximal possible value. We then use DEA to rate the journals, 

producing in effect rating scores in the range from 0.55705 to 1, which yield 729 unique 

ranks, with 786 tied ranks. Table 4 and 5 offer a selection of the results. 

We also conduct a series of tests to address the sensitivity of the final rating to the 

choice of the rank discrimination threshold. We find that the results differ across the entire 

range of feasible threshold values — with Pearson correlations among the corresponding 

ratings ranging from 80.4% to 100% and Spearman rank correlations from 79.7% to 100%. At 

the same time, the rating remains robust in the proximity of the selected threshold value; 

neither of the above two correlation measures falls below 99.97% within the range of ±10% 

around the selected threshold value. The final rating exhibits a Pearson correlation of 88.2% 

and a Spearman rank correlation of 89.9% with the rating produced by means of the Borda 

count — a points-based system that specifies equidistant weights for the individual ranks in 

each of the ranking lists. 

Insert Table 4 and Table 5 around here 

                                                 
11  To be specific, we consider a bargaining problem with n = 786 players [68] where journals are acting as 

players. The utility that a journal attaches to a particular threshold value is taken to be its own standing in 
the DEA rating that arises under this threshold value. A journal’s standing is defined as the difference 
between this journal’s rating score and the average one across the list, normalized to account for the length 
of the rating scale. The analytic form of each journal’s utility function is obtained by fitting a cubic 
polynomial to 10 equally spaced data points computed for each journal within the feasible range of the 
threshold. Further, instead of using the disagreement point in the sense of the original Nash bargaining 
problem, we refer to the minimum utility point [69] — where, accordingly, a journal’s minimum utility is 
its lowest possible standing throughout the entire feasible range of the threshold. The bargaining solution is 
then determined as the threshold value that maximizes the Nash product over the entire feasible range [see 
also 70]. 
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7 Conclusion and implications 

The debates over the use and abuse of journal rankings are heated and have recently 

heightened in their intensity. Much of the effort in the scholarly exchange regarding these 

rankings is concerned with the construction and publication of list data. However, 

fundamental issues related to epistemological positions and their implications for scholarly 

exchange and the scientific production system [71] are still to be resolved [72]. This paper 

empathizes with these concerns and criticisms in relation to issues such as the 

homogenization of research cultures, the reduction of pluralism, the skewness of scholarship 

and the polarization and entrenchment of orthodoxies [2], to mention just a few. 

Notwithstanding the importance of the wider and philosophical discourse, the main 

contribution of this paper is a methodological one, driving the advancement of journal 

rankings. Our position is that, if journal rankings are here to stay, we better pursue a rigorous 

perspective based on state-of-the-art methodologies that transcend the individual stakeholder 

interests in this contested field.  

With this paper we provide a meta-ranking that overcomes some of the specific 

shortcomings of the existing meta-rankings in terms of the construction of the underlying 

database, the treatment of missing data and the ranking approach. To the best of our 

knowledge, this is the first study to go beyond previous ranking snapshots, and to uniquely 

feature a combined application of the random forest framework and DEA, two established 

non-parametric methods, in the construction of the aggregate list. This makes our study 

wholly non-parametric and therefore free from subjective a priori assumptions about the 

interaction between the various ranking and rating data included in the study. In this process, 

we ensure that we retain the strong features of existing and relevant methods, extend them and 

add novel features (such as fuzzy rank membership and rank discrimination via Nash 

bargaining) so as to arrive at a ‘state-of-the-art’ meta-ranking. Confidence in our findings is 
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established through a series of extensive robustness checks, and reliability and cross-

validation procedures. However, despite the recency of our methodological approach, future 

work may still direct its attention towards some possible extensions. For example, it could be 

explored whether a form of ‘discounting’ or weighting should be introduced for the imputed 

journal ranks, due to their omission from the original ranking studies. In our research, they are 

treated on an equal basis to the existing ranks.  

Table 4 offers a selection of the final aggregate journal ranks. We deliberately refrain 

from making any judgement as to the quality of various ranks, or the ‘star-rating’ of certain 

journals, as is frequently found in other ranking lists. We simply provide a rank-ordering of 

the journals along with their numerical ratings, leaving stakeholder or user groups to arrive at 

their own subjective judgments regarding the cut-off points for quality grades. There are also 

a number of useful applications of this list. It allows for the relative standing of a particular 

journal to be ascertained vis-à-vis all other journals, as well as within its own subject area. 

Based on our meta-ranking, Table 5 highlights the ranking order of journals within the 

OR/MS/POM domain. Management Science, Journal of Operations Management and 

Operations Research occupy the top-three positions. This discipline is represented over 

proportionally well when looking at the top 50% of all the journals within the business and 

management area. Overall, the journals in this subject area perform well vis-à-vis other 

disciplines that are included in our meta-ranking. Table 5 also offers a look at the relative 

position of journal outlets from a disciplinary perspective. OR/MS/POM journals account for 

about 10% of all the 786 journals in the final list of our meta-analysis. They account for 

around 10% of the top 5% of the whole journal list (Management Science, Journal of 

Operations Management and Operations Research, Journal of the Royal Statistical Society: 

Series B) and for around 12% of the top 10% and top 20%. Journals up to a tied rank of 19 in 

Table 5, including Decision Sciences, Risk Analysis, European Journal of Operational 
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Research and Omega fall within the top quartile of their own subject discipline and within the 

top 20% of all management and business journals (see Tables 4 and 5). On the other hand, 

OR/MS/POM journals account for only around 7% of both, the lower third and lower quartile 

of journals in our meta-ranking list.  

Besides, our meta-ranking may also serve as a reference point onto which the grade 

and/or star-rating of a particular journal or the population of journals in other lists (e.g. ABS, 

VHB, Cranfield) can be mapped (see Table 5). This allows pinpointing whether there is 

congruence between the journal grading of those lists and the results of our meta-approach.  

Since we have deliberately refrained from attaching grade categories to our journal 

rankings, the interpretation of such a comparison lies in the eye of the beholder. However, if 

we were to find gross discrepancies between our meta-ranking and other journal ranking lists, 

this would not be easy to argue away. Instead, it may serve as an invitation to the authors of 

the journal list in question to revisit their assessment and ameliorate such discrepancies. 

While our list is certainly not a panacea, we introduce a ‘dose of objectivity’ into some of the 

issues picked up in the wider debates on journal rankings, such as vested interests, 

gamesmanship and politicking. To this end, we hope to contribute to shifting the discussion 

back towards the essence of scholarly endeavours, namely the development of interesting and 

relevant contributions. 
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Tables and Figures 

Table 1: Overview of journal meta-ranking studies and selected hybrid ranking studies 

 Disciplinary focus No. of 
journals 

No. of 
rankings used 

Rankings 
used 

Age of 
rankings 

Treatment of 
missing data 

Imputation 
method 

Rating / 
ranking by 

Outcome: rating or ranking 
(scale type, feasible range, meaning) 

Meta-Rankings 
Bancroft et al. 1999 
[34] 

Business policy / 
strategy 

25 5 P 1987–1994 Imputation Maximum 
likelihood 

Mean rank Rating (interval 1–4, 4 = outstanding as a publication outle
ranking (ordinal 1–23, 1 = top rating) 

Benati & Stefani 
2011 [10] 

Mathematics & 
Economics 

138 7 JQL, OI 2002–2005 Imputation  Separate 
category 

Cluster 
analysis 

Classification (nominal, 4 classes) 

Theußl et al. 2014 
[33] 

Marketing 62 12 JQL 2001–2009 Ignoring  IP Ranking (ordinal 1–5†, 1 = top quality) 

Cook et al. 2010 
[12] 

Accounting 140 26 P, JQL, 
OI, C, U 

2002–2007 Ignoring  IP Ranking (ordinal 1–33†, 1 = top quality) 

Mingers & Harzing 
2007 [1] 

Business, management 
and related disciplines 

834 10 JQL, C 1994–2005 Partial 
imputation 

Chained 
regression 

Cluster 
analysis 

Ranking (ordinal 1–4, 4 = top quality) 

Halkos & Tzeremes 
2011 [22] 

Business, management 
and related disciplines 

229 8 C, JQL, 
OI 

2009 Does not apply  DEA Rating (ratio 0–1, 1 = maximum performance in terms of 
citedness), ranking (ordinal A–D, A = top tier rating) 

Franke & Schreier 
2008 [31] 

Tech. & Innovation / 
Entrepreneurship 

43 37 C, JQL, P, 
U, OI 

1989–2004 Ignoring  Scoring Rating (ratio 0–10, 10 = max. quality), ranking (ordinal 1–
39, 1 = top rating; ordinal A–D, A = top tier rating) 

Rainer & Miller 
2005 [35] 

Management 
Information Systems 

50 9 P, C 1991–2001 Ignoring  Scoring Rating (ratio 0–1, 0 = maximum quality), 
ranking (ordinal 1–47, 1 = top quality rating) 

Steward & Lewis 
2010 [27] 

Marketing 100 11 P, C, U 1993–2006 Ignoring  Scoring Rating (ratio 0–1, 0 = maximum quality), 
ranking (ordinal 1–49†, 1 = top quality rating) 

Hybrid Rankings (selected) 
Zhou et al. 2001 
[30] 

Cross-disciplinary 
(Hong Kong RAE) 

285 * 3 C, OI, OS 1996–2000 Does not apply  Fuzzy 
inference 

Ranking (ordinal A–C, A = top quality) 

Morris et al. 2009 
[26] 

Business, management 
and related disciplines 

1039 ** 9 OI, C, OS 2003–2008 Ignoring  Modal score 
& Delphi  

Ranking (ordinal 0*–4*, 4* = top quality) 

Crookes et al. 2010 
[73] 

Nursing & midwifery 144 3 OS, C 2006–2007 Does not apply  Scoring Rating (interval 0–100, 100 = maximum quality), 
ranking (ordinal 1–4, 1 = top tier rating) 

DuBois & Reeb 
2000 [74] 

International Business 30 5 C, OS 1995–1998 Does not apply  Scoring Ranking (ordinal 1–23, 1 = top quality) 

Bauerly & Johnson 
2005 [29] 

Marketing (mainly US 
background) 

252 1 U, OS 2001 Does not apply  Does not 
apply 

Rating (ratio 1–1434, citations in doctoral program syllabi)
ranking (ordinal 1–34†, 1 = top rating) 

Kao et al. 2008 [13] Management 
(Taiwanese journals) 

46 5 C, OI, OS 2003–2005 Does not apply  DEA & 
scoring 

Rating (ratio 0–1, 1 = maximum quality), ranking (ordinal 
1–46, 1 = top rating; ordinal A–E, A = top tier rating) 
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Notes: Legend:   Legend: 
* Ranking of just a single journal within a single discipline with 285 
journals is provided as an illustration 
** As of 21 April 2009 
† As for the number of journals in the reported ranking 

P — Perceptual rankings published in academia 
OS — Opinion survey as source of perceptual data 
JQL — Cross-disciplinary rankings present in the JQL 
OI — Other institutional cross-disciplinary rankings 
C — Citation data or citation-based rankings 
U — Rankings featuring other usage data (e.g. 
      download counts, citations in syllabi etc.) 
The symbols are in descending order of the respective rankings’ 
share in the data set. 

IP — integer programming 
DEA — data envelopment analysis 

 

 



Consolidation of journal rankings 

Page 25 of 68 

 
Figure 1: Approaches to treatment of missing data in journal rankings and methods of 
completing the data set 

 

Note: Shaded boxes represent the approach followed in this paper. 
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Table 2: Target lists 

No. Title Year Abbreviation 
1 Aston 2008 Ast 2008 
2 Australian Business Deans Council Journal Ranking List 2010 ABDC 2010 
3 Association of Business Schools Academic Journal Quality Guide  2010 ABS 2010 
4 Centre National de la Recherche Scientifique  2011 CNRS 2011 
5 Hautes Études Commerciales de Paris Ranking List 2011 HEC 2011 
6 University of Queensland Adjusted ERA Ranking List  2011 UQ 2011 
7 Association of Professors of Business in German-speaking 

countries  
2011 VHB 2011 

8 Cranfield University School of Management 2012 Cra 2012 
9 ERASMUS Research Institute of Management Journal Listing  2012 EJL 2012 

10 ESSEC Business School Paris 2013 ESS 2013 
11 Impact Factor from the Thomson Reuters Journal Citation Reports 2011 Thomson 

Reuters 2012 
 

Table 3: Additional lists used for imputation purposes 

No
. 

Title Year Abbreviation 

1 Wirtschaftsuniversität Wien Journal Rating 2001 WIE 2001 
2 Association of Professors of Business in German-speaking 

countries 
2003 VHB 2003 

3 British Journal of Management (Business & Management RAE 
rankings) 

2001 BJM 2004 

4 Theoharakis et al. 2005 Theo 2005 
5 Hong Kong Baptist University School of Business 2005 HKB 2005 
6 European Journal of Information Systems  2007 EJIS 2007  
7 European Journal of Information Systems (including citation 

impact factors) 
2007 EJIS–CI 

8 University of Queensland Journal Rating 2007 UQ 2007 
9 

to 
14 

Impact Factor from the Thomson Reuters Journal Citation Reports 2005 
to 

2010 

Thomson 
Reuters 2006 
to 2011 
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Table 4: Aggregate journal ranks: selected results (N = 786) 

Journal Subject area Rating Ranking 
Tied 
Rank 

Academy of Management Review  General Management & Strategy 1 1 1 

Administrative Science Quarterly  General Management & Strategy 1 1 1 

Journal of Finance Finance & Accounting 1 1 1 

Journal of Marketing  Marketing 1 1 1 

Quarterly Journal of Economics Economics 0.99853 2 5 

Journal of Political Economy  Economics 0.99832 3 6 

Econometrica  Economics 0.99701 4 7 

American Economic Review (The)  Economics 0.99411 5 8 

Accounting Review (The)  Finance & Accounting 0.98425 6 9 

MIS Quarterly  MIS, KM 0.98425 6 9 

Strategic Management Journal  General Management & Strategy 0.98425 6 9 

Academy of Management Journal  General Management &Strategy 0.98163 7 12 

Information Systems Research  MIS, KM 0.98163 7 12 

Journal of Consumer Research  Marketing 0.98163 7 12 

Journal of Financial Economics  Finance & Accounting 0.98163 7 12 

Marketing Science  Marketing 0.98163 7 12 

Review of Financial Studies  Finance & Accounting 0.98163 7 12 

Journal of Economic Literature Economics 0.98101 8 18 

Journal of Applied Psychology  Psychology 0.97685 9 19 

Accounting, Organizations and Society  Finance & Accounting  0.96588 10 20 

Journal of Accounting & Economics  Finance & Accounting 0.96588 10 20 

Journal of Accounting Research  Finance & Accounting 0.96588 10 20 

Organization Science  OS/OB,HRM/IR 0.96588 10 20 

American Journal of Sociology Sociology 0.96549 11 24 

Annual Review of Psychology Psychology 0.95627 12 25 

Management Science  OR,MS,POM 0.95627 12 25 

Journal of Marketing Research  Marketing 0.95361 13 27 

American Sociological Review Sociology 0.95354 14 28 

American Political Science Review Public Sector Management  0.95274 15 29 

Journal of International Business Studies  International Business 0.95187 16 30 

Organizational Behavior and Human Decision Processes OS/OB,HRM/IR 0.95187 16 30 

Journal of Operations Management  OR,MS,POM 0.94574 17 32 

American Journal of Public Health Economics 0.94227 18 33 

Review of Economic Studies Economics 0.93991 19 34 

Journal of Economic Perspectives Economics 0.9382 20 35 

Operations Research  OR,MS,POM 0.9379 21 36 

Journal of the American Statistical Association  Economics 0.93394 22 37 

Organization Studies OS/OB,HRM/IR 0.93087 23 38 

American Psychologist Psychology 0.93029 24 39 

Journal of the Royal Statistical Society, Series B OR,MS,POM 0.92495 25 40 

Research Policy Economics 0.92386 26 41 

Journal of Financial & Quantitative Analysis  Finance & Accounting 0.92215 27 42 

Annals of Statistics OR,MS,POM 0.91961 28 43 

Journal of Management Studies General Management & Strategy 0.91688 29 44 
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Journal of Retailing Marketing 0.91512 30 45 

Journal of Personality & Social Psychology Psychology 0.91436 31 46 

Review of Economics & Statistics Economics 0.91409 32 47 

Annual Review of Sociology Sociology 0.90852 33 48 

Journal of Development Economics Economics 0.90058 34 49 

Journal of Monetary Economics Economics; Finance & Accounting 0.89924 35 50 

First ranked journals within subject areas,  
outside top 50 

    

Business History Business History 0.6963 214 126 

Journal of Communication Communication 0.7647 111 126 

Journal of Business Venturing Entrepreneurship 0.88189 45 60 

Journal of Product Innovation Management Innovation 0.80578 83 98 

Annals of Tourism Research Tourism 0.83548 65 78 

Abbreviations: OR,MS,POM = Operations Research, Management Science, Production & Operations 
Management; MIS, KM = Management Information Systems, Knowledge Management; OS/OB,HRM, IR = 
Organisation Behavior/Studies, Human Resource Management, Industrial Relations 

 
 
Table 5: Ranking position of journals within the subject area Operations Research, 
Management Science, Production & Operations Management (OR/MS/POM) 

Journal Rating Ranking 
Tied 
Rank 

Rank within 
Subject Area 

ABS 
2010 

Management Science  0.95627 12 25 1 4 

Journal of Operations Management  0.94574 17 32 2 4 

Operations Research  0.9379 21 36 3 4 

Journal of the Royal Statistical Society, Series B 0.92495 25 40 4 4 

Annals of Statistics 0.91961 28 43 5  

Transportation Research Part B: Methodological 0.88095 46 61 6 4 

Decision Sciences 0.83024 68 83 7 3 

Transportation Research Part A: Policy & Practice 0.81931 72 87 8 3 

Risk Analysis 0.77628 102 117 9 4 

Mathematical Programming 0.77052 106 121 10 3 

Annals of Probability 0.76941 107 122 11  

European Journal of Operational Research 0.76367 116 131 12 3 

IEEE Transactions on Intelligent Transportation Systems 0.76316 117 132 13  

Journal of the Royal Statistical Society, Series A 0.75692 123 138 14 3 

SIAM Journal on Control & Optimization 0.74447 134 149 15  

Transportation Science 0.74422 136 151 16 3 

IEEE Transactions on Engineering Management 0.73753 137 152 17 3 

OMEGA - International Journal of Management Science 0.73751 138 153 18 3 

Production and Operations Management 0.73667 139 155 19 3 

Biometrika 0.73 150 166 20  

Mathematics of Operations Research 0.7298 152 168 21 3 

International Journal of Production Research 0.72265 162 178 22 3 

International Journal of Operations & Production Management 0.71567 176 194 23 3 

Journal of Business Logistics 0.70445 197 215 24 2 

Manufacturing and Service Operations Management 0.70421 200 218 25 3 

Transportation Research Part C: Emerging Technologies 0.70373 201 219 26  

Journal of the Operational Research Society 0.69812 211 229 27 3 
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Transportation Research Part E: Logistics 0.69586 216 236 28 3 

Journal of Scheduling 0.69383 222 242 29 3 

International Journal of Production Economics 0.69378 223 243 30 3 

Journal of Optimization Theory & Applications 0.69018 238 259 31  

Journal of Transport Geography 0.68921 242 263 32 2 

Transportation Research Part D: Transport & Environment 0.68609 253 277 33 2 

Reliability Engineering & System Safety 0.68578 254 278 34 3 

Journal of Supply Chain Management 0.68438 260 284 35 1 

Computers & Operations Research 0.68327 263 287 36 2 

Service Industries Journal 0.68288 265 289 37 2 

Supply Chain Management: An International Journal 0.67861 282 307 38 3 

OR Spectrum 0.67193 300 329 39 2 

Advances in Applied Probability 0.66825 319 349 40  

Operations Research Letters 0.666 324 355 41 2 

Journal of Productivity Analysis 0.66502 327 358 42 3 

Naval Research Logistics 0.66481 329 360 43 3 

INFORMS Journal on Computing 0.66231 342 376 44 3 

International Journal of Human-Computer Studies 0.66154 344 378 45 3 

Annals of Operations Research 0.65699 359 393 46 2 

Applied Statistics: Journal of the Royal Statistical Society Series C 0.6569 360 396 47  

Transportation 0.65667 361 397 48 2 

Theory and Decision 0.64877 391 430 49 2 

American Statistician 0.64865 393 432 50  

Production Planning & Control 0.64473 417 458 51 3 

Interfaces 0.6436 425 468 52 2 

Journal of Combinatorial Optimization 0.64295 429 473 53 1 

Transport Reviews 0.64287 432 476 54 2 

Research Technology Management 0.64176 435 479 55  

Queueing Systems 0.641 440 484 56  

International Journal of Project Management 0.63986 445 490 57 2 

Journal of Multivariate Analysis 0.63637 462 507 58  

Computers & Industrial Engineering 0.63589 464 509 59 2 

International Journal of Physical Distribution & Logistics Management 0.63518 470 515 60 2 

Journal of Manufacturing Systems 0.62404 527 579 61  

Mathematical Methods of Operations Research 0.62394 529 581 62  

Quality & Quantity 0.62121 543 596 63  

Journal of Purchasing and Supply Management 0.62039 546 599 64 2 

Journal of Service Management 0.61963 549 602 65 2 

Industrial Management and Data Systems 0.61871 553 606 66 1 

International Journal of Flexible Manufacturing 0.61455 574 630 67 2 

International Journal of Logistics: Research and Applications 0.61056 596 652 68 2 

International Journal of Logistics Management 0.60808 609 665 69 2 

Journal of Manufacturing Technology Management 0.60211 636 692 70 2 

Quality Management Journal 0.60151 638 694 71  

International Transactions in Operational Research 0.59995 642 698 72 2 

Journal of Multi-Criteria Decision Analysis 0.59936 648 704 73  

Business Process Management Journal 0.59595 658 714 74 1 
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International Journal of Quality & Reliability Management 0.5937 669 725 75 2 

Total Quality Management & Business Excellence 0.59064 674 730 76 2 

International Journal of Manufacturing Technology & Management 0.5893 677 733 77  

Benchmarking: An International Journal 0.57895 704 761 78 1 

Knowledge and Process Management 0.57747 707 764 79 1 

Note: 1.The ABS ranking scale has four quality ratings ranging from 4 to 1.  The 4 category comprises journals 
that publish the most original and best executed research, the 3 category journals that publish original and 
well executed research papers and are highly regarded, the 2 category journals that publish original 
research of acceptable standards and the 1 category journals that publish research of recognized standards. 
For a full specification of the journal quality grades, see ABS – Academic Journal Quality Guide, Version 
4, 2010. 
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Appendix A: Missing data imputation 

As indicated in Sections 4 and 5.2, our data set is comprised of 939 journals scoring in 11 

target lists (Table 2) and 14 additional lists (Table 3), while each individual journal may only 

be scoring in some but not necessarily all of the 25 lists. Let {1, ,939}J = …  denote the set of 

journals and {1, ,25}L = …  comprise the lists in the order of their appearance in Tables 2–3. 

For convenience, we may interchangeably refer to j J∈  as cases and to L∈ℓ  as variables. 

Let jr
ℓ
 ( ,j J L∈ ∈ℓ ) represent the score of j-th journal in ℓ -th list12 when it is 

available and let jr = Μ
ℓ

 when not — what defines a missing value. For the purposes of 

aggregate journal rating and ranking pursued in this study, missing values have to be imputed 

in the target lists from 1 to 10 (while it does not need to be done in the 11th target list by its 

construction as explained in Section 4). Let accordingly {1, .10}I L= ⊂…  comprise the lists 

which require imputation. For imputation purposes, we further augment the data set with two 

additional variables no. 26 and 27 which respectively indicate journals’ primary and 

secondary subject areas as per the JQL49 database [32]. If a particular journal is not assigned 

a secondary subject area in that database, then we let its primary subject area serve as the 

secondary too. By construction, both variables do not have missing values. Let 

{26,27}V L= ∪  accordingly comprise all of the variables in the data set. 

Imputation of missing values is then conducted by taking each single I∈ℓ  as 

dependent variable (response) and \ { }V ℓ  as independent variables (predictors), and making 

inference about the missing values in  ℓ  from the predictor values using the random forests 

method. As indicated in Section 5.2, this is accomplished in three basic steps, which we 

                                                 
12  The score represents the journal’s rank if the respective list ranks journals on an ordinal scale, and its 

rating if the list rates the journals on an interval or ratio scale. 
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describe below in detail. All necessary computations have been conducted in R software 

environment [75] (version 3.0.0). 

A.1 Pre-imputation of missing data in predictors 

As predictors from L  exhibit missing values on their own, we first pre-impute missing data in 

every L∈ℓ  while treating \ { }V ℓ  as predictors. Following Hastie et al. [52] (see also [76]), 

we employ classification and regression trees (CART) to accomplish this task. 

A.1.1 Overview of CART 

Classification and Regression Trees (CART) [77] represents a widely used non-parametric 

method of supervised learning — i.e., learning from data about how do certain input variables 

(predictors) take effect on certain output data (response), for the purpose of correctly 

predicting or estimating the response from the predictors’ values [46, 52, 78]. In this context, 

prediction of a numerical response (measured on an interval or ratio scale) is being termed 

regression, whereas classification deals with a categorical response (measured on a nominal 

sale). The CART method is capable of doing either type of learning and, in addition to that, 

has been developed with a strong emphasis on the possible data missingness in the predictors. 

It exhibits at the same time a degree of accuracy comparable with the best of the classical 

statistical methods [54] while producing highly interpretable models — without requiring to 

make a priori distributional assumptions for the data. Further, it does not require 

transformations of predictor variables, allows any mixture of the variables, is resistant to the 

presence of outliers and irrelevant variables, and is fast to train [52, 78]. For these reasons, 

CART has been adopted in many applied areas and is a most popular predictive learning 

method used in data mining [52, 78]. 

CART produces a data model in the form of a binary tree which is grown in the top-

down fashion by recursively partitioning the data. The construction of the tree (tree fitting) 
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proceeds starting from the root node — which is associated with all of the observations 

contained in the data set. A node is split by selecting a particular predictor variable and 

partitioning its range into two subsets — which respectively define the left and the right 

branch descending from that node; the observations attached to that node are accordingly 

separated into two groups which become associated with the respective child nodes. The 

choice of the variable and its partition is made in a way that would maximize the efficiency of 

the split. For a categorical response, this corresponds to the greatest possible reduction of 

heterogeneity of the response among the observations at the node — called the node impurity, 

for which there are several different measures available [52, 79]. Specifically, a best split 

achieves the greatest possible impurity reduction — which is measured by averaging the 

impurity among the two child nodes. In simpler words, the goodness of a split is determined 

by the extent to which the discrimination between the predictor values helps to discriminate 

the response. For a numerical response, the node impurity is the sum of squared deviations of 

the response from its mean value at that node. The branching of nodes continues either until a 

zero impurity is achieved or until there are only a few observations arrived at a node. The 

generated tree can then be used to predict the response from the new predictor values: each 

such case is run down the tree by applying the branching rules generated during tree fitting; 

the terminal node at which the given case arrives determines the prediction for this case — as 

the majority value of the response among those observations which have ended up at that 

node during the construction of a classification tree, and respectively its mean value when 

doing a regression [52, 53, 80-82]. 

However, the tree grown to its maximum size may overfit the training data and not 

generalize well; on the other hand, a too small tree may not capture enough dependencies in 

the data [52, 53]. Tree pruning is accordingly undertaken to strike a balance between the 

complexity and predictive capability of the tree by successively pruning its branches and 
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estimating its resulting predictive accuracy via N-fold cross-validation — which proceeds by 

partitioning the observations in the data set into N approximately equal groups and then 

successively removing each group from the data set, fitting a new fully-grown tree, pruning it 

to the complexity level in question, and using it to predict the response in the removed 

observations. Predictions are then compared to the true responses to obtain the cross-

validation error over all groups of observations. In this way, a sequence of trees of different 

complexity (ranging from the fully grown tree to the single-node one) is evaluated, and the 

complexity level with the smallest cross-validation error is ultimately chosen; alternatively, 

the smallest tree with the error within 1 standard deviation from the minimum can be chosen 

as well [52, 80-83]. 

Classification trees further allow to specify a prior distribution for the response 

categories and misclassification costs matrix to distinguish between the severity of wrongly 

classifying response categories; these settings take effect on the evaluation of the node 

impurity, the prediction at a terminal node and the prediction errors. Furthermore, CART 

implements a mechanism that flexibly accommodates missing data in the predictors. This is 

being accomplished by looking for surrogate variables at every node split: specifically, after 

a node split has been produced with a particular predictor variable (primary splitter) and its 

range partition (split point), another predictor is being sought with a suitable split point which 

would most closely mimic the split achieved with the primary splitter at this node; this defines 

the 1st surrogate. In the same way the 2nd best surrogate is being determined, and so on. Then 

each time when an observation requiring a prediction is lacking the value of the primary 

splitter at a particular node when being run down the tree, the 1st surrogate will be utilized to 

properly send this observation further down; if the value of the 1st surrogate is missing as 

well, then the 2nd surrogate is used, and so on. Hence this mechanism is trying to benefit from 

the correlations within the data to universally allow missingness while effectively 
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compensating for it [52, 80-82].13 For the above reasons, CART is suggested to be an ideal 

choice for the imputations of missing values in the data set [52]. 

The CART approach to learning has however the following drawbacks: 1) predictions 

being sharply discontinuous across the individual regions of the predictors’ space due to 

recursive partitioning; 2) instability with respect to small variations in the data and, by that, a 

high variability of predictions; 3) difficulties in capturing additive structures in the association 

between the response and the predictors; 4) fragmentation of data — which may cause certain 

relevant predictors to be disregarded if there are relatively many of them, resulting in a lower 

accuracy as compared to the best available methods, and 5) potential bias in variable selection 

towards variables with many distinct realisations and those with many missing values [52, 53, 

78, 84]. Still, the above indicated advantages of CART, in particular the high interpretability 

of the tree models and its non-parametric approach [52, 53, 78], have secured its broad 

adoption in many applications [46]. A substantial research effort has further been undertaken 

to address some of the limitations of CART [85, 86]. 

A.1.2 Application of CART 

As indicated above, the CART method has been adopted to pre-impute missing values in the 

variables L∈ℓ . We use for this purpose a CART implementation delivered by the R package 

rpart [80, 87] — “the de-facto standard in open-source recursive partitioning software“ [86]. 

Note that the following variables in L  represent journal rankings and are therefore measured 

on an ordinal scale: { }0 11 | 1, 2, 5, 6, 7, 8L I= ∪ + =ℓ ℓ , whereas the remaining variables 

1 0\L L L=  rate the journals on an interval or ratio scale.14 

                                                 
13 Notably, CART can also implement node splits which are based on a linear combination of the variables 

instead of just a single one; in this case, however, the predictors are not allowed to have missing data. 
14  We interpret the scale of the journal ranking list BJM 2004 (see entry no. 3 in Table 3) as an interval one. 
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Missing values are accordingly imputed for variables in 1L  by means of regression 

trees. Each 1L∈ℓ  is successively treated as the response variable with predictors \ { }V ℓ , and 

a regression tree is grown given all such cases j  in the data set for which jr ≠ Μ
ℓ

. By the 

same approach, missing values are imputed for variables in 0L  using classification trees. 

Regarding the latter, we employ the rpart’s default Gini node impurity measure (see also 

Section A.1.3 below for a further discussion). Following Loh [79], we further specify the 

costs of misclassifying rank r  to rank r ′  as a loss matrix C  with | |rrC r r′ ′= − , to account for 

the ordinal nature of the response variable. Furthermore, higher ranks in ℓ  are typically less 

populated than middle ranks (e.g. the journals with the highest rank typically represent a 

small fraction of all journals ranked in ℓ ), while their misprediction should be taken more 

seriously. To account for the underrepresented ranks and thus redistribute the 

misclassification error between the ranks, we employ case weighting; the weight attached to 

cases with rank r  is taken to be , ,( )r rn n n⋅ −
ℓ ℓ ℓ

, where | { | }jn j r= ≠ Μ
ℓ ℓ

 is the number of 

cases with non-missing values in ℓ  and , | { | } |r jn j r r= =
ℓ ℓ

 is the number of those with the 

value of r . The minimum weight is normalized to unity. 

While growing a tree of either kind, we allow as many surrogate variables at node 

splits as many are present in L  apart from the response and the primary splitter. Each tree is 

initially grown to the maximum depth by setting rpart’s control parameter cp to 0; splits of 

nodes with less than 10 observations are not attempted. Then, tree pruning is conducted by 

means of the 10-fold cross-validation, while we prefer to stick to the tree with the smallest 

cross-validation error [84]. Finally, the tree is used to predict the response in all cases where 

its value is missing. 
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A.1.3 Notes 

A more appropriate choice of the node impurity measure for classification trees would be the 

one that respects the ordinal nature of variables in 0L . The original CART monograph 

introduces two such ones: ordered twoing and symmetric Gini [82, 88]. However, none of 

them is implemented by the rpart package. This purpose serves rpartOrdinal — an R package 

by Kellie J. Archer [89] that implements ordered twoing and an ordinal variant of Gini 

impurity measure suggested by Piccarreta [88]. However, this implementation does not 

accommodate missing data in predictors [Archer, personal communication]. Further, Twala et 

al. [48] introduced a novel approach to handling missingness at node splits that has exhibited 

an excellent performance. However, its implementation has not been available to us. 

Exploring these options represents an interesting opportunity for the future work. 

A.2 Imputations with random forests and accuracy validation 

Having completed the data set by means of CART, we now re-impute those values which 

have been originally missing in the variables I∈ℓ . These imputations are accomplished by 

means of random forests — a novel predictive learning method that delivers, among a number 

of other strong features, a superior predictive accuracy. 

A.2.1 Overview of random forests 

Random forests [50] represent an ensemble learning method in which a number of 

classification or regression trees (depending on the task) comprise an ensemble that predicts 

the response as a committee — by the majority principle in classification tasks, or by 

averaging over the individual predictions of the committee members in regression tasks [52, 

90]. Tree-growing in such ensemble involves randomization: firstly, the training data for an 

individual tree represents an equal-sized bootstrap sample of the original data set, obtained by 

a random draw from the latter with replacement. This approach to building a tree ensemble is 
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known as bootstrap aggregation, or bagging [91]. As individual trees exhibit a high 

variability (cf. Section A.1.1), bagging can remarkably improve on their predictive accuracy 

— by reducing the variance via aggregation of predictions within a tree ensemble [52, 91]. 

Secondly, in addition to bagging, random forests inject a further randomness to the process of 

tree growing — by taking only a random selection of predictor variables into consideration 

when making a node split. This approach helps to reduce correlation between individual trees 

in the  ensemble; if their prediction strength is not restricted by that too far, then this leads to 

a significant improvement of predictive accuracy of the tree ensemble [50] — what makes 

random forests “competitive with the best available methods and superior to most methods in 

common use” [92], [52, 53]. The number of predictors to be selected randomly for node-

splitting in classification tasks (our primary concern) is recommended to be m 
  , where m  

is the total number of predictors [52, 90]; however, the performance of random forests 

remains quite insensitive to this choice over a wide range of values and can be excellent with 

a random selection of just 1 or 2 predictors, either [50, 52, 90]. As random forests benefit 

from the variability of individual trees, all trees are grown full and thus require no pruning 

(we refer the reader to [52, 53] for a more detailed discussion of this strategy with regard to 

the possibility of overfitting). 

Apart from having a strong predictive accuracy, random forests offer a built-in 

measure of the prediction error — the out-of-bag (OOB) error estimate — which is computed 

on-the-fly during the construction of the forest and makes the user free from the need to 

additionally validate the prediction error: since bootstrap sampling leaves out each single case 

about 36% of all times, the predictions by those trees for which the given case did not enter 

the bootstrap sample can be aggregated and compared with the true response value — thus 

producing an estimate of the forest’s prediction error rate by averaging over all cases in the 
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data set. As soon as the OOB error rate stabilizes with the growing number of trees, it 

represents an unbiased estimate of the generalization error [50, 52, 90]. 

Furthermore, random forests are robust with respect to the noise in the response 

variable [50] and deliver a number of further advantages: a case proximity measure, outlier 

detection, clustering, and a novel variable importance measure, among others [92]. At the 

same time, random forests are particularly fast and easy to train, requiring to fine tune a few 

parameters only [90], and can effectively deal with a large number of predictor variables — 

large even when compared to the number of cases in the data set. Being at the same time a 

non-linear and non-parametric technique, random forests allow application to a wide range of 

problems, even if they are “nonlinear and involve complex high-order interaction effects” 

[93]. For the reasons indicated, random forests have gained a fast adoption in many areas 

since their introduction [53, 93]. We refer the reader for more recent studies of the variable 

importance measure to Strobl et al. [93-95] and Hapfelmeier et al. [96]. 

A.2.2 Application of random forests 

As indicated above, we now re-impute the originally missing values in each of the variables 

I∈ℓ  by means of random forests. We use for this purpose an implementation of the method 

delivered by the R package randomForest [90, 97]. For each I∈ℓ , we utilize variables in 

\ { }V ℓ  as predictors and, in addition to that, we introduce one dummy variable per each 

predictor with pre-imputed values — indicating whether the respective predictor value is 

original or imputed. Hence there are each time altogether | | 1 | | 1 48m V L= − + − =  predictor 

variables. We use the following parameters in constructing the forests: number of trees equal 

to 500, number of randomly selected predictors equal to m 
  , and the minimum node size 

equal to 1 observation. These settings are default for randomForest. Furthermore, we utilize 
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class weights to balance the misprediction error between the individual ranks by the same 

approach as we used in Section A.1.2 for case weights.  

One of the features of random forests is a novel mechanism for handling missing data 

in predictors that is based on the random forests’ case proximity measure [97]. However, the 

implementation of the method by the randomForest package does not allow for missing data 

when predicting the response. Mainly for this reason we stick to the strategy of pre-imputing 

missing values in the predictors by means of CART as described in Section A.1. We cannot 

thus rely on the forests’ built-in OOB error rate to estimate the accuracy of imputations, and 

have conducted 10-fold cross-validations of prediction error (see Section A.1.1) delivered by 

the combination CART + randomForest in each variable I∈ℓ . We have repeated these 

cross-validations 10 times and averaged the misprediction error rates over the trials. Table 

A.1 presents this average error for each response variable I∈ℓ , overall and per individual 

rank. As one can see, the overall error varies remarkably across journal rankings — from 

about 17% for ABDC 2010 to about 47% for Ast 2008. Figure A.1 shows the fractions of 

journals which were mispredicted 10% to 100% of times in the ranking lists ABDC 2010 and 

Ast 2008 during the above 10 trials. Both graphs reveal a pattern characteristic of all 10 

ranking lists I∈ℓ , exhibiting a long bar on the right which indicates that a relatively large 

fraction of journals consistently cannot be ranked same as they appear in the respective 

ranking lists — at least with the data underlying the present study. 
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A.2.3 Notes 

An alternative random forest method to use for imputations would be the conditional 

inference forests offered by the R package party [98]. These forests are comprised of trees 

which implement a conditional inference approach to node splitting [86, 99] and can 

accommodate missing data in the predictors by using surrogate variables as in CART (cf. 

Section A.1.1). Hence unlike the random forests implementation by the randomForest 

package, conditional inference forests allow for data missingness when predicting the 

response. They can therefore be applied to impute missing values in the variables I∈ℓ  

without the need to pre-impute missing data in the predictors, and have performed favorably 

Table A.1: Rank prediction errors as per 10-fold cross-validations, averaged over 10 
trials 

Rank Ast ‘08 ABDC ‘10 ABS ‘10 CNRS ‘11 HEC ‘11 UQ ‘11 VHB ‘11 Cra ‘12 EJL ‘12 ESS ‘13 

1 0.315 0.136 0.287 0.407 0.171 0.256 0.300 0.376 0.281 0.119 

2 0.357 0.083 0.198 0.447 0.419 0.192 0.525 0.180 0.463 0.747 

3 0.575 0.175 0.190 0.335 0.384 0.141 0.292 0.473 0.500 0.140 

4 0.570 0.459 0.501 0.412 0.518 0.448 0.384 0.497 0.087 0.348 

5 0.808   0.576   0.758   1.000 

6       1.000    

Overall: 0.469 0.171 0.245 0.422 0.368 0.212 0.419 0.331 0.210 0.288 

 

Figure A.1: Fractions of journals mispredicted at different rates in 10 cross-validation 
trials 
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in a series of tests in [49]. Furthermore, they can naturally treat ordinal response variables [86, 

98] and offer an unbiased variable importance measure [93-95]. However, the latter issue has 

not been a concern in our study, thus we chose the combination CART + randomForest for a 

better predictive accuracy. For comparison, Table A.2 shows the overall error exhibited in the 

repeated 10-fold cross-validations by our method (as per Table A.1) and by the conditional 

inference forests (which have been run with their default parameter settings15 and, in addition, 

with a maximum possible number of surrogate variables allowed at node splits, and case 

weights assigned as described in Section A.1.2). 

 

A.3 Actual imputations 

Having tested the accuracy of imputations on the existing rank data, we now turn to actually 

imputing those values which have been originally missing in the variables I∈ℓ . Given 

however the magnitude of the cross-validated error rates reported in Section A.2.2, the 

accuracy of the predictions to be obtained should be questioned. Random forests predict a 

categorical response by the majority principle — i.e., by choosing that response category 

which is being predicted (voted for) by the largest fraction of trees in the ensemble. If the true 

response is actually known for the predicted case (e.g. when dealing with a test data sample), 

then the difference between the fraction of correct votes and the largest fraction of votes for 

any other response category defines the margin of the prediction delivered by the forest [50, 

                                                 
15 Since missing values need not be pre-imputed in the predictors when using conditional inference forests, 

we leave dummy variables out (cf. Section A.2.2) and thus have each time | 2| –1 6V =  predictors in the 

course of imputations. The default number of predictors to be randomly selected for node-splitting is set in 
the party package to 5. This number coincides at the same time with the setting recommended for random 
forests (cf. Section A.2.1) and we therefore stick to the default. 

Table A.2: Overall rank prediction errors as per 10-fold cross-validations, exhibited by 
the combination CART + randomForest (CART+RF) and by conditional inference 
forests (CF), averaged over 10 trials 

Method Ast ‘08 ABDC ‘10 ABS ‘10 CNRS ‘11 HEC ‘11 UQ ‘11 VHB ‘11 Cra ‘12 EJL ‘12 ESS ‘13 

CART+RF 0.469 0.171 0.245 0.422 0.368 0.212 0.419 0.331 0.210 0.288 
CF 0.496 0.407 0.330 0.501 0.435 0.295 0.475 0.332 0.233 0.309 
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100]. A positive margin means a correct prediction; the greater its value, the stronger is the 

confidence in the prediction. The average value of the margin attained on the test data 

determines how well will the ensemble generalize — i.e., predict the response variable when 

its true value is unknown [101]. 

In the latter case, the difference between the largest and the second largest fraction of 

votes in the ensemble can be assumed to serve as the margin of the prediction. While 

conducting the cross-validations in 10 independent trials as explained in Section A.2.2, we 

have tracked how this assumed margin is associated with the probability of a true prediction. 

Figure A.2 displays the results obtained for the ranking lists ABDC 2010 and Ast 2008. The 

graphs in both panels represent the cumulative frequencies of correct vs. incorrect predictions 

as follows: the topmost graph shows the frequency of true predictions — i.e., when the 

category predicted by the largest fraction of votes happens to be the true response; the second 

graph from above shows the frequency of wrong predictions such that the true response 

happens to be voted for by the second largest fractions of votes; the third graph from above 

shows the frequency of wrong predictions such that the true response happens to be voted for 

by the third largest fractions of votes, and so on. The data sample used to produce these 

graphs has been comprised of all predictions attempted during the 10 trials of the above cross-

validations; consequently, the sample size represents each time a 10-fold of the number of 

cases originally available in the respective variable. Note that the maximum value attained by 

the respective topmost graph on the vertical axis represents the overall rate of the true 

prediction — which is the complement of the overall error rate reported in Table A.1. By 

examining both panels of Figure A.2, we observe that the first and the second graphs from 

above almost coincide over the lower ranges of the assumed margin — meaning in particular 

that for such low margins, the true prediction is as likely to be associated with the largest 

fraction of votes as with the second largest one. Also for higher values of the assumed 
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margin, there is still a chance of such misprediction. The graph patterns look similar for all 

variables I∈ℓ . 

Given this prediction uncertainty, it would not be consistent to stick to the point 

estimates of the missing journal ranks as predicted by the forests; instead, the uncertainty 

must be reflected in predicted ranks. We therefore adopt, similarly to [30], a fuzzy rank 

approach — by letting each journal belong to two or more different ranks within the same 

ranking list. We accordingly define the rank membership as the probability of the given 

journal belonging to the respective rank. Notably, random forests provide a built-in estimate 

for such probability as the fraction of trees predicting the respective rank. 

As indicated in Section 5.2, random forests exhibited a superior performance in 

producing such estimates [55]. The Brier score — defined as the mean squared deviation of 

the predicted rank probabilities from the true ones — is commonly used as the respective 

quality measure for predictions given in terms of probability estimates [56]. Specifically, let 

I∈ℓ  be a particular target list and { | }jJ j J r⊆ ∈ ≠ Μ
ℓ ℓ

 represent a subset of journals 

Figure A.2: Cumulative frequency distributions of correct predictions with the assumed 
margin, over 10 cross-validation trials 

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

Abdc10 : distribution of predictions with the assumed margin

assumed margin

fr
ac

tio
n 

of
 c

as
es

 o
ve

r 
10

 tr
ia

ls

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Ast08 : distribution of predictions with the assumed margin

assumed margin

fr
ac

tio
n 

of
 c

as
es

 o
ve

r 
10

 tr
ia

ls

 
Note: In each panel, the k-th graph from above represents the cumulative frequency at which the correct 
prediction is being voted for by the k-th largest fraction of trees in the ensemble. 
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scoring in the list ℓ . Let R
ℓ
 denote the number of rank gradations in the ranking list ℓ , and 

let jkf
ℓ
 be the probability estimate for journal j J∈

ℓ
 to belong to rank k  in this ranking list 

— so that 
1

1
R

jkk
f

=
=∑ ℓ

ℓ
. Let further the respective true probabilities be represented by 

{0,1}jkc ∈
ℓ

 with 1jkc =
ℓ

 if and only if jr k=
ℓ

 (i.e., if the true rank of this journal in this 

ranking list is k ). Assume that estimates jkf
ℓ
 of rank probabilities have been obtained for all 

j J∈
ℓ
. They then accordingly determine the Brier score over J

ℓ
 defined as (cf. [102]): 

2

1

1
( )

R

jk jkk
j J

P f c
J =

∈
= ⋅ −∑∑ ℓ

ℓ

ℓ ℓ ℓ

ℓ

. (A.1) 

Although random forests have been shown to deliver a very good performance in terms of the 

Brier score [55], suggestions have been made in the literature on how to improve that 

performance by means of calibration techniques — which attempt to adjust the predicted 

probabilities based on the results of predictive learning. In particular, Boström [56] suggested 

two such techniques for multi-categorical response variables, which we designate as 

Boström’s calibration methods no. 1 and 2 and delineate them below along with their 

application to our imputation procedure. 

Boström’s calibration method no. 1 and its application 

This method suggests adjusting the predicted rank probabilities jkf
ℓ
 for journal j  in the 

ranking list ℓ  as follows: 

(1 ) if arg max{ }
ˆ

(1 ) otherwise

jk jk jk
k

jk

jk

f p f k f
f

f p

+ ⋅ − == 
⋅ −

ℓ ℓ ℓ

ℓ

ℓ

  (A.2) 

where [0,1]p∈  is the calibration parameter. In essence, this method increases the probability 

estimate for the most probable rank [56] while properly reducing the probability estimates for 

all other ranks — whose values decrease by 100p ⋅  per cent. The optimal value of p  is to be 
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determined by replacing jkf
ℓ
 in (A.1) with the calibrated rank probabilities ̂jkf

ℓ
 and 

minimizing the Brier score P
ℓ
 as a function of p . The set J

ℓ
 of journals defines then the 

calibration data set. 

We implement this calibration method for each target list I∈ℓ  by conducting the 10-

fold cross-validation of imputations obtained in the respective list by means of the CART+RF 

method as described in Section A.2.2 and accordingly deriving jkf
ℓ
 as the fraction of trees in 

the respective random forest that predict rank k  for journal j . Thus { | }jJ j J r= ∈ ≠ Μ
ℓ ℓ

 

encompasses all journals scoring in the list ℓ . To achieve more balanced results, we utilize 

the results of all 10 cross-validation trials described in Section A.2.2 by including each 

journal j J∈
ℓ
 in equation (A.1) 10 times with its true rank probabilities and attaching the 

rank probabilities estimates from the t-th cross-validation trial to the t-th instance of that 

journal ( 1, ,10t = … ). To simplify the presentation, we will still refer to the index set of the 

outer sum in (A.1) as J
ℓ
. 

The optimal value of parameter p  for the target list I∈ℓ  is then determined as 

follows (to simplify the presentation, we will below suppress the subscript ℓ  in the notation if 

it remains unambiguous). Let 

* ( ) arg max{ }jk
k

k j f=  

represent the rank of journal j  which has been voted for by the majority of trees in the 

respective random forest; the ties are broken by picking the highest rank. By substituting ˆ
jkf  

for jkf  into (A.1) we accordingly express the Brier score as a function of p  as follows: 

( ) ( )
*

2 2* * *

( )

1ˆ( ) (1 ) (1 )j j j jk jk
j J k k j

P p f p f c f p c
J ∈ ≠

 
= ⋅ + − − + − −  

 
∑ ∑

ℓℓ

, (A.3) 
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where *

*

, ( )j j k j
f f=  and *

*

, ( )j j k j
c c= . Expressing the first derivative of ̂( )P p  and setting it 

equal to zero yields the first-order condition for the optimality of p : 

( ) ( )
*

* * * *

( )

ˆ 2
(1 ) (1 ) (1 ) 0j j j j jk jk jk

j J k k j

dP
f p f c f f p c f

dp J ∈ ≠

 
= ⋅ + − − − − − − ⋅ =  

 
∑ ∑

ℓℓ

. 

Solving this equation for p  yields: 

*

*

* * * * *

( ) 1

2 *2 * 2

1( )

( ) ( )(1 ) ( )

1 2(1 )

R

jk jk jk j j j jk jk jk j j
j J k k j j J k

R

jk jjk j
j J kj J k k j

f f c f c f f f c c f

p

f ff f

∈ ≠ ∈ =

∈ =∈ ≠

   − − − − − + −    
   = =

   
+ −+ −       

∑ ∑ ∑ ∑

∑ ∑∑ ∑

ℓ

ℓ ℓ

ℓ

ℓℓ

ɶ . 

With {1, , }jr R∈
ℓ

…  representing the true rank of journal j  in the ranking list ℓ , , 1
jj rc =  

holds true, and therefore the above solution can be rewritten in the following form: 

2 * *
,

1

2 *

1

1 2

j

R

jk j j j r
j J k

R

jk j
j J k

f c f f

p

f f

∈ =

∈ =

 
+ − − 

 =
 

+ − 
 

∑ ∑

∑ ∑

ℓ

ℓ

ℓ

ℓ

ɶ . (A.4) 

It is straightforward to verify that the second derivative of (A.3) is positive, what proves 

ˆ( )P p  to be strictly convex and thus pɶ  to be its global minimizer. The positivity of the 

second derivative implies at the same time that the denominator in (A.4) is positive. 

Furthermore, it is easy to see that the numerator in (A.4) is no greater than the denominator, 

what proves 1p ≤ɶ  to hold. It may however happen that 0p <ɶ  — in which case * 0p =  is the 

global minimizer of ˆ( )P p  on the feasible range 0 1p≤ ≤  by the strict convexity. Thus, 

* max{0, }p p= ɶ  

is the optimal value of the calibration parameter for the ranking list I∈ℓ . This value has to 

be used in equation (A.2) to adjust the rank probability estimates after imputing them for 

journals \j J J∈
ℓ
 with missing rank data. 
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Boström’s calibration method no. 2 and its application 

This method suggests to replace the constant calibration parameter p  with a non-decreasing 

function of probability *, ( ),j k j
f

ℓ
. We follow Boström [56] and use a sigmoid function which 

we define as 

1
( )

1 jkjk A f Bp f
e

⋅ +=
+ ℓ

ℓ
, (A.5) 

where A  and B  are function parameters subject to optimization. The function is non-

decreasing if and only if 0A ≤  and has its values within the range (0,1]. We stick to  

Boström’s [56] grid search approach for determining (sub-)optimal values of parameters A  

and B . To determine the ranges for the parameter values over which the search should be 

performed, it is instrumental to observe the following properties of ( )jkp f
ℓ

: 

• a higher absolute value of A  leads to a steeper initial increase of the function (cf. panels a 

and b in Figure A.3), with reasonable values of A  being found in the range 100 0A− ≤ ≤ ; 

• pushing B  in the negative direction makes the graph start from a higher ordinate (cf. 

panels a and c in Figure A.3), with reasonable values of B  being found in the range 

5 0B− ≤ ≤ ; 

• pushing B  in the positive direction lowers the starting point of the graph and leads to a 

longer interval of a slower initial decrease of the function (cf. panels a and c in Figure 

A.3), with reasonable values of B  being found in the range 0 5B A≤ ≤ + . 

Figure A.3: Graph of the calibration function under different parameter values 
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We then proceed with each ranking list I∈ℓ  by evaluating the Brier score for each 

combination of { 100, ,0}A∈ − …  and { 5, , 5}B A∈ − +…  over the sample of journals 

produced in 10 cross-validation trials as explained above for the calibration method no. 1, 

while replacing p  with *, ( ),
( )

j k j
p f

ℓ
 in equation (A.2) and jkf

ℓ
 with ˆ

jkf
ℓ
 in equation (A.1). 

The minimum value of the Brier score determines then the best combination of parameter 

values A  and B  for that ranking list. These values have to be used in equation (A.5) to adjust 

the imputed rank probability estimates for journals \j J J∈
ℓ
 by means of equation (A.2) with 

*, ( ),
( )

j k j
p f

ℓ
 in place of p . 

Of the above two calibration methods, the second one offers more flexibility in 

calibrating rank probabilities, however at the expense of more intensive computations; 

furthermore, in contrast to the first method, the second one obtains very likely only a sub-

optimal solution. Table A.3 shows the Brier score before and after calibration with the above 

two methods, as measured over the sample of journals constructed in the course of 10 cross-

validation trials as explained above in detail for the calibration method no. 1. As one can see 

from the table, calibration can offer only a marginal improvement to the Brier score attained 

by random forests — what confirms the insight by Niculescu-Mizil and Caruana [55]. We can 

also see that calibration method no. 2 exhibits a slightly better performance (which is never 

worse than the performance of the first method). 

We accordingly perform the calibration of the imputed rank probabilities in all of the 

ranking lists I∈ℓ . The actual imputations are then conducted in the list ℓ  as follows. Having 

Table A.3: Brier score before and after calibration with Boström’s methods 1 and 2 

Brier score Ast ‘08 ABDC ‘10 ABS ‘10 CNRS ‘11 HEC ‘11 UQ ‘11 VHB ‘11 Cra ‘12 EJL ‘12 ESS ‘13 

Uncalibrated 0.5513 0.2662 0.3642 0.5287 0.4642 0.3331 0.5479 0.4541 0.3019 0.3940 

With method 1 0.5513 0.2545 0.3573 0.5287 0.4641 0.3218 0.5475 0.4533 0.3009 0.3937 

With method 2 0.5511 0.2489 0.3563 0.5287 0.4635 0.3202 0.5476 0.4533 0.3009 0.3929 
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pre-imputed all missing journal ranks in the data set by means of CART as explained in 

Section A.1.2, we utilize the subset { | }jJ j J r= ∈ ≠ Μ
ℓ ℓ

 of all journals scoring in the list ℓ  

as the training data set with the response variable ℓ  to construct a random forest as explained 

in Section A.2.2, and then use this random forest to impute missing rank data for all journals 

\j J J∈
ℓ
. We then derive the rank probability estimates jkf

ℓ
 for these journals as fractions of 

trees in the random forest that predict rank k  for journal j  in the given list. The imputation is 

repeated over 10 trials, and the values of jkf
ℓ
 are averaged over these 10 trials. They get 

finally adjusted to ˆjkf
ℓ
 by means of formula (A.2) where *, ( ),

( )
j k j

p f
ℓ

 supplants p  and the 

best combination of parameter values A  and B  as determined by the calibration method no. 2 

is utilized in equation (A.5). 

This completes the imputation of missing rank data in the ranking lists I∈ℓ . Consider 

now the set of all target lists {11}T I= ∪ . By construction, the 11th list does not have missing 

values (cf. Section A). Thus the set of journals J  and the set of variables T  comprise a 

complete data set with ̂jkf
ℓ
 representing the membership grade of journal j  to rank k  in the 

list ℓ , where ˆ :jk jkf c=
ℓ ℓ

 if the respective journal has been originally scoring in the respective 

list, and is derived by the above described imputation procedure otherwise. This complete 

data set is then subjected to DEA for the purpose of producing an aggregate journal rating and 

ranking. 
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Appendix B: Aggregate rating by data envelopment analysis 

This appendix details the aggregate rating procedure by means of data envelopment analysis 

delineated in Section 6. We will utilize notation introduced throughout Appendix A, with the 

following modification. As explained in Section 6, we exclude from the entire set of journals 

J  those ones which have original ranks available in less than 25% of the 11 target lists T∈ℓ . 

To simplify the exposition, we accordingly re-define the set of journals J  as follows: 

1 939 1 0.25
jr

T

J j j T≠Μ
∈

 
= ∈ ≤ ≤ ∧ ≥ ⋅ 
 

∑
ℓ

ℓ

ℕ , 

where 1C  is the indicator function of condition C  taking on the value of 1 if C  holds true and 

otherwise 0. As indicated in Section 6, this reduces the number of journals in J  from 939 to 

786, representing around 84% of all journals in JQL49. 

B.1 DEA model and cross-evaluation 

The DEA approach adopted in the present work to produce an aggregate rating of journals in 

J  is based on the approach suggested by Green, Doyle and Cook [64] for aggregation of 

voters’ preferences over a set of candidates defined in the form of preference orders. Their 

work is in turn based on the seminal work by Cook and Kress [103]. The reader is referred to 

[62] for a recent critical review of this and the follow-up research. In the present work we 

introduce a number of modifications to the approach of Green et al. [64] which will be 

explained subsequently in detail. 

Consider a journal j J∈  whose grade of membership to the rank {1, , }k R∈
ℓ

…  in the 

ranking list T∈ℓ  is given by ˆjkf
ℓ
. In the spirit of DEA [64, 65, 103], this journal is given the 

opportunity to determine rank weights kw
ℓ
 ( {1, , }k R∈

ℓ
… , T∈ℓ ) that would maximize its 

own rating defined in terms of the weighted average rank: 
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1

ˆ: max
k

R

jj k jk
w

T k

w fθ
∈ =

= ∑∑
ℓ

ℓ

ℓ ℓ

ℓ

 (B.1) 

subject to the constraints: 

1

ˆ 1
R

k ik
T k

w f
∈ =

≤∑∑
ℓ

ℓ ℓ

ℓ

 i J∀ ∈   (B.2) 

1, 1, 2,k k k kw w w w+ + +− ≥ −
ℓ ℓ ℓ ℓ

 , 1, , 2T k R∀ ∈ = −
ℓ

ℓ …   (B.3) 

, 1 ,R Rw w ε− − ≥
ℓ ℓ

ℓ ℓ
 T∀ ∈ℓ   (B.4) 

,Rw ε≥
ℓ

ℓ
 T∀ ∈ℓ   (B.5) 

Rank weight kw
ℓ
 can be interpreted as the “worth of being ranked in [k ]th place” in the 

ranking list ℓ  [104] or the “importance accorded [a journal] that is ranked in [k ]th place” in 

the ranking list ℓ  [63]. Constraints (B.2) represent the usual DEA constraints expressing in 

their left-hand sides the respective rating score of each individual journal in J  under the rank 

weights chosen by the given journal j  and therefore requiring that none of the journals can 

attain a score higher than 1. Constraints (B.3)–(B.5) are the weak convexity constraints 

imposed on the rank weights in each ranking list T∈ℓ  which essentially require that the 

difference between two consecutive ranks expressed in terms of their weights is at least as 

large as the difference between two respectively lower consecutive ranks. Including convexity 

constraints in the DEA model of Green et al. [64] has been suggested by Noguchi et al. [65]; 

however, their variant of convexity constraints has received criticism from Llamazares and 

Peña [62] whose argument we share and therefore add constraints (B.3)–(B.5) to the original 

model of Green et al. [64] in the weak form as advocated by Hashimoto [66] and Stein et al. 

[105]. These constraints also ensure that rank weights are nonnegative and non-decreasing 

from the lowest rank (R
ℓ
) to the highest (1) in each ranking list T∈ℓ . The nonnegative 

constant ε  represents the rank discrimination threshold which particularly determines the 

minimum amount by which the weights of any two consecutive ranks have to differ. 
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The choice of the rank discrimination threshold has received a substantial discussion 

in the literature [see e.g. 62, 64, 65, 67, 103, 106] as it is likely to severely affect the results 

produced. However, to our best knowledge, no universal and satisfactory solution has been 

suggested. Specifically, Cook and Kress [103] suggested to use the maximum possible value 

of ε , however their approach has been invalidated by Green et al. [64] as infringing on the 

fundamental principle of DEA. They have in turn suggested to use 0ε =  — what has been 

criticized by Noguchi et al. [65] as contradicting the basic purpose of ranking — the argument 

which we share as well (see also [67]). As a remedy for this problem, Noguchi et al. [65] have 

suggested their own formula for calculating the value of ε  — which has however been 

criticized for its arbitrariness (see [107]). We share this criticism and adopt in the present 

work a novel game-theoretical approach to determining the value of ε  which is presented in 

detail in Section B.2 below. 

Note that model (B.1)–(B.5) represents a further departure from the approach adopted 

in [64-66, 103] in the following two important aspects. Firstly, following [63, 104, 106], we 

keep the voters’ preferences (in our case rank membership grades ̂ jkf
ℓ
) in their disaggregate 

form — what is justified by the existence of different number of ranks in different ranking 

lists and different meaning attached to them. In contrast, the reference model of Green et al. 

[64] would aggregate the membership grades of the given journal to the given rank across all 

ranking lists. Secondly, our model allows for fuzzy rank memberships by letting each journal 

belong to two or more ranks in each ranking list — to accommodate the uncertainty 

associated with imputations of missing rank data (cf. Section A.3). As a result, (B.1)–(B.5) 

comprise a linear optimization problem with 51 variables and 837 constraints. 

Following Green et al. [64], the aggregate rating list of journals j J∈  is then derived 

by means of model (B.1)–(B.5) and using the cross-evaluation approach as follows. As 
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previously indicated, solving the model with a fixed j J∈  gives the journal j  the 

opportunity to determine the most favorable values ( )j
kw
ℓ

 for rank weights kw
ℓ
 to accord itself 

the highest possible rating score. This self-rating of journal j  is accordingly denoted by jjθ  

as per (B.1). At the same time, rank weights ( )j
kw
ℓ

 determine the rating scores of all journals 

i J∈  from the perspective of the journal j  when being substituted for kw
ℓ
 in the left-hand 

sides of constraints (B.2). Denote these rating scores by jiθ  — i.e., 

( )

1

ˆ
R

j
ji k ik

T k

w fθ
∈ =

= ∑∑
ℓ

ℓ ℓ

ℓ

.  (B.6) 

Solving now model (B.1)–(B.5) successively with each single j J∈ , we let the journals in 

this way cross-evaluate each other and produce by that the cross-evaluation matrix 

,( )ji i j Jθ ∈Θ = . By construction, its i -th column contains the self-rating iiθ  of the i -th journal 

in the row i  along with its peer-ratings jiθ  in the remaining rows. The aggregate rating iA  of 

journal i J∈ is accordingly derived as the arithmetic mean of the i -th column in Θ  [cf. 70]: 

1
i ji

j J

A
J

θ
∈

= ⋅∑ .  (B.7) 

Note that if problem (B.1)–(B.5) has multiple optimal solutions then picking an arbitrary one 

would lead to arbitrariness in deriving the peer-ratings jiθ  of journals \ { }i J j∈  by means of 

(B.6) [64]. For this reason we employ a secondary goal in determining rank weights that puts 

the aggressive form of cross-evaluation into effect. By its virtue, each journal j J∈  picks 

such optimal solution of problem (B.1)–(B.5) which is the least beneficial one for all other 

journals in their totality — so that each journal j J∈  is given the opportunity to appear most 

strongly against its peers. This is achieved by first solving problem (B.1)–(B.5) in order to 

obtain the optimal objective value jjθ , and then solving another linear program with the 

objective function 
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, 1

ˆmin
k

R

k ik
w

i J T k
i j

w f
∈ ∈ =
≠

∑∑∑
ℓ

ℓ

ℓ ℓ

ℓ

 (B.8) 

and constraints (B.2)–(B.5) where constraint (B.2) is replaced for i j=  with: 

1

ˆ
R

k jk jj
T k

w f θ
∈ =

=∑∑
ℓ

ℓ ℓ

ℓ

. 

An optimal solution of this linear program defines then rank weights ( )j
kw
ℓ

 which have to be 

substituted into equation (B.6) for obtaining peer-ratings jiθ  [cf. 64, 70, 108]. Note that an 

alternative form of cross-evaluation (the benevolent one) would replace the objective in (B.8) 

with maximization, what we however find less suitable for the purposes of journal ranking.16 

The aggregate rating scores iA  accordingly comprise the ultimate rating list of 

journals i J∈  and further determine their aggregate ranking, on which both Section 6 

provides further details. 

Notes 

Cross-evaluation is deemed a powerful extension of DEA and has attracted much interest in 

research and application, being praised for its ability to rank order the subjects (in our case 

journals) — a capability not offered by DEA per se [70, 109, 110]. Several different 

approaches to cross-evaluation have received discussion in the literature. In particular, an 

alternative approach suggested by Green et al. for deriving aggregate rating scores iA  is the 

eigenvector method [64, p. 467] which would compute a weighted average in (B.7) by giving 

more weight to higher rated journals j J∈ . This would however treat different journals 

unequally, whereas the arithmetic means approach adopted in (B.7) allows journals have an 

equal say in determining the final result. Wu et al. [111] have on the other hand pointed out 

that simple averaging must not necessarily be Pareto optimal, what raises concerns with 

                                                 
16 The reader is referred to [70] for an overview of these and other possible formulations of the secondary 

goal discussed in the literature. 
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regard to its acceptability from the individual subjects’ perspective. As a remedy for this issue 

they have suggested a game-theoretic approach to averaging the rating scores with weights 

determined via the subjects’ Shapley value in a coalitional game. Adopting their approach 

would however render computations in our setting intractable; we therefore maintain the 

commonly adopted aggregation approach as per (B.7) while letting journals determine the 

final outcome in a cooperative fashion by choosing the rank discrimination threshold via n-

person Nash bargaining — as explained in Section B.2 below. Furthermore, Wu et al. [110] 

pursued maximization of the subject’s ranking position as the secondary goal in cross-

evaluations. While likely being computationally prohibitive in our setting, their approach 

represents an interesting opportunity for the future research. Our approach to obtaining the 

rank discrimination threshold in Section B.2 is interrelated with theirs in that we express a 

journal’s utility in the bargaining game via its relative standing in the rating list. We refer the 

reader to [70] for a recent overview of other existing approaches to cross-evaluation which 

should not be treated here in a greater detail. 

As a final note, we have conducted all computations necessary in this appendix using 

MATLAB (version 7.11.0) and its Optimization toolbox (version 5.1). 

B.2 Determining the rank discrimination threshold 

As discussed in Section B.1 above, the problem of determining a proper value for the rank 

discrimination threshold (denoted by ε  in model (B.1)–(B.5)) has received a substantial 

discussion in the related literature, however none of the approaches suggested have proven to 

be suitable for the purposes of the present work (cf. Section B.1). The analysis of aggregate 

rating scores in our setting has revealed that the choice of the rank discrimination threshold 

affects different journals differently; in particular, increasing the value of ε  improves the 

relative standing of some journals in the resulting rating list while worsening that of the 

others. Hence setting the value of ε  exogenously would inevitably lead to arbitrariness in the 
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results produced. To avoid such arbitrariness, we propose a novel game-theoretic approach to 

choosing the rank separation threshold that lets the journals in J  jointly determine the value 

of ε  via bargaining. We model the respective bargaining situation in terms of n-person Nash 

bargaining problem [68] and determine its outcome as follows below.17  

In the first step, we obtain the maximum value maxε  for the rank separation threshold 

under which problem (B.1)–(B.5) is still feasible. This is achieved by solving the following 

linear program (cf. [113]): 

maxε  s.t. (B.2)–(B.5) 

whose optimal solution defines the feasible range max[0, ]ε  for the rank separation threshold. 

We have found maxε  to amount to approximately 0.01961 in our setting. 

In the next step we obtain the utility functions ( )ju ε  which should respectively 

represent the utility that the journal j J∈  extracts from a particular value max[0, ]ε ε∈ . Let 

( )iA ε , i J∈ , denote the aggregate rating score (B.7) of journal i  produced by the approach 

described in Section B.1 with the given value of ε . We accordingly define the utility ( )ju ε , 

j J∈ , as the standing of the journal j  in the aggregate rating list comprised of rating scores 

( )iA ε , i J∈ : 

( )( ) ( )
( )

max ( ) min ( )

j i
i J

j
i i

ii

A A
u

A A

ε ε
ε

ε ε
∈

−
=

−

∑
. (B.9) 

In simpler words, a journal’s standing represents its position relative to the average journal on 

the list, normalized by the length of the rating scale. Note that the normalization is necessary 

since different values of ε  lead to different lengths of the rating scale. 

                                                 
17 In a similar fashion, Wu et al. [112] consider a cooperative game approach in which the subjects (in our 

case journals) seek to determine a set of common weights (in our case rank weights) via n-person Nash 
bargaining, and utilize the weights so obtained to calculate each subject’s rating score. 
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We then repetitively produce the aggregate rating list at each of 10 equally spaced 

values of ε  ranging from 0 to maxε . This yields, for each j J∈ , a series of 10 data points that 

represent the utility function ( )ju ε  by virtue of (B.9). This function finally gets interpolated 

on the entire feasible range max[0, ]ε  by fitting a cubic polynomial ̂ ( )ju ε  to these 10 data 

points using the least squares method. The polynomial approximations obtained in this way 

for the utility functions of the individual journals j J∈  exhibit a strong fit with the data. 

Figure B.1 illustrates this on the example of the first two journals in J . The mean absolute 

percentage error of fitting comes above 1% for only two out of 786 journals, and has the 

maximum value of 1.65%. The maximum absolute percentage error comes above 1% for 11 

our 786 journals, and has the maximum value of 3.53%. In all of the latter cases, however, the 

respective absolute error is negligibly low (below 0.03). We adopt for these reasons the 

polynomial functions ˆ ( )ju ε  as an excellent representation of utility functions of the 

respective journals j J∈ . 

In the next step, we describe the bargaining situation in terms of the n-person 

bargaining problem [cf. 68] with 786n J= =  and the bargaining set  

Figure B.1: Fitting the utility function to data points for two exemplary journals  
 

 
(a) Abacus (b) Academy of Management Annals 
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( ){ }maxˆ ( ) 0 n
j j J

U u ε ε ε
∈

= ≤ ≤ ⊂ ℝ , 

while the disagreement point is set to be 

( )
max0

ˆmin ( ) n
j

j J

d u
ε ε

ε
≤ ≤ ∈

= ∈ℝ . 

Note that the bargaining set is comprised of all n-dimensional utility vectors induced by the 

feasible values of the rank discrimination threshold, whereas the disagreement point is the 

vector whose elements represent the minimum utilities possible for the respective journals [cf. 

69, 114]. Note further that the bargaining set is by construction connected and closed while 

being at the same time non-convex. Replacing it with its convex hull as in classical Nash 

bargaining [68] does not however prove to be a satisfactory approach in our setting because 

the nature of the given bargaining game does not allow its players (i.e., journals j J∈ ) to 

treat a lottery over U  — or, equivalently, a randomized choice of ε  — as a viable bargaining 

outcome [cf. 115]. In simpler words, the journals cannot be assumed to be expected utility 

maximizers in the given bargaining game; instead, they maximize their utilities ̂ ( )ju ε  

induced by a deterministic choice of ε  — which therefore should represent the bargaining 

outcome. 

Figure B.2: Plot of the Nash product (left) and its natural logarithm (right) as a function 
of the rank discrimination threshold  
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Building on Zhou’s [116] generalization of Nash bargaining to non-convex problems, 

we determine in the final step the bargaining outcome ε̂  by maximizing the Nash product 

( )ˆ ( )j j
j J

u dε
∈

−∏  (B.10) 

as a function of ε  on the feasible range max[0, ]ε . Note that (B.10) happens to be a 

polynomial of degree 7863  whose graph is plotted in Figure B.2. The optimal solution ε̂  can 

be efficiently obtained by maximizing the natural logarithm of the Nash product with the 

Newton method and has been found to amount approximately to 0.0061322 — what 

comprises about 31.3% of its maximal possible value. The value of ε̂  has been then 

accordingly utilized as the rank discrimination threshold to produce the aggregate rating by 

means of the approach presented in Section B.1 above. 

 


